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On Coordinated Scheduling of Radio and
Computing Resources in Cloud-RAN

Mahdi Sharara, Student Member, IEEE, Sahar Hoteit, Member, IEEE, Patrick Brown, Member, IEEE and
Véronique Veque, Member, IEEE

Abstract—Cloud Radio Access Network is a promising mobile
network architecture based on centralizing the baseband process-
ing of many cellular base stations in a BBU (BaseBand Unit) pool.
Such architecture has many advantages. However, computing
resources are shared among the base stations connected to
the BBU pool. It is challenging to schedule the processing of
users’ data, especially on overloaded BBU pools, while respecting
the time constraints imposed by the Hybrid Automatic Repeat
Request (HARQ) mechanism. Given that the processing time
of users’ data and the computing requirement depends on the
radio parameters such as the Modulation and Coding Scheme
(MCS), we propose to enable the coordination between radio
and computing resources schedulers; such coordination makes
the selection of MCS dependent on the availability of radio
and computing resources and on the ability to process data
while respecting the HARQ-deadline. In this context, we propose
and evaluate three Integer Linear Programming (ILP)-based
schemes and three low-complexity heuristics, demonstrating their
ability to reduce the wasted transmission power. Moreover, we
evaluate the performance of the coordination under a multi-
services scenario consisting of two services having heterogeneous
requirements, enhanced Mobile Broadband (eMBB) and Ultra-
Reliable Low-Latency Communication (URLLC).

Index Terms—Cloud-RAN, 5G, Computing Resources Alloca-
tion, Integer Linear Programming (ILP), Modulation and Coding
Scheme (MCS)

I. INTRODUCTION

Cloud Radio Access Network (C-RAN) is a key pillar
in future Mobile Networks. It consists in decoupling Base
Band Units (BBUs) from Radio Remote Heads (RRHs) and
centralizing the baseband processing of many Radio Remote
Heads (RRHs) in a shared BBU pool [2]. The latter processes
some virtualized functions such as fast Fourier transform,
demodulation, and decoding, among others. The architecture
of Cloud-RAN is shown in Fig. 1.

On the one hand, decoupling baseband processing from
radio elements in C-RAN leads to multiple advantages. It
reduces CAPEX and OPEX of network operators, eases the
implementation of interference management mechanisms, in-
creases flexibility and energy efficiency, and improves user
experience [4]. On the other hand, computing resources of the
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Fig. 1: Cloud-RAN architecture [3]
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Fig. 2: Scheduling the processing of users in the BBU pool. For an
overloaded BBU pool, some users will be dismissed

BBU pool may become limited as they are shared among a
large number of Radio Remote Heads (RRHs) connected to
the BBU pool. It is necessary to efficiently manage the BBU
pool, especially when it is overloaded with many RRHs. In
such a case, the BBU pool has to ensure it maintains the ability
to process users’ data before exceeding the deadline imposed
by the MAC-layer mechanism, known as Hybrid Automatic
Repeat Request (HARQ). Knowing that the processing times
of users’ data depend on radio parameters such as the Signal
to Interference plus Noise Ratio (SINR) and the Modulation
Coding Scheme index (MCS), the choice of the MCS index
affects the users’ throughput by specifying the modulation and
the code rate to be used [5] [6]. This raises the coordination
between radio and computing schedulers as a candidate to
efficiently manage the resources of an overloaded BBU pool.
This coordination should help achieve the required quality of
service (QoS) for users and ensure a good level of fairness.
Throughout this work, we propose different schemes that
implement coordination between radio and computing sched-
ulers in Cloud-RAN. These coordination schemes permit the
adjustment of users’ MCS indexes to ensure the processing
of their data in the BBU pool. The processing time of data
increases as the MCS index increases [6]. Thus, when the
BBU pool gets overloaded, it will not be able to process all
users’ data while respecting the HARQ deadlines requirements



(Fig. 2). Users of non-processed data should retransmit the
data as part of the HARQ mechanism. Such retransmission
turns out to be an energy-inefficient phenomenon that reduces
network performance and wastes radio resources. Hence, in-
stead of retransmitting the data, it could be more efficient to
reduce data processing times by decreasing the corresponding
MCS indexes of users. While lowering the MCS index will
decrease the radio throughput and the required processing
time, it should guarantee the ability to process users’ data
instead of dropping them.

In this context, we aim to study and evaluate some coordi-
nation schemes that allow the radio scheduler to assign users’
MCS indexes based not only on the radio quality but also on
the availability of computing resources. The MCS assignment
should consider the availability of computing resources in
the BBU pool, and whether they are sufficient to process
users’ data given the deadline constraints. We note that the
radio scheduler can only adjust the users’ MCS indexes to
values lower than the maximum allowed indexes; the latter is
computed according to the radio conditions. This means a user
cannot use an MCS index higher than the maximum allowed
one; otherwise, the probability of erroneous transmissions
increases, leading to decoding failure at the receiver.

In this paper, we investigate three Integer Linear Program-
ming (ILP) coordination solutions, namely, Maximize Total
Throughput (MTT), Admit All Users (AAU), and Maximize
Users’ Satisfaction (MUS), where the selection of users to be
scheduled, along with their corresponding MCS indexes, is
based on the adopted strategy. We compare and evaluate their
performance according to different metrics such as the total
throughput, the number of admitted users, fairness, and wasted
power. Knowing that the ILP problems are NP-Hard [7],
we propose three low-complexity heuristics that depict the
performance of the ILP solutions. The results provide insights
to network operators on what policy to select depending on
the metric they prioritize.

Furthermore, the fifth-generation (5G) of mobile communi-
cations has been designed to accommodate different coexisting
services with heterogeneous requirements such as enhanced
Mobile Broadband (eMBB) and Ultra-Reliable Low-Latency
Communication (URLLC) scenarios [8]; so we consider multi-
services. While eMBB aims at achieving very high data rates,
URLLC supports low-latency transmissions with very high
reliability. Once URLLC frames arrive at the BBU pool,
they should be scheduled without delay due to the strict
latency requirement. Hence the BBU pool may preempt the
processing of eMBB data and process URLLC data instead. To
implement the proposed coordination, a mobile operator would
go for the low-complexity heuristics. For that, we analyze the
performance of the heuristics in a multi-services scenario when
the existence of URLLC traffic harms eMBB users.

The main contributions of this paper are summarized here:

1) We propose a coordination scheme between radio and
computing schedulers that considers the availability of
computing resources when assigning MCS indexes for
transmissions.

2) We propose three ILP-based algorithms that enable coor-
dination: Maximize Total Throughput (MTT), Admit All
Users (AAU), and Maximize Users’ Satisfaction (MUS).

3) We analyze the performance of the coordination algo-
rithms with respect to no-coordination counterparts.

4) We propose heuristics that perform close to the ILP-based
algorithms but significantly reduce execution time.

5) We analyze the performance of the coordination policies
when eMBB and URLLC services coexist, and we study

how prioritizing URLLC frames over eMBB ones affects
the performance of the heuristics.

The rest of this paper is organized as follows: Section
Il presents the state of the art. The proposed coordination
solutions are presented in section III and evaluated in IV.
The proposed heuristics are evaluated in section V. The
performance of coordination in a multi-service environment
is evaluated in VI. Finally, the work is concluded in section
VII.

