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Abstract

The modified Constitutive Relation Error (mCRE) is a model updating functional in which
structural parameters are sought alongside mechanical fields as the best trade-off between all
available information given by measured data and physics knowledge, without any further as-
sumptions. Its robustness to measurement noise and remarkable convexity properties make it a
credible alternative to classical model updating methods. However, the model updating process
is still conditioned by the number and location of sensing devices, which makes damage detec-
tion in SHM applications a challenging task as the available measurements are usually spatially
sparse. The question of optimal sensor placement (OSP) has been largely addressed in the last
decades with various strategies that aim at optimizing sensors locations either for modal analysis
or structural identification. In this paper, we propose an alternative to these techniques with a
new sensor placement strategy dedicated to mCRE-based model updating. It uses the concept
of Information Entropy by formulating a modified Fisher information matrix, using the strong
connection between mCRE and Bayesian inference. A proof of concept involving an earthquake
engineering inspired academic case study, where accelerometers are positioned on a two-story
frame structure subjected to random ground motion, permits to illustrate the soundness and ef-
ficiency of the proposed methodology compared to other classical OSP techniques. The influence
of critical mCRE parameters is shown, as well as the benefits of taking multiple scenarios into
account so as to get an OSP that is relevant for a wider range of possible damage occurences.
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1. Introduction

Structural Health Monitoring (SHM) aims to improve the diagnosis of structures in opera-
tional conditions in order to prevent potential structural failures. If the monitoring operation
was traditionally performed visually by human inspectors, the automated techniques that have
been developed in the last four decades, which directly exploit data acquired by a set of sensors,
make it possible to assist and reinforce the visual inspection carried out on structures in order to
permit a safe decision-making process. SHM has been particularly studied in the context of local-
izing, quantifying, and tracking structural damage from ambient dynamic datasets. Throughout
the last decades, a broad panel of damage detection methods has been proposed [1, 2, 3, 4] -
only to cite a few of them. These techniques all have in common the aim of updating numerical
models, whether they are directly built from measurements (black-box modeling) or derived after
an in-depth physical description of the involved phenomena (white-box modeling). These latter
are then post-processed to extract valuable information regarding the current mechanical state
of the sensed specimen, for instance, stiffness loss or modal feature changes [5, 6].

When performing model updating from (possibly spatially sparse) datasets, several difficul-
ties have been identified [7, 8, 9]:

(i) Model bias due to the fact that the chosen class of structural models does not contain the
actual behavior of the structure;

(ii) Measurement noise in the dynamic test data that implies the addition of a priori infor-
mation for regularization purposes;

(iii) Incomplete observability of the structure due to the limited budget and technologies of
available sensing devices, leading to local and incomplete datasets;

(iv) Incomplete number of contributing modes due to limited bandwidth in the input and
dynamic response.

As difficulties (i) and (iv) are already addressed throughout the model updating framework
considered in this contribution, we will mainly focus on the difficulty (iii) as one shall imagine
how inappropriate experimental designs can lead to inaccurate identification results.

The will to exploit at best the information provided by a few amount of sensors lead to
the development of optimal sensor placement (OSP) techniques to guarantee the relevance of
sensors locations for various applications such as modal identification, structural identification,
or damage detection. Indeed, the quality of damage diagnosis from structural vibrations crit-
ically depends on the sensor layout, in particular when a small number of sensors is used for
large structures under unknown or random excitation. It is especially the case of large-scale
civil structures such as bridges or buildings that cannot be fully instrumented in practice. As
part of the experimental design, OSP is a challenging problem. Indeed, as sensors are not
properly positioned at this stage, actual measurements are not available. The performance of
OSP algorithms is thus conditioned by the (assumed good) predictive behavior of the involved
numerical models that allow to generate simulated data. Besides, it is also an expensive task
from the computational viewpoint due to the numerous calls to data generation simulations.
The question of sensor placement is not new [10, 11] and has been massively studied in the last
three decades for SHM applications [12, 13, 14, 15] with the introduction of a wide variety of
OSP criteria and optimization algorithms.

In SHM and structural dynamics applications, OSP problems were initially raised for modal
identification purposes, as it has been historically well-known that damage occurrence was
strongly related to eigenfrequencies loss and mode shapes change [16]. Reference [17] is one
of the first papers devoted to OSP for parameter estimation of structures subjected to earth-
quake loading conditions. Authors exhibit a mathematical expression of the OSP problem for a
given amount of sensors that has been reinvested in many other works [18, 19, 20]. In particular,
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the Fisher Information Matrix (FIM) has been exhibited from the Cramér-Rao bound theorem
and optimized for OSP as it is directly related to the covariance of the model parameters to
update. The FIM is a relevant mathematical entity on which the sensor selection process can
rely as it is a way of measuring the amount of information carried by a given sensor configuration
(since it is strongly related to the sensitivity of model predictions with respect to the updated
parameters). FIM-based OSP algorithms differ in the criterion/measure derived from the FIM.
The most common approaches are based on:

. the trace of the FIM - also referred to as A-optimality. The trace is a measure of the global
sensitivity of the sensors with respect to the parameters and hence has to be maximized.
It has been the optimality criterion used in the pioneering works of Udwadia and co-
workers [17, 21] and reinvested by Heredia-Zavoni to perform OSP for buildings submitted
to ground motion [20, 22].

. the condition number of the FIM - also referred to as E-optimality. The condition number
is related to the rank of the FIM matrix and to the difficulty in performing its inversion.
The minimization of the condition number of the FIM ensures that no sensor is redundant
with another [23] as it preserves the rank of FIM.

. the determinant of the FIM - also referred to as D-optimality. The inverse of the determi-
nant is a measure of the overall uncertainty on the estimated parameters, which thus needs
to be minimized. For instance, one can mention the Effective Independence method (EI)
developed by Kammer and co-workers [19, 24] where attention is paid to the sensitivity of
the mode shape matrix.

Contrary to the previous OSP techniques that are based on modal features, the Bayesian frame-
work proposed by Beck and Katafygiotis [25, 26] has been used to get OSP for structural
identification by Papadimitriou [27] using the concept of Information Entropy (IE). It benefits
from the Bayesian statistical framework as it properly handles measurement uncertainties as
well as model errors. A significant mathematical result relates asymptotically (i.e. for a large
amount of data) the IE to the determinant of the FIM [28].

From these pioneering works, the research in OSP in the last decade has mostly been focused
on optimization algorithms, as optimal sensor placement is a challenging problem from the com-
putational viewpoint which resorts to combinatorial optimization. Efficient algorithms (that
may provide sub-optimal results) are often used. They can be distinguished into two families.
On the one hand, metaheuristic algorithms such as Genetic Algorithms (GAs) are most suit-
able for solving discrete optimization problems and providing near-optimal solutions to global
optimization problems [24, 27]. Ref. [29] presents an OSP strategy dedicated to damage detec-
tion from mode shape variations using an improved GA in which the mutation of populations
is constrained. Ref. [30] gathered four sensor placement criteria altogether using a genetic
algorithm within a dedicated numerical interface to facilitate OSP. Recently, [31] proposes a
FIM-based sensor placement strategy using GA for optimal (in the statistical sense) damage
detection from output-only measurements. Neural Networks (NN) are also valuable tools for
sensor placement [32]. Ref. [33] describes an approach for fault detection and classification
using neural networks and GAs, showing good agreement between both approaches. Of course,
the use of metaheuristic/exploratory optimization algorithms does not restrict to GA and NN.
For example, one can refer to sensor placement techniques inspired by topological optimization
[34, 35], simulated annealing [33, 36] or mixed variable programming [37]. A comprehensive
review of these techniques is given in [15]. On the other hand, sequential sensor placement
techniques, whether they are forward (FSSP) or backward (BSSP), do only provide suboptimal
sensor configurations. However, they are much less computationally demanding compared to
GAs. In practice, the positions of the sensors are determined iteratively by placing/removing
one sensor at a time. Though the EI method [19] lies on a BSSP strategy, FSSP and BSSP
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have strongly been popularized for IE-based OSP [28, 38, 39]. It has been shown that FSSP and
BSSP provide a good approximation (yet suboptimal) of the OSP on many test cases with less
computational effort than GAs.

As the wide spectrum of existing OSP strategies is oriented towards modal analysis or struc-
tural identification, the ambition of this work is to propose an alternative to these techniques
with a strategy dedicated to the use of the modified Constitutive Relation Error functional
(mCRE) for finite element model updating.

Indeed, the solution of inverse problems is classically performed using either Bayesian ap-
proaches (for which a comprehensive review is available in [5]) or deterministic methods [7, 40].
In these latter approaches, the need for regularization techniques is mandatory to circumvent
the ill-posedness of the problem [8]. Although easy to implement, they may lack of robustness
in the choice of the a priori information that regularizes the solution of the inverse problem
in Tikhonov’s sense. Moreover, achieving a correct balance of the different terms contributing
to the cost function can be a difficult task [41]. However, this user’s a priori expertise is of
paramount importance as it conditions the obtained solution and the convergence of the op-
timization algorithms [42, 43]. An alternative then consists in using the concept of modified
Constitutive Relation Error (mCRE) whose physics-based construction avoids the need for user-
dependent knowledge [44, 45, 46]. This is the main driver behind its selection as a reference
method for model updating in this paper.

Initially proposed for model updating in dynamics by Ladevèze and co-workers [47, 48],
the mCRE functional is defined as a quadratic data-to-model distance enriched with a term
based on the concept of Constitutive Relation Error (CRE) [49]. This CRE term is built from
the reliability of information concept, and therefore carries a strong mechanical content. In
particular, it allows to avoid the direct use of regularization terms based on some a priori expert-
user knowledge. This functional is known for having enhanced convexity properties [50] and high-
robustness to measurement noise [51, 46]. Besides, the elementary contributions of the CRE term
can be easily computed. It enables to restrain the updating process to a few parameters and
to get direct information on the modeling error [52]. This can be computationally helpful and
regularizing (in Tikhonov’s sense) when the number of parameters to update becomes important.
The relevance and robustness of the mCRE for model updating have been emphasized in many
applications. Among other works, let us mention local defect detection [53, 45, 54], full-field
material identification from dense measurements [55, 56] and the recent work of the authors
dedicated to low signal-to-noise ratio random measurements [46]. As one can explicitly establish
a link between mCRE, deterministic and stochastic functionals, it is also worth mentioning
the comparative study between mCRE, Tikhonov-based, and Bayesian damage detection using
optical fiber strain measurements performed in [57].

