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91190, Gif-sur-Yvette, France
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Abstract10

This paper presents a novel Optimal Sensor Placement (OSP) strategy that is dedicated to
model updating problems based on the modified Constitutive Relation Error (mCRE) functional
in low-frequency dynamics. The mCRE is a credible alternative to model updating function-
als that stands out by searching structural parameters alongside mechanical fields as the best
trade-off between all available information from measured data, without any further a priori
assumption. Considering damage detection problems, due to possible discrepancies in terms
of parameters sensitivity with respect to mCRE, sensor locations provided by standard OSP
algorithms may be irrelevant. The proposed approach uses the concept of Information Entropy
by formulating a modified Fisher information matrix, in which the sensitivity of the mCRE me-
chanical fields with respect to the updated parameters is involved. The approach is legitimated
by the strong connection between mCRE and Bayesian inference. A proof-of-concept involving
an earthquake engineering inspired academic case study, where accelerometers are positioned
on a two-story frame structure subjected to random ground motion, permits to illustrate the
soundness and efficiency of the proposed methodology compared to other classical OSP tech-
niques. The influence of critical mCRE parameters is shown, as well as the benefits of taking
multiple scenarios into account so as to get an OSP that is relevant for a wider range of possible
damage occurrences.
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List of abbreviations

SHM Structural Health Monitoring
OSP Optimal Sensor Placement
pdf Probability Density Function
FIM Fisher Information Matrix
FSSP Fast Sequential Sensor Placement
BSSP Backward Sequential Sensor Placement
mCRE modified Constitutive Relation Error
CRE Constitutive Relation Error

1. Introduction

Structural Health Monitoring (SHM) aims to improve the diagnosis of structures in opera-15

tional conditions in order to prevent potential structural failures. If the monitoring operation
was traditionally performed visually by human inspectors, the automated techniques that have
been developed in the last four decades, which directly exploit data acquired by a set of sensors,
make it possible to assist and reinforce the visual inspection carried out on structures in order to
permit a safe decision-making process. SHM has been particularly studied in the context of local-20

izing, quantifying, and tracking structural damage from ambient dynamic datasets. Throughout
the last decades, a broad panel of damage detection methods has been proposed [1–4] - only to
cite a few of them. These techniques all have in common the aim of updating numerical mod-
els, whether they are directly built from measurements (black-box modeling) or derived after an
in-depth physical description of the involved phenomena (white-box modeling). These latter are25

then post-processed to extract valuable information regarding the current mechanical state of
the sensed specimen, for instance, stiffness loss or modal feature changes [5, 6].

When performing model updating from (possibly spatially sparse) datasets, several difficul-
ties have been identified [7–9]:

(i) Model bias due to the fact that the chosen class of structural models does not contain the30

actual behavior of the structure;

(ii) Measurement noise in the dynamic test data that implies the addition of a priori infor-
mation for regularization purposes;

(iii) Incomplete observability of the structure due to the limited budget and technologies of
available sensing devices, leading to local and incomplete datasets;35

(iv) Incomplete number of contributing modes due to limited bandwidth in the input and
dynamic response.

As difficulties (i) and (iv) are already addressed throughout the model updating framework
considered in this contribution, we will mainly focus on the difficulty (iii) as one shall imagine
how inappropriate experimental designs can lead to inaccurate identification results.40

The will to exploit at best the information provided by a few amount of sensors lead to
the development of optimal sensor placement (OSP) techniques. Indeed, the quality of damage
diagnosis from structural vibrations critically depends on the sensor layout, in particular consid-
ering large structures under unknown or random excitation that cannot be fully instrumented
in practice. As part of the experimental design, OSP is a challenging problem: as sensors are45

not properly positioned yet, the performance of OSP algorithms is thus conditioned by the
(assumed good) predictive behavior of the involved numerical models that allow to generate
simulated data. The question of sensor placement is not new [10, 11] and has been massively
studied in the last three decades for SHM applications [12–15] with the introduction of a wide
variety of OSP criteria and optimization algorithms.50
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In SHM and structural dynamics applications, OSP problems were initially raised for modal
identification purposes [16], as it has been historically well-known that damage occurrence was
strongly related to eigenfrequencies loss and mode shapes change [17]. Considering parameter
estimation of structures subjected to earthquake loading conditions, the mathematical expression
of the OSP problem [18–20] introduced the Fisher Information Matrix (FIM) from the Cramér-55

Rao bound theorem. The FIM is a relevant mathematical entity on which the sensor selection
process can rely: it measures the amount of information carried by a given sensor configuration
(since it is strongly related to the sensitivity of model predictions with respect to the updated
parameters). OSP algorithms then differ in the criterion/measure derived from the FIM. The
most common approaches are either based on its trace (A-optimality) [16, 20–22], its condition60

number (E-optimality) [23], or its determinant (D-optimality) [19, 24].

Contrary to the previous OSP techniques that are based on modal features, the Bayesian
framework proposed by Beck and Katafygiotis [25, 26] has been used to get OSP for structural
identification by Papadimitriou [27] using the concept of information entropy. It benefits from
the Bayesian statistical framework as it properly handles measurement uncertainties as well as65

model errors. A significant mathematical result relates asymptotically (i.e. for a large amount
of data) the information entropy to the determinant of the FIM [28].

From these pioneering works, the research in OSP in the last decade has mostly been fo-
cused on optimization algorithms, as optimal sensor placement is a challenging problem from
the computational viewpoint which resorts to combinatorial optimization. Efficient algorithms70

(that may provide sub-optimal results) are often used. They can be distinguished into two
families. On the one hand, metaheuristic algorithms such as genetic algorithms are most suit-
able for solving discrete optimization problems and providing near-optimal solutions to global
optimization problems [24, 27]. Among many contributions, let us mention [29, 30] that use
genetic algorithms to optimally position sensors for damage detection. Of course, other meta-75

heuristic techniques can be used for sensor placement such as neural networks [31, 32], topology
optimization-inspired algorithms [33, 34], simulated annealing [31, 35] or mixed variable pro-
gramming [36]. A comprehensive review of these techniques is given in [15]. On the other hand,
sequential sensor placement techniques, whether they are forward (FSSP) or backward (BSSP),
do only provide suboptimal sensor configurations. However, they are much less computationally80

demanding compared to genetic algorithms. In practice, sensors location are determined itera-
tively by placing/removing one sensor at a time. Although the effective independence method
[19] lies on a BSSP strategy, FSSP and BSSP have strongly been popularized with information
entropy [28, 37, 38]. It has been shown that FSSP and BSSP provide a good approximation
(yet suboptimal) of the OSP on many test cases with less computational effort than genetic85

algorithms.

The ambition of this work is to enlarge the wide spectrum of OSP techniques with a novel
strategy that is dedicated to the use of the modified Constitutive Relation Error functional
(mCRE) for finite element model updating. Indeed, if the mCRE has been shown to be a
relevant alternative to standard deterministic and stochastic model updating techniques [39, 40],90

no proper strategy devoted to mCRE-based model updating has been proposed in the literature.

Briefly, the mCRE is an alternative technique to solve inverse problems that are classically
addressed using either Bayesian approaches (for which a comprehensive review is available in
[5]) or deterministic methods [7, 41]. In these latter approaches, the need for regularization
techniques is mandatory to circumvent the ill-posedness of the problem [8]. The regularization95

includes some user’s a priori expertise of paramount importance as it conditions the obtained
solution and the convergence of the optimization algorithms [42, 43]. Although easy to imple-
ment, these techniques may lack of robustness as the identification result is strongly relying on
(i) the choice of the a priori information that regularizes the inverse problem in Tikhonov’s
sense, and (ii) the calibration of the relative weights of the different terms contributing to the100
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cost function [44]. An alternative then consists in using the concept of modified Constitutive
Relation Error (mCRE) whose physics-based construction avoids the need for user-dependent
knowledge [45–47]. This is the main driver behind its selection as a reference method for model
updating in this paper.

Initially proposed for model updating in dynamics by Ladevèze and co-workers [48, 49],105

the mCRE functional is defined as a quadratic data-to-model distance enriched with a term
based on the concept of Constitutive Relation Error (CRE) [50]. This CRE term is built from
the reliability of information concept, and therefore carries a strong mechanical content. In
particular, it allows to avoid the direct use of regularization terms based on some a priori expert-
user knowledge. Compared to standard deterministic and stochastic functionals, the mCRE is110

known for having enhanced convexity properties [51] and high-robustness to measurement noise
[47, 52]. Besides, the elementary contributions of the model error term can be easily computed
and exploited to focus updating actions where needed [53]. This can be computationally helpful
and regularizing (in Tikhonov’s sense) when the sensitivity of the mCRE with respect to updated
parameters is heterogeneous. The relevance and robustness of the mCRE for model updating115

have been emphasized in many applications. Among other works, let us mention local defect
detection [46, 54, 55], full-field material identification from dense measurements [56, 57], and
model updating from low signal-to-noise ratio random measurements in dynamics [47]. As one
can explicitly establish a link between mCRE, deterministic and stochastic functionals, it is
also worth mentioning the comparative study between mCRE, Tikhonov-based, and Bayesian120

damage detection using optical fiber strain measurements performed in [39]. Another comparison
was performed from full-field measurements obtained by digital image correlation in which the
benefits of using mCRE compared to Bhattacharyya distance were observed [40].

