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GLOBAL EXISTENCE FOR SYSTEMS OF TRIPLED REACTION

DIFFUSION EQUATIONS MODELLING SOME REVERSIBLE CHEMICAL REACTIONS.

SAID KOUACHI

Abstract. The purpose of this paper which is a continuation of S. Kouachi [START_REF] Kirane | Asymptotic Behavior for a System Describing Epidemics with Migration and Spatial Spread of Infection[END_REF], is to prove global existence of solutions for systems of tripled reaction diffusion equations describing some reversible chemical reactions. In this case the nonlinearities present some di¢ culties since they change sign and then neither of the components of the solution is a priori bounded or at least bounded in some Lp-space for p large to permit the application of the well known regularizing e¤ect principle (see beginning of the second section) or some functional methods to deduce the global existence in time for the systems in question. In this paper our techniques are based on Lyapunov functional method.

Introduction. We consider the reaction-di¤usion system

(1) @ t u d 1 u = f (u; v; w);

(2) @ t v d 2 v = g(u; v; w) in R + ;

(3) @ t w d 3 w = h(u; v; w); with the boundary conditions

: 12 )@ v = 2 on R + @ ; 3 w + ( 13 )@ w = 3 ;

1 u + (1 1 )@ u = 1 ; 2 v + (
where, for i = 1; 2 and 3, di¤erent type of boundary conditions are imposed: Nonhomogeneous Robin type (0 < i < 1 ; i 0) or homogeneous Neumann type ( i = i = 0) or homogeneous Dirichlet type (1 i = i = 0;). Also a mixture of homogeneous Dirichlet with nonhomogeneous Robin boundary conditions (1 i = i = 0; i = 1 or 2 or 3 and 0 < j < 1; j 0; j = 1; 2, 3, with i 6 = j) can be assumed.

is an open bounded domain in R N with smooth boundary @ ; @ denotes the outward normal derivative on @ , d 1 , d 2 and d 3 are positive constants called the di¤usion terms, 0 1 ; 2 ; 3 1 and 1 ; 2 and 3 0 are in C 1 (@ ; R). The initial data [START_REF] Henry | Geometric Theory of Semi-linear Parabolic Equations[END_REF] u(0; x) = u 0 (x); v(0; x) = v 0 (x), w(0; x) = w 0 (x) in are assumed to be nonnegative and uniformly bounded on .The reaction terms are given by: (

:

f (u; v; w) = ( 1) i1 [a 1 u p1 v q1 w r1 a 2 u p2 v q2 w r2 ] ; g(u; v; w) = ( 1) i2 [b 1 u p1 v q1 w r1 b 2 u p2 v q2 w r2 ] ; h(u; v; w) = ( 1) i3 [c 1 u p1 v q1 w r1 c 2 u p2 v q2 w r2 ] ;
where a i ; b i ; c i ; p i ; q i ; r i ; i = 1; 2 are positive constants and i 1 ; i 2 ; i 3 are positive integers not odd or even at the same time to don't get the same sign in the nonlinearities 6. System 1-3 may be a model for the chemical reaction ( 7)

p 1 U + q 1 V + r 1 W p 2 U + q 2 V + r 2 W:
More precisely, we have the following reaction di¤usion system (8)

<

:

@u @t -d 1 u = (p 2 p 1 ) [ k 1 u p1 v q1 w r1 k 2 u p2 v q2 w r2 ] ; @v @t -d 2 v = (q 2 q 1 ) [ k 1 u p1 v q1 w r1 k 2 u p2 v q2 w r2 ] in R + ; @w @t -d 3 w = (r 2 r 1 ) [ k 1 u p1 v q1 w r1 k 2 u p2 v q2 w r2 ] ;
where u; v and w are the concentrations respectively of the reactants U; V and W and k 1 > 0 and k 2 > 0 are the reaction constants and the quantities (p 2 p 1 ) ; (q 2 q 1 ) and (r 2 r 1 ) have not the same sign as in 6. For example if we take r 1 = p 2 = q 2 = 0, we have the following chemical reaction [START_REF] Kirkaldy | Di¤usion in multicomponent metallic systems[END_REF] p 1 U + q 1 V r 2 W;

and the system modelling this reaction is the following (10)

<

:

@u @t -d 1 u = k 1 u p1 v q1 + k 2 w r2 ; @v @t -d 2 v = k 1 u p1 v q1 + k 2 w r2 in R + ; @w @t -d 3 w = k 1 u p1 v q1 k 2 w r2 :
As it was mentioned in S. Kouachi [START_REF] Kouachi | Global existence for coupled reaction di¤usion systems modeling some reversible chemical reactions[END_REF] for systems of coupled reaction di¤usion equations, the di¢ culty for the type of this systems is that the reactions terms have not a constant sign and this means that none of the equations 1-3 is good is the sense that neither u nor v and w is a priori bounded or at least bounded in some Lp-space for p large to permits us the application of the well known regularizing e¤ect principle (see beginning of the next section) and deduce the global existence in time for problem 1-5.