The main contribution of this work consists in the development of a novel sensor placement
strategy that integrates the mCRE (interpreted in the Bayesian inference framework) within
the information theory. A modified FIM is formulated and its determinant is maximized to
position sensors optimally for enhanced mCRE-based model updating purposes. A proof of
concept showing the relevance of this new mCRE-based OSP strategy is proposed on a 3D
academic example representative of a 2-story frame structure. If this study focuses on the
optimal locations of accelerometers following the previous work of the authors [46] and their
popularity for earthquake engineering applications, all types of sensors can be easily integrated
into the presented framework. This case study allowed to compare the new mCRE-based OSP
approach with other classical techniques: the relevance of OSPs is assessed in terms of parameter
estimation accuracy using measurements from different scenarios and relative uncertainty, using
confidence intervals [52]. The effect of the confidence into measurements coefficient is particularly
considered as the calibration of the latter is crucial within the mCRE framework [46]. Physically-
meaningful comments from the visual spreading of the sensors on the structure are made to
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explain the effect of this parameter on the sensor placement results. The case of multiple
damage scenarios is also considered, showing that the additional computational burden carried
by such an approach yet enables obtaining more relevant OSP leading to better FE matrices
corrections, even when the parameters to identify are highly uncertain.

The remainder of this paper is organized as follows: Section 2 presents an overview of OSP
techniques dealing with the concept of FIM, with particular emphasis on the IE concept. Section
3 recalls the basics of the mCRE for FE model updating in dynamics with emphasis on stiffness
parameters. Section 4 presents the novel sensor placement approach starting from the mCRE
seen from a Bayesian viewpoint. The proof of concept of the mCRE-based OSP algorithms on a
3D frame structure is given in Section 5. Conclusions and prospects are finally drawn in Section
6, suggesting a future use of this sensor placement technique for an on-the-fly model updating
framework unified around the concept of mCRE.

2. Optimal sensor placement techniques for SHM at a glance

In this section, the most common and popular sensor placement techniques are briefly pre-
sented. Although OSP problems were originally raised for modal identification purposes, the
tools that are invested are (for the largest part) all related to the information theory, which will
be presented in the following. For the sake of conciseness and clarity, only the material essential
to the forthcoming developments is detailed. However, the interested reader is invited to find
complementary explanations in the following review papers [12, 13, 14, 15].

2.1. Bayesian framework and Fisher Information Matrix

Without loss of generality, solving an inverse problem aims at updating the internal parame-
ters θ ∈ Θ of a given modelM from the knowledge of a given measurement set y ∈ Y made of Ns

data acquisition channels of length N obtained under a given loading denoted e. In most SHM
applications, measurements are discrete kinematic quantities (displacements, strains, accelera-
tions) that directly derive from the mechanical state predicted by the model u =M(θ, e) ∈ X .
The projection operator Π : X 7→ Y thus allows to compare explicitly predictions with the
available Ns measurements. Classically, measurements are correlated to predictions using the
observation equation [18, 21]:

y = Π(u(θ)) + w (1)

where w is an additive noise assumed to be Gaussian of covariance matrix Σw allowing to take
into account measurement noise and model discrepancies. In what follows attention is paid to
the best choice of sensors locations in order to obtain the best (statistical) identification of θ.
Briefly, let us start from the Bayes theorem:

π(θ|y) ∝ π(y |θ).π0(θ) (2)

π0(θ) is the prior probability density function (pdf) on parameters constructed from a priori
knowledge. π(θ|y) is the posterior pdf; this conditional probability is the final result improved
by the knowledge of measured data, reducing uncertainty and giving the most likely values
of θ. Finally, π(y |θ) is the so-called likelihood pdf, which can be interpreted as a measure of
how good the parametrized model succeeds in explaining the observations. With the previous
assumptions, the posterior pdf takes the form:

π(θ|y ,Σw) ∝ exp

[
−1

2
J (θ, y ,Σw)

]
.π0(θ) with J (θ, y ,Σw) =

N∑
k=1

‖Πuk(θ)− yk‖2Σ−1
w

(3)

where ‖�‖2
Σ−1
w

= �TΣ−1
w � refers to the squared Euclidean norm of � weighted by matrix Σ−1

w .

J is a data-to-model distance allowing to measure the correlation between measurements and
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predictions. This functional is also minimized in a deterministic viewpoint to identify optimal
parameters (with a complementary regularization to circumvent the ill-posedness of the inverse
problem). The sensor placement problem then consists in finding the best projector Π̂ which
minimizes the covariance on the parameter estimate. Note that, because models are numerically
discretized (e.g. in the finite element sense), then there is no reason to look for optimal sensors
locations in a continuous space. Each sensor position will thus be optimized among a ”grid” of all
Nd possible sensor locations. Doing so, the OSP problem becomes a combinatorial optimization
problem, that is well-known for being exploratory and computationally expensive (if one intends
to naively look for a global minimum).

If the Fisher Information Matrix (FIM), denoted Q, was originally introduced as the inverse
of the Cramér-Rao bound (of the parameters covariance matrix) [21], it can also be derived
from the statistical viewpoint as the variance of the score, i.e. the gradient of the log-likelihood
function π(y|θ):

Q = Eθ

((
∂ log π(y|θ)

∂θ

)(
∂ log π(y|θ)

∂θ

)T)
(4)

with Eθ (•) referring to the mathematical expectation operator on θ. Unsurprisingly, the FIM is
strongly related to the sensitivity of predictions with respect to the parameters. It is a relevant
mathematical entity on which the sensor selection can rely as it is a way of measuring the amount
of information carried by a given sensor configuration. This explains why pioneering OSP studies
were aiming at maximizing the FIM, in the sense of a certain measure [17, 18, 19, 20]. As
mentioned above, A- and D- optimality criteria respectively based on the trace and determinant
of Q are the most popular approaches. OSP techniques then differ according to the quantity of
interest that is considered.

The Effective Independence method (EI) was introduced by Kammer [19]. It can be con-
sidered as a modal-based OSP technique as it exploits the Fisher Information Matrix with the
modeshape matrix as quantity of interest, the variations of the latter assumed to be directly
related to damage. The starting point of this approach is the Mode Shape Difference method
(MSD) which considers sensors as relevant if they are sensitive to mode changes [58, 59]. Pa-
rameters θ in this case then correspond to the modal coordinates of eigenmodes. The EI method
extends this concept with the independence distribution vector; the contribution of each sensor
to the eigenmodes is assessed with the matrix

EI = Φs

[
ΦT
s Φs

]−1
ΦT
s (5)

where Φs is the modal basis partitioned to the sensors locations. EI can be identified as an
orthogonal projector whose rank is equal to the number of target modes. EI can thus be of full
rank if the mode partitions resulting from a given sensor placement are linearly independent,
which is the objective of EI. The so-called independence distribution vector corresponds to the
diagonal terms of EI. It enables to quantify how sensors contribute to modal identification. The
EI method has been widely exploited in the literature: the strategy has been quickly extended to
take modeling errors into account [60] as well as measurement noise effects [61]. An application
to a genetic algorithm (GA) based approach has also been proposed in [24] and the method has
been able to position at best 3D accelerometers for modal vibration tests [62]. More recently, it
has been coupled with topology optimization-inspired tools [35].

It is also worth mentioning the Modal Kinetic Energy (MKE) method in parallel of MSD
and EI as it intends to locate sensors at points of maximum modal kinetic energy [63]. The
major advantage of MKE compared to EI is that favorable sensor placements are promoted
in areas where the signal-to-noise ratio should be important, which limits the spurious effects
of measurement noise when performing modal analysis. Ref. [64] studied the mathematical
connections between MKE and EI and compared them for SHM applications, showing IE reveals
to be an iterated version of MKE.
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2.2. Information Entropy

Contrary to MSD, EI and MKE that are based on the sensitivity of modal features, one
can formulate the OSP problem from the Bayesian viewpoint. Indeed, the posterior pdf (3)
represents the uncertainty of parameters θ based on the information contained in measurements
y. The concept of Information Entropy has been introduced to provide a scalar measure of this
uncertainty [27, 28]. It benefits from the Bayesian statistical framework as it properly handles
measurement uncertainties as well as model errors. The IE, denoted h(y), is given by

h(Π, y) = Eθ (− log π(θ|y)) (6)

The IE depends on the available data, and the sensor configuration characterized by Π. OSP is
then achieved by minimizing the changes in the IE, which is a unique measure of the uncertainty
in the model parameters. A rigorous mathematical description of the IE concept for OSP is given
in [27, 28] for the case of small and large uncertainties on the parameters to estimate. A major
result that has been shown is the asymptotic result for large amount of available data that relates
the IE to the determinant of the FIM. For small uncertainties on θ, choosing a relevant value θ0

which minimizes the misfit function J leads to the following approximation when NNs →∞:

h(Π, y) ≈ H(Π, y ; θ0) =
1

2
Nθ log 2π − 1

2
log det(Q(Π, θ0, y))

with Q(Π, θ0, y) = NNs∇θ∇Tθ (J (θ, y ,Σw)) ≈
N∑
i=1

(Π∇θui)T (ΠΣwΠT )−1 (Π∇θui)
(7)

where Nθ = dim(Θ) is the number of parameters, N the number of measured samples and Ns

the number of sensors. Using (7), one can thus look for Ns optimal sensors locations Π̂ solving:

Π̂ = arg max
Π

[log det(Q(Π, θ0, y))] (8)

For large model uncertainties, a parameter estimate θ0 cannot be postulated anymore; consired-
ing for example the case of complex damageable structures, one may not straightforwardly guess
where damage will appear first. This implies that the OSP will be sought as:

Π̂ = arg max
Π

[∫
Θ

log det(Q(Π, θ, y))π0(θ)dθ

]
(9)

It is important to notice that according to the values of the sought parameters, for complex
problems and geometries (e.g. where the sensitivity of the parameters into the identification
process is highly heterogeneous), OSP results may strongly differ from one parameter value to
the other. In such cases, one should explore the parameter space (for example with Monte-Carlo
sampling) and average the contributions of the FIM computed according to each sample. Of
course, that type of approach is more expensive from the computational viewpoint.