If the modeling error distribution over the structure can be advantageously used to position
sensors in areas that are in need for correcting actions, such an approach remains empirical125

and lacks of mathematical foundations to be properly generalized. The main contribution of
this work consists in the development of a novel sensor placement strategy that integrates the
mCRE within the information theory, which is legitimated by the mathematical relationship
between mCRE and Bayesian model updating when dealing with Gaussian random variables.
A modified FIM is formulated and its determinant is maximized to position sensors optimally130

for enhanced mCRE-based monitoring in low-frequency dynamics. A proof-of-concept showing
the relevance of this new mCRE-based OSP strategy is proposed on a 3D academic example,
in which accelerometers are optimally positionned on a two-story frame structure. This case
study allowed to compare the new mCRE-based OSP approach with other classical techniques:
the relevance of OSPs is assessed in terms of identification accuracy using measurements from135

different scenarios and relative uncertainties quantified with confidence intervals [53]. The effect
of the confidence into measurements coefficient is particularly considered as the calibration of
the latter is crucial within the mCRE framework [47], and physically-meaningful observations
are made when analyzing its impact on OSP results. The case of multiple damage scenarios is
also considered, showing that the additional computational burden carried by such an approach140

yet enables obtaining more relevant OSP leading to better model updating, even when the
parameters to identify are subjected to significant evolutions during experiments.

The remainder of this paper is organized as follows: Section 2 presents an overview of
OSP techniques dealing with the concept of FIM, with particular emphasis on the information
entropy concept. Section 3 recalls the basics of the mCRE for finite element model updating in145

dynamics. Section 4 presents the novel sensor placement approach starting from the mCRE seen
from a Bayesian viewpoint. Section 5 presents the proof-of-concept showing the relevance of the
proposed OSP method. Conclusions and prospects are finally drawn in Section 6, suggesting
a future use of this novel OSP technique for a model updating framework unified around the
concept of mCRE.150
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2. Optimal sensor placement techniques for SHM at a glance

In this section, the most common and popular sensor placement techniques are briefly pre-
sented. Although OSP problems were originally raised for modal identification purposes, the
tools that are invested are (for the largest part) all related to the information theory, which will
be presented in the following. For the sake of conciseness and clarity, only the material essential155

to the forthcoming developments is detailed. However, the interested reader is invited to find
complementary explanations in the following review papers [12–15].

2.1. Bayesian framework and Fisher Information Matrix

Without loss of generality, solving an inverse problem aims at updating the internal param-
eters θ ∈ Θ of a given model M from measurements y ∈ Y collected under a given loading F .
We denote Ns the amount of sensors and N the number of acquired data points. In most SHM
applications, measurements are discrete kinematic quantities (displacements, strains, accelera-
tions) that directly derive from the mechanical state predicted by the model u =M(θ, F ) ∈ X .
The projection operator Π : X 7→ Y thus allows to compare explicitly predictions with the
available Ns measurements. Classically, measurements are correlated to predictions using the
observation equation [18, 21]:

y = Π(u(θ)) + w (1)

where w is an additive noise assumed to be Gaussian of covariance matrix Σw allowing to take
into account measurement noise and model discrepancies. In what follows attention is paid to
the best choice of sensors locations in order to obtain the best (statistical) identification of θ.
Briefly, let us start from the Bayes theorem:

π(θ|y) ∝ π(y |θ).π0(θ) (2)

π0(θ) is the prior probability density function (pdf) on parameters constructed from a priori
knowledge. π(θ|y) is the posterior pdf; this conditional probability is the final result improved
by the knowledge of measured data, reducing uncertainty and giving the most likely values
of θ. Finally, π(y |θ) is the so-called likelihood pdf, which can be interpreted as a measure of
how good the parametrized model succeeds in explaining the observations. With the previous
assumptions, the posterior pdf takes the form:

π(θ|y ,Σw) ∝ exp

[
−1

2
J (θ, y ,Σw)

]
.π0(θ) with J (θ, y ,Σw) =

N∑
k=1

‖Πuk(θ)− yk‖2Σ−1
w

(3)

where ‖�‖2
Σ−1
w

= �TΣ−1
w � refers to the squared Euclidean norm of � weighted by matrix Σ−1

w .

J measures the correlation between measurements and predictions. This functional is also160

minimized in a deterministic viewpoint to identify optimal parameters (with a complementary
regularization to circumvent the ill-posedness of the inverse problem). The sensor placement
problem then consists in finding the best projector Π̂ which minimizes the covariance on the
parameter estimate. Note that, because models are numerically discretized (e.g. in the finite
element sense), then sensors location are optimized among a ”grid” of all Nd possible sensor165

locations. Doing so, the OSP problem becomes a combinatorial optimization problem, that is
well-known for being exploratory and computationally expensive.

If the Fisher Information Matrix (FIM), denoted Q, was originally introduced as the inverse
of the Cramér-Rao bound (of the parameters covariance matrix) [21], it can also be derived
from the statistical viewpoint as the variance of the score, i.e. the gradient of the log-likelihood
function π(y|θ):

Q = Eθ

((
∂ log π(y|θ)

∂θ

)(
∂ log π(y|θ)

∂θ

)T)
(4)
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with Eθ (•) referring to the mathematical expectation operator on θ. Unsurprisingly, the FIM is
strongly related to the sensitivity of predictions with respect to the parameters. It is a relevant
mathematical entity on which the sensor selection can rely as it is a way of measuring the amount170

of information carried by a given sensor configuration. This explains why first OSP works were
aiming at maximizing the FIM, in the sense of a certain measure [16, 18–20].

OSP techniques then differ according to the quantity of interest that is considered. Originally,
OSP for SHM was focused on modal analysis as damage is related to eigenmodes changes in
shape or frequency. A wide spectrum of techniques have been developed, the most popular ones175

being the effective independence [19, 24, 58–60] and the modeshape difference method [61, 62]
that exploit the sensitivity of parameters with respect to eigenmodes. It is also worth mentioning
the modal kinetic energy technique that intends to locate sensors at points of maximum modal
kinetic energy [63]. Although related to effective independence [64], the modal kinetic energy
method is more likely to provide sensor locations in areas where the signal-to-noise ratio should180

be important, which limits the spurious effects of measurement noise when performing modal
analysis.

2.2. Information Entropy

Contrary to the above mentioned techniques that are based on the sensitivity of modal
features, one can formulate the OSP problem from the Bayesian viewpoint: the posterior pdf (3)
represents the uncertainty of parameters θ based on the information contained in measurements
y. The concept of Information Entropy has been introduced to provide a scalar measure of this
uncertainty [27, 28]. It benefits from the Bayesian statistical framework as it properly handles
measurement uncertainties as well as model errors. The information entropy h is defined as

h(Π, y) = Eθ (− log π(θ|y)) (5)

with Eθ (•) referring to the mathematical expectation operator on θ. The information entropy
depends on the available data, and the sensor configuration characterized by Π. OSP is then
achieved by minimizing the changes in h, which is a unique measure of the uncertainty in the
model parameters. A rigorous mathematical description of the information entropy concept for
OSP is given in [27, 28] for the case of ”small” and ”large” uncertainties on the parameters
to estimate. A major result that has been shown is the asymptotic result for large amount of
available data that relates the information entropy to the determinant of the FIM. Choosing
an a priori relevant value θ0 which minimizes the misfit function J leads to the following
approximation when NNs →∞:

h(Π, y) ≈ H(Π, y ; θ0) =
1

2
Nθ log 2π − 1

2
log det(Q(Π, θ0, y))

with Q(Π, θ0, y) = NNs∇θ∇Tθ (J (θ, y ,Σw)) ≈
N∑
i=1

(Π∇θui)T (ΠΣwΠT )−1 (Π∇θui)
(6)

where Nθ = dim(Θ) is the number of parameters, N the number of measured samples and Ns

the number of sensors. Using (6), one can thus look for Ns optimal sensors locations Π̂ solving:

Π̂ = arg max
Π

[log det(Q(Π, θ0, y))] (7)

Even if one may be confident in the relevance of θ0 to provide effective OSP, this may not
be enough when considering strong variations of θ during forthcoming experiments, that may
directly impact the structure response, and therefore the FIM. For example, considering the
case of complex damageable structures, one may not straightforwardly guess where damage will
appear first. This case is referred to as ”large” parameter uncertainties in [27]. It implies one
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should explore the parameter space (for example with Monte-Carlo sampling) and average the
contributions of the FIM computed according to each sample:

Π̂ = arg max
Π

[∫
Θ

log det(Q(Π, θ, y))π0(θ)dθ

]
(8)

Of course, that type of approach is more expensive from the computational viewpoint, but it is
recommended when (i) the initial parameter guess is poorly known, (ii) the updated parameters185

may strongly vary during experiments, (iii) the sensitivity of Q with respect to θ is significant
within the range of likely values of θ.