The special case of 10 where p 1 = q 1 = r 2 = 1 has been studied by Rothe [START_REF] Rothe | Global Solutions of Reaction-Di¤usion Systems[END_REF] under homogeneous Neumann boundary conditions where he showed that T max = 1 if N 5: J. Morgan [START_REF] Morgan | Global Existence for Semilinear Parabolic Systems[END_REF] generalized the results of Rothe for every integer N 1 and when all the components satisfy the same boundary conditions (Neumann or Dirichlet). S. L. Hollis [START_REF] Hollis | On the Question of Global Existence for Reaction-Di¤usion Systems with Mixed Boundary Conditions[END_REF] completed the work of Morgan and established global existence if w satis…es the same type of boundary conditions as either u or v. But if the boundary conditions of di¤erent types are imposed on u and v, global existence follows regardless of the type of boundary condition that is imposed on w. In S. Kouachi [START_REF] Kouachi | Global existence of solutions to reaction di¤usion systems via a Lyapunov functional[END_REF] we have proved global existence of solutions to system 10 when r 2 1 or p 1 + q 1 1, under homogeneous Neumann boundary conditions, by studying the two coupled systems 1-3 and 2-3. However we have obtained Proposition 0.1. Suppose that r 2 1 or p 1 + q 1 1, then all solutions of 10 with nonnegative uniformly bounded initial data and homogeneous Neumann boundary conditions are positive and exist globally for every positive constants k 1 and k 2 :

Then, in [START_REF] Kouachi | Existence of global solutions to reaction di¤usion systems with no homogeneous boundary conditions via a Lyapunov functional[END_REF], we generalized the above results to nonhomogeneous boundary conditions 4.

When the nonlinearities have not a constant sign, there is not many results and to prove global existence several conditions are imposed. Generally the following conditions are imposed [START_REF] Kirane | A strongly nonlinear reaction di¤usion model for a deterministic di¤usive epidemic[END_REF] f 

+ g + h C (1 + u + v +
@ t u d 1 u = f (u; v) in R + ; (14) @ t v d 2 v = g(u; v) in R + ;
with the boundary conditions (15)

1 u + (1 1 ) @u @ = 1 ; 2 v + (1 2 )
@v @ = 2 on R + @ ; where 0 < 1 ; 2 < 1; 1 = 2 = 1; 1 0 and 2 0;

or 1 = 2 = 1 = 2 = 0;
under the condition of the uniform boundedness of u on [0; T max ] and the following mass-control condition [START_REF] Kouachi | Explicit invariant regions and global existence of solutions for reaction-di¤usion systems with a full matrix of di¤usion coe¢ cients and nonhomogeneous boundary conditions[END_REF] f + g C(u; v) (u + v + 1) ; for all u 0 and v 0;

where C(u; v) is positive and uniformly bounded function de…ned on R + R + . A. J. Morgan [START_REF] Morgan | Global Existence for Semilinear Parabolic Systems[END_REF] generalized the results of S. L. Hollis, R. H. Martin and M. Pierre [START_REF] Hollis | Global Existence and Boundedness in Reaction Di¤usion Systems[END_REF] to show that solutions of the m-components reaction di¤usion systems exist globally (m 2) where also, in our case (m = 3), he imposed to f ; f + g and f + g + h condition 11 under the boundary conditions 15. S. L. Hollis [START_REF] Hollis | On the Question of Global Existence for Reaction-Di¤usion Systems with Mixed Boundary Conditions[END_REF] extended these results, under the same conditions, to the boundary conditions 15 but he took 0 1 ; 2 1; 1 0 and 2 0: In S. Kouachi [START_REF] Kouachi | Global existence of solutions to reaction di¤usion systems via a Lyapunov functional[END_REF], respectively in S. Kouachi [START_REF] Kouachi | Existence of global solutions to reaction di¤usion systems with no homogeneous boundary conditions via a Lyapunov functional[END_REF] and …nally in S. Abdelmalek and S. Kouachi [START_REF] Abdelmalek | Proof of Existence of Global Solutions for m-components Reaction Di¤usion Systems with Mixed Boundary Conditions via the Lyapunov Functional Method[END_REF], we generalized the above results respectively for two, three and …nally m components systems:

(17) @u i @t -d i u i = f i (u 1 ; :::; u m ) in R + ; i = 1; :::; m;
under the unique condition

(18) m X i=1 D i f i (u 1 ; :::; u m ) C 00 " 1 + m X i=1 u i # for positive constants D i su¢ ciently large (D 1 = 1)
, where C 00 is a positive constant and we showed the global existence without imposing the boundedness of one of the components of the solution.

In the case when the nonlinearities have a constant sign (for example a i = b i = c i = 0 for i = 1 or i = 2) many results have been obtained for coupled reaction di¤usion systems (which can be generalized easily to tripled systems): When f (u; v) = uv (witch implies the uniform boundedness of u) and g(u; v) = uv , N. Alikakos [START_REF] Alikakos | L p -Bounds of Solutions of Reaction-Di¤usion Equations[END_REF] established global existence and L 1 -bounds of positive solutions for 1-2 when 1 < < (n+2) n : K. Masuda [START_REF] Masuda | On the Global Existence and Asymptotic Behavior of Solutions of Reaction-Di¤usion Equations[END_REF] showed that the solutions exist globally for every > 1: Haraux and A. Youkana [START_REF] Haraux | On a Result of K. Masuda Concerning Reaction-Di¤usion Equations[END_REF] simpli…ed the demonstration of K. Masuda while using techniques based on a Lyapunov functional and while taking handle nonlinearities f (u; v) = g(u; v) = ue v with 0 < < 1 su¢ ciently small. S. Kouachi and A. Youkana [START_REF] Kouachi | Global existence and asymptotics for a class of reaction di¤usion systems[END_REF] generalized the results of A. Haraux and A. Youkana [START_REF] Haraux | On a Result of K. Masuda Concerning Reaction-Di¤usion Equations[END_REF] to the triangular case while adding c u, with c > 0, to the right-hand side of equation 14 under the condition

lim s!+1 log (1 + f (r; s)) s < , for any r 0; with = 2d 1 d 2 N (d 1 d 2 ) 2 ku 0 k 1 ;
condition re ‡ecting the weak exponential growth of the reaction term f . Preliminaries. It is well known under the name "the regularizing e¤ect principle" that to prove global existence of solutions to 1-3 (see Henry [START_REF] Henry | Geometric Theory of Semi-linear Parabolic Equations[END_REF]), it su¢ ces to derive a uniform estimate of kf (u; v; w)k p ( which equal to kg(u; v; w)k p and kh(u; v; w)k p ) on [0; T max [ for some p > N=2, where T max denotes the eventual blowing-up time in L 1 ( ). Our aim is to apply polynomial Lyapunov functional method (see M. Kirane and S. Kouachi [START_REF] Kirane | Asymptotic Behavior for a System Describing Epidemics with Migration and Spatial Spread of Infection[END_REF], [START_REF] Kirane | A strongly nonlinear reaction di¤usion model for a deterministic di¤usive epidemic[END_REF] and [START_REF] Kirane | Global Solutions to a System of Strongly Coupled Reaction-Di¤usion Equations[END_REF], S. Kouachi and A. Youkana [START_REF] Kouachi | Global existence and asymptotics for a class of reaction di¤usion systems[END_REF] and S.

Kouachi, [START_REF] Kouachi | Global existence for coupled reaction di¤usion systems modeling some reversible chemical reactions[END_REF], [START_REF] Kouachi | Global existence of solutions to reaction di¤usion systems via a Lyapunov functional[END_REF] and [START_REF] Kouachi | Existence of global solutions to reaction di¤usion systems with no homogeneous boundary conditions via a Lyapunov functional[END_REF] and S. Abdelmalek and S. Kouachi [START_REF] Abdelmalek | Proof of Existence of Global Solutions for m-components Reaction Di¤usion Systems with Mixed Boundary Conditions via the Lyapunov Functional Method[END_REF] according to the solution (u; v; w) of system 1-3, to carry out their L p bounds and deduct their global existence. The nonnegativity of the solutions is preserved by application of classical results on invariant regions (see J. Smoller [START_REF] Smoller | Shock Waves and Reaction-Di¤usion Equations[END_REF]), since the reaction 6 is quasi-positive, i.e.:

(19) f (0; v; w) 0; g (u; 0; w) 0; h (u; v; 0) 0 ; for all u; v; w 0:

Since the nonlinearities 6 are continuously di¤erentiable on R +3 , then for any initial data in C or L p ( ); p 2 (1; +1), it is easy to check directly their Lipschitz continuity on bounded subsets of the domain of a fractional power of the operator I 3 (d 1 ; d 2 ; d 3 )

t , where I 3 the three dimensional identity matrix, is the Laplacian operator and () t denotes the transposition. Under these assumptions, the following local existence result is well known (see A. Friedman [START_REF] Friedman | Partial Di¤erential Equations of Parabolic Type[END_REF], D. Henry [START_REF] Henry | Geometric Theory of Semi-linear Parabolic Equations[END_REF], A. Pazy [START_REF] Pazy | Semigroups of Linear Operators and Applications to Partial Di¤erential Equations[END_REF], J. Smoller [START_REF] Smoller | Shock Waves and Reaction-Di¤usion Equations[END_REF] and F. Rothe [START_REF] Rothe | Global Solutions of Reaction-Di¤usion Systems[END_REF]).

Proposition 0.2. The system 1-3 admits a unique, classical solution (u; v; w) on

[0; T max [ . If T max < 1 then (20) lim t%Tmax fku(t; :)k 1 + kv(t; :)k 1 + kw(t; :)k 1 g = 1:
We obtained in S. Kouachi [START_REF] Kouachi | Existence of global solutions to reaction di¤usion systems with no homogeneous boundary conditions via a Lyapunov functional[END_REF], in particular for tripled reaction di¤usion systems the following result Proposition 0.3. Suppose that the functions f; g and h are polynomial growth and satisfy conditions 18 for m = 3. Then all positive solutions of problem 1-5 with initial data in L 1 ( ) are global.

The main ingredient of the proof: We used, for a given positive integer p, the following polynomial functional 

H p (u; v; w) = p X q=0 q X r=0
C q p C r q r q u r v q r w p q ;

By di¤erentiating L with respect to t and then by a simple use of Green's formula, we got

(23) L 0 (t) = I + J;
where (24)

I = I 1 + I 2 :
I 1 is uniformly bounded by using the boundary conditions 4 and I 2 is the integral of a quadratic form with respect to ru; rv and rw. We proved that I 2 0 by choosing the sequences f r g and f q g satisfying the conditions

A = 0 @ 2 2 1 2 1 1 1 2 0 2 0 1 1 1 0 1 0 0 1 A ! jAj = 0 2 0 2 2 1 0 2 2 1 (25) 
r r+2 2 r+1 d 3 2 ; r = 1; :::; q; and (26) 2 ; r = 1; :::; q; q = 1; :::; p;

q q+2 2 q+1 d 1 2 ! r r+2 2 r+1 d 3 2 ! d 2 d 1 d 3 
0 @ a q+2 p+2 a+b 2 q+1 p+2 a+c 2 q+1 p+1 a+b 2 q+1 p+2 b q (p+2) b+c 2 q (p+1) a+c 2 q+1 p+1 b+c 2 q (p+1) c q p 1 A where 
d k = d i + d j 2 p d i d j ; i 6 = j 6 = k; i; j; k = 1; 2; 3:
Concerning the integral J

( 2 2 f + 1 2 g)+ 1 1 h 0; ( 1 2 f + 0 2 g)+ 0 1 h 0; ( 1 1 f + 0 1 g)+ 0 0 h 0 = 2 2 1 2 1 1 1 2 0 2 0 1 1 1 0 1 0 0 = 0 2 2 1 0 2 2 1 0 2 ! we obtained J = p p 1 X q=0 q X r=0 Z C q p 1 C r q ( r+1 q+1 f + r q+1 g + r q h) u r v q r w p 1 q dx (27) = p p 1 X q=0 q X r=0 Z C q p 1 C r q r+1 r q+1 q f + q+1 q g + h r q u r v q r w p 1 q dx = p p 1 X q=0 q X r=0 Z C q p 1 C r q q+1 q r+1 r f + g + h r q u r v q r w p 1 q dx 1 0 f + g + h 0; 2 1 1 0 f + g + h 0; 2 1 2 1
f + g + h 0:

1 1 0 0 f + 1 0 g + h 0; 2 1 1 0 f + 2 1 g + h 0; 2 1 2 1 f + 2 1 g + h 0 ( 1 1 f + 0 1 g) + 0 0 h 0; ( 1 2 f + 0 2 g) + 0 1 h 0; ( 2 2 f + 1 2 g) + 1 1 h 0 (28) = 1 1 0 1 0 0 1 2 0 2 0 1 2 2 1 2 1 1 = 0 2 2 1 0 2 2 1 0 2 ! = 1 1 0 1 0 0 1 2 0 2 0 1 2 2 1 2 1 1
which gave, under condition 7 for m = 3

(29) J C 1 L(t); t 2 [0; T max [:
Then, the functional L satis…ed the di¤erential inequality

(30) L 0 (t) C 2 L(t);
where C 1 and C 2 are positive constants. The resolution of this linear di¤erential inequality gave the uniform boundedness of the functional L on the interval [0; T max [, what …nished, by using the preliminary observations of this section, the proof. In S. Kouachi [START_REF] Kouachi | Global existence for coupled reaction di¤usion systems modeling some reversible chemical reactions[END_REF], by direct application of a proposition analogous to proposition 0.3 to the coupled reaction di¤usion system 13-14 with the following reactions

f (u; v) = a 1 u p1 v q1 + a 2 u p2 v q2 in R + ; g(u; v) = b 1 u p1 v q1 b 2 u p2 v q2 in R + ;
we obtained, in the case a 1 = b 1 and a 2 = b 2 ; Corollary ?? Corollary 0.4. Suppose that (31) p i + q i 1;

for i = 1 or i = 2;or (32) p j + q j > p i + q i > 1 and p i p j < p i q j q i p j < q j q i ; for i = 1; j = 2 or i = 2; j = 1;then solutions of 13-14 with the boundary conditions 15 and positive uniformly bounded initial data, exist for all t > 0:

M. Pierre [START_REF] Kouachi | Global existence for coupled reaction di¤usion systems modeling some reversible chemical reactions[END_REF] generalized our results to the case where

(33) a 2 b 1 a 1 b 2 ;
and proved global existence of solutions if (34) q 2 > q 1 and q 2 p 1 q 1 p 2 q 2 q 1 or q 2 = q 1 and p 1 < p 2 ; or p 1 > p 2 and q 2 p 1 q 1 p 2 p 1 p 2 or p 1 = p 2 and q 2 < q 1 ; and global weak solutions (solutions that are not in L 1 ( ) but continue to live in L 1 ( )) for all p i ; q i 1; i = 1; 2. In S. Kouachi [START_REF] Kouachi | Global existence for coupled reaction di¤usion systems modeling some reversible chemical reactions[END_REF] we presented some generalizations of the above results obtained by M. Pierre [START_REF] Pierre | Global Existence in Reaction-Di¤usion Systems with Control of Mass: a Survey[END_REF] without condition 33 or 34 to get Proposition 0.5. Under conditions ??, the solutions of problem 13-14 exist globally in time for all a i ; b i > 0; i = 1; 2: Proposition 0.6. Under conditions 33 and for a 1 or b 2 su¢ ciently large or a 2 or b 1 su¢ ciently small, the solutions of problem 13-14 with boundary conditions 15 and positive uniformly bounded conditions exist globally in time for all p i ; q i 1; i = 1; 2.

For the case when p 1 < p 2 and q 2 < q 1 which remained an open problem, we obtained Proposition 0.7. Suppose that p 1 < p 2 ; q 2 > q 1 and a 2 b 1 = a 1 b 2 , then all solutions of system 13-14 with boundary conditions 15 and positive uniformly bounded conditions exist globally in time.

The main results and their proofs. We suppose that, for i = 1 or i = 2, we have (35) p i + q i + r i 1;

or for i = 1; j = 2 or i = 2; j = 1, we have (36) p j + q j + r j > p i + q i + r i > 1;

and

(37) 8 < : p i p j < (p i q j p j q i ) + (p i r j p j r i ) ; q i q j < (q i p j q j p i ) + (q i r j q j r i ) ; r i r j < (r i p j r j p i ) + (r i q j r j q i ) :

Proposition 0.8. Under conditions 35 or 36-37 the solutions of problem 1-5 exist globally in time for all a i ; b i > 0; i = 1; 2; 3: Proposition 0.9. For the reaction constants ( 1) i k a i or ( 1) j k b j which are negative and su¢ ciently large in absolute value or which are positive and su¢ ciently small in absolute value, the solutions of problem 1-5 exist globally in time for all p i ; q i ; r i 0; i = 1; 2.