One of the strong assets of the IE is that it allows to compare sensor configurations of various
size [65], as one can guess that adding sensors is always beneficial, or at least equivalent in terms
of carried information. In [28], mathematical classification rules are given on the upper and
lower bounds of the IE as a function of Ns allowing to perform sequential placements (see Alg.
1) that are almost as efficient as genetic algorithms, but obtained with much less computational
effort.

There have been much use of the IE for OSP in the last two decades. Without being exhaus-
tive, let us mention some significant contributions: in [39], the functional has been extended to
take into account the effect of sensors spatial correlation in Σw. Similarly, a penalty term to
enforce the sparsity of the sensor configuration has been added to the IE [66]. The IE was also
used to design optimal characteristics of the excitation e for optimal identification [67]. In [38],
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a multi-objective optimization problem was introduced to design an OSP dedicated to a class of
models. IE was reinvested for statistical seismic source inversion in [68]. IE was also applied to
model identification of periodic structures endowed with bolted joints [69] and to optimal crack
identification on plates from strain measurements in [70]. Very recently, the case of multiple
damage scenario with modal expansion was considered in [71] to handle virtual sensing under
output-only vibration measurements.

Algorithm 1: IE-based Forward Sequential Sensor Placement (FSSP) algorithm

Initialization:
• Grid of all Nd possible sensors locations
• Targeted number of sensors Ns
• n = 0 number of selected sensors
• Set of simulated measurements y

while n < Ns do

Consider all possible combinations by adding one new sensor: {Πj}j∈J1;Nd−nK
for j ∈ J1;Nd − nK do

Evaluate the information entropy IEj of the sensor configuration given by Πj

end
Identify the sensor configuration J = arg minj∈J1;Nd−nK [log det(Q(Πj , θ0, y))]

Store the new sensor of configuration J as the (n+ 1)th optimal position
end

3. The modified Constitutive Relation Error in dynamics

As explained above, the modified CRE is built as a quadratic data-to-model distance enriched
with a term based on the so-called concept of Constitutive Relation Error. The enrichment of
the data-to-model distance with a term having strong mechanical content allows to improve
the convexity properties of the functional, which provides enhanced robustness to measurement
noise. Besides, as the CRE term directly derives from the set of equations that define the dy-
namics problem under study, it avoids the user-dependent choice of the regularization term that
is mandatory to deal with the intrinsic ill-posedness of the identification problem in Hadamard’s
sense when using traditional approaches.

One of the specificities of the mCRE functional is that both parameters and mechanical fields
are identified simultaneously, which leads to a nested minimization problem to solve. The key
theoretical ingredients for the formulation and minimization of the mCRE in dynamics when
updating stiffness parameters are recalled below. For complementary details and a literature
overview of the mCRE, the interested reader is referred to the recent contributions [46, 72].

3.1. FE framework, measurements and stiffness parametrization

Let us consider the general case of an elastic structure Ω spatially discretized in E (non-
overlapping) finite elements such that Ω = ∪Ee=1 Ωe subjected to a given dynamical loading F .
We denote by K ,D ,M the stiffness, damping and mass FE matrices, respectively, while Fω and
Uω are the frequency counterparts of nodal loading conditions and displacement field. With
these notations, the dynamic equilibrium written in the frequency domain at a given angular
frequency ω reads: [

−ω2M + iωD + K
]
Uω = Fω (10)

In addition, a set of sensors is used to measure the magnitude of some kinematic quantities
(displacement, velocity and/or accelerations). In the frequency domain, assuming measurements
are perfect, such information can be written without loss of generality as:

ΠUω = Yω (11)
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where Yω refers to the frequency counterpart of measurements at angular frequency ω, and Π
contains zero and integer powers of iω to extract displacement field derivatives at corresponding
sensors positions.

As the main driver of this report is to perform SHM and damage detection, one can (legiti-
mately) assume that damage can be interpreted as local stiffness loss. Therefore, a convenient
manner to parametrize a linear FE problem for damage detection is to parametrize the FE stiff-
ness matrix. The latter is thus decomposed in Nθ non-overlapping subdomains and parametrized
as follows:

K (θ) =

Nθ∑
i=1

θiK0,i with K (θ0) =

Nθ∑
i=1

K0,i and θ ∈ Θ ⊂ RNθ (12)

Note that the subdomains can perfectly match with finite elements or gather some of them to
reduce the number Nθ of parameters to identify.

3.2. mCRE-based model updating problem in dynamics

Contrary to standard deterministic approaches, the fundamental idea of mCRE-based model
updating is to built mechanical fields and to identify structural parameters simultaneously as
a trade-off according to all available information (i.e., physics knowledge and measured data).
Therefore, there is no need for additional a priori information. The starting point of the ap-
proach thus consists in classifying, among the data and equations of the mechanical problem,
what will be considered as ’reliable’ from what should be considered with caution (labelled ’un-
reliable’). This separation is non-unique and deeply relies on the case study and engineering
expertise, although it is also well-known that constitutive relations are (very often) the less
reliable equations. The separation of equations for the considered SHM case is given in Tab.
1. Doing so, we define two manifolds: (i) Uad the so-called kinematically admissible space that
contains the FE displacement fields satisfying the boundary conditions and kinematic relations
but not necessarily the constitutive equations, and (ii) Dad the so-called dynamically admissible
space containing the FE displacement fields V such that [−ω2M + iωD ]U + K (θ)V = Fω for
all U ∈ Uad. In other words, Dad contains the FE displacement fields satisfying both equi-
librium and constitutive equations. The reciprocity gap between those two manifolds can be
measured using an energy norm - the CRE - that estimates the relevance of a solution couple
sω = (Uω, Vω) ∈ Uad ×Dad with respect to the mechanical problem. With the above notations,
the CRE at a given angular frequency ω reads:

ζ2
ω(sω, θ) =

1

2
(Uω − Vω)HK (θ)(Uω − Vω) =

1

2

∥∥Uω − Vω∥∥2

K (θ)
(13)

Reliable Unreliable

Model

• Geometry

• Elastic constitutive relations
• Boundary conditions
• Equilibrium equations
• Dissipative constitutive relations

Experiments
• Loading frequencies ω/2π

• Measured outputs Yω• Sensors locations
• Measured inputs Fω

Table 1: Distinction between reliable and unreliable information for damage detection from stiffness update in
dynamics.

The extension of the CRE concept to unreliable experimental data (see Tab. 1) directly
leads to the so-called modified Constitutive Relation Error (mCRE). In the latter, the CRE is
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extended with a data-to-model distance written in the frequency domain:

e2
ω(sω, θ,Yω) , ζ2

ω(sω, θ) + α
1

2

∥∥ΠUω −Yω

∥∥2

G
(14)

α is the confidence into measurement scaling parameter, allowing to give more or less importance
to the measurements in the model updating process (particularly regarding the noise level).
Its calibration is crucial to obtain relevant mCRE-based model updating results [46]. G is
a symmetric positive-definite matrix that guarantees that ‖�‖G is homogeneous to ζ2

ω and
equivalent in level. Its choice is much less critical than α. In practice, G is chosen as proportional
to the identity matrix and weighted by the first eigenvalue of K (θ0).

Finally, the analysis of a single angular frequency may be too restrictive in dynamics, partic-
ularly when several eigenmodes are simultaneously excited. The full mCRE functional J to be
minimized is thus obtained by direct integration over a frequency bandwidth Dω (which stores
the essential information about the structure response):

J (θ,Y ) =

∫
Dω

z(ω)e2
ω(ŝ(θ,Yω), θ,Yω) dω (15)

where z(ω) is a frequency weighting normalized function such that
∫
Dω

z(ω) dω = 1 allowing to
modulate the importance of specific frequencies of Dω and ŝ the optimal mechanical fields for a
given parameter set and given measurements. In the present formulation of the mCRE in the
frequency domain, ŝ at each angular frequency ω is obtained solving:

∀ ω ∈ Dω, ŝω(θ,Yω) = (Ûω, V̂ω) = arg min
s∈(Uad×Dad)

e2
ω(s, θ,Y ) (16)

which is a minimization problem constrained by the satisfaction of the dynamic equilibrium
between the manifolds Uad and Dad. In practice, an augmented cost-function with Lagrange
multipliers is introduced:

L(U, V,Λ, θ) =
1

2
‖U − V ‖2K (θ) +

α

2
‖ΠU − Y ‖2G + ΛT

[
[−ω2M + iωD ]U + K (θ)V − F

]
(17)

which leads to the matrix system written below that must be solved for all ω in Dω:

⇔ A

[
Λ̂ω
Ûω

]
= b with



Λ̂ = Ûω − V̂ω

A =

[ [
K (θ) + iωD − ω2M

]H
αΠHGΠ

−K (θ)
[
K (θ) + iωD − ω2M

] ]

b =

{
αΠHGYω

Fω

} (18)

The overall mCRE-based model updating problem thus reads:

θ̂ = arg min
θ∈Θ

{
J (θ,Y ) ,

∫
Dω

z(ω)e2
ω

([
arg min
s∈Uad×Dad

e2
ω(s, θ,Yω)

]
, θ,Yω

)
dω

}
(19)

3.3. Additional remarks

Although the nested minimization problem (19) on mechanical state and parameters make
the algorithmic structure for minimization quite complex compared to classical model updating
methods, one should notice that the computation of mechanical fields for a given value of θ is
not computationally expensive as the size of (18) can be drastically reduced using projection on
reduced truncated modal basis [73].
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The minimization of the mCRE with respect to parameters can be numerically performed
using unconstrained minimization algorithms such as the BFGS method or the trust-region al-
gorithm. It is worth noticing that there exist analytical expressions of the gradient and Hessian
matrix of the mCRE with respect to parameters as well as the gradient of mechanical state
with respect to parameters. These expressions are valuable to reduce the computational burden
associated to the minimization of the mCRE functional. They are also decisive in the following
to improve the numerical performance of the mCRE-based OSP algorithm. All the mathemat-
ical developments leading to these expressions in the present parametrization case are given in
Appendix A.

If supplying an analytical Hessian matrix may lead to minor computational improvements
when minimizing the mCRE, it can still be exploited to compute confidence intervals [52].
Indeed, when identifying several parameters simultaneously, one could wonder what relative
precision is reached in the identification process for Uncertainty Quantification (UQ). To do so,
one can thus consider the computation of confidence intervals as a first approach. More details
are given in Appendix B.