There have been much use of the information entropy for OSP in the last two decades,
especially because it allows to compare sensor configurations of various sizes [65], as one can guess
that adding sensors is always beneficial (or at least equivalent) [28], which justifies the relevance190

of sequential placement strategy compared to genetic algorithms (with much less computational
effort). Without being exhaustive, let us mention some significant contributions: in [38], the
functional has been extended to take into account the effect of sensors spatial correlation in Σw.
Similarly, a penalty term to enforce the sparsity of the sensor configuration has been considered
in [66]. The information entropy was also used to design optimal loading conditions e for optimal195

identification [67]. In [37], a multi-objective optimization problem was introduced to design an
OSP dedicated to a class of models. Information entropy was applied to statistical seismic source
inversion in [68] and to optimal crack identification on plates from strain measurements in [69].
Very recently, the case of multiple damage scenario with modal expansion was considered in [70]
to handle virtual sensing under output-only vibration measurements.200

Algorithm 1: FSSP algorithm based on information entropy

Initialization:
• Grid of all Nd possible sensors locations
• Targeted number of sensors Ns
• n = 0 number of selected sensors
• Set of simulated measurements y

while n < Ns do

Consider all possible combinations by adding one new sensor: {Πj}j∈J1;Nd−nK
for j ∈ J1;Nd − nK do

Evaluate the information entropy of the sensor configuration given by Πj

end
Identify the sensor configuration J = arg maxj∈J1;Nd−nK [log det(Q(Πj , θ0, y))]

Store the new sensor of configuration J as the (n+ 1)th optimal position
end

3. The modified Constitutive Relation Error in dynamics

As explained above, the modified CRE is a model updating functional built as a quadratic
data-to-model distance enriched with a term based on the so-called concept of Constitutive Rela-
tion Error. It is a credible model updating alternative that has shown its enhanced performance
in several applications [39, 40, 47]. The key ingredients for the formulation and minimization of205

the mCRE in dynamics when updating stiffness parameters are recalled below.

3.1. FE framework, measurements and stiffness parametrization

Let us consider the general case of an elastic structure Ω spatially discretized in E (non-
overlapping) finite elements such that Ω = ∪Ee=1 Ωe subjected to a given dynamical loading F .
We denote by K ,D ,M the stiffness, damping and mass FE matrices, respectively, while Fω and210
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Uω are the frequency counterparts of nodal loading conditions and displacement field. With
these notations, the dynamic equilibrium written in the frequency domain at a given angular
frequency ω reads: [

−ω2M + iωD + K
]
Uω = Fω (9)

In addition, a set of sensors is used to measure the magnitude of some kinematic quantities
(displacement, velocity and/or accelerations). In the frequency domain, assuming measurements215

are perfect, such information can be written without loss of generality as:

ΠUω = Yω (10)

where Yω refers to the frequency counterpart of measurements at angular frequency ω, and Π
contains zero and integer powers of iω to extract displacement field derivatives at corresponding
sensors positions.

As the main driver of this report is to perform SHM and damage detection, one can (legiti-220

mately) assume that damage can be interpreted as local stiffness loss. Therefore, a convenient
manner to parametrize a linear FE problem for damage detection is to parametrize the FE stiff-
ness matrix. The latter is thus decomposed in Nθ non-overlapping subdomains and parametrized
as follows:

K (θ) =

Nθ∑
i=1

θiK0,i with K (θ0) =

Nθ∑
i=1

K0,i and θ ∈ Θ ⊂ RNθ (11)

Note that the subdomains can perfectly match with finite elements or gather some of them to225

reduce the number Nθ of parameters to identify.

3.2. mCRE-based model updating problem in dynamics

Contrary to standard deterministic approaches, the fundamental idea of mCRE-based model
updating is to built mechanical fields and to identify structural parameters simultaneously as
a trade-off according to all available information (i.e., physics knowledge and measured data).230

Therefore, there is no need for additional a priori information. The starting point of the ap-
proach thus consists in classifying, among the data and equations of the mechanical problem,
what will be considered as ’reliable’ from what should be considered with caution (labelled ’un-
reliable’). This separation is non-unique and deeply relies on the case study and engineering
expertise, although it is also well-known that constitutive relations are (very often) the less re-235

liable equations. The separation of equations for the considered case is given in Tab. 1. Doing
so, we define two manifolds: (i) Uad the so-called kinematically admissible space that contains
the FE displacement fields satisfying the boundary conditions and kinematic relations but not
necessarily the constitutive equations, and (ii) Dad the so-called dynamically admissible space
containing the FE displacement fields V such that [−ω2M +iωD ]U+K (θ)V = Fω for all U ∈ Uad.240

In other words, Dad contains the displacement fields satisfying both equilibrium and constitutive
equations. The reciprocity gap between those two manifolds can be measured using an energy
norm - the CRE - that estimates the relevance of a solution couple sω = (Uω, Vω) ∈ Uad × Dad
with respect to the mechanical problem. With the above notations, the CRE at a given angular
frequency ω reads:245

ζ2
ω(sω, θ) =

1

2
(Uω − Vω)HK (θ)(Uω − Vω) =

1

2

∥∥Uω − Vω∥∥2

K (θ)
(12)

The extension of the CRE concept to unreliable experimental data (see Tab. 1) directly
leads to the so-called modified Constitutive Relation Error (mCRE). In the latter, the CRE is
extended with a data-to-model distance written in the frequency domain:

e2
ω(sω, θ,Yω) , ζ2

ω(sω, θ) + α
1

2

∥∥ΠUω −Yω

∥∥2

G
(13)
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Reliable Unreliable

Model

• Geometry

• Elastic constitutive relations
• Boundary conditions
• Equilibrium equations
• Dissipative constitutive relations

Experiments
• Loading frequencies ω/2π

• Measured outputs Yω• Sensors locations
• Measured inputs Fω

Table 1: Distinction between reliable and unreliable information for damage detection from stiffness update in
dynamics.

α is the confidence into measurement scaling parameter, allowing to give more or less importance
to the measurements in the model updating process (particularly regarding the noise level).250

Its calibration is crucial to obtain relevant mCRE-based model updating results [47]. G is
a symmetric positive-definite matrix that guarantees that ‖�‖G is homogeneous to ζ2

ω and
equivalent in level. Its choice is much less critical than α. In practice, G is chosen as proportional
to the identity matrix and weighted by the first eigenvalue of K (θ0).

Finally, the analysis of a single angular frequency may be too restrictive in dynamics, partic-255

ularly when several eigenmodes are simultaneously excited. The full mCRE functional J to be
minimized is thus obtained by direct integration over a frequency bandwidth Dω (which stores
the essential information about the structure response):

J (θ,Y ) =

∫
Dω

z(ω)e2
ω(ŝ(θ,Yω), θ,Yω) dω (14)

where z(ω) is a frequency weighting normalized function such that
∫
Dω

z(ω) dω = 1 allowing to
modulate the importance of specific frequencies of Dω and ŝ the optimal mechanical fields for a260

given parameter set and given measurements. In the present formulation of the mCRE in the
frequency domain, ŝ at each angular frequency ω is obtained solving:

∀ ω ∈ Dω, ŝω(θ,Yω) = (Ûω, V̂ω) = arg min
s∈(Uad×Dad)

e2
ω(s, θ,Y ) (15)

which is a minimization problem constrained by the satisfaction of the dynamic equilibrium
between the manifolds Uad and Dad. In practice, an augmented cost-function with Lagrange
multipliers is introduced, which leads to the matrix system written below that must be solved265

for all ω in Dω (see [47, 53] for further details):

A

[
Ûω − V̂ω
Ûω

]
= b with


A =

[ [
K (θ) + iωD − ω2M

]H
αΠHGΠ

−K (θ)
[
K (θ) + iωD − ω2M

] ]

b =

{
αΠHGYω

Fω

} (16)

The overall mCRE-based model updating problem thus reads:

θ̂ = arg min
θ∈Θ

{
J (θ,Y ) ,

∫
Dω

z(ω)e2
ω

([
arg min
s∈Uad×Dad

e2
ω(s, θ,Yω)

]
, θ,Yω

)
dω

}
(17)

3.3. Additional remarks

Although the nested minimization problem (17) on mechanical state and parameters make
the algorithmic structure for minimization quite complex compared to classical model updating270
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methods, one should notice that the computation of mechanical fields for a given value of θ is
not computationally expensive as the size of (16) can be drastically reduced using projection on
reduced truncated modal basis [71].

The minimization of the mCRE with respect to parameters can be numerically performed
using unconstrained minimization algorithms such as the BFGS algorithm. With the analytical275

expression of the gradient of the mCRE with respect to parameters (see Appendix A), the
computational burden associated to the minimization process is reduced. These expressions are
also decisive in the following to improve the numerical performance of the mCRE-based OSP.

If supplying an analytical Hessian matrix may lead to minor computational improvements
when minimizing the mCRE, it can still be exploited to compute confidence intervals [53].280

Indeed, when identifying several parameters simultaneously, one could wonder what relative
precision is reached in the identification process for uncertainty quantification. To do so, one
can thus consider the computation of confidence intervals as a first approach. More details are
given in Appendix B.