We begin by proving Proposition 0.8

Proof. Without lost of generality, take in 6 i 1 = 1; i 2 = i 3 = 2 and consider homogenous Neumann boundary conditions, then by di¤erentiating L given by 22 with respect to t, we get 23, where the integral I given by 24 is negative under conditions 25 and 26 on the sequences f r g and f q g : For the second integral J given by 27, we have (38) 8 < :

r+1 q+1 f + r q+1 g + r q h = [( r+1 a 1 + r b 1 ) q+1 + r q c 1 ] u p1 v q1 w r1 + [( r+1 a 2 r b 2 ) q+1 r q c 2 ] u p2 v q2 w r2 :
The case p 1 + q 1 + r 1 1 is trivial while applying young inequality to the term u p1 v q1 w r1 and choosing the …rst two terms of the sequence f r g su¢ ciently small such that (39) r+1 a 2 r b 2 0; r = 0; 1; :::q; for q su¢ ciently large, then we get 29 which gives a di¤erential inequality analogous to 30 and then the uniform boundedness of the functional L on the interval [0; T max [. We treat by the same way the case p 2 + q 2 + r 2 1 while exchanging the roles of p 1 ; q 1 ; r 1 with p 2 ; q 2 ; r 2 and choosing the …rst two terms of the sequences f r g and f q g su¢ ciently large such that (40) ( r+1 a 1 + r b 1 ) q+1 + r q c 1 0; r = 0; 1; :::q; q = 0; 1; :::p 1;

for p su¢ ciently large. Suppose that 36 and 37 are satis…ed and take i = 1; j = 2. We'll prove that the functional L given by 22 satis…es the di¤erential inequality 30 and deduce its uniform boundedness on the interval [0; T max [:

Put 1 = p 2 + q 2 + r 2 1 p 1 + q 1 + r 1 1 and 2 = 1 1 1 = p 2 + q 2 + r 2 1 (p 2 + q 2 + r 2 ) (p 1 + q 1 + r 1 )
;

then (3.2) implies 1 > 1; 2 > 1 and 1 1 + 1 2 = 1: 
We can write p 1 = p 0 1 + p 00 1 ; q 1 = q 0 1 + q 00 1 and r 1 = r 0 1 + r 00

1
where

p 0 1 = p 2 1 = p 1 + q 1 + r 1 1 p 2 + q 2 + r 2 1 p 2 ; p 00 1 = p 1 (p 2 + q 2 + r 2 1) p 2 (p 1 + q 1 + r 1 1) p 2 + q 2 + r 2 1 ; q 0 1 = q 2 1 = p 1 + q 1 + r 1 1 p 2 + q 2 +
r 2 1 q 2 ; q 00 1 = q 1 (p 2 + q 2 + r 2 1) q 2 (p 1 + q 1 + r 1 1)

p 2 + q 2 + r 2 1 ; r 0 1 = r 2 1 = p 1 + q 1 + r 1 1 p 2 + q 2 + r 2 1 r 2 ; r 00 1 = r 1 (p 2 + q 2 + r 2 1) r 2 (p 1 + q 1 + r 1 1) p 2 + q 2 + r 2 1 :
Then 37 implies p 00 1 ; q 00 1 ; r 00 1 > 0:By choosing the …rst two terms of the sequences f r g and f q g su¢ ciently large such that 39 is satis…ed; for the terms for which 40 is satis…ed, we have (41)

[( r+1 a 1 + r b 1 ) q+1 + r q c 1 ] u p1 v q1 w r1 +[( r+1 a 2 r b 2 ) q+1 r q c 2 ] u p2 v q2 w r2 0:
For the remained terms, we apply Young inequality to get

u p1 v q1 w r1 ( r+1 a 2 r b 2 ) q+1 + r q c 2 [( r+1 a 1 + r b 1 ) q+1 + r q c 1 ] u p 0 1 v q 0 1 w r 0 1 1 +C i u p 0 0 1 v q 0 0 1 w r 0 0 1 2 
; i = 0; 1; :::p 1;where C i (i = 0; 1; :::p 1) are positive constants and

u p 0 1 v q 0 1 w r 0 1 1 = u p2 v q2 w r2 and 2 (p 00 1 + q 00 1 + r 00 1 ) = 1:
Finally, while applying Young inequality another time to the second term of the left hand side of inequality 41, one from there deducts 29, then 30 and …nally the uniform boundedness of the functional L on the interval [0; T max [.