4. A mCRE-oriented OSP strategy

For structures having heterogeneous sensitivity of stiffness to model updating, parameter
estimates may be quite far from reality when the model updating process is performed using a
small amount of sensors. This is the case for several SHM applications considering one cannot
always afford for rich instrumentation on large scale structures. If OSP strategies have been
proposed for (standard) structural identification and modal analysis, there is no proper sensor
placement strategy dedicated to mCRE-based model updating in the literature whereas it has
demonstrated to be an efficient alternative to standard approaches [57]. In the following, we
present a modified FIM that integrates the mCRE concept, which is legitimate in light of the
link between the mCRE (though deterministic) and the Bayesian inference framework.

4.1. The mCRE from a Bayesian viewpoint

Although the previously introduced mCRE-based model updating strategy is deterministic,
one can show that this procedure is equivalent to the Maximum A Posteriori (MAP) estimation
in the Bayesian inference framework with Gaussian distributions, an error norm based on the
measurement error covariance matrix, and no a priori on parameters [74, 75]. Since covariance
on the modeling error is usually not known, the idea is to integrate modeling error in a different
manner into Bayesian inference, in a more global and less strict framework that allows more
flexibility in the model structure.

If one assumes that the prior pdf π0(θ) and the likelihood function π(y |θ) are both defined
with Gaussian distributions, then

π0(θ) ∝ exp

[
−1

2

(
θ − θ̄

)T
Σ−1

0

(
θ − θ̄

)]
(20)

π(y |θ) ∝ exp

[
−1

2
(M(θ, e)− y)T [Σm + Σy]

−1 (M(θ, e)− y)

]
(21)

where Σ0,Σm,Σy respectively denote the a priori, model and observations covariance matrices.
θ̄ is the mean of the prior pdf. Therefore, according to the Bayes theorem (2) and the Maximum
A Posteriori principle, the optimal set of parameters can be sought as

θ̂ = arg max
θ∈Θ

π(θ|y) = arg max
θ∈Θ

π(y |θ).π0(θ)

= arg min
θ∈Θ

(M(θ, e))− y)T [Σm + Σy]
−1 (M(θ, e))− y)︸ ︷︷ ︸

Least-square term (Mahalanobis distance)

+
(
θ − θ̄

)T
Σ−1

0

(
θ − θ̄

)︸ ︷︷ ︸
Regularization term

 (22)
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This way, the structure of the constitutive relation is imposed strongly, and it is assumed to
know the modeling error features, which is not the case in most problems. To avoid this issue,
the mCRE strategy integrates modeling error in a global manner that allows for more flexibility
in the model structure. To the modeling error (the CRE) is thus associated a pdf to globally
quantify the confidence on the less reliable parts of the model:

πCRE ∝ exp

[
−1

α
ζ2(s, θ)

]
(23)

The confidence on the modeling exponentially decreases when the CRE value increases, with a
rate speed specified by the scalar α. Therefore, in a mCRE context with a measurement error
norm based on the covariance of the measurements Σy, one can rewrite the likelihood pdf:

π(y |θ) ∝ exp

[
−1

2
(M(θ, e))− y)T Σ−1

y (M(θ, e))− y)

]
. exp

[
−1

α
ζ2(s, θ)

]
(24)

for any admissible mechanical solution s. Thus, if one no longer assumes any a priori on θ
(uniform pdf), the application of the MAP principle leads to:

θ̂ = arg min
θ∈Θ

[
(M(θ, e))− y)T Σ−1

y (M(θ, e))− y) +
1

α
ζ2(s, θ)

]
(25)

where one easily recognizes the sum of a model error (the CRE) with a data-to-model distance
to minimize. It thus illustrates that the mCRE metric can be closely related to the Bayesian
inference framework.

4.2. mCRE-based OSP: modified Fisher Information Matrix

The key idea of the proposed sensor placement technique is to use the mechanical fields
{Uω}ω∈Dω computed for mCRE needs within the Information Entropy concept. Mathematically,
we thus define a modified Fisher Information Matrix Qm such that:

Qm =
∑
ω∈Dω

(Π∇θUω)T (ΠΣyΠ
T )−1 (Π∇θUω) (26)

In other words, the modified FIM analyzes the sensitivity of the mCRE measurement error part
with respect to the parameters to identify. The effect of the CRE is implicit in the computation
of Uω. Similarly to former OSP techniques, the determinant of the modified FIM is maximized to
optimally position sensors (assuming the amount of data is large enough to reuse the asymptotic
result mentioned above). In the following, we will consider the positioning of a limited number
of sensors on a predefined grid on possible locations. In that context, it has been shown in
the literature [28] that FSSP provides almost-optimal results compared to GA in reasonable
CPU times. This justifies the use of this optimization strategy in the following, although all
the previously mentioned sensor placement algorithmic structures are applicable (only the FIM
definition is changed). Alg. 2 presents the iterative mCRE-based FSSP process. It is worth
noticing that the access to a semi-analytical expression of the gradient of Uω with respect to θ
is a valuable asset to perform OSP in reasonable CPU times: the modified FIM Qm can thus
be computed quickly without any loss of precision. One should notice that the computation of
∇θUω is a low-cost post-processing operation once (18) has been solved (see Appendix A for
mathematical developments).

5. Application to accelerometer optimal placement for damage detection

5.1. Description of the problem

A typical earthquake engineering application is considered here with the frame structure of
Fig. 1 submitted to a tridimensional low-magnitude random ground acceleration. Such input
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Algorithm 2: mCRE-based FSSP algorithm

Initialization:
• Grid of all Nd possible sensors locations
• Targeted number of sensors Ns
• Number of selected sensors n = 0
• Initial parameter guess θ0 ∈ Θ
• Set of simulated measurements y (obtained with θ0)
• FE model including mesh and matrices K ,D ,M
• mCRE tuning parameters: frequency bandwidth Dω, confidence into measurements scalar

α, frequency weighting function z(ω)

while n < Ns do

Consider all possible combinations by adding one new sensor: {Πj}j∈J1;Nd−nK
for j ∈ J1;Nd − nK do

Initialize the modified FIM Qm,j = 0
for ω ∈ Dω do

Get mechanical fields (Uω, Vω) solving the AX = b system (equation 18)
Compute ∇θUω (equation 41)

Qm,j = Qm,j + (Πj∇θUω)
T

(ΠjΣyΠT
j )−1 (Πj∇θUω)

end

end
Identify the sensor configuration J = arg min

j∈J1;Nd−nK
{det (Qm,j)}

Store the new sensor of configuration J as the (n+ 1)th optimal position
Go to the next iteration: n→ n+ 1

end

signals are used in Earthquake Engineering experiments to perform modal identification [76]
once damage has occured. The objective of this study is to position at best a restricted budget
of accelerometers in order to identify accurately the uncertain stiffness distribution of the struc-
ture in forthcoming (possibly damaging) experiments. As we assume that very few sensors are
available, an intuitive coarse stiffness parametrization of the stiffness is proposed: 6 subdomains
are defined {W10, W11, W20, W21, F10, F20}, one per wall and per slab. The updated stiffness
model (12) is thus made of Nθ = 6 parameters. The subdomains areas are shown in Fig. 1.
The model is made of shell elements using the CEA modeling software Cast3M© [77]. Rela-
tive time acceleration measurements in both x and y directions are simulated using Fast Fourier
Transforms and the direct dynamics problem formulated in terms of relative displacement is:

M ẍ+ D ẋ+ K (θ)x(t) = −M Ξüd , x = u− ud (27)

where Ξ is a matrix addressing the acceleration ground motion to the associated dofs and üd the
random ground acceleration input constructed as a multivariate zero-mean Gaussian process.

The objective of this application is to assess the proposed sensor placement strategy for
efficient mCRE-based identification. To restrain CPU times and avoid sensors concentrations,
we define a grid on 48 potential sensor locations: a triaxial accelerometer can be positioned at
each orange dof of Fig. 1.

Although several types of sensors could be positioned simultaneously, only accelerometers
are considered herein because they are a popular, minimally invasive and easily deployable
sensing devices for SHM and Earthquake Engineering applications. In order to be realistic
regarding what could be achieved in practical shaking table tests, a restricted budget of Ns = 24
data acquisition channels has been fixed. Ns = 24 allows to uniformly spread enough sensors
to reproduce typical sensor placement configurations that are done in earthquake engineering
applications. Besides, as Nθ = 6 parameters are supposed to be updated, it is theoretically
enough to get proper identification results and redundancy in the information carried out by
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(a) Frame with uniform sensor placement (blue dots). (b) Grid of possible accelerometer locations.

Figure 1: Frame structure - uniform default sensor placement and grid of possible locations for OSP.
Subdomains areas and denomination are also given.

measurements.

5.2. OSP benchmark

In order to assess the relevance of mCRE-based OSP with respect to other OSP strategies, a
numerical benchmark has been conducted to perform and compare sensor placements oriented
towards different quantities of interest. An overview of the tested strategies is presented in Tab.
2. A FSSP optimization algorithm is used in all cases to fairly compare sensor placement results
between methods. As a reminder, it has been shown many times in the literature that FSSP
has similar performance with GA, particularly when the number of sensors to position remains
small [? ].

Description and desingation
Optimality Accelerometer
criterion type

Reference richest OSP (Ns = 48) Ref - -

Uniform default OSP Def - Triaxial

OSP for modal analysis of the MA1
log (det Q(Φ))

Uniaxial
10 first structural eigenmodes MA2 Triaxial

OSP for standard SI1
log (det Q(X))

Uniaxial
structural identification SI2 Triaxial

mCRE-based OSP
mCRE1

log (det Qm)
Uniaxial

mCRE2 Triaxial

mCRE-based OSP for mCRE-MS1
∫

Θ
log (det Qm)π0(θ)dθ

Uniaxial
uncertain damage scenarios mCRE-MS2 Triaxial

Table 2: OSP benchmark

Among the proposed sensor placement strategies, it should be highlighted that:

. In the reference richest OSP, all the possible locations are covered with triaxial accelerom-
eters, meaning Ns = 48 in that case. This is not a realistic configuration, neither an
economous one, but it allows to provide results that will be used as reference when com-
paring the performance of OSPs in terms of model updating.