Lastly, note that the relevant frequency range for earthquake engineering problems is below285

50 Hz, which justifies the frequency-domain formulation dedicated to low-frequency dynamics
presented in this paper. The forthcoming OSP framework can still be extended if needed to
other types of loading conditions using the time-domain formulation of the mCRE [72].

4. A mCRE-oriented OSP strategy

For structures having heterogeneous sensitivity of stiffness to model updating, parameter290

estimates may be quite far from reality when the model updating process is performed using a
small amount of sensors. This is the case for several SHM applications considering one cannot
always afford for rich instrumentation on large scale structures. If OSP strategies have been
proposed for (standard) structural identification and modal analysis, there is no proper sensor
placement strategy dedicated to mCRE-based model updating in the literature whereas it has295

shown to be an efficient alternative to standard approaches [39]. In the following, we present a
modified FIM that integrates the mCRE concept, which is warranted in light of the link between
the mCRE (though deterministic) and the Bayesian inference framework for Gaussian random
variables.

4.1. Interpretation of the mCRE from a Bayesian viewpoint300

Although the previously introduced mCRE-based model updating strategy is deterministic,
one can show that this procedure is equivalent to the Maximum A Posteriori (MAP) estimation
in the Bayesian inference framework with Gaussian distributions, an error norm based on the
measurement error covariance matrix, and no a priori on parameters [73, 74]. Since covariance
on the modeling error is usually not known, the idea is to integrate modeling error in a different305

manner into Bayesian inference, in a more global and less strict framework that allows more
flexibility in the model structure.

If one assumes that the prior pdf π0(θ) and the likelihood function π(y |θ) are both defined
with Gaussian distributions, then

π0(θ) ∝ exp

[
−1

2

(
θ − θ̄

)T
Σ−1

0

(
θ − θ̄

)]
(18)

π(y |θ) ∝ exp

[
−1

2
(Π(M(θ, e))− y)T [Σm + Σy]

−1 (Π(M(θ, e))− y)

]
(19)

where Σ0,Σm,Σy respectively denote the a priori, model and observations covariance matrices.310

θ̄ is the mean of the prior pdf. Therefore, according to the Bayes theorem (2) and the MAP

10



principle, the optimal set of parameters can be sought as

θ̂ = arg max
θ∈Θ

π(θ|y) = arg max
θ∈Θ

π(y |θ).π0(θ)

= arg min
θ∈Θ

(Π(M(θ, e))− y)T [Σm + Σy]
−1 (Π(M(θ, e))− y)︸ ︷︷ ︸

Least-square term (Mahalanobis distance)

+
(
θ − θ̄

)T
Σ−1

0

(
θ − θ̄

)︸ ︷︷ ︸
Regularization term

 (20)

This way, the structure of the constitutive relation is imposed strongly, and it is assumed to
know the modeling error features, which is not the case in most problems. To avoid this issue,
the mCRE strategy integrates modeling error in a global manner that allows for more flexibility315

in the model structure. To the modeling error (the CRE) is thus associated a pdf to globally
quantify the confidence on the less reliable parts of the model:

πCRE ∝ exp

[
−1

α
ζ2(s, θ)

]
(21)

The confidence on the modeling exponentially decreases when the CRE value increases, with a
rate speed specified by the scalar α. Therefore, in a mCRE context with a measurement error
norm based on the covariance of the measurements Σy, one can rewrite the likelihood pdf:320

π(y |θ) ∝ exp

[
−1

2
(Π(M(θ, e))− y)T Σ−1

y (Π(M(θ, e))− y)

]
. exp

[
−1

α
ζ2(s, θ)

]
(22)

for any admissible mechanical solution s. Thus, if one no longer assumes any a priori on θ
(uniform pdf), the application of the MAP principle leads to:

θ̂ = arg min
θ∈Θ

[
(Π(M(θ, e))− y)T Σ−1

y (Π(M(θ, e))− y) +
1

α
ζ2(s, θ)

]
(23)

where one easily recognizes the sum of a model error (the CRE) with a data-to-model distance to
minimize. It thus illustrates, although the mCRE remains a deterministic functional, its metric
can be closely related to the Bayesian inference framework in the case of Gaussian random325

variables.

4.2. mCRE-based OSP: modified Fisher Information Matrix

The key idea of the proposed sensor placement technique is to use the mechanical fields
{Uω}ω∈Dω computed for mCRE needs within the Information Entropy concept. Mathematically,
we thus define a modified Fisher Information Matrix Qm such that:330

Qm =
∑
ω∈Dω

(Π∇θUω)T (ΠΣyΠ
T )−1 (Π∇θUω) (24)

In other words, the modified FIM analyzes the sensitivity of the mCRE measurement error part
with respect to the parameters to identify. The effect of the CRE is implicit in the computation
of Uω. Similarly to former OSP techniques, the determinant of the modified FIM is maximized to
optimally position sensors (assuming the amount of data is large enough to reuse the asymptotic
result mentioned above). Although all the previously mentioned sensor placement algorithmic335

structures are applicable (as only the FIM definition is changed), Alg. 2 presents the mCRE-
based OSP algorithm in a FSSP framework for direct comparison with Alg. 1.

It is worth noticing that the access to a semi-analytical expression of the gradient of Uω
with respect to θ is a valuable asset to perform OSP in reasonable CPU times: the modified
FIM Qm can thus be computed quickly without any loss of precision. One should notice that340

the computation of ∇θUω is a low-cost post-processing operation once (16) has been solved (see
Appendix A for mathematical developments).
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Algorithm 2: mCRE-based FSSP algorithm

Initialization:
• Grid of all Nd possible sensors locations
• Targeted number of sensors Ns
• Number of selected sensors n = 0
• Initial parameter guess θ0 ∈ Θ
• Set of simulated measurements y (obtained with θ0)
• FE model including mesh and matrices K ,D ,M
• mCRE tuning parameters: frequency bandwidth Dω, confidence into measurements scalar

α, frequency weighting function z(ω)

while n < Ns do

Consider all possible combinations by adding one new sensor: {Πj}j∈J1;Nd−nK
for j ∈ J1;Nd − nK do

Initialize the modified FIM Qm,j = 0
for ω ∈ Dω do

Get mechanical fields (Uω, Vω) solving the AX = b system (equation 16)
Compute ∇θUω (equation 39)

Qm,j = Qm,j + (Πj∇θUω)
T

(ΠjΣyΠT
j )−1 (Πj∇θUω)

end

end
Identify the sensor configuration J = arg max

j∈J1;Nd−nK
{det (Qm,j)}

Store the new sensor of configuration J as the (n+ 1)th optimal position
Go to the next iteration: n→ n+ 1

end

5. Application to accelerometer optimal placement for damage detection

5.1. Description of the problem

We aim to present the benefits of mCRE-based OSP for mCRE-based model updating in a345

case study whose geometry and loading conditions are representative of earthquake engineer-
ing problems. Inspired from the SMART2013 test campaign that has been recently used for
mCRE applications [47, 75], we consider the two-story frame structure of Fig. 1 submitted
to a tridimensional low-magnitude random ground acceleration. Such input signals are used
in earthquake engineering experiments to perform modal identification [76] once damage has350

occured. The objective of this study is to position at best a restricted budget of accelerometers
in order to identify accurately the uncertain stiffness distribution of the structure in forthcoming
(possibly damaging) experiments. As we assume that very few sensors are available, an intuitive
coarse stiffness parametrization of the stiffness is proposed: 6 subdomains are defined {W10,
W11, W20, W21, F10, F20}, one per wall and per slab. The updated stiffness model (11) is thus355

made of Nθ = 6 parameters. The subdomains areas are shown in Fig. 1. The model is made
of shell elements using the CEA modeling software Cast3M© [77]. Relative time acceleration
measurements in both x and y directions are simulated using Fast Fourier Transforms and the
direct dynamics problem formulated in terms of relative displacement is:

M ẍ+ D ẋ+ K (θ)x(t) = −M Ξüd , x = u− ud (25)

where Ξ is a matrix addressing the acceleration ground motion to the associated dofs and üd the360

random ground acceleration input constructed as a multivariate zero-mean Gaussian process.

The objective of this application is to assess the proposed sensor placement strategy for
efficient mCRE-based identification. To restrain CPU times and avoid sensors concentrations,
we define a grid on 48 potential sensor locations: a triaxial accelerometer can be positioned at
each orange dof of Fig. 1.365
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(a) Frame with uniform sensor placement (blue dots). (b) Grid of possible accelerometer locations.

Figure 1: Frame structure - uniform default sensor placement and grid of possible locations for OSP.
Subdomains areas and denomination are also given.

Although several types of sensors could be positioned simultaneously, only accelerometers are
considered herein because they are a popular, minimally invasive and easily deployable sensing
devices for SHM and earthquake engineering applications. In order to be realistic regarding what
could be achieved in practical shaking table tests, a restricted budget of Ns = 24 data acquisition
channels has been fixed. Ns = 24 allows to uniformly spread enough sensors to reproduce typical370

sensor placement configurations that are done in earthquake engineering applications. Besides,
as Nθ = 6 parameters are supposed to be updated, it is theoretically enough to get proper
identification results and redundancy in the information carried out by measurements.