II. RELATED WORK

Cloud-RAN continues to receive much interest in many
research works [4]-[6], [9]-[13]. Some papers have con-
sidered the different variations of Cloud-RAN architecture
and considered resource allocation problems for these archi-
tectures, including the standard Cloud-RAN, Heterogeneous
Cloud-RAN with High Power Nodes and Low Power Nodes,
Virtualized Cloud-RAN, and Fog RAN [4]. The different
resource allocation problems aim at optimizing the resource
allocation considering one or more objectives; minimizing
energy consumption, minimizing CAPEX/OPEX, maximizing
throughput, and minimizing latency as [4] shows.

In [5], the authors study the different processing times of
BBU uplink functions and show that the decoding function is
the largest consumer of computational resources. The authors
show that Fast Fourier Transform (FFT) and demodulation
functions do not depend on the MCS index and require less
processing time compared to the decoding function, whose
processing time increases with the MCS index. Besides, the
authors develop some models for processing time prediction
using interpolation and deep learning techniques. A better
processing time model has been proposed in [9]. Unlike the
model in [5], which provides the processing time as a function
of the MCS index, the work in [9] models the processing time
as a function of the MCS index, the number of RBs, and
the CPU frequency. The authors in [10] study the effect of
applying the decoding function in parallel and propose two
algorithms that ensure parallelism. Their results show that such
an option has a good impact by reducing the run time of the
decoding function. In [6], the authors propose two different
computing scheduling algorithms to schedule the processing of
RRHs’ data arriving at every transmission time interval (TTI).
These algorithms aim to increase the number of correctly
decoded sub-frames and the system throughput. The authors
evaluate the performance of these algorithms as a function of
the number of RRHs assigned to the BBU pool. Additionally,
they compare their proposed algorithms to known scheduling
heuristics that only focus on computing scheduling without
considering radio scheduling. These papers, in contrast with
ours, consider neither the multi-services scenarios nor the
coordination between the radio and the computing schedulers
as our paper does.

The authors in [11] and [12] model the problem of RRH-
BBU association as a potential game and a coalition game, re-
spectively. Both papers formulate the BBUs’ power consump-
tion in terms of the radio throughput and aim at minimizing
it. In the same context, the authors of [14] considered radio
resource allocation followed by RRH-BBU association aiming
at minimizing power consumption. Their problem aims to
minimize the number of BBUs used to process computational
requirements. They also proposed two heuristic algorithms to
solve these two problems. In [15], the user-RRH association
problem has been considered aiming at minimizing interfer-
ence without considering the computing resources allocation.
In contrast, the authors of [16] considered the problem of UE-
RRH association followed by the BBU processing allocation.



They formulated a Bin-Packing algorithm to decide which
BBUs should process users’ data, and then they proposed
lower-complexity algorithms to solve these two problems.
In [13], the authors consider the issue of joint radio and
computing resources allocation in Cloud-RAN. They develop a
two independent steps approach that firstly works on allocating
computing resources by mapping users to BBUs running as
virtual machines; each virtual machine is a BBU. After map-
ping users to BBUs, the radio resource allocation is carried out
by controlling each user’s beamforming vector and the power.
The authors use less accurate models, in comparison with our
practical models, to calculate the achievable throughput and
the required computing resources. Instead of showing how
much joint allocation is beneficial in comparison with non-
joint, they only model the problem and devise two algorithms
to allocate the radio and computing resources. In the same
context, the authors in [17] investigate the communication
and computing resource allocation and formulate the problem
using queuing theory. They propose an optimization problem
that tries to ensure the stability of RRHs and BBU queues by
controlling the assignment of users to RRHs and the assign-
ment of RRHs to BBUs in a way that decreases the response
time. The problem is solved by an auction-based algorithm.
While this paper proposes a sequential allocation for radio and
computing resources allocation problem, our work models the
coordination problem, which permits feedback between radio
and computing schedulers. Besides, our paper compares the
case where the radio and computing scheduler coordination is
enabled to the case where it is not.

The performance of coexisting eMBB and URLLC services
has been considered in several papers [18]-[20]. In [18], a
bankruptcy game has been proposed to allocate radio resources
to eMBB and URLLC services. The authors in [19] study the
user-plane latency of URLLC for different numerologies and
consider the impact of allocating fixed bandwidth for URLLC
service on URLLC users’ latency and on eMBB users’
throughput. Moreover, a Deep Reinforcement Learning (DRL)
approach was used in [20] to learn a policy that preserves
the quality of service required for eMBB and URLLC users.
The reward function was designed to encourage actions that
decrease the latency for URLLC users and increase throughput
for eMBB users. Inspired by these papers, we consider the
hybrid scenario where eMBB and URLLC services coexist
and may affect the performance of each other negatively. This
would allow us to understand if the existence of URLLC users
may worsen the performance of the coordination or not.

To the best of our knowledge, we are the first to consider a
coordination scheme between radio and computing schedulers
in Cloud-RAN that consists in adjusting users’ MCS index
and to study its performance in a hybrid eMBB/URLLC
environment.

This work is an extension of our previously published
work [1]. The paper in [1] is restricted to studying the perfor-
mance of the proposed coordination when only eMBB users
are considered. Additionally, it uses a less accurate processing
time model. Moreover, it lacks a complexity analysis of the
proposed coordination heuristics, and it does not show how
much execution time can be reduced with respect to the ILP
problems. In contrast, our current study uses a more accurate
processing time model, evaluates the reduction in execution
time of the heuristic compared to their ILP counterparts, and
studies the performance of the coordination in a multi-services
environment consisting of URLLC and eMBB services.

III. CONTEXT AND PROBLEM FORMULATION

The system under study consists of a set of RRHs connected
to a centralized BBU pool composed of homogeneous CPU
cores with the same execution speed. We suppose each RRH
has one antenna. Modifying the number of antennas should
not affect the tendency of our results, except that it would
only overload the BBU pool at a lower number of RRHs.
Furthermore, we assume there is no bottleneck at the fronthaul
links connecting the RRHs to the BBU pool. As the uplink pro-
cessing time is at least 7 times larger than that in downlink [5],
it is thus a dominating issue for the BBU pool’s bottleneck. For
that, we focus on the uplink direction where users connected to
each RRH share the available resource blocks that can be used
for transmission at the start of every transmission time interval
TTI. The RRHs send the received users’ data to the BBU pool,
which has to process all the incoming data from the RRHs’
users within a specified amount of time equal to 2ms, as
instructed by (HARQ)' mechanism, and the acknowledgment
should be delivered to users in 8ms [10].