. In the uniform default case, 8 triaxial accelerometers are uniformly spread over the struc-
ture. This is typically what should be done naively without considering OSP algorithms
in practice.
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. Optimal uniaxial and triaxial accelerometer placement are systematically compared. Of
course, positioning triaxial sensors is much more convenient from the experimental view-
point, as it is less constraining for the instrumentalists. Besides, it is less computationally
demanding than uniaxial accelerometer placement because the number of possible sensor
configurations is reduced. However, forcing triaxial sensors implies the addition of con-
straints to OSP strategies, which should thus lead to less performant results as less freedom
is given to the sensor plan.

. The OSP strategies oriented towards modal analysis aim at identifying at best the 10
first structural eigenmodes. The latter are stored in the modeshape matrix Φ, and the
associated Fisher Information Matrix reads:

Q(Φ) = (ΠΦ)T
(
ΠΣyΠ

T
)−1

(ΠΦ) (28)

which is independent of the nominal stiffness parameter values θ0. In addition, the optimal
sensor locations are also independent of the excitation used. The FIM in that case has
exactly the same form as the one proposed for the EI method [19]. Finally, as 10 modes
are stored in Φ, one should expect to get singular FIM while less than 10 sensors have not
been positioned on the specimen. To avoid numerical issues, the determinant of the FIM
will be computed as the product of the non-zero eigenvalues of Q(Φ).

. The OSP for structural identification directly deals with the identification (in a least-
square sense) of the stiffness parameters. In that case, the FIM is directly computed from
the sensitivity of the frequency-domain counterpart of the mechanical state X with respect
to the parameter set θ:

Q(X) =
∑
ω∈Dω

(Π∇θXω)T
(
ΠΣyΠ

T
)−1

(Π∇θXω) (29)

with (for the considered stiffness parametrization):

∇θXω = −
[
−ω2M + iωD + K (θ)

]−1 ∂K

∂θ

[
−ω2M + iωD + K (θ)

]−1 [
ω2M ΞUd,ω

]
(30)

For legitimate comparisons with mCRE-based OSP, the frequency range that is considered
to compute Q(X) is also Dω. Note that the FIM could also be obtained with time-domain
measurements, but the sensitivity matrix would be obtained solving a (more expensive)
full time domain problem [39].

Contrary to the MA cases, the optimal sensor locations depend on the location and type
of excitation that is used. Also, the matrix Q(X) may be non-singular even for only one
positioned sensor since the structural response obtained from the model may store enough
information from all contributing eigenmodes in order to estimate the parameter set θ.

. Regarding the settings of the mCRE, as the first five modes of the structure are below
20 Hz and are the most sollicitated ones, a frequency bandwidth Dω = [1 Hz; 30 Hz] with
∆f = 0.1 Hz has been chosen for the computation of all forthcoming results. The call
to a reduced basis made of the first 20 eigenmodes of the frame allows to achieve fast
and accurate mCRE computations as it largely covers the frequency range of interest.
The weighting function z(ω) is computed using the complex modal indicator function as
explained in [78]. α will be subject to calibration tests, therefore its value will be specified
afterwards.

. Because one also intends to provide sensor placements that are still efficient once damage
has occurred, the case of multiple scenarios mCRE-based optimal sensor placement has
been addressed. Following the subdomain decomposition shown in Fig. 1, the 6 parame-
ters have been pseudo-randomly sampled using a Latin Hypercube algorithm in order to
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take into consideration 30 damage scenarios, assuming the parameter set follows a multi-
variate uniform pdf on [0.2;1]. A uniform prior pdf has been chosen due to the fact it is
the less informative in the sense of the statistical maximum entropy. The generated set of
samples is denoted Θs. Each θs ∈ Θs is thus used to simulate a dataset ys, which will be
processed to perform OSP. The stiffness parametrization of each scenario is given in Fig.
2. The change on stiffness parameters has significant effects on the frequency domain re-
sponse of the structure as one can observe in Fig. 3 where the normalized H-CMIF plot for
each considered damage configuration is given [46]. The latter is defined as the dominant
singular value of the transfer function from the crossed input/output PSD matrices. It is
called H-CMIF because of its similarities with the Complex Modal Identification Function
[79]. The frequency shift of the H-CMIF peaks shows how the structural response varies
from one scenario to the other.

Following the work initiated in [27] for the case of highly uncertain parameters, the opti-
mality criterion is thus approximated by:∫

Θ
log (det (Qm(Π, θ, y)))π(θ)dθ ≈ 1

card(Θs)

∑
θs∈Θs

log (det(Qm(Π, θs, ys(θs)))) (31)

leading to an optimal sensor placement that is dedicated to a wider range of damage
configurations. In practice, it is true that cases involving damage at the top of the structure
are highly unlikely, but the uncertainty on parameters provided by this approach enables
to take modeling bias into consideration. As a last remark, although not considered here
because of the assumed non-damaging nature of the input signals, the variability of loading
conditions may also have been exploited if nonlinear damaging models were used, so that
the damage scenarios that are generated for OSP are much more realistic.

Figure 2: Stiffness samples Θs

to simulate multiple damage
scenarios.

Figure 3: Impact of damage configuration on the frequency
response of the structure. A wide variability of responses is

integrated into the OSP framework.

5.3. OSP results - first comments

5.3.1. Modal identification

The OSP results obtained for modal analysis using a truncated modal basis made of the first
10 modes of the frame are presented in Fig. 4. To confirm the soundness of the results, we plot
both det(Q) and the CMIF obtained after having positioned accelerometers with comparison to
the one obained with the rich OSP configuration.

The amount of information carried by the first sensors is more important as it allows the
identification of one supplementary mode. When as many sensors as modes in Φ have been
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positioned, the additional information carried by new sensors is less important as it only conforts
the modal identification, making it more accurate. Due to the complexity of the structure, no
clear visual trend from the sensor position can be easily guessed, except that most sensors are
located on the floors. This appears to be quite natural as floor eigenmodes are part of the 10
first ones of the structure.

Figure 4: OSP of uniaxial and triaxial accelerometers for the MA1 (left) and MA2 cases (right).
Accelerometers positions and orientations are given by the red arrows, while determinant of the FIM (in log

scale) and H-CMIF are plotted to confirm the soundness of the approach.

5.4. Structural identification OSP results

The OSP results obtained for SI1 and SI2 cases are presented in Fig. 5. The evolution of
det(Q(X)) is also given to confirm the relevance of the results. Due to the large parameters
sensitivity, the sensor placement is not visually intuitive in the sense that not all subdomains
are covered by at least one sensor. One can interpret the fact that sensors are mostly located
at the top of the structure because it remains the most kinematically responsive part of the
latter. However, from the sudden slope change of the determinant of the FIM with positioned
sensors, we find that after the placement of 6 sensors, the system is a priori totally identifiable,
meaning that new sensors bring (mostly) redundant information. As a remark, note that the
values of det(Q(X)) between the modal analysis OSP and structural identification OSP are not
comparable as the FIM definition is different.

Figure 5: OSP of uniaxial and triaxial accelerometers for the SI1 (left) and SI2 cases (right). Accelerometers
positions and orientations are given by the red arrows, and the determinant of the FIM (in log scale) is plotted

to confirm the soundness of the approach.
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5.4.1. mCRE-based OSP results

The OSP results obtained for mCRE1 and mCRE2 cases are presented in Fig. 6. To
understand at best the sensor placement process, a particular attention was paid to the sequential
positioning of sensors by coloring the sensor position according to their order of appearance in
the FSSP algorithm. The value of the det (Qm) is also provided. The mCRE settings that
allowed to provide the following results are given above. The value of α is well-known to be
crucial in the mCRE framework, and as it is not properly tunable at the experimental design
stage, its influence on mCRE-based OSP results was explicitely studied. What can be observed
at first glance is that the more important the confidence into measurements α, the closer to the
bottom of the structure for sensor locations. If the increasing value of det(Qm) confirms FSSP
behaves correctly, the values plotted in Fig. 6 are not comparable as they are function of α. For
the following studies, the confidence into measurements coefficient has been chosen at α = 104

because of the correct dispersion of the sensors on the whole structure (see Fig. 6).

Finally, OSP results for mCRE-based sensor placement taking multiple damage scenarios
into account are presented in Fig. 7. Several remarks can be made from theses placements.
First, there is no sensor positioned in the x direction for the mCRE-MS1 case, which can
explain why the mCRE-MS2 sensor placement is much less optimal in the sense of the criterion
to maximize. Unsurprisingly, it is interesting to notice that the first sensors in both cases are
located at the bottom of the structure, where damage is most likely to occur. Similarly, few
sensors are located on the top walls as they are less identifiable (in the CRE sense) and less
prone to damage. Of course, the numerical resources that are necessary to compute these results
are much more important, as it requires card(Θs) times more solutions of the mCRE system.
Hopefully the required CPU time did not exceed more than 12 hours on a personal laptop. This
numerical effort should be worthwhile, as the resulting sensor placement will be effective over a
wider range of stiffness configurations.

5.5. Assessment of sensor configurations for mCRE-based model updating

5.5.1. Model updating contexts

Because we look for optimal sensor placement in the sense of damage detection, we propose
to challenge the different OSP that have been obtained and presented previously for mCRE-
based model updating using three datasets that fairly represent the typical situations one can
meet in practice:

(i) Updating the model from the same data that has been used to perform OSP. The expected
parameter vector is exactly the one that has been used to position sensors.

(ii) Updating the model from data obtained after an overall 10% stiffness underestimation.
This is a situation that can be encountered if model bias is present. Measurements include
in that case additional noise for which ratio of standard deviation with input standard
deviation is 10%.

(iii) Updating the model from data obtained in a new damaged scenario. The expected pa-
rameter vector is θ? = [0.5 0.9 0.6 0.9 0.8 1]. Measurements are also polluted with noise
(10% in level too).

Case (i) is probably the most comfortable model updating situation with high-quality mea-
surements; Case (ii) gets more difficult as noise is added to measurements and a uniform model
bias must be recovered; Case (iii) is the most challenging problem as a damaged configuration
must be identified from noisy measurements using sensors whose positions have been optimized
from a totally different parameter estimate (except for mCRE-MS1 and mCRE-MS2 cases). Be-
cause of the random nature of measurement noise, one cannot expect to properly assess model
updating performance exclusively with parameters estimates. Model updating results will thus
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Figure 6: mCRE-based OSP of uniaxial and triaxial accelerometers for the identification of the 6-subdomain
parametrization of the frame. The arrows indicate the sensor position and their color indicates their order of
appearance in the FSSP strategy. From top to bottom, results have been obtained with α = {1; 102; 104; 106}.
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Figure 7: mCRE-based OSP of uniaxial and triaxial accelerometers taking multiple damage scenarios into
account. The arrows indicate the sensor position and their color indicates their order of appearance in the FSSP

strategy. A value of α = 104 was chosen.

be assessed using both parameter estimates and relative confidence intervals widths, using the
richest sensor placement as reference.