5.2. OSP benchmark

In order to assess the relevance of mCRE-based OSP with respect to other OSP strategies, a375

numerical benchmark has been conducted to perform and compare sensor placements oriented
towards different quantities of interest. An overview of the tested strategies is presented in Tab.
2. OSP algorithms for modal analysis (MA# case), structural idnetification (SI# cases) and
mCRE-based model-updating are compared, for uniaxial and triaxial accelerometers. The case
of multiple scenarios is also considered for mCRE-based OSP (mCRE-MS# cases). A FSSP380

optimization algorithm is used in all cases to fairly compare sensor placement results between
methods. As a reminder, FSSP and genetic algorithms have similar performance when the
number of sensors to position remains small [28].

Description and designation
Optimality Accelerometer
criterion type

Reference richest OSP (Ns = 48) Ref - -

Uniform default OSP Def - Triaxial

OSP for modal analysis of the MA1
log (det Q(Φ))

Uniaxial
10 first structural eigenmodes MA2 Triaxial

OSP for standard SI1
log (det Q(X))

Uniaxial
structural identification SI2 Triaxial

mCRE-based OSP
mCRE1

log (det Qm)
Uniaxial

mCRE2 Triaxial

mCRE-based OSP for mCRE-MS1
∫

Θ
log (det Qm)π0(θ)dθ

Uniaxial
uncertain damage scenarios mCRE-MS2 Triaxial

Table 2: OSP benchmark
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Among the proposed sensor placement strategies, it should be highlighted that:

. In the reference richest OSP, all the possible locations are covered with triaxial accelerom-385

eters, meaning Ns = 48 in that case. This is not a realistic configuration, neither an
economous one, but it allows to provide results that will be used as reference when com-
paring the performance of OSPs in terms of model updating.

. In the uniform default case, 8 triaxial accelerometers are uniformly spread over the struc-
ture. This is typically what should be done naively without considering OSP algorithms390

in practice.

. Optimal uniaxial and triaxial accelerometer placement are systematically compared. Of
course, positioning triaxial sensors is much more convenient from the experimental view-
point, as it is less constraining for the instrumentalists. Besides, it is less computationally
demanding than uniaxial accelerometer placement because the number of possible sensor395

configurations is reduced. However, forcing triaxial sensors implies the addition of con-
straints to OSP strategies, which should thus lead to less performant results as less freedom
is given to the sensor plan.

. The OSP strategies oriented towards modal analysis aim at identifying at best the 10
first structural eigenmodes. The latter are stored in the modeshape matrix Φ, and the400

associated FIM reads:
Q(Φ) = (ΠΦ)T

(
ΠΣyΠ

T
)−1

(ΠΦ) (26)

which is independent of the nominal stiffness parameter values θ0. In addition, the optimal
sensor locations are also independent of the excitation used. The FIM in that case has
exactly the same form as the one proposed for the effective independence method [19].
Finally, as 10 modes are stored in Φ, one should expect to get singular FIM while less405

than 10 sensors have not been positioned on the specimen. To avoid numerical issues, the
determinant of the FIM will be computed as the product of the non-zero eigenvalues of
Q(Φ).

. The OSP for structural identification directly deals with the identification (in a least-
square sense) of the stiffness parameters. In that case, the FIM is directly computed from410

the sensitivity of the frequency-domain counterpart of the mechanical state X with respect
to the parameter set θ:

Q(X) =
∑
ω∈Dω

(Π∇θXω)T
(
ΠΣyΠ

T
)−1

(Π∇θXω) (27)

with (for the considered stiffness parametrization):

∇θXω = −
[
−ω2M + iωD + K (θ)

]−1 ∂K

∂θ

[
−ω2M + iωD + K (θ)

]−1 [
ω2M ΞUd,ω

]
(28)

For legitimate comparisons with mCRE-based OSP, the frequency range that is considered
to compute Q(X) is also Dω. Note that the FIM could also be obtained with time-domain415

measurements, but the sensitivity matrix would be computed by solving a (more expensive)
full time domain problem [38].

Contrary to the MA cases, the optimal sensor locations depend on the location and type
of excitation that is used. Also, the matrix Q(X) may be non-singular even for only one
positioned sensor since the structural response obtained from the model may store enough420

information from all contributing eigenmodes in order to estimate the parameter set θ.

. Regarding the settings of the mCRE, as the first five modes of the structure are below
20 Hz and are the most sollicitated ones, a frequency bandwidth Dω = [1 Hz; 30 Hz] with
∆f = 0.1 Hz has been chosen for the computation of all forthcoming results. The call
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to a reduced basis made of the first 20 eigenmodes of the frame allows to achieve fast425

and accurate mCRE computations as it largely covers the frequency range of interest.
The weighting function z(ω) is computed using the complex modal indicator function as
explained in [78]. α will be subject to calibration tests, therefore its value will be specified
afterwards.

. Because one also intends to provide sensor placements that are still efficient once damage430

has occurred, the case of multiple scenarios mCRE-based optimal sensor placement has
been addressed. Following the subdomain decomposition shown in Fig. 1, the 6 parame-
ters have been pseudo-randomly sampled using a Latin Hypercube algorithm in order to
take into consideration 30 damage scenarios, assuming the parameter set follows a multi-
variate uniform pdf on [0.2;1]. A uniform prior pdf has been chosen due to the fact it is435

the less informative in the sense of the statistical maximum entropy. The generated set of
samples is denoted Θs. Each θs ∈ Θs is thus used to simulate a dataset ys, which will be
processed to perform OSP. The stiffness parametrization of each scenario is given in Fig.
2. The change on stiffness parameters has significant effects on the frequency domain re-
sponse of the structure as one can observe in Fig. 3 where the normalized H-CMIF plot for440

each considered damage configuration is given [47]. The latter is defined as the dominant
singular value of the transfer function from the crossed input/output PSD matrices. It is
called H-CMIF because of its similarities with the Complex Modal Identification Function
[79]. The frequency shift of the H-CMIF peaks shows how the structural response varies
from one scenario to the other.445

Following the work initiated in [27] for the case of highly uncertain parameters, the opti-
mality criterion is thus approximated by:∫

Θ
log (det (Qm(Π, θ, y)))π(θ)dθ ≈ 1

card(Θs)

∑
θs∈Θs

log (det(Qm(Π, θs, ys(θs)))) (29)

leading to an optimal sensor placement that is dedicated to a wider range of damage
configurations. In practice, it is true that cases involving damage at the top of the structure
are highly unlikely, but the uncertainty on parameters provided by this approach enables450

to take modeling bias into consideration. As a last remark, although not considered here
because of the assumed non-damaging nature of the input signals, the variability of loading
conditions may also have been exploited if nonlinear damaging models were used, so that
the damage scenarios that are generated for OSP are much more realistic.

Figure 2: Stiffness samples Θs

to simulate multiple damage
scenarios.

Figure 3: Impact of damage configuration on the frequency
response of the structure. A wide variability of responses is

integrated into the OSP framework.
455
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5.3. OSP results - first comments

5.3.1. Modal identification

The OSP results obtained for modal analysis using a truncated modal basis made of the first
10 modes of the frame are presented in Fig. 4. To confirm the soundness of the results, we plot
both det(Q) and the CMIF obtained after having positioned accelerometers with comparison to460

the one obained with the rich OSP configuration.

The amount of information carried by the first sensors is more important as it allows the
identification of one supplementary mode. When as many sensors as modes in Φ have been
positioned, the additional information carried by new sensors is less important as it only conforts
the modal identification, making it more accurate. Due to the complexity of the structure, no465

clear visual trend from the sensor position can be easily guessed, except that most sensors are
located on the floors. This appears to be quite natural as floor eigenmodes are part of the 10
first ones of the structure.

Figure 4: OSP of uniaxial and triaxial accelerometers for the MA1 (left) and MA2 cases (right).
Accelerometers positions and orientations are given by the red arrows, while determinant of the FIM (in log

scale) and H-CMIF are plotted to confirm the soundness of the approach.

5.4. Structural identification OSP results

The OSP results obtained for SI1 and SI2 cases are presented in Fig. 5. The evolution of470

det(Q(X)) is also given to confirm the relevance of the results. Due to the large parameters
sensitivity, the sensor placement is not visually intuitive in the sense that not all subdomains
are covered by at least one sensor. One can interpret the fact that sensors are mostly located
at the top of the structure because it remains the most kinematically responsive part of the
latter. However, from the sudden slope change of the determinant of the FIM with positioned475

sensors, we find that after the placement of 6 sensors, the system is a priori totally identifiable,
meaning that new sensors bring (mostly) redundant information. As a remark, note that the
values of det(Q(X)) between the modal analysis OSP and structural identification OSP are not
comparable as the FIM definition is different.