We further consider that a user’s MCS index is determined
by jointly considering the channel conditions of all the RBs
in the associated RRH. This allows the radio scheduler to
attribute the same modulation and coding scheme (MCS) index
to a given user over all its resource blocks. To fully focus on
the benefits of this proposal, we suppose that radio-related
decisions (i.e., including RB allocation, power, MCS indexes,
interference management, and frequency spectrum reuse) will
have been implicitly managed by the radio scheduler in ad-
vance. Hence our model does not intervene in radio scheduling
decisions except for allowing the computing scheduler to send
a feedback to the radio scheduler regarding the modification
of the MCS indexes. It is worth mentioning that the radio
scheduler attributes the maximum allowed MCS index i to a
given user by considering its radio conditions measured by
the user’s equipment. More specifically, the Channel Quality
Indicator (CQI), which is related to the Signal-to-Noise-and-
Interference ratio, is sent by the user equipment (UE); the
CQI carries information on how good/bad the communication
channel quality is [5]. Based on this indicator, the radio sched-
uler determines the maximum allowed Modulation Coding
Scheme (MCS) index for each user. As shown in [5], the
processing time of the BBU sub-functions (more particularly,
the decoding function) strongly depends on the MCS index;
it increases with the increase of the MCS index. Hence, if
the BBU pool is overloaded and all users use their maximum
allowed MCS index, the BBU pool will fail to process all the
incoming users’ data by the specified deadline. We note that
if the BBU pool fails to deliver the HARQ-acknowledgment
before the deadline, users of non-processed data should re-
transmit the data.

Next, we present three Integer-Linear-Programming coordi-
nation solutions, each with a different objective to maximize.

A. Notations

Let R be the set of RRHs, U, the set of users connected
to RRH r, M the set of possible MCS indexes that can be
assigned for the radio transmission by the radio scheduler, and
C be the set of homogeneous CPU cores in the BBU pool. For
each RRH r, the coordination policy must attribute to each

'In HARQ, the data sent from a user need to be transmitted, received,
processed, and acknowledged by the BBU, and the sender should receive the
acknowledgment in no more than 8ms. Hence, the deadline for completing
the BBU processing of user’s data in the uplink is equal to 2ms after deducting
the expected latency in fronthaul, transmission, acquirement, etc.



TABLE I: Summary of the general notations

Parameters Definition

R Set of RRHs

Uy Set of users for each RRH r € R

M Set of MCS indexes that can be used in the system

C Set of CPU cores in the shared BBU pool (multi-core
data center).

My w,maz Maximum MCS index user v € U, may use

tru,m Data processing time of user u € U,- having an MCS
index m € M

br,u,m Data length (in bits) of user u € U, using an MCS
index m € M during one TTI

br u,maz Data length (in bits) of user u € U, using its
maximum MCS index My maz during one TTI

d Processing time deadline

T wm A binary variable that assigns the data of user u €
U, having an MCS index m to the core c € C

P The maximum transmission power for each user.

SysMCS Adjustable system-wide MCS index, no user is al-
lowed to use a higher one

MaxMCS max({ My u,maz: u € Ur, T € R})

selectedM C Sy, | Selected MCS index for user u € U,

selectedC PUy 4, Selected CPU to process the data of user u € U,

AdjMargin Adjustment Margin; sets a limit on how much the
MCS index can be adjusted

AvTime(c) Available processing time on CPU ¢ € C

Qm The number of bits per symbol.

N IISI];Jm Slot the number of Resource Elements (OFDM symbols)
per a mini-slot per 1 sub-carrier

N ﬁg the number of sub-carriers per a Resource Block

OH Transmission Overhead of control data

user v € U, an MCS index m € M that is lower or equal
to the maximum allowed MCS index which would initially be
chosen by the radio scheduler M, ,, nq.. Based on the selected
index m, user w transmits an amount of data that is equal to
by u,m; the latter is determined according to [21] that maps
the transport block size (i.e., the payload that can be carried
by the physical layer) to the modulation coding scheme index
and the number of resource blocks. Besides, the time required
for processing user’s u € U, data on the BBU pool is equal
to ¢, ,m; the latter is determined using the formula in [9]. We
suppose that each user transmits its data using its maximum
allowed transmission power P; [22]. Overall, this refers to the
worst-case scenario regarding total radio power consumption.
Table I presents the notations used throughout the paper.

B. The coordination solutions for radio and computing
scheduling

To model the proposed coordination solutions, we consider
three Integer Linear Programming (ILP) optimization prob-

lems in which the coordination management entity acts as a

single centralized decision-maker.

1) Maximize Total Throughput (MTT): As one of the major
objectives in 5G networks is to provide high overall
throughput, the first solution we examine tackles this issue
by solving the following ILP optimization problem:

maximize E g g E Ty o mOrum

reR ueld, meM ceC
subject to  z¢ € {0,1}, Vr € R,u € Up,m € M,

(D

celC 2)
S>> a, <L VreRucld, ()
ceC meM
s =0,Vre R,u €eU.,ceC,

rau,m

2)

3)

m > Mr,u,mama “4)

Z Z Z 5y mtram < d,Ye € C (5)

reR ueld, meM
where z¢

.u,m 18 @ single binary variable equal to 1 if the
data of user u € U, is coded using MCS m € M and is
processed on CPU core ¢ € C. If not, it is equal to 0.
The objective function (1) maximizes the sum of overall
users’ throughput in the system or total system through-
put. Note that the throughput values obtained with this
objective may serve as a reference value to estimate the
cost of fairness of the objective functions we will present
next. MTT solution possesses the following constraints:
(2) ensures that the decision variable z7 , ,, only takes
values 0 or 1. Equation (3) ensures that the data belonging
to a given user u € U, are encoded using at most one
MCS index m and are processed on at most one CPU
core c. Equation (4) ensures that the decision-maker should
not assign to any user an MCS index higher than the
maximum allowed one because a higher MCS index would
increase the decoding error to more than 10%, and finally
(5) ensures that the data to be processed on core ¢ have
to finish before the deadline d. Intuitively, MTT favors
users with high MCS indexes as they possess the higher
throughput in the system and hence sacrifices users with
lower MCS indexes.

Admit All Users (AAU): Instead of privileging users with
high throughput over others as done in MTT, AAU solution
keeps the same objective function of maximizing the
overall system’s throughput while ensuring that all users
have to be scheduled on the BBU pool. Compared to MTT,
there is a slight modification in only one constraint: the
single-core and MCS assignment constraint (3), while the
objective function and other constraints remain the same as
in MTT. This constraint can now be modified as follows:

o> a, =1 VreRucl, (6)

ceC meM

It is worth mentioning that since AAU solution requires
all users to be scheduled on the BBU pool, there is an
upper bound on the number of users that can be admitted
in the BBU pool depending on the capacity of the CPU
cores in the BBU pool. When the BBU pool becomes
highly overloaded, AAU solution schedules the users
and assigns low MCS indexes to ensure all of them are
admitted into the BBU pool. However, sometimes even
the lowest MCS indexes are not enough to ensure the
admission of all users, and in that case, AAU solution
turns out to be infeasible.

Maximize total Users’ Satisfaction (MUS): Intuitively, the
two previous solutions do not ensure a good level of
fairness among the users. For that reason, we propose
the MUS policy that aims to maximize the total users’
satisfaction ratio and ensure a good level of fairness.
We define the user satisfaction ratio as the ratio of the
throughput achieved when the user operates using an
adjusted MCS index, to the maximum throughput obtained
when operating using the maximum allowed MCS index.
The objective function of MUS solution is the following:

S Y S )

reR ueld, meM ceC ru,max

It ensures that when a given user u € U/, has a maximum
allowed MCS index M, 4 maz, the coordination entity



between radio and computing schedulers does not assign
him an MCS index that deviates much from the maximum
allowed MCS index. Hence, the user satisfaction ratio
is maximized when the maximum allowed MCS index
is used. We note that MUS solution maintains the same
constraints as those of MTT.