For the the case i = 2; j = 1, we follow the same reasoning while exchanging the roles of p 1 ; q 1 ; r 1 with p 2 ; q 2 ; r 2 :

Proof of proposition 3.2. Without lost of generality, take i 1 = 1; i 2 = i 3 = 2 and homogenous Neumann boundary conditions. We'll prove that the functional L given by 22 is decreasing: By di¤erentiating it with respect to t, we get 23, where I given by 24 is negative under condition 27 on the sequences f r g and f q g :The integral J is negative if 39 and 40 are satis…ed, that is for all r = 0; 1; :::q; q = 0; 1; :::p 1:Then, if a 1 and b 2 or c 2 are su¢ ciently large or b 1 and c 1 and a 2 are su¢ ciently small, we can choose the …rst q elements of the sequence f r g and the …rst p elements of the sequence f q g such that J is negative:This implies the uniform boundedness of kf (u; v; w)k p ( kg(u; v; w)k p and kh(u; v; w)k p ) on [0; T max [ and global existence becomes from the regularizing e¤ect principle. That completes the proof.

Remark 0.1. For reaction di¤ usion coupled equations, corollary 2.3 is a particular case of proposition 0.8 by choosing r 1 = r 2 = 0 (or p 1 = p 2 = 0 or q 1 = q 2 = 0) and failing equation 3 (or 1 or 2 respectively) of our system.

The proposition 0.8 is not applicable to the cases (43)

8 > > < > > :
p 2 p 1 , q 2 > q 1 and r 1 < r 2 ; or p 2 p 1 , q 2 < q 1 and r 1 > r 2 ; or p 2 < p 1 , q 2 > q 1 and r 1 < r 2 ; or p 2 < p 1 , q 2 < q 1 and r 1 > r 2

(or the analogous cases obtained by exchanging the roles the p 0 i s with those of q 0 i s or r 0 i s) and hypothesis of proposition 0.9 are not satis…ed if we suppose (44)

a 1 a 2 = b 1 b 2 = c 1 c 2 :
Namely, we have the following result Proposition 0.10. Under condition 44 all solutions of system 1-3 with boundary conditions 4 and positive uniformly bounded conditions 5 exist globally in time, in the following cases: 1. p 1 < p 2 ; q 2 > q 1 and r 1 = r 2 = r (or p 1 < p 2 ; r 2 > r 1 and q 2 = q 1 or q 2 < q 1 ; r 2 > r 1 and p 1 = p 2 ), 2. p 2 + q 2 + r 2 < r 1 :

Proof. 1. Without lost of generality, take i 1 = 2; i 2 = i 3 = 1 and homogenous Neumann boundary conditions. We can write the reactions as follows

f (u; v; w) = (a 1 u p1 v q1 a 2 u p2 v q2 ) w r ; g(u; v; w) = k ( a 1 u p1 v q1 + a 2 u p2 v q2 ) w r ; h(u; v; w) = l ( a 1 u p1 v q1 + a 2 u p2 v q2 ) w r ;
where l and k are positive constants. We have, for p; p 0 > 1 and > 0

d dt Z u p + v p 0 dx = Z d 1 pu p 1 u + d 2 p 0 v p 0 1 v dx +a 1 Z pu p 1 p 0 kv p 0 1 (u p1 v q1 hu p2 v q2 ) w r dx = I + J;
where h = a2 a1 . By application of Green formula to the …rst integral and taking u p1 v q1 as factor in the second, we get

I = Z d 1 p(p 1)u p 2 jruj 2 + d 2 p 0 (p 0 1)v p 0 2 jrvj 2 dx and J = Z u p1 v q1 pu p 1 p 0 kv p 0 1 hu p2 p1 v q2 q1 w r dx = ph Z u p1 v q1 u p 1 p 0 k p v p 0 1 u p2 p1 h 1 v q2 q1 w r dx:
Then I 0. By choosing p and p 0 satisfying p 1 p 2 p 1 = p 0 1 q 2 q 1 = ;

and putting U = u p2 p1 and V = v q2 q1 ;

we get

J = ph Z U p 1 p 2 p 1 V q 1 q 2 q 1 U p 0 k p V U h 1 V w r dx: By choosing satisfying p 0 k p = h ;
we can deduce that 