5.4.1. mCRE-based OSP results480

The OSP results obtained for mCRE1 and mCRE2 cases are presented in Fig. 6. To
understand at best the sensor placement process, a particular attention was paid to the sequential
positioning of sensors by coloring the sensor position according to their order of appearance in
the FSSP algorithm. The value of the det (Qm) is also provided. The mCRE settings that
allowed to provide the following results are given above. The value of α is well-known to be485

crucial in the mCRE framework, and as it is not properly tunable at the experimental design
stage, its influence on mCRE-based OSP results was explicitely studied. What can be observed
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Figure 5: OSP of uniaxial and triaxial accelerometers for the SI1 (left) and SI2 cases (right). Accelerometers
positions and orientations are given by the red arrows, and the determinant of the FIM (in log scale) is plotted

to confirm the soundness of the approach.

at first glance is that the more important the confidence into measurements α, the closer to the
bottom of the structure for sensor locations. If the increasing value of det(Qm) confirms FSSP
behaves correctly, the values plotted in Fig. 6 are not comparable as they are function of α. For490

the following studies, the confidence into measurements coefficient has been chosen at α = 104

because of the correct dispersion of the sensors on the whole structure (see Fig. 6).

Finally, OSP results for mCRE-based sensor placement taking multiple damage scenarios
into account are presented in Fig. 7. Several remarks can be made from theses placements.
First, there is no sensor positioned in the x direction for the mCRE-MS1 case, which can495

explain why the mCRE-MS2 sensor placement is much less optimal in the sense of the criterion
to maximize. Unsurprisingly, it is interesting to notice that the first sensors in both cases are
located at the bottom of the structure, where damage is most likely to occur. Similarly, few
sensors are located on the top walls as they are less identifiable (in the CRE sense) and less
prone to damage. Of course, the numerical resources that are necessary to compute these results500

are much more important, as it requires card(Θs) times more solutions of the mCRE system.
Hopefully the required CPU time did not exceed more than 12 hours on a personal laptop. This
numerical effort should be worthwhile, as the resulting sensor placement will be effective over a
wider range of stiffness configurations.

5.5. Assessment of sensor configurations for mCRE-based model updating505

5.5.1. Model updating contexts

Because we look for optimal sensor placement in the sense of damage detection, we propose
to challenge the different OSP that have been obtained and presented previously for mCRE-
based model updating using three datasets that fairly represent the typical situations one can
meet in practice:510

(i) Updating the model from the same data that has been used to perform OSP. The expected
parameter vector is exactly the one that has been used to position sensors.

(ii) Updating the model from data obtained after an overall 10% stiffness underestimation.
This is a situation that can be encountered if model bias is present. Measurements include
in that case additional noise for which ratio of standard deviation with input standard515

deviation is 10%.

(iii) Updating the model from data obtained in a new damaged scenario. The expected pa-
rameter vector is θ? = [0.5 0.9 0.6 0.9 0.8 1]. Measurements are also polluted with noise
(10% in level too).

17



Figure 6: mCRE-based OSP of uniaxial and triaxial accelerometers for the identification of the 6-subdomain
parametrization of the frame. The arrows indicate the sensor position and their color indicates their order of
appearance in the FSSP strategy. From top to bottom, results have been obtained with α = {1; 102; 104; 106}.
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Figure 7: mCRE-based OSP of uniaxial and triaxial accelerometers taking multiple damage scenarios into
account. The arrows indicate the sensor position and their color indicates their order of appearance in the FSSP

strategy. A value of α = 104 was chosen.

Case (i) is probably the most comfortable model updating situation with high-quality mea-520

surements; Case (ii) gets more difficult as noise is added to measurements and a uniform model
bias must be recovered; Case (iii) is the most challenging problem as a damaged configuration
must be identified from noisy measurements using sensors whose positions have been optimized
from a totally different parameter estimate (except for mCRE-MS1 and mCRE-MS2 cases). Be-
cause of the random nature of measurement noise, one cannot expect to properly assess model525

updating performance exclusively with parameters estimates. Model updating results will thus
be assessed using both parameter estimates and relative confidence intervals widths, using the
richest sensor placement as reference.

The assessment of OSP for model updating is summarized in Fig. 8 with 6 colormaps. For
each model updating scenario, we propose two colormaps: the first one indicates the relative530

gap in [%] of parameter estimates with respect to the exact parameter set that should have
been recovered θ? (see Fig. 8.a). The second one shows the relative width in [%] of confidence
intervals with respect to the ones given by the reference sensor placement configuration (see
Fig. 8.b and Appendix B for mathematical details).

For all maps, each line indicates the performance obtained by a given sensor placement535

(denominations are given in Tab. 2) while each column corresponds to a given subdomain
(denominations are given in Fig. 1).

The understanding of results displayed in Fig. 8.b is not direct and is recalled in the following
lines: a close-to-zero value means that the convexity of the mCRE functional evaluated around θ̂
with a given OSP is almost the same as the one of the mCRE evaluated with the reference sensor540

placement case in which twice the number of sensors are present. It suggests that the considered
sensor placement is efficient in the sense that there is not much additional doubt regarding the
value of parameter estimate. On the contrary, when the relative gap on confidence intervals width
is important, the mCRE functional is less convex around θ̂, meaning that another measurement
noise realization may have lead to significantly different model updating results.545

5.5.2. Discussion on the relevance of the modified FIM

Several conclusions can be drawn from the results shown in Fig. 8. First, because the
number of sensors (Ns = 24) was sufficiently important with respect to the number of parameters
to be identified (Nθ = 6), correct mCRE-based model updating results have been obtained in all
cases as parameters have been correctly identified with less than 10% error with respect to the550

expected values in the most unfavorable case. The comparison of the maps (a.i) and (a.ii) reveals
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(a) Relative gaps on parameter estimates (in [%]) obtained with the different sensor configurations.

(b) Relative gaps on confidence intervals (in [%]) obtained with the different sensor configurations.

Figure 8: Assessment of sensor placements for several mCRE-based model updating problems.

that the presence of noise extends the identification issues on the less sensitive parameters of the
problem, namely the top-story ones (W11, W21 and F20). Besides, if one compares the visual
positioning of sensors previously shown with the relative confidence intervals widths, it appears
that the subdomains of parameters having large intervals are not directly equipped by sensors555

(associated to poor local convexity of the functional and low sensitivity). One can also observe
that the sensor placement configurations constrained to triaxial accelerometers are less efficient,
as expected from the values of the determinant of the FIM plotted in the FSSP results.

The overall analysis of Fig. 8 confirms the effectiveness of mCRE-based OSP. Indeed,
mCRE1 and mCRE2 sensor configurations provide the best parameter estimates, with minimal560

confidence intervals when data is noisy. This application is thus a proof-of-concept showing the
benefits of FSSP with the modified FIM that directly yields from the interpretation of mCRE
from a Bayesian viewpoint. Nevertheless, it is important to keep in mind the main limitation of
this new OSP approach: the strong dependency in the confidence into measurements coefficient
α. As running a mCRE-based OSP algorithm did not last more than 5 minutes for the considered565

case, the experimental designer can afford to assess mCRE-based OSPs obtained for several
values of α. Despite this alternative, in-depth studies must be conducted to clarify this point.
In particular, one can legitimately wonder if the optimality criteria for calibrating α that has
been recently proposed in [80] are convenient to obtain relevant sensor configurations.

Finally, let us point out that taking into account several damage scenarios allows for a more570

robust sensor placement with respect to the identification of new parameter configurations, as
shown in the Fig. 8 - mCRE-MS1 case at scenario (iii), where the identification is almost
perfect with minimal confidence intervals. The computational time spent to ”learn” the best
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trade-off from multiple datasets is thus worth of interest. As one could have expected, taking
into account several scenarios makes mCRE-MS1 and mCRE-MS2 model updating results sub-575

optimal (yet efficient) for cases (i) and (ii) compared to mCRE1 and mCRE2. However, the
performance achieved in case (iii) by mCRE-MS1 and mCRE-MS2 is remarkable and promising
for monitoring the occurrence and evolution of structural defects on structures. This observation
goes in the sense of recent contributions [66, 70] which emphasize the need to take both model
and measurement uncertainties into consideration to build efficient and robust OSP.580

6. Conclusion and prospects

The ambition of this paper consisted in the development of a novel sensor placement algo-
rithm that is dedicated to mCRE-based model updating. Owing to the link between the mCRE
(though deterministic) and the Bayesian inference framework, and inspired from the Information
Entropy concept, a modified Fisher Information Matrix was introduced and its determinant was585

maximized to optimally position sensors in the mCRE sense. A proof-of-concept showing the
relevance of this new mCRE-based OSP strategy has been proposed on a 3D academic example
where we sought for optimal accelerometers locations on a two-story frame structure subjected
to random ground motion. This case study permitted to perform deep analysis of this new OSP
approach and to compare it with other classical techniques in different model updating scenarios.590

In particular, the effect of the confidence into measurements coefficient has been emphasized, as
well as the fact to take into consideration multiple scenarios so as to anticipate a wider range
of potential damage occurences. OSP methods were compared in terms of mCRE-based model
updating from different datasets, which allowed to illustrate the efficiency and relevance of the
proposed mCRE-based OSP methodology. If this study focuses on accelerometers as they are595

common and weakly invasive for earthquake engineering applications, all types of sensors can
be easily integrated in the proposed framework.