IV. PERFORMANCE EVALUATION OF ILP-BASED
COORDINATION POLICIES

In this section, we present the simulation environment
and the metrics we used to evaluate the performance of the
proposed solutions.

We consider a BBU pool composed of 4 CPU cores that
process the incoming data from the RRHs’ users. We also vary
the number of RRHs connected to the BBU pool from 15 to
35, which in turn varies the load of the BBU pool. Supposing

CPU Load (in %)

0 5 10 15 20 25
Modulation and Coding Scheme Index

15 17 20 ) i

25
Number Of RRHs

(a) BBU pool load as a function (b) Probability distribution func-
of RRHs’ number tion of MCS indexes as in [6]

Fig. 3: CPU load and MCS Distribution

that each user operates with its maximum allowed MCS index,
Fig. 3(a) provides the BBU Pool load as a function of the
number of RRHs. The figure shows that the load varies from
83% to 195%. It is worth mentioning that the BBU pool starts
to be fully loaded when the number of RRHs connected to the
BBU pool is more than 17 RRHs. Intuitively, our priority is to
focus on such a scenario because the case of a non-fully-loaded
BBU pool allows all the users to operate using their maximum
allowed MCS indexes. Hence, decreasing their MCS indexes
is not beneficial at all. The RRHs operate using a 20 MHz
bandwidth, so the number of available physical resource
blocks (RBs) per TTI equals 100. These RBs are randomly
assigned to the users connected to each RRH, and each user is
allocated between 10 to 30 RBs. In order to use a real traffic
distribution as a function of the MCS indexes, we consider
the same probability distribution function as in [6] that is
obtained using real measurements from [23]; this distribution
is shown in Fig. 3(b), and we use it to sample the maximum
allowed MCS indexes for the different users. Using this real-
measurements-based distribution implicitly takes into account
the interference control in the MCS allocation. Furthermore,
to determine how much time is needed to process each user’s
data, we use the model from [9] that can be applied to single
cell-user association scenarios?, where Open Air Interface
(OAI) RAN simulator is used. The formula is given as follows:

2

NRB i
tr,u;m[us] = 75 Z a;m ®)
f [GHz] ;=0
o t,u,m: processing time of user v € U, using MCS index
m.

2For multi-cell association scenarios (i.e., where a user is served by multiple
RRHs), a processing time model that takes into account other parameters has
to be devised. These parameters should consider which RRHs are used for
signaling and for traffic and how data is split among them.

e Ngrp: The number of RBs used by user u € U,..
o f: the clock frequency of the CPU

« m: the MCS index used by user u € U,

a;: polynomial coefficients

According to [9], the values of alpha corresponding to the
overall uplink processing time are: ag = 35.545, a; = 1.623,
and aps = 0.086. Arbitrarily, we set the CPU frequency
to 4GHz. It is worth mentioning that the processing times
strongly increase with the MCS index for a fixed number of
RBs. However, we note that many more bytes are processed
for larger MCS, and the processing time per byte decreases as
the MCS index increases.

Moreover, each user’s throughput is determined using the
technical specification of ETSI [21]. The throughput of one
user is determined by mapping its number of allocated re-
source blocks and its MCS index to the transport block size
TBS (i.e., the data payload that can be carried by the physical
layer). We note that the TBS of a user increases with the MCS
index or the number of resource blocks. We get the throughput
of each user by dividing its TBS by the transmission time in-
terval (TTI) that is set to 1ms. Additionally, we use MATLAB
to code and run the simulation, and we use CPLEX MILP
solver interfaced with MATLAB to solve the ILP problems.

We compare the performance of the three proposed schedul-
ing policies using different performance metrics, and we
monitor the evolution of their performance as a function of the
BBU pool load. The performance metrics used in this paper
are the following:

o Average throughput: The average user throughput.

o The Number of admitted users: The number of users sched-
uled in the BBU pool and processed before the deadline.

o Fairness: We used the Jain’s fairness index J; [24] to
compare the fairness of the three policies; it is given by:

2
(ZTER Zuebﬁ ST»")
(N X3 er 2ueu, Stu)

For each user v € U,, s, is its satisfaction ratio (i.e., the
ratio of the attained throughput to the maximum achievable
throughput achieved when using the maximum allowed
MCS index). Also, N is the total number of users from
all RRHs. A user is most satisfied if it gets the maximum
throughput that can be achieved, i.e., being assigned its
maximum allowed MCS index.

o Wasted power: This metric shows the ratio of the wasted
power to the total emitted power. The power is useful when
the data carried by the signals get processed before the
deadline of 2ms. In contrast, data that is not processed
before the deadline must be retransmitted. Hence the signal,
and consequently its power, will be wasted.

In the following subsections, we evaluate the performance

of the three different scheduling solutions concerning these

four metrics. We limit the study and analysis to only one

TTI instance, leaving the multiple instants scenario for future

work. In addition, we compare our approaches to two other

basic approaches in the literature [6] that do not consider
any coordination between radio and computing schedulers.

Their objectives are maximizing throughput and the number

of Admitted Users, respectively. It is worth mentioning that

100 simulations were performed, and the confidence intervals

of 95% are provided in the following results.

Jr =

€))

A. Average Throughput Per User

Fig. 4(a) shows the average throughput per user obtained
by each proposed approach as a function of the BBU pool
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Fig. 4: Performance evaluation of the different scheduling solutions

load. We note that this throughput is normalized with respect
to the total throughput’s demand corresponding to the usage
of the maximum MCS index by all users. The MTT solution
clearly outperforms the other two coordination solutions in
average throughput when the BBU pool load surpasses 100%.
In contrast, when the BBU pool load is less than 100%, the
different solutions achieve the same performance as the BBU
pool can process all users’ data while operating using their
maximum allowed MCS indexes.

On the other hand, AAU shows the worst performance
among the coordination policies with respect to the throughput
metric because it requires the admission of all users from
all RRHs to the BBU pool; hence the radio scheduler has to
decrease the MCS indexes (which lowers the throughput) of
many users so they may be scheduled on the BBU pool. Con-
sequently, this severely degrades the total system throughput;
solving AAU when the BBU load exceeds 140% is infeasible.

The MUS policy scores in-between results compared to the
other policies. When comparing MTT and MUS policies to the
non-coordination schemes, we find that MTT results almost
coincide with Maximizing Throughput objective, and MUS
results almost coincide with those found for Maximizing the
Number of Admitted Users; the proposed coordination brings a
slight improvement of less than 1%. The coordination policies
present an advantage over the non-coordination schemes. Due
to the allowed reassignment of MCS indexes, coordination
schemes can use the CPU idle time to allocate more users
and improve the system throughput. When it is impossible to
use the maximum MCS for some users, it could be possible
to use a lower MCS index making a place for one or more
additional users. As can be seen in constraint (3), this extra
degree of liberty compared to the non-coordination schemes
(where a single MCS may be assigned) can only be beneficial,
producing higher throughput and number of served users or at
least as good as the no-coordination.