The assessment of OSP for model updating is summarized in Fig. 8 with 6 colormaps. For
each model updating scenario, we propose two colormaps: the first one indicates the relative
gap in [%] of parameter estimates with respect to the exact parameter set that should have
been recovered θ? (see Fig. 8.a). The second one shows the relative width in [%] of confidence
intervals with respect to the ones given by the reference sensor placement configuration (see
Fig. 8.b and Appendix B for mathematical details).

For all maps, each line indicates the performance obtained by a given sensor placement
(denominations are given in Tab. 2) while each column corresponds to a given subdomain
(denominations are given in Fig. 1).

The understanding of results displayed in Fig. 8.b is not direct and is recalled in the following
lines: a close-to-zero value means that the convexity of the mCRE functional evaluated around θ̂
with a given OSP is almost the same as the one of the mCRE evaluated with the reference sensor
placement case in which twice the number of sensors are present. It suggests that the considered
sensor placement is efficient in the sense that there is not much additional doubt regarding the
value of parameter estimate. On the contrary, when the relative gap on confidence intervals width
is important, the mCRE functional is less convex around θ̂, meaning that another measurement
noise realization may have lead to significantly different model updating results.

5.5.2. Discussion on the relevance of the modified FIM

Several conclusions can be drawn from the results shown in Fig. 8. First, because the
number of sensors (Ns = 24) was sufficiently important with respect to the number of parameters
to be identified (Nθ = 6), correct mCRE-based model updating results have been obtained in all
cases as parameters have been correctly identified with less than 10% error with respect to the
expected values in the most unfavorable case. The comparison of the maps (a.i) and (a.ii) reveals
that the presence of noise extends the identification issues on the less sensitive parameters of the
problem, namely the top-story ones (W11, W21 and F20). Besides, if one compares the visual
positioning of sensors previously shown with the relative confidence intervals widths, it appears
that the subdomains of parameters having large intervals are not directly equipped by sensors
(associated to poor local convexity of the functional and low sensitivity). One can also observe
that the sensor placement configurations constrained to triaxial accelerometers are less efficient,
as expected from the values of the determinant of the FIM plotted in the FSSP results.
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(a) Relative gaps on parameter estimates (in [%]) obtained with the different sensor configurations.

(b) Relative gaps on confidence intervals (in [%]) obtained with the different sensor configurations.

Figure 8: Assessment of sensor placements for several mCRE-based model updating problems.

The overall analysis of Fig. 8 confirms the effectiveness of mCRE-based OSP. Indeed,
mCRE1 and mCRE2 sensor configurations provide the best parameter estimates, with minimal
confidence intervals when data is noisy. This application is thus a proof of concept showing the
benefits of FSSP with the modified FIM that directly yields from the interpretation of mCRE
from a Bayesian viewpoint. Nevertheless, it is important to keep in mind the main limitation of
this new OSP approach: the strong dependency in the confidence into measurements coefficient
α. As running a mCRE-based OSP algorithm did not last more than 5 minutes for the considered
case, the experimental designer can afford to assess mCRE-based OSPs obtained for several
values of α. Despite this alternative, in-depth studies must be conducted to clarify this point.
In particular, one can legitimately wonder if the optimality criteria for calibrating α that has
been recently proposed in [80] are convenient to obtain relevant sensor configurations.

Finally, let us point out that taking into account several damage scenarios allows for a more
robust sensor placement with respect to the identification of new parameter configurations, as
shown in the Fig. 8 - mCRE-MS1 case at scenario (iii), where the identification is almost
perfect with minimal confidence intervals. The computational time spent to ”learn” the best
trade-off from multiple datasets is thus worth of interest. As one could have expected, taking
into account several scenarios makes mCRE-MS1 and mCRE-MS2 model updating results sub-
optimal (yet efficient) for cases (i) and (ii) compared to mCRE1 and mCRE2. However, the
performance achieved in case (iii) by mCRE-MS1 and mCRE-MS2 is remarkable and promising
for monitoring the occurrence and evolution of structural defects on structures. This observation
goes in the sense of recent contributions [71, 66] which emphasize the need to take both model
and measurement uncertainties into consideration to build efficient and robust OSP.
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6. Conclusion and prospects

The ambition of this paper consisted in the development of a novel sensor placement algo-
rithm that is dedicated to mCRE-based model updating. Owing to the link between the mCRE
(though deterministic) and the Bayesian inference framework, and inspired from the Information
Entropy concept, a modified Fisher Information Matrix was introduced and its determinant was
maximized to optimally position sensors in the mCRE sense. A proof of concept showing the
relevance of this new mCRE-based OSP strategy has been proposed on a 3D academic example
where we sought for optimal accelerometers locations on a two-story frame structure subjected
to random ground motion. This case study permitted to perform deep analysis of this new OSP
approach and to compare it with other classical techniques in different model updating scenarios.
In particular, the effect of the confidence into measurements coefficient has been emphasized, as
well as the fact to take into consideration multiple scenarios so as to anticipate a wider range
of potential damage occurences. OSP methods were compared in terms of mCRE-based model
updating from different datasets, which allowed to illustrate the efficiency and relevance of the
proposed mCRE-based OSP methodology. If this study focuses on accelerometers as they are
common and weakly invasive for earthquake engineering applications, all types of sensors can
be easily integrated in the proposed framework.

Consequently, the proposed mCRE-based OSP appears as an interesting additional asset for
the construction of a mCRE-unified framework for SHM or structural dynamics applications (see
Fig. 9 for an example on how OSP could be combined to the recent publications of the authors
[46, 72]). However, there is no doubt that this tool still lacks of maturity to be properly exploited,
and further research should address the strong influence of the confidence into measurements
coefficient [80]. Besides, as OSP are not exclusively intended to perform optimal model updating,
future work will focus on finding the best sensor placement trade-off that contributes to multiple
objectives simultaneously, for example modal identification and mCRE-based model updating.
Pareto front algorithms may be a first tool for this purpose. Finally, one of the current on-going
investigations of the authors concerns the use of mCRE-based OSP for active sensing purposes
in order to improve damage detection in cases where the state of the structure is tracked online
via data assimilation techniques [72]. Iterative strategies could then be employed to refine the
sensor configuration only where needed, i.e. where damage occurences are detected.

Appendix A Analytical expressions of the mCRE derivatives

Before providing gradient and Hessian matrix analytical expressions, let us recall that we
are dealing with quantities written in the frequency domain. Therefore, derivatives must be
considered with caution: the real and imaginary parts have to be separated to write consistent
mathematical expressions (in particular Gateaux’s derivatives). In the following, •r and •i will
denote the real and imaginary parts of •, respectively. Besides, indices ω will be omitted for
the sake of clarity as all forthcoming developments are one at a given angular frequency ω. In
particular, one can rewrite the system (18) so as to exhibit explicitly real and imaginary parts
of U and V in a decoupled manner:

Aext(θ)Xext = bext with

Aext(θ) =


K (θ)− ω2M + αΠTGΠ −(K (θ)− ω2M ) ωD −ωD

−ω2M K (θ) −ωD 0
−ωD ωD K (θ)− ω2M + αΠTGΠ −(K (θ)− ω2M )
ωD 0 −ω2M K (θ)


XT

ext =
[
UTr V T

r UTi V T
i

]
bText =

[
αY TGΠ F Tr 0 F Ti

]
(32)
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Figure 9: Long-term perspective: enhanced shaking-table experiments with a unified framework based on the
modified Constitutive Relation Error.

A.1 Analytical mCRE gradient

Once the mechanicals fields ŝ = (U, V ) are computed, the expression of the mCRE gradient
with respect to the parameters to update can be analytical (only if the link between stiffness
and parameters is too).

de2
ω

dθ

∣∣∣∣
ŝ

,
dL
dθ

∣∣∣∣
ŝ

=
∂e2

ω

∂θ
+

∂L
∂Ur

dUr
dθ

+
∂L
∂Vr

dVr
dθ

+
∂L
∂Ui

dUi
dθ

+
∂L
∂Vi

dVi
dθ︸ ︷︷ ︸

= 0 at the saddle point

(33)

As the parameters weight the FE stiffness matrix, a general formulation for the mCRE gradient
with respect to parameter θk, k ∈ J1;nθK is:

de2
ω

dθk

∣∣∣∣
ŝ

=
1

2

[
UTr

∂K

∂θk
Ur + UTi

∂K

∂θk
Ui − V T

r

∂K

∂θk
Vr − V T

i

∂K

∂θk
Vi

]
(34)

For the stiffness parametrization (12), one thus directly gets:

de2
ω

dθk

∣∣∣∣
ŝ

=
1

2

[
UTr K0,kUr + UTi K0,kUi − V T

r K0,kVr − V T
i K0,kVi

]
(35)

The possibility to provide an analytical gradient when minimizing the mCRE is thus strongly
recommended due to its simplicity of implementation as well as the associated computational
speed-up.
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A.2 Semi-analytical Hessian matrix

Following the same idea, the mCRE Hessian matrix value at coordinate j, k ∈ J1;nθK2 reads:

Hθjk =
d2e2

ω

dθjdθk

∣∣∣∣
ŝ

,
d2L

dθjdθk
=

∂2L
∂θj∂θk

+

[
d

dUr

(
∂L
∂θk

)]T dUr
dθj

+

[
d

dVr

(
∂L
∂θk

)]T dVr
dθj

+

[
d

dUi

(
∂L
∂θk

)]T dUi
dθj

+

[
d

dVi

(
∂L
∂θk

)]T dVi
dθj

(36)

Three terms to develop thus occur:

� The second order partial derivative of the augmented cost-function L, which is trivial:

∂2L
∂θj∂θk

=
1

2

[
UTr

∂2K

∂θj∂θk
Ur + UTi

∂2K

∂θj∂θk
Ui − V T

r

∂2K

∂θj∂θk
Vr − V T

i

∂2K

∂θj∂θk
Vi

]
(37)