Consequently, the proposed mCRE-based OSP appears as an interesting additional asset for
the construction of a mCRE-unified framework for SHM or structural dynamics applications (see
Fig. 9 for an example on how OSP could be combined to the recent publications of the authors600

[47, 75]). However, there is no doubt that this tool still lacks of maturity to be properly exploited,
and further research should address the strong influence of the confidence into measurements
coefficient [80]. Besides, as OSP are not exclusively intended to perform optimal model updating,
future work will focus on finding the best sensor placement trade-off that contributes to multiple
objectives simultaneously, for example modal identification and mCRE-based model updating.605

Pareto front algorithms may be a first tool for this purpose. Finally, one of the current on-going
investigations of the authors concerns the use of mCRE-based OSP for active sensing purposes
in order to improve damage detection in cases where the state of the structure is tracked online
via data assimilation techniques [75]. Iterative strategies could then be employed to refine the
sensor configuration only where needed, i.e. where damage occurences are detected.610

Appendix A Analytical expressions of the mCRE derivatives

Before providing gradient and Hessian matrix analytical expressions, let us recall that we
are dealing with quantities written in the frequency domain. Therefore, derivatives must be
considered with caution: the real and imaginary parts have to be separated to write consistent
mathematical expressions (in particular Gateaux’s derivatives). In the following, •r and •i will
denote the real and imaginary parts of •, respectively. Besides, indices ω will be omitted for
the sake of clarity as all forthcoming developments are one at a given angular frequency ω. In
particular, one can rewrite the system (16) so as to exhibit explicitly real and imaginary parts

21



Figure 9: Long-term perspective: enhanced shaking-table experiments with a unified framework based on the
modified Constitutive Relation Error.

of U and V in a decoupled manner:

Aext(θ)Xext = bext with

Aext(θ) =


K (θ)− ω2M + αΠTGΠ −(K (θ)− ω2M ) ωD −ωD

−ω2M K (θ) −ωD 0
−ωD ωD K (θ)− ω2M + αΠTGΠ −(K (θ)− ω2M )
ωD 0 −ω2M K (θ)


XT

ext =
[
UTr V T

r UTi V T
i

]
bText =

[
αY T

r GΠ F Tr αY T
i GΠ F Ti

]
(30)

A.1 Analytical mCRE gradient

Once the mechanicals fields ŝ = (U, V ) are computed, the expression of the mCRE gradient
with respect to the parameters to update can be analytical (only if the link between stiffness
and parameters is too).615

de2
ω

dθ

∣∣∣∣
ŝ

,
dL
dθ

∣∣∣∣
ŝ

=
∂e2

ω

∂θ
+

∂L
∂Ur

dUr
dθ

+
∂L
∂Vr

dVr
dθ

+
∂L
∂Ui

dUi
dθ

+
∂L
∂Vi

dVi
dθ︸ ︷︷ ︸

= 0 at the saddle point

(31)

As the parameters weight the FE stiffness matrix, a general formulation for the mCRE gradient
with respect to parameter θk, k ∈ J1;nθK is:

de2
ω

dθk

∣∣∣∣
ŝ

=
1

2

[
UTr

∂K

∂θk
Ur + UTi

∂K

∂θk
Ui − V T

r

∂K

∂θk
Vr − V T

i

∂K

∂θk
Vi

]
(32)

For the stiffness parametrization (11), one thus directly gets:

de2
ω

dθk

∣∣∣∣
ŝ

=
1

2

[
UTr K0,kUr + UTi K0,kUi − V T

r K0,kVr − V T
i K0,kVi

]
(33)
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The possibility to provide an analytical gradient when minimizing the mCRE is thus strongly
recommended due to its simplicity of implementation as well as the associated computational
speed-up.

A.2 Semi-analytical Hessian matrix

Following the same idea, the mCRE Hessian matrix value at coordinate j, k ∈ J1;nθK2 reads:

Hθjk =
d2e2

ω

dθjdθk

∣∣∣∣
ŝ

,
d2L

dθjdθk
=

∂2L
∂θj∂θk

+

[
d

dUr

(
∂L
∂θk

)]T dUr
dθj

+

[
d

dVr

(
∂L
∂θk

)]T dVr
dθj

+

[
d

dUi

(
∂L
∂θk

)]T dUi
dθj

+

[
d

dVi

(
∂L
∂θk

)]T dVi
dθj

(34)

Three terms to develop thus occur:620

� The second order partial derivative of the augmented cost-function L, which is trivial:

∂2L
∂θj∂θk

=
1

2

[
UTr

∂2K

∂θj∂θk
Ur + UTi

∂2K

∂θj∂θk
Ui − V T

r

∂2K

∂θj∂θk
Vr − V T

i

∂2K

∂θj∂θk
Vi

]
(35)

� The crossed derivatives, whose computation is also direct:

d

dUr

(
∂L
∂θk

)
=

∂K

∂θk
Ur

d

dVr

(
∂L
∂θk

)
= −∂K

∂θk
Vr

d

dUi

(
∂L
∂θk

)
=

∂K

∂θk
Ui

d

dVi

(
∂L
∂θk

)
= −∂K

∂θk
Vi

(36)

� The derivatives of ŝ with respect to parameters, whose computation can be obtained by
derivation of the system AextXext = bext:

dAext
dθj

Xext +Aext
dXext

dθj
=

dbext
dθj

⇒ dXext
dθj

= A−1
ext

[
dbext
dθj

− dAext
dθj

Xext

]
(37)

with A−1
ext that can be already known from the AextXext = bext solution to compute the

mCRE value (i.e. the inverse matrix can be stored) and:

dbext
dθj

= 0

dAext
dθj

=


∂K
∂θj

−∂K
∂θj

0 0

0 ∂K
∂θj

0 0

0 0 ∂K
∂θj

−∂K
∂θj

0 0 0 ∂K
∂θj


(38)

All simplifications done, one obtains:

d

dθj


Ur
Vr
Ui
Vi

 = −A−1
ext



∂K

∂θj
(Ur − Vr)
∂K

∂θj
Vr

∂K

∂θj
(Ui − Vi)
∂K

∂θj
Vi


(39)
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Finally, the general expression of Hθjk reads:

Hθjk =
1

2

[
UTr

∂2K

∂θj∂θk
Ur + UTi

∂2K

∂θj∂θk
Ui − V T

r

∂2K

∂θj∂θk
Vr − V T

i

∂2K

∂θj∂θk
Vi

]

−



∂K

∂θk
Ur

−∂K
∂θk

Vr

∂K

∂θk
Ui

−∂K
∂θk

Vi



T

A−1
ext



∂K

∂θj
(Ur − Vr)
∂K

∂θj
Vr

∂K

∂θj
(Ui − Vi)
∂K

∂θj
Vi


(40)

The application of this expression to the stiffness parametrization (11) leads to:

Hθjk = −


K0,kUr
−K0,kVr
K0,kUi
−K0,kVi


T

A−1
ext


K0,j (Ur − Vr)

K0,jVr
K0,j (Ui − Vi)

K0,jVi

 (41)

If the expression of the mCRE gradient is easily available (according to the stiffness parametriza-
tion), the mCRE gradient with respect to updated parameters must be provided to minimization
algorithms in order to get enhanced numerical performances. The case of the Hessian matrix is
a bit different due to the fact that it requires intelligent storage of the inverse matrix of Aext for
all ω ∈ Dω. In particular, one can notice that A is inverted instead of Aext due to its reduced625

size. Of course, providing the Hessian would also reduce the amount of iterations of nonlinear
optimization algorithms but it also carries a storage burden that should be taken into account
as A−1

ext must be stored and differs for all ω ∈ Dω.

Appendix B Confidence intervals to assess mCRE-based model updating in terms
of relative uncertainty630

As explained in [53], providing optimal parameters inside confidence intervals is an original
and effective way to deal with the uncertainty associated with the FE model as well as excitation
levels with a low computational cost, as it is a one-step direct post-processing procedure to
perform once the model updating algorithm has minimized the mCRE functional J . At the
converged point θ̂, using the convexity properties of the functional, there exists a subset Iθ ⊂ Θ
of finite size such that:

∀ θ ∈ Iθ, J (θ) < εJ (θ̂) (42)

where ε is a constant scalar. The width of Iθ for a given threshold ε can be established using a
second order Taylor polynomial approximation around the optimal parameters θ̂:

J (θ) = J (θ)+O
(

(θ − θ̂)3
)

with J (θ) = J (θ̂)+

[
dJ
dθ

]T
(θ− θ̂)+

1

2
(θ− θ̂)T

[
d2J
dθ2

]
(θ− θ̂) (43)

Once gradient and Hessian matrix are supplied, the 2nd order approximation of the mCRE
is directly available, which allows to calculate the size of Iθ for all parameters (ε has to be
user-defined).