B. Number of Admitted Users

Fig. 4(b) shows the percentage of admitted users as a
function of the BBU pool load; this percentage is relative to
the total number of users from all RRHs. Intuitively, the AAU
policy ensures the admission of all users (i.e., the percentage
of admitted users is always 100%) as long as the problem
is feasible, and it clearly outperforms all other solutions with
respect to this metric. With respect to AAU, we see that the
performance of MTT policy drops, admitting only 40.2% of
users for an RRH number of 35 per BBU pool (i.e., equivalent
to a BBU pool load of 195%). MTT tends to admit fewer
users with higher throughput than to admit more users with
low throughput. For the third policy (MUS), its performance
gradually drops until it reaches 68.9% when the BBU pool
load is 195%. Again, the performance of the third policy
comes in-between that of the other two policies, as it aims
to maximize fairness without necessarily admitting all users.
In comparison with no-coordination schemes, we again notice
a slight improvement, as explained in IV-A.

C. Fairness Index

The performance of the different policies is also measured
with respect to the fairness in resource distribution, and we use
for that purpose Jain’s fairness index J; as defined previously.
We note that J; = 1 is the maximum fairness value while
Jr = 0 expresses the most unfair scenario. Here again in
Fig. 4(c), for a load less than 100%, all users may use their



maximum MCS index resulting in a Jain index equal to 1 for
all policies. However, when the number of RRHs per BBU
pool increases, the fairness index declines.

The MUS policy outperforms all the other policies in terms
of overall fairness as it maximizes users’ satisfaction rate.
On the contrary, the MTT policy is the least fair among
the coordination policies. The reason is that it favors users
who can achieve high throughput (i.e., those with high MCS
indexes) and sacrifices those with lower MCS indexes that
provide lower throughput. The AAU policy, with its objective
of admitting the maximum number of users, for some time
achieves the highest Jain index. Then beyond a certain load
level, this objective results in an unfair share; adding more
users to the system worsens the fairness index since many
users would take a small portion of their maximum allowed
throughput.

In comparison with no-coordination schemes, here again,
we observe slight improvements, as explained earlier. The
coordination schemes are slightly fairer compared to the no-
coordination because they allow more users to get a chance to
transmit by adjusting their MCS indexes to lower values. In
contrast, the no-coordination schemes ignore these users since
it is impossible to process their data if the maximum MCS
is used. As a result, the coordination schemes are fairer than
their no-coordination counterpart.

We recall that, when analyzing all the performance metrics,
all the policies perform similarly when the BBU load is less
than 100%. However, they behave differently when the BBU
pool becomes fully loaded. When the BBU pool becomes
overloaded, the different policies begin to adjust the MCS
indexes of users since it is impossible to fit all users if they op-
erate using their maximum MCS indexes. The selection of the
users to be scheduled and their corresponding MCS indexes
differentiates the coordination policies one from another.

D. Wasted Power

In Fig. 4(d), we plot the percentage of wasted power to
the total emitted power. We define the wasted power as the
power used to transmit user frames that the BBU pool will
not process before the HARQ deadline due to the lack of
processing resources and that will thus be retransmitted. In
the coordination schemes, only users whose frames can be
processed (eventually with a reduced MCS index) before the
HARQ deadline would transmit data. Hence, they present a
0% waste of transmission power.

When we consider the no-coordination schemes, transmis-
sion decisions are taken by the radio scheduler alone without
knowing whether the BBU pool will be able to process users’
data. In this case, we notice a significant degradation of wasted
transmission power. For the Maximizing throughput objective
and Maximizing the number of admitted users objective, the
wasted power increases until it reaches 59.8% and 31.7%,
respectively, when the BBU load is 195%. Here we notice a
significant benefit of the proposed coordination between radio
and CPU scheduling: it saves considerable power.

E. MCS Selection Distribution

To better understand the strategy each policy follows to
select the users to be scheduled and to assign their MCS
indexes, we plot in Fig. 4(e) the cumulative distribution
function of the selected MCS indexes when the number of
RRHs per BBU pool is equal to 25, along with the curve of
the maximum allowed MCS indexes. The latter distribution
includes all users from all RRHs, whether they were admitted
or not. The previous curves were only concerned with users

who were admitted. The results show that the AAU policy, to
ensure the admission of all the users in the BBU pool, forces
the radio scheduler to enormously decrease the MCS indexes
of users. In particular, the median value in the AAU policy is
0, meaning that 50% of users operate with the lowest MCS
index, which is 0. However, no user under this policy uses
an MCS index higher than 6. Looking at the MTT policy,
we notice that it favors users with higher MCS indexes. The
median of the corresponding CDF is equal to 10, which means
that 50% of the users operate using an MCS index higher
than 10. Moreover, the 90" percentile for MTT is around
the MCS 15, meaning that 10% of the users have an MCS
index higher than 15. This behavior emphasizes that MTT’s
strategy is to schedule almost all the high-MCS users, leaving
those with low MCS indexed with no resources. On the other
hand, the CDF of the MUS policy is similar to that of the
MAX MCS initially assigned to users. This justifies its fairness
since the similarity of the distributions indicates that the MUS
policy tries to assign each user an MCS close to the maximum
allowed one; it attempts to make users fully satisfied as much
as possible. With a probability greater than 0.6, the MUS
policy will select an MCS between 4 and 12.

In conclusion, we can confirm that while the MTT policy
favors the selection of high MCS index users and the AAU
policy favors the selection of low MCS indexes, the MUS
manages to strike a balance that minimizes the harm both on
high and low throughput users. Moreover, we have shown
that the proposed coordination scheme brings improvements,
especially in reducing the amount of wasted power by up to
48%. This is an important finding, especially in the era of
green RAN. Furthermore, with respect to the other metrics,
the slight improvement of (1%-2%) could be of noticeable
importance for operators, given the limited network resources.
On the other hand, a practical implementation of the proposed
coordination cannot be based on solving an optimization
problem that may require heavy computational resources. It
is necessary to propose low-complexity heuristics that can
achieve a performance close to that of the ILP coordination
solutions and allocate resources in real-time. In the following
section, we discuss a few proposed heuristics.

V. PROPOSED HEURISTICS

In practice, mobile network operators should be able to
dynamically allocate resources in a relatively short duration.
While the proposed ILP coordination solutions manage to
show enhancements over the non-coordination ones, it is not
practical for the operator to solve an Integer Linear program-
ming whenever it needs to allocate resources to users. Solving
ILP problems requires a lot of computational resources. It
could thus be computationally infeasible to solve them in real-
time. It is necessary to switch our focus to low-complexity
algorithms that utilize the coordination principle and can
output sub-optimal MCS allocations in a short time. For this
reason, we propose and evaluate three heuristics that can be
used as alternatives to the ILP-based algorithms presented in
section III-B.