� The crossed derivatives, whose computation is also direct:

d

dUr

(
∂L
∂θk

)
=

∂K

∂θk
Ur

d

dVr

(
∂L
∂θk

)
= −∂K

∂θk
Vr

d

dUi

(
∂L
∂θk

)
=

∂K

∂θk
Ui

d

dVi

(
∂L
∂θk

)
= −∂K

∂θk
Vi

(38)

� The derivatives of ŝ with respect to parameters, whose computation can be obtained by
derivation of the system AextXext = bext:

dAext
dθj

Xext +Aext
dXext

dθj
=

dbext
dθj

⇒ dXext
dθj

= A−1
ext

[
dbext
dθj

− dAext
dθj

Xext

]
(39)

with A−1
ext that can be already known from the AextXext = bext solution to compute the

mCRE value (i.e. the inverse matrix can be stored) and:

dbext
dθj

= 0

dAext
dθj

=


∂K
∂θj

−∂K
∂θj

0 0

0 ∂K
∂θj

0 0

0 0 ∂K
∂θj

−∂K
∂θj

0 0 0 ∂K
∂θj


(40)

All simplifications done, one obtains:

d

dθj


Ur
Vr
Ui
Vi

 = −A−1
ext



∂K

∂θj
(Ur − Vr)
∂K

∂θj
Vr

∂K

∂θj
(Ui − Vi)
∂K

∂θj
Vi


(41)
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Finally, the general expression of Hθjk reads:

Hθjk =
1

2

[
UTr

∂2K

∂θj∂θk
Ur + UTi

∂2K

∂θj∂θk
Ui − V T

r

∂2K

∂θj∂θk
Vr − V T

i

∂2K

∂θj∂θk
Vi

]

−



∂K

∂θk
Ur

−∂K
∂θk

Vr

∂K

∂θk
Ui

−∂K
∂θk

Vi



T

A−1
ext



∂K

∂θj
(Ur − Vr)
∂K

∂θj
Vr

∂K

∂θj
(Ui − Vi)
∂K

∂θj
Vi


(42)

The application of this expression to the stiffness parametrization (12) leads to:

Hθjk = −


K0,kUr
−K0,kVr
K0,kUi
−K0,kVi


T

A−1
ext


K0,j (Ur − Vr)

K0,jVr
K0,j (Ui − Vi)

K0,jVi

 (43)

If the expression of the mCRE gradient is easily available (according to the stiffness parametriza-
tion), the mCRE gradient with respect to updated parameters must be provided to minimization
algorithms in order to get enhanced numerical performances. The case of the Hessian matrix is
a bit different due to the fact that it requires intelligent storage of the inverse matrix of Aext for
all ω ∈ Dω. In particular, one can notice that A is inverted instead of Aext due to its reduced
size. Of course, providing the Hessian would also reduce the amount of iterations of nonlinear
optimization algorithms but it also carries a storage burden that should be taken into account
as A−1

ext must be stored and differs for all ω ∈ Dω.

Appendix B Confidence intervals to assess mCRE-based model updating in terms
of relative uncertainty

As explained in [52], providing optimal parameters inside confidence intervals is an original
and effective way to deal with the uncertainty associated with the FE model as well as excitation
levels with a low computational cost, as it is a one-step direct post-processing procedure to
perform once the model updating algorithm has minimized the mCRE funcitonal J . At the
converged point θ̂, using the convexity properties of the functional, there exists a subset Iθ ⊂ Θ
of finite size such that:

∀ θ ∈ Iθ, J (θ) < ε.J (θ̂) (44)

where ε is a constant scalar. The width of Iθ for a given threshold ε can be established using a
second order Taylor polynomial approximation around the optimal parameters θ̂:

J (θ) = J (θ)+O
(

(θ − θ̂)3
)

with J (θ) = J (θ̂)+

[
dJ
dθ

]T
(θ− θ̂)+

1

2
(θ− θ̂)T

[
d2J
d2θ

]
(θ− θ̂) (45)

Once gradient and Hessian matrix are supplied, the 2nd order approximation of the mCRE
is directly available, which allows to calculate the size of Iθ for all parameters (ε has to be
user-defined).

Note that the proposed confidence intervals are not rigorously able to quantify uncertainties
on θ̂. Nonetheless, they are enough to draw preliminary conclusions about the relative ability
to identify parameters: comparing the relative width of confidence intervals allows to assess
which parameters are subjected to more doubt than others. This can be helpful if one wants
to focus model updating actions on exclusively highly-sensitive parameters in order to avoid
physically-meaningless local minima.

25



References

[1] J. Brownjohn, Structural health monitoring of civil infrastructure, Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences 365 (1851) (2007) 589–622. doi:10.1098/rsta.
2006.1925.
URL https://royalsocietypublishing.org/doi/10.1098/rsta.2006.1925

[2] S. Laflamme, L. Cao, E. Chatzi, F. Ubertini, Damage Detection and Localization from Dense Network of
Strain Sensors, Shock and Vibration 2016 (2016) 1–13. doi:10.1155/2016/2562949.
URL http://www.hindawi.com/journals/sv/2016/2562949/

[3] G. F. Gomes, Y. A. D. Mendez, P. da Silva Lopes Alexandrino, S. S. da Cunha, A. C. Ancelotti, A Review of
Vibration Based Inverse Methods for Damage Detection and Identification in Mechanical Structures Using
Optimization Algorithms and ANN, Archives of Computational Methods in Engineering 26 (4) (2019) 883–
897. doi:10.1007/s11831-018-9273-4.
URL https://doi.org/10.1007/s11831-018-9273-4

[4] E. N. Chatzi, M. N. Chatzis, C. Papadimitriou (Eds.), Robust Monitoring, Diagnostic Methods and
Tools for Engineered Systems, Frontiers Research Topics, Frontiers Media SA, 2020. doi:10.3389/

978-2-88966-088-9.

[5] E. Simoen, G. De Roeck, G. Lombaert, Dealing with uncertainty in model updating for damage assessment:
A review, Mechanical Systems and Signal Processing 56-57 (2015) 123–149. doi:10.1016/j.ymssp.2014.

11.001.
URL https://linkinghub.elsevier.com/retrieve/pii/S0888327014004130

[6] W. Fan, P. Qiao, Vibration-based Damage Identification Methods: A Review and Comparative Study,
Structural Health Monitoring 10 (1) (2011) 83–111, publisher: SAGE Publications. doi:10.1177/

1475921710365419.
URL https://doi.org/10.1177/1475921710365419

[7] J. E. Mottershead, M. I. Friswell, Model Updating In Structural Dynamics: A Survey, Journal of Sound and
Vibration 167 (2) (1993) 347–375. doi:10.1006/jsvi.1993.1340.
URL https://www.sciencedirect.com/science/article/pii/S0022460X83713404

[8] A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation, Society for Industrial
and Applied Mathematics, 2005. doi:10.1137/1.9780898717921.
URL http://epubs.siam.org/doi/book/10.1137/1.9780898717921

[9] M. I. Friswell, Damage identification using inverse methods, Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences 365 (1851) (2007) 393–410. doi:10.1098/rsta.2006.

1930.
URL https://royalsocietypublishing.org/doi/10.1098/rsta.2006.1930

[10] A. Bensoussan, Optimization of sensor’s location in a distributed filtering problem., Stability of stochastic
dynamical systems (1972) 62–84.

[11] T. K. Yu, J. H. Seinfled, Observability and optimal measurement location in linear distributed parame-
ter systems, International Journal of Control 18 (4) (1973) 785–799, publisher: Taylor & Francis eprint:
https://doi.org/10.1080/00207177308932556. doi:10.1080/00207177308932556.
URL https://doi.org/10.1080/00207177308932556

[12] T.-H. Yi, H.-N. Li, Methodology Developments in Sensor Placement for Health Monitoring of Civil In-
frastructures, International Journal of Distributed Sensor Networks 8 (8) (2012) 612726, publisher: SAGE
Publications. doi:10.1155/2012/612726.
URL https://doi.org/10.1155/2012/612726

[13] V. Mallardo, M. Aliabadi, Optimal Sensor Placement for Structural, Damage and Impact Identification: A
Review, Structural Durability & Health Monitoring 9 (4) (2013) 287–323. doi:10.32604/sdhm.2013.009.

287.
URL http://www.techscience.com/sdhm/v9n4/35096

[14] W. Ostachowicz, R. Soman, P. Malinowski, Optimization of sensor placement for structural health mon-
itoring: a review, Structural Health Monitoring 18 (3) (2019) 963–988, publisher: SAGE Publications.
doi:10.1177/1475921719825601.
URL https://doi.org/10.1177/1475921719825601

26

https://royalsocietypublishing.org/doi/10.1098/rsta.2006.1925
https://doi.org/10.1098/rsta.2006.1925
https://doi.org/10.1098/rsta.2006.1925
https://royalsocietypublishing.org/doi/10.1098/rsta.2006.1925
http://www.hindawi.com/journals/sv/2016/2562949/
http://www.hindawi.com/journals/sv/2016/2562949/
https://doi.org/10.1155/2016/2562949
http://www.hindawi.com/journals/sv/2016/2562949/
https://doi.org/10.1007/s11831-018-9273-4
https://doi.org/10.1007/s11831-018-9273-4
https://doi.org/10.1007/s11831-018-9273-4
https://doi.org/10.1007/s11831-018-9273-4
https://doi.org/10.1007/s11831-018-9273-4
https://doi.org/10.3389/978-2-88966-088-9
https://doi.org/10.3389/978-2-88966-088-9
https://linkinghub.elsevier.com/retrieve/pii/S0888327014004130
https://linkinghub.elsevier.com/retrieve/pii/S0888327014004130
https://doi.org/10.1016/j.ymssp.2014.11.001
https://doi.org/10.1016/j.ymssp.2014.11.001
https://linkinghub.elsevier.com/retrieve/pii/S0888327014004130
https://doi.org/10.1177/1475921710365419
https://doi.org/10.1177/1475921710365419
https://doi.org/10.1177/1475921710365419
https://doi.org/10.1177/1475921710365419
https://www.sciencedirect.com/science/article/pii/S0022460X83713404
https://doi.org/10.1006/jsvi.1993.1340
https://www.sciencedirect.com/science/article/pii/S0022460X83713404
http://epubs.siam.org/doi/book/10.1137/1.9780898717921
https://doi.org/10.1137/1.9780898717921
http://epubs.siam.org/doi/book/10.1137/1.9780898717921
https://royalsocietypublishing.org/doi/10.1098/rsta.2006.1930
https://doi.org/10.1098/rsta.2006.1930
https://doi.org/10.1098/rsta.2006.1930
https://royalsocietypublishing.org/doi/10.1098/rsta.2006.1930
https://doi.org/10.1080/00207177308932556
https://doi.org/10.1080/00207177308932556
https://doi.org/10.1080/00207177308932556
https://doi.org/10.1080/00207177308932556
https://doi.org/10.1155/2012/612726
https://doi.org/10.1155/2012/612726
https://doi.org/10.1155/2012/612726
https://doi.org/10.1155/2012/612726
http://www.techscience.com/sdhm/v9n4/35096
http://www.techscience.com/sdhm/v9n4/35096
https://doi.org/10.32604/sdhm.2013.009.287
https://doi.org/10.32604/sdhm.2013.009.287
http://www.techscience.com/sdhm/v9n4/35096
https://doi.org/10.1177/1475921719825601
https://doi.org/10.1177/1475921719825601
https://doi.org/10.1177/1475921719825601
https://doi.org/10.1177/1475921719825601