U p 0 k p V = U h 1 V = U h 1 V 1 X i=0 U 1 i h 1 V i and
@ t u d 1 u = u p1 v q1 w r1 u p2 v q2 w r2 ; @ t v d 2 v = k (u p1 v q1 w r1 u p2 v q2 w r2 ) ; @ t w d 3 w = l (u p2 v q2 w r2 u p1 v q1 w r1 ) :
Multiplying equation 3 by w r 1 and integrating over , we obtain (48) 

@ t Z w r dx+C Z w p 2 jrwj 2 dx+C 3 Z u p1 v q1 w r+r1 1 dx C 3 Z u p2 v q2 w r+r2
u p2 v q2 w r+r2 1 C 5 kuk p2 L p 2 (Qt) kvk q2 L q 2 (Qt) kwk ( r+r2 1) 
L (r+r 1 1) (Qt) ; where 1 + 1 + r + r 2 1 r + r 1 1 = 1:

For r su¢ ciently large, we can choose > 1 and > 1 such that p 2 and q 2 < r + r 1 1 which gives (51) L (r+r1 1) (Q t ) L p2 (Q t ) ; L q2 (Q t ) :

Since (@ t u d 1 u) + (@ t w d 3 w) = (@ t v d 1 v) + (@ t w d 3 w) = 0;

then by application of standard results based on the regularizing e¤ects of the heat equation (see M. Pierre [START_REF] Pierre | Global Existence in Reaction-Di¤usion Systems with Control of Mass: a Survey[END_REF], Lemma 3.4) which gives kuk L p (Qt) ; kvk L p (Qt) C 2 1 + kwk L p (Qt) ; for all p 1:

Consequently inequality 50 becomes Also we can show by comparison arguments for parabolic equations (D. Henry [START_REF] Henry | Geometric Theory of Semi-linear Parabolic Equations[END_REF] and F. Rothe [START_REF] Rothe | Global Solutions of Reaction-Di¤usion Systems[END_REF]) that if the initial data are nonnegative; then the solutions are nonnegative on [0; T max [ : More then, from similar arguments using maximum principle, we have C 8 (1 + kwk L (r+r 1 1) (Qt) ) (p2+q2+r+r2 1) :

Since p 2 + q 2 + r 2 < r 1 for all r 1; then by Young's inequality we deduce (55) kwk L (r+r 1 1) (Qt) C 10 , for all r 1:

From the system we have

Z u p dx C 11 +C 12 Z (Qt)
u p+p1 1 v q1 w r1 dxdt;

Z v q dx C 13 +C 14 Z (Qt)
u p1 v q+q1 1 w r1 dx:

Using Holder's inequality, with 48 and 55 together we deduce kuk L p ( ) ; kvk L q ( ) C 15 , for all p; q 1: This ends the proof of the Lemma.

(

  

u p2 v q2 w r+r2 1 C 6 ( 1 +Z u p1 v q1 w r+r1 1 dxdt C 7 ( 1 +

 16171 kwk L (r+r 1 1) (Qt) ) (p2+q2+r+r2 1) : kwk L (r+r 1 1) (Qt) ) (p2+q2+r+r2 1) :

  (54) u(t; x) > u 0 > 0 and v(t; x) > v 0 > 0; on ]0; T max [ ; i = 1; :::; m;where u 0 and v 0 are positive constants depending on the initial data and T max . The inequality[START_REF] Kirane | Nonexistence of global solutions to some quasi-linear hyperbolic equations with dynamic boundary conditions[END_REF] becomes1 + kwk L (r+r 1 1) (Qt) (r+r1 1)

  this gives J 0. As p and p 0 are arbitrary, we deduce the uniform boundedness of u and v on [0; T max [ : Since then w is uniformely bounded on [0; T max [ and the solution is global. 2. Take i 1 = i 2 = 2; i 3 = 1 and homogenous Neumann boundary conditions. We can write the reactions as follows

	(45) then by application of standard results based on the regularizing e¤ects of the heat k (@ t u d 1 u) + (@ t w d 3 w) = 0; equation (see M. Pierre [31], Lemma 3.4) which gives (46) kwk L (47)

p (Qt) C 2 1 + kuk L p (Qt) ; for all p 1;

  1 dx:

	By integrating 48 from 0 to t, we get				
	(49)						
	Z	t Z	Z	t Z	Z	t Z	Z
	w r dx+C		w p 2 jrwj 2 dxdt+C 3		u p1 v q1 w r+r1 1 dxdt C 4 +C 3		u p2 v q2 w r+r2 1 dxdt:
		0		0		0	
	We have, by Holder inequality Z				
	(50)						
	(Qt)