A. The three proposed heuristics

In this section, we propose three heuristics that consider
the adjustment of the MCS indexes of users. We refer to the
parameters and variables presented in Table I:

o Heuristic 1 - Prioritize High MCS: Apply a two-level sorting
to all users from all RRHs, firstly in descending order
of maximum allowed MCS-Index and then in ascending
order of maximum achievable throughput. An adjustment



Algorithm 1: Heuristic 1 Prioritize High MCS &
Heuristic 3 Prioritize Low Throughput

input : R, Urer, {Mr umaz: u € Ur,7 € R}.
initialize:
1) Put all users v € U,- from all RRHS r» € R in a list £
and sort them according to the chosen heuristic;
2) AdjMargin <+ 0;
3) maxMCS + max({Mr.u,maz: 4 € Ur,7 € R});
4) AvTime(c) =d, Ve € C;
5) & um < 0,Vr € R,u €Up,m € M,c€C;
while AdjMargin < maxMCS do
for u € L do
m <— (Mr,u,maac -
if m >= 0 then
if 3¢ € C such that ty,m < AvTime(c) then
mwc“,u,m <~ 1;
Remove u from L;
AvTime(c) <+ (AvTime(c) —
end
end

AdjMargin),

tr,u,m);

end
AdjMargin < AdjMargin + 1,

end
output : x7 , ., Vr € R,u € Up,m € M,ceC.

Algorithm 2: Heuristic 2 Admit All Users

input : R, Urer, {Mrumaz: u € Ur,7 € R}.

initialize:

1) Put all users u € U,- from all RRHS r € R in a list £
and sort them accordingly as explained in the text;

2) SysMCS «+ 0;

3) maxMCS < max({ My v, maz: v € Ur,7 € R});

4) AvTime(c) «+ d Ve € C;

5) Trum <0, Vr e RucUy,me M,ceC;

6) selectedMC Sy < —1,Vr € R,u € Uy;

7) selectedCPU,,, <+ —1,Vr € R,u € Uy;

8) tru,—1+ 0,Vre R,u €l

9) AvTime(—1) « 0;

while SysMCS < maxMCS do

for u € £ do

m <« min({ M, u,maz, SYysMCS});

if m > selected M C'S;,, then

AvTime(selectedCPU,. ) <
(AvTime(selectedCPU, ) +
tr’,u,selectcd!\lcs,w,u);

if 3c € C such that t,,m < AvTime(c) then

selectedC' PUy ., < c;
selectedM C Sy o < m;

end

AvTime(selectedCPU,. ) <
(AvTime(selectedC PUy.,.,) —

tr,u,selected]VICSnu ;

end

end
SysMCS + SysMCS + 1;

end

selectedCPUy 4 X
mr,u,selectedZ\/ICS,,uu — I,VT € R,'LL € u’l‘a

output : x7,, ,,, Vr € R,u € U.,m € M,ceC.

margin variable AdjMargin is initialized to zero; this
variable limits how much a user’s MCS can deviate from
the Maximum allowed MCS-Index. Then, the algorithm
loops over the sorted users trying to admit them. After
each complete loop, the algorithm increases the variable

AdjMargin by 1, then loops again over all sorted users.
The algorithm stops when AdjMargin becomes greater
than MaxMCS parameter; the latter is defined as the
highest MCS index among all users. The detailed algorithm
is presented in Algorithm 1.

e Heuristic 2 - Admit All Users: Apply a two-level sorting
to all users from all RRHs; firstly in ascending order of
maximum MCS-Index; then in ascending order of maxi-
mum achievable throughput. A variable called SysMC'S is
initialized to zero. This variable defines a limit on the MCS
index that all users can use. Afterward, the algorithm loops
over the sorted users. In each loop, the algorithm attempts
to admit the users with the minimum of two indexes;
SysMC'S, and the maximum allowed MCS index of a user,
M, 4. maz- Once the loop is completed, the SysMC'S is
increased by one, and the users attempt to use the modified
SysMC'S depending on the available computing resources.
The algorithm terminates when SysM C'S exceeds the high-
est MCS index among all users, MaxMC'S. The complete
algorithm is presented in Algorithm 2.

e Heuristic 3 - Prioritize Low Throughput: The algorithm
acts the same as in Heuristic 1 except in the sorting order;
instead of applying a two-level sorting, all users are sorted in
ascending order of maximum achievable throughput. Again,
the detailed algorithm is presented in Algorithm 1.

B. Performance Analysis of the proposed heuristics

The proposed heuristics are evaluated and compared to
the ILP-based policies of section III-B with respect to the
same metrics of section IV: Average Throughput per User,
Number of Admitted Users, and Fairness Index. The results
are depicted in figures 5(a), 5(b), and 5(c), respectively. We
note from the figures that:

o Heuristic 1 - Prioritize High MCS shows very close
results to those obtained by the first ILP problem, MTT,
especially concerning the throughput metric because it
prioritizes users with high MCS indexes. However, it
outperforms MTT with respect to the other two metrics:
the number of admitted users and the fairness metrics.
Compared to MTT, this heuristic can score up to a 4.5%
improvement concerning the percentage of admitted users
metric and up to 0.049 of improvement for the fairness
metric.

o Heuristic 2 - Admits All Users aims to admit all users
in the system; hence its performance regarding the per-
centage of admitted users is the same as AAU policy.
It deviates slightly from AAU policy with respect to the
throughput metric and can worsen the performance with a
maximum drop of 4%. With respect to the fairness index
metric, this heuristic and AAU can deviate from each
other with a difference not larger than 0.06. As mentioned
earlier, AAU is no longer feasible once the BBU pool
exceeds 140%.

e Heuristic 3 - Prioritize Low Throughput has more or
less a similar performance compared to MUS policy
concerning all metrics. Concerning the throughput metric,
the performance of this heuristic would drop by up to 6%.
The difference between the ILP and the heuristic is very
slight for the metrics of admitted users and fairness.

Compared with its corresponding ILP counterpart, each of
the three heuristics scored close results concerning all per-
formance metrics. We recall that the three heuristics score
0% concerning the metric of wasted power. Like the ILP
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Fig. 5: Comparison of the performance of the heuristics in comparison
to ILP problems

coordination solutions, users aware that the BBU can not pro-
cess their data will not transmit, thus saving the transmission
power. In short, the proposed heuristics can serve as practical
replacements for the high-complexity ILP algorithms and can
be implemented by the mobile operators to apply real-time
scheduling.

C. Computational Complexity

The main motive behind proposing the heuristics is the high
computational complexity of ILP solvers. Finding real-time

scheduling results is essential for mobile operators; otherwise,
our proposal will not have practical grounds and will remain
theoretical.

For both Algorithm 1 and Algorithm 2, the sorting part
should, in the worst case, take no more than |R|? - jmax U, |2,

T
supposing that in each iteration, each user will be compared
with all other users. For the second part of each algorithm,
the worst-case scenario corresponds to iterating over all MCS
indexes, and for each MCS index, iterating over all users.
Hence, the number of iterations for the second part of each
algorithm is |R| - [max,| - |M|.

Experimentally, threE proposed heuristics can find solutions
much faster than the corresponding ILP algorithms. In figure
5(d), we plot the graphs of the percentage of reduction of
Elapsed Time of each heuristic as a function of the number of
RRHs with respect to its corresponding ILP algorithm. We
have made the study using a computer running on Intel®
Core™ 19-9880H Processor, and the ILP solver is CPLEX for
MATLAB. While Heuristic 2 has achieved more than 98.6%
reduction in run-time with respect to AAU, Heuristics 1 and
3 achieved more than 99.7% reduction with respect to MTT
and MUS, respectively. The achieved reduction in run-time is
very significant.