[15] R. J. Barthorpe, K. Worden, Emerging Trends in Optimal Structural Health Monitoring System Design:
From Sensor Placement to System Evaluation, Journal of Sensor and Actuator Networks 9 (3) (2020) 31,
number: 3 Publisher: Multidisciplinary Digital Publishing Institute. doi:10.3390/jsan9030031.
URL https://www.mdpi.com/2224-2708/9/3/31

[16] P. Cawley, R. D. Adams, The location of defects in structures from measurements of natural frequencies,
The Journal of Strain Analysis for Engineering Design 14 (2) (1979) 49–57, publisher: IMECHE. doi:

10.1243/03093247V142049.
URL https://doi.org/10.1243/03093247V142049

[17] P. C. Shah, F. E. Udwadia, A Methodology for Optimal Sensor Locations for Identification of Dynamic
Systems, Journal of Applied Mechanics 45 (1) (1978) 188–196. doi:10.1115/1.3424225.
URL https://doi.org/10.1115/1.3424225

[18] P. Kirkegaard, R. Brincker, On the optimal location of sensors for parametric identification of linear structural
systems, Mechanical Systems and Signal Processing 8 (6) (1994) 639–647. doi:10.1006/mssp.1994.1045.
URL https://linkinghub.elsevier.com/retrieve/pii/S0888327084710454

[19] D. C. Kammer, Sensor placement for on-orbit modal identification and correlation of large space structures,
Journal of Guidance, Control, and Dynamics 14 (2) (1991) 251–259. doi:10.2514/3.20635.
URL https://arc.aiaa.org/doi/abs/10.2514/3.20635

[20] E. Heredia-Zavoni, L. Esteva, Optimal instrumentation of uncertain structural systems subject to earth-
quake ground motions, Earthquake Engineering & Structural Dynamics 27 (4) (1998) 343–362. doi:

10.1002/(SICI)1096-9845(199804)27:4<343::AID-EQE726>3.0.CO;2-F.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9845%28199804%2927%3A4%

3C343%3A%3AAID-EQE726%3E3.0.CO%3B2-F

[21] F. E. Udwadia, Methodology for Optimum Sensor Locations for Parameter Identification in Dynamic Sys-
tems, Journal of Engineering Mechanics 120 (2) (1994) 368–390, publisher: American Society of Civil Engi-
neers. doi:10.1061/(ASCE)0733-9399(1994)120:2(368).
URL https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%281994%29120%3A2%28368%29

[22] E. Heredia-Zavoni, R. Montes-Iturrizaga, L. Esteva, Optimal instrumentation of structures on flexible base
for system identification, Earthquake Engineering & Structural Dynamics 28 (12) (1999) 1471–1482. doi:

10.1002/(SICI)1096-9845(199912)28:12<1471::AID-EQE872>3.0.CO;2-M.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9845%28199912%2928%3A12%

3C1471%3A%3AAID-EQE872%3E3.0.CO%3B2-M

[23] M. Reynier, H. Abou-kandil, Sensors Location For Updating Problems, Mechanical Systems and Signal
Processing 13 (2) (1999) 297–314. doi:10.1006/mssp.1998.1213.
URL https://www.sciencedirect.com/science/article/pii/S0888327098912134

[24] L. Yao, W. A. Sethares, D. C. Kammer, Sensor placement for on-orbit modal identification via a genetic
algorithm, AIAA Journal 31 (10) (1993) 1922–1928, publisher: American Institute of Aeronautics and As-
tronautics eprint: https://doi.org/10.2514/3.11868. doi:10.2514/3.11868.
URL https://doi.org/10.2514/3.11868

[25] J. L. Beck, L. S. Katafygiotis, Updating Models and Their Uncertainties. I: Bayesian Statistical Framework,
Journal of Engineering Mechanics 124 (4) (1998) 455–461, publisher: American Society of Civil Engineers.
doi:10.1061/(ASCE)0733-9399(1998)124:4(455).
URL https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%281998%29124%3A4%28455%29

[26] L. S. Katafygiotis, J. L. Beck, Updating Models and Their Uncertainties. II: Model Identifiability, Journal
of Engineering Mechanics 124 (4) (1998) 463–467, publisher: American Society of Civil Engineers. doi:

10.1061/(ASCE)0733-9399(1998)124:4(463).
URL https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%281998%29124%3A4%28463%29

[27] C. Papadimitriou, J. L. Beck, S.-K. Au, Entropy-Based Optimal Sensor Location for Structural Model
Updating, Journal of Vibration and Control 6 (5) (2000) 781–800, publisher: SAGE Publications Ltd STM.
doi:10.1177/107754630000600508.
URL https://doi.org/10.1177/107754630000600508

[28] C. Papadimitriou, Optimal sensor placement methodology for parametric identification of structural systems,
Journal of Sound and Vibration 278 (4) (2004) 923–947. doi:10.1016/j.jsv.2003.10.063.
URL https://www.sciencedirect.com/science/article/pii/S0022460X04000355

27

https://www.mdpi.com/2224-2708/9/3/31
https://www.mdpi.com/2224-2708/9/3/31
https://doi.org/10.3390/jsan9030031
https://www.mdpi.com/2224-2708/9/3/31
https://doi.org/10.1243/03093247V142049
https://doi.org/10.1243/03093247V142049
https://doi.org/10.1243/03093247V142049
https://doi.org/10.1243/03093247V142049
https://doi.org/10.1115/1.3424225
https://doi.org/10.1115/1.3424225
https://doi.org/10.1115/1.3424225
https://doi.org/10.1115/1.3424225
https://linkinghub.elsevier.com/retrieve/pii/S0888327084710454
https://linkinghub.elsevier.com/retrieve/pii/S0888327084710454
https://doi.org/10.1006/mssp.1994.1045
https://linkinghub.elsevier.com/retrieve/pii/S0888327084710454
https://arc.aiaa.org/doi/abs/10.2514/3.20635
https://doi.org/10.2514/3.20635
https://arc.aiaa.org/doi/abs/10.2514/3.20635
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9845%28199804%2927%3A4%3C343%3A%3AAID-EQE726%3E3.0.CO%3B2-F
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9845%28199804%2927%3A4%3C343%3A%3AAID-EQE726%3E3.0.CO%3B2-F
https://doi.org/10.1002/(SICI)1096-9845(199804)27:4<343::AID-EQE726>3.0.CO;2-F
https://doi.org/10.1002/(SICI)1096-9845(199804)27:4<343::AID-EQE726>3.0.CO;2-F
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9845%28199804%2927%3A4%3C343%3A%3AAID-EQE726%3E3.0.CO%3B2-F
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9845%28199804%2927%3A4%3C343%3A%3AAID-EQE726%3E3.0.CO%3B2-F
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%281994%29120%3A2%28368%29
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%281994%29120%3A2%28368%29
https://doi.org/10.1061/(ASCE)0733-9399(1994)120:2(368)
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%281994%29120%3A2%28368%29
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9845%28199912%2928%3A12%3C1471%3A%3AAID-EQE872%3E3.0.CO%3B2-M
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9845%28199912%2928%3A12%3C1471%3A%3AAID-EQE872%3E3.0.CO%3B2-M
https://doi.org/10.1002/(SICI)1096-9845(199912)28:12<1471::AID-EQE872>3.0.CO;2-M
https://doi.org/10.1002/(SICI)1096-9845(199912)28:12<1471::AID-EQE872>3.0.CO;2-M
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9845%28199912%2928%3A12%3C1471%3A%3AAID-EQE872%3E3.0.CO%3B2-M
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9845%28199912%2928%3A12%3C1471%3A%3AAID-EQE872%3E3.0.CO%3B2-M
https://www.sciencedirect.com/science/article/pii/S0888327098912134
https://doi.org/10.1006/mssp.1998.1213
https://www.sciencedirect.com/science/article/pii/S0888327098912134
https://doi.org/10.2514/3.11868
https://doi.org/10.2514/3.11868
https://doi.org/10.2514/3.11868
https://doi.org/10.2514/3.11868
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%281998%29124%3A4%28455%29
https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(455)
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%281998%29124%3A4%28455%29
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%281998%29124%3A4%28463%29
https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(463)
https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(463)
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%290733-9399%281998%29124%3A4%28463%29
https://doi.org/10.1177/107754630000600508
https://doi.org/10.1177/107754630000600508
https://doi.org/10.1177/107754630000600508
https://doi.org/10.1177/107754630000600508
https://www.sciencedirect.com/science/article/pii/S0022460X04000355
https://doi.org/10.1016/j.jsv.2003.10.063
https://www.sciencedirect.com/science/article/pii/S0022460X04000355


[29] H. Y. Guo, L. Zhang, L. L. Zhang, J. X. Zhou, Optimal placement of sensors for structural health monitoring
using improved genetic algorithms, Smart Materials and Structures 13 (3) (2004) 528–534, publisher: IOP
Publishing. doi:10.1088/0964-1726/13/3/011.
URL https://doi.org/10.1088/0964-1726/13/3/011

[30] K. Zhou, Z. Wu, X. Yi, D. Zhu, R. Narayan, J. Zhao, Generic Framework of Sensor Placement Optimization
for Structural Health Modeling, Journal of Computing in Civil Engineering 31 (2017) 04017018. doi:

10.1061/(ASCE)CP.1943-5487.0000662.
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