VI. MULTI-SERVICES SCENARIO

The fifth-generation (5G) New Radio (NR) of mobile com-
munications has been designed to support two major classes of
services with vastly heterogeneous requirements: ultra-reliable
low-latency communication (URLLC) and enhanced mobile
broadband (eMBB) [8]. On the one hand, eMBB supports
stable connections with very high peak data rates and moderate
rates for cell-edge users. On the other hand, URLLC supports
low-latency transmissions of small payloads with very high
reliability from a limited set of terminals.

Few approaches have been adopted in the Third Generation
Partnership Project (3GPP) standard [25] to handle the coex-
istence of these two services. One possible way is to slice
the radio resources and reserve a portion for URLLC traffic
[8]. Another approach is multiplexing eMBB and URLLC on
shared radio resources while prioritizing the latter [8]. The
latter can puncture ongoing eMBB transmissions and transmit
instead of them. URLLC transmission can happen at the start
of an STTI (Short Transmission Time Interval). Hence their
transmission time is much shorter than eMBB transmission
time.

So far, we have demonstrated the benefits of the pro-
posed coordination and proposed low-complexity heuristics,
alternatives to the ILP-based coordination algorithms. The
scenarios we tested in the previous sections go under the
eMBB category, and we have not considered the effect of
URLLC service transmission subject to tight latency con-
straints. While the coordination policies achieve better results
than no-coordination for eMBB traffic, it is interesting to
study the impact of URLLC traffic on the performance of
our proposed coordination policies. The impact of URLLC
frames exists when the computing power is shared by both
resources, as it is the case in our study. In particular, the
incoming URLLC traffic during the processing period of
eMBB transmissions cannot be delayed due to the strict
latency requirement. The coordination does not modify the
MCS index of URLLC transmission but only controls the
MCS index of eMBB frames. However, the URLLC frames are
prioritized over eMBB frames. In other words, once URLLC
frames arrive, the BBU pool should process them and preempt
eMBB frames.
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Fig. 6: eMBB and URLLC frames arriving in the same TTI share a
set of computing resources. T is the duration of one OFDM symbol.

Given that URLLC frames arrive at the BBU pool every
STTI and are prioritized over eMBB transmission, the perfor-
mance of the heuristics may change depending on the arrival
rate of URLLC frames. Hence it remains important to analyze
how the heuristics perform for different URLLC frames arrival
rates. It is worth mentioning that on the radio level, it is pos-
sible that either there are radio resources reserved for URLLC
transmissions or that URLLC transmission punctures ongoing
eMBB transmissions and transmits instead. However, in our
paper, regardless of how URLLC traffic was transmitted at
the radio level, we only focus on the effect of the competition
for computing resources on the coordination performance, and
we leave the effect of puncturing on the radio level for future
work.

A. Scenario Description

Targeting reliable and low latency communications, the 5G-
REL15 [25] [26] introduced mini-slots; the time required
to transmit a transport block over this mini-slot is equal to
the sTTI length. Hence, URLLC traffic arrives at the BBU
pool every sTTI duration. Enabling the mini-slots option
paves the way for URLLC users to achieve their low latency
requirement, although this may come at the expense of eMBB
users. As URLLC users have higher priority, they need to
be processed, even if this leaves eMBB frames unprocessed
before the 2ms deadline. Figure 6 shows the scenario under
study. We suppose that eMBB frames and URLLC frames that
arrive during the same TTI will be processed by the same set
of CPUs so that the processing of eMBB frames from different
TTIs will not happen on the same CPUs to avoid overlapping.
However, we limit the study to only one TTI, so only one set
of CPUs is needed. One TTI consists of 14 OFDM symbols.
In addition, we consider the underlying short TTIs (sTTIs)
to be 2-OFDM symbols long. At each sTTI, URLLC frames
arrive, and the CPUs should process them while preempting
the ongoing processing of eMBB frames.

We consider the same scenario described in Section 1V, but
with the existence of URLLC or eMBB users. We suppose
that the arrival of URLLC packets in each mini-slot follows
a Poisson process with an arrival rate A (in our simulation, A
varies between 0 and 5 users per RRH per sTTI). We note that
for A = 0, we get the scenario with eMBB users only, while
A = b represents a very extreme case of an average URLLC
frames arrival of 35000 frames per second. To estimate the
processing load of URLLC packets on the BBU pool, we
additionally need to determine their processing time. Referring
to equation (8), this processing time depends on the number of
RBs used by these frames. The MCS used by URLLC users
is sampled as in section IV. For the required number of RBs
to be used by URLLC users, we use the following formula

[19]:
NLC _ PacketLength

n Q?n X Nﬁ?nislot X Ngg x CodeRate x OI{(IO)
Q. is the number of bits per symbol. @,, and the
CodeRate are determined from the tables in [22]. N&E .
is the number of Resource Elements (OFDM symbols) per
a mini-slot per 1 sub-carrier (i.e., 2, 4, or 7), N gg is the
number of sub-carriers per a Resource Block (i.e., 12), and
OH is the overhead. Similar to [20], we suppose that the
length of URLLC packets, PacketLength is 32 bytes. As in
[19], OH is equal to 0.715. For the sake of benchmarking,
we consider two additional No-Coordination heuristics from
[6]: High Throughput First (HTF), which prioritizes users with
the highest throughput, and Short Time First (STF), which
prioritizes users with the shortest processing time. In these
algorithms, users transmit with their max MCS, and the BBU
pool can only decide to process users or dismiss them. The
simulation is run 100 times, and the 95% confidence intervals
are shown. We note that the confidence interval may appear
very tight in the figures. All the other parameters in the
simulation environment described in IV are maintained.

B. Performance evaluation of the heuristics in a multi-services
environment

In the following, we evaluate the performance of our
proposed heuristics in Section V with the coexistence of
eMBB and URLLC users, using the metrics of throughput,
Admitted Users, Fairness Index, and wasted power. We note
that these metrics depict the performance of eMBB users only;
because URLLC users cannot adjust their MCS indexes, the
coordination is irrelevant to them.

Fig. 7(a), 7(b), 7(c), 7(d), and 7(e) show the performance
of the coordination heuristics as a function of URLLC users’
arrival rate, concerning the metrics of eMBB average through-
put per user, the total number of admitted eMBB users, Jain’s
Fairness Index, and the wasted transmission power. Fixing the
number of RRHs to 25, we monitor the effect of URLLC
users’ arrival on the performance of eMBB users.

Concerning all metrics, the performance of the heuristics
degrades as the URLLC arrival rate increases. As before,
heuristic 1 achieves the highest average throughput among
eMBB users in comparison to other heuristics. Additionally,
while heuristic 3 achieves higher throughput than heuristic 2
for low URLLC arrival rate, as explained in previous sections,
the performance of the two heuristics converges at the end.
The reason is that these two heuristics process users based on
the admission order. Heuristic 2 sorts users in the ascending
order of the MCS index, then in the ascending order of
throughput, while heuristic 3 sorts users in the ascending order
of throughput. This increases the tendency to process users
with low frame sizes first and keep users with high frame sizes
until the end. On the other hand, heuristic 2 tends to admit
potentially high throughput users with a more reduced MCS
index to accommodate more low throughput users, similar to
the behavior of ILP-AAU in Fig. 3(b). This justifies why
heuristic 3 achieves higher throughput at low arrival rates.
When URLLC frames arrive, they cause the CPU to preempt
eMBB users’ processing and start processing the URLLC
frames that arrived. This would make it impossible for the
eMBB users with longer frames, and thus higher throughput,
to be processed before the deadline. At a very high URLLC
arrival rate, most users with high and medium frame sizes fail
to be processed before the 2ms deadline; the BBU pool would
only process eMBB users with low MCS and throughput.



-#-Heuristic 1
~F-Heuristic 2
Heuristic 3

‘\

o Ty

R

Average Throughput per
eMBB User (in Mbps)

7
URLLC Arrlvals per sTTI A

(a) Average eMBB users throughput

\%‘L‘a'b‘)b-‘)‘o

=
(=3
o

g - Yo -#-Heuristic 1
,‘é £ a0 7\~* -1-Heuristic 2
. Heuristic 3

c
25 ol D N

4 .. S STF
e N
o 3 ~\_\' \\‘
o 0 ~a = N
&3 40! ——m e
Sm e - ~
-] Tt VY

~—
8= 20 BEN
‘é [ -~
o
0

S P NG Ve v e b6 6

URLLC Arrivals per sTTI \
(b) Admitted eMBB Users (in %)

1 T 100 4 ~o 100 (-#-Heuristic 1
-#-Heuristic 1 =2} o X _}-Heuristic 2
1. e [ o (73 = euristic "
> 08 +-Heuristic 2 g X 80 L 2 = 80 Heuristic 3 —_—
c - Heuristic 3| - - [ui] _L- -
4 "ﬁ\ LHTr H 5 e - ’,:;, . 2 5 F-HTF ’-’--— -
£ 9 - Py -t A 2 STF P T
0 0.6¢ " - STF » 60 - ~“n* =
SN V<. g H - o o 0 . -7 7
] ~ ~ -~ - v - - .
28 Sl St TR e3 - Plor s — S g 1 77 e
2 m 0.4 fat Tt o8 T 40 oy -#-Heuristic 1 o @ 40 a &
= Sallte . Ta N -}-Heuristic 2 % A
5 © POt JSURRE N 2m el o S s Bt
el n S n Heuristic 3| t =2 e
w02 e 20 . S 2 20 5 2
3 &7 S P _L-HTF 33 o
= P 62 o
0 . STF 55 ge”
o
SPE N VB % e b6 6 S NGB Ve v e b6 o S P NG Ve % e x 6 6

URLLC Arrivals per sTTI \

(c) Fairness among eMBB users

URLLC Arrivals per sTTI A\
(d) Wasted Power of eMBB transmissions (in %)

URLLC Arrivals per sTTI A

(e) eMBB users who wasted power (in %)

Fig. 7: Performance evaluation of our proposed heuristics as a function of URLLC users’ arrival rate when the number of RRHs in the BBU

pool is 25

As figure 7(b) shows, heuristic 2 can no longer admit all
eMBB users in the presence of URLLC frames. Since the BBU
pool is already fully loaded for a number of RRHs equal to 25,
the computing resources are insufficient to process all eMBB
and URLLC frames in 2 ms. Hence the arrival of URLLC
frames leads to failure to process eMBB users. This violates
the heuristic’s primary goal, which is to admit all eMBB users.
For the same reasons explained above, figure 7(c) shows the
performances of heuristics 2 and 3 with respect to the fairness
metric converge at higher URLLC arrival rates.

Analyzing Fig. 7(d), the heuristics employing coordination
can no longer achieve 0 wasted transmission power. Users are
initially promised to be admitted by the BBU pool. However,
an increased arrival rate of URLLC frames leads to increased
wasted transmission power. It is good to note that at a high
URLLC arrival rate, selecting heuristic 2 becomes a bad idea
compared to heuristic 3. The latter becomes a better choice
considering all the metrics.

When comparing the coordination heuristics to the no co-
ordination heuristics, HTF and STF, the existence of URLLC
traffic reduces and diminishes the already slight improvement
(1%-2%, as section IV shows) that the coordination brings
concerning the metrics of throughput, admitted users, and
fairness. The reason is that URLLC traffic negatively affects
the users who managed to be admitted at the BBU pool by
reducing their MCS index. Concerning the metric of wasted
power, the coordination heuristics 1 and 3 remain better than
the no-coordination counterparts, HTF and STF, respectively,
because regardless of URLLC traffic, eMBB users, whom the
BBU pool is initially unable to process, will not transmit
and thus save transmission power. However, since the metric
of wasted power is normalized with respect to the total
transmission power and the coordination decreases the total
transmission power, it would delude us to think that STF
is better than heuristic 2. Hence, we plot the graphs of the
percentage of eMBB users who wasted their transmission
power with respect to the total number of users in the BBU
pool in fig. 7(e). It is clear that the percentage of users who

wasted their power for heuristics 1 and 3 is much better
than the no-coordination heuristics. However, since heuristic
2 admits all users and then removes a lot of them to prioritize
URLLC, it wastes more power than STF at A = 5.

In short, even in the extreme case considered in this section,
where random URLLC frames arrive with no predetermined
processing resources in the BBU pool, we show that coor-
dination heuristics between the radio MCS assignment and
the BBU resources is effective in saving radio power and
reducing the percentage of unprocessed eMBB frames. Among
the heuristics presented, heuristic 3 seems to be more robust
and offers the best performance in this context.

VII. CONCLUSION

In this paper, we investigated three ILP policies that imple-
ment coordination between radio and computing schedulers
in Cloud-RAN context. Motivated by the fact that the data
processing time strongly depends on the transmission MCS
index, the coordination policies allow the radio scheduler to
set the MCS index for users’ transmission not only based on
the radio conditions but also on the ability of the BBU pool to
process users’ data. The three coordination schemes (namely
MTT, AAU and MUS) aim to maximize total throughput,
admit all users, and maximize users’ satisfaction. We have
evaluated them according to different performance metrics.
Results show that the proposed coordination achieves a vital
improvement by significantly reducing the amount of wasted
transmission power and bringing a slight but systematic im-
provement to the other metrics. Among the ILP coordination
policies, the MUS policy is the fairest; it achieves in-between
values of throughput and the number of allocated users in
comparison with the other coordination policies. In addition,
we proposed three low-complexity heuristics and compared
their performance to that of the high-complexity ILP algo-
rithms. We proved that the heuristics are good candidates to
replace the ILP algorithms to achieve real-time performance.
Moreover, we analyzed the performance of the heuristics in
a multi-service environment, where users of different services
(i.e., eMBB and URLLC) coexist. The results show that the



heuristics employing coordination can no more avoid wasting
transmission power when URLLC traffic exists. However,
they still reduce power consumption in comparison with no-
coordination heuristics. For future work, we aim to extend
our study and evaluate the coordination performance at the
MAC layer, taking into account the transmission errors and
subframe retransmission at the MAC-layer level. Moreover,
we aim to consider dynamic RB allocation, power allocation,
and interference control to study the benefits of joint radio
and computing resource allocation. We also consider studying
a scheme where the MCS selection is limited by the capacity

of the fronthaul links.

Furthermore, we plan to extend our

study to multi-cell association scenarios considering a suitable
processing time model.
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