Note that the proposed confidence intervals are not rigorously able to quantify uncertainties
on θ̂. Nonetheless, they are enough to draw preliminary conclusions about the relative ability635

to identify parameters: comparing the relative width of confidence intervals allows to assess
which parameters are subjected to more doubt than others. This can be helpful if one wants
to focus model updating actions on exclusively highly-sensitive parameters in order to avoid
physically-meaningless local minima.
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[39] J. Waeytens, B. Rosić, P.-E. Charbonnel, E. Merliot, D. Siegert, X. Chapeleau, R. Vidal, V. le Corvec, L.-
M. Cottineau, Model updating techniques for damage detection in concrete beam using optical fiber strain
measurement device, Engineering Structures 129 (2016) 2–10. doi:10.1016/j.engstruct.2016.08.004.785

URL https://linkinghub.elsevier.com/retrieve/pii/S0141029616304059

[40] M. Ben Azzouna, P. Feissel, P. Villon, Robust identification of elastic properties using the Modified Con-
stitutive Relation Error, Computer Methods in Applied Mechanics and Engineering 295 (2015) 196–218.
doi:10.1016/j.cma.2015.04.004.
URL https://linkinghub.elsevier.com/retrieve/pii/S0045782515001486790

[41] J. E. Mottershead, M. Link, M. I. Friswell, The sensitivity method in finite element model updating: A
tutorial, Mechanical Systems and Signal Processing 25 (7) (2011) 2275–2296. doi:10.1016/j.ymssp.2010.

10.012.
URL https://linkinghub.elsevier.com/retrieve/pii/S0888327010003316

[42] B. Weber, P. Paultre, J. Proulx, Consistent regularization of nonlinear model updating for damage identi-795

fication, Mechanical Systems and Signal Processing 23 (6) (2009) 1965–1985. doi:10.1016/j.ymssp.2008.

04.011.
URL https://www.sciencedirect.com/science/article/pii/S088832700800109X

27

https://doi.org/10.1088/0964-1726/13/3/011
https://doi.org/10.1088/0964-1726/13/3/011
https://doi.org/10.1088/0964-1726/13/3/011
https://doi.org/10.1088/0964-1726/13/3/011
https://doi.org/10.1088/0964-1726/13/3/011
https://www.sciencedirect.com/science/article/pii/S0888327021010815
https://www.sciencedirect.com/science/article/pii/S0888327021010815
https://www.sciencedirect.com/science/article/pii/S0888327021010815
https://doi.org/10.1016/j.ymssp.2021.108767
https://doi.org/10.1016/j.ymssp.2021.108767
https://doi.org/10.1016/j.ymssp.2021.108767
https://www.sciencedirect.com/science/article/pii/S0888327021010815
https://www.sciencedirect.com/science/article/pii/S0141029600001188
https://doi.org/10.1016/S0141-0296(00)00118-8
https://www.sciencedirect.com/science/article/pii/S0141029600001188
https://doi.org/10.1088/0964-1726/17/5/055019
https://doi.org/10.1088/0964-1726/17/5/055019
https://doi.org/10.1088/0964-1726/17/5/055019
https://doi.org/10.1088/0964-1726/17/5/055019
https://doi.org/10.1088/0964-1726/17/5/055019
https://doi.org/10.1080/0305215X.2012.690870
https://doi.org/10.1080/0305215X.2012.690870
https://doi.org/10.1080/0305215X.2012.690870
https://doi.org/10.1080/0305215X.2012.690870
https://doi.org/10.1080/0305215X.2012.690870
https://aip.scitation.org/doi/abs/10.1063/5.0007817
https://aip.scitation.org/doi/abs/10.1063/5.0007817
https://aip.scitation.org/doi/abs/10.1063/5.0007817
https://doi.org/10.1063/5.0007817
https://aip.scitation.org/doi/abs/10.1063/5.0007817
https://www.mdpi.com/2075-5309/12/9/1383
https://www.mdpi.com/2075-5309/12/9/1383
https://www.mdpi.com/2075-5309/12/9/1383
https://doi.org/10.3390/buildings12091383
https://www.mdpi.com/2075-5309/12/9/1383
https://doi.org/10.1007/s11081-007-9023-1
https://doi.org/10.1007/s11081-007-9023-1
https://doi.org/10.1007/s11081-007-9023-1
https://doi.org/10.1007/s11081-007-9023-1
https://doi.org/10.1007/s11081-007-9023-1
https://www.sciencedirect.com/science/article/pii/S0045782504004104
https://doi.org/10.1016/j.cma.2004.06.043
https://www.sciencedirect.com/science/article/pii/S0045782504004104
https://linkinghub.elsevier.com/retrieve/pii/S0888327011002214
https://linkinghub.elsevier.com/retrieve/pii/S0888327011002214
https://linkinghub.elsevier.com/retrieve/pii/S0888327011002214
https://doi.org/10.1016/j.ymssp.2011.05.019
https://doi.org/10.1016/j.ymssp.2011.05.019
https://doi.org/10.1016/j.ymssp.2011.05.019
https://linkinghub.elsevier.com/retrieve/pii/S0888327011002214
https://linkinghub.elsevier.com/retrieve/pii/S0141029616304059
https://linkinghub.elsevier.com/retrieve/pii/S0141029616304059
https://linkinghub.elsevier.com/retrieve/pii/S0141029616304059
https://doi.org/10.1016/j.engstruct.2016.08.004
https://linkinghub.elsevier.com/retrieve/pii/S0141029616304059
https://linkinghub.elsevier.com/retrieve/pii/S0045782515001486
https://linkinghub.elsevier.com/retrieve/pii/S0045782515001486
https://linkinghub.elsevier.com/retrieve/pii/S0045782515001486
https://doi.org/10.1016/j.cma.2015.04.004
https://linkinghub.elsevier.com/retrieve/pii/S0045782515001486
https://linkinghub.elsevier.com/retrieve/pii/S0888327010003316
https://linkinghub.elsevier.com/retrieve/pii/S0888327010003316
https://linkinghub.elsevier.com/retrieve/pii/S0888327010003316
https://doi.org/10.1016/j.ymssp.2010.10.012
https://doi.org/10.1016/j.ymssp.2010.10.012
https://doi.org/10.1016/j.ymssp.2010.10.012
https://linkinghub.elsevier.com/retrieve/pii/S0888327010003316
https://www.sciencedirect.com/science/article/pii/S088832700800109X
https://www.sciencedirect.com/science/article/pii/S088832700800109X
https://www.sciencedirect.com/science/article/pii/S088832700800109X
https://doi.org/10.1016/j.ymssp.2008.04.011
https://doi.org/10.1016/j.ymssp.2008.04.011
https://doi.org/10.1016/j.ymssp.2008.04.011
https://www.sciencedirect.com/science/article/pii/S088832700800109X


[43] C. D. Zhang, Y. L. Xu, Comparative studies on damage identification with Tikhonov regularization and
sparse regularization: Damage Detection with Tikhonov Regularization and Sparse Regularization, Struc-800

tural Control and Health Monitoring 23 (3) (2016) 560–579. doi:10.1002/stc.1785.
URL https://onlinelibrary.wiley.com/doi/10.1002/stc.1785

[44] B. Titurus, M. I. Friswell, Regularization in model updating, International Journal for Numerical Methods
in Engineering 75 (4) (2008) 440–478. doi:10.1002/nme.2257.
URL https://onlinelibrary.wiley.com/doi/10.1002/nme.2257805

[45] S. Huang, P. Feissel, P. Villon, Modified constitutive relation error: An identification framework dealing with
the reliability of information, Computer Methods in Applied Mechanics and Engineering 311 (2016) 1–17.
doi:10.1016/j.cma.2016.06.030.
URL https://linkinghub.elsevier.com/retrieve/pii/S0045782516306557

[46] T. Silva, N. Maia, Detection and localisation of structural damage based on the error in the constitutive810

relations in dynamics, Applied Mathematical Modelling 46 (2017) 736–749. doi:10.1016/j.apm.2016.07.

002.
URL https://linkinghub.elsevier.com/retrieve/pii/S0307904X16303833

[47] M. Diaz, P.-E. Charbonnel, L. Chamoin, Robust energy-based model updating framework for random pro-
cesses in dynamics: application to shaking-table experiments, Computers and Structures 264 (106746) (2022)815

40. doi:https://doi.org/10.1016/j.compstruc.2022.106746.
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[80] M. Diaz, P.-É. Charbonnel, L. Chamoin, Fully automated physics-regularized model updating algorithm for
vibration-based damage detection from sparse dataSubmitted - preprint avalaible on HAL (03872031) (2022).940

30

https://linkinghub.elsevier.com/retrieve/pii/S0045782501004212
https://linkinghub.elsevier.com/retrieve/pii/S0045782501004212
https://linkinghub.elsevier.com/retrieve/pii/S0045782501004212
https://doi.org/10.1016/S0045-7825(01)00421-2
https://linkinghub.elsevier.com/retrieve/pii/S0045782501004212
https://linkinghub.elsevier.com/retrieve/pii/S0045782518304511
https://linkinghub.elsevier.com/retrieve/pii/S0045782518304511
https://linkinghub.elsevier.com/retrieve/pii/S0045782518304511
https://doi.org/10.1016/j.cma.2018.09.008
https://doi.org/10.1016/j.cma.2018.09.008
https://doi.org/10.1016/j.cma.2018.09.008
https://linkinghub.elsevier.com/retrieve/pii/S0045782518304511
https://www.emerald.com/insight/content/doi/10.1108/02644400410554335/full/html
https://doi.org/10.1108/02644400410554335
https://www.emerald.com/insight/content/doi/10.1108/02644400410554335/full/html
https://www.sciencedirect.com/science/article/pii/S0045782522004947
https://www.sciencedirect.com/science/article/pii/S0045782522004947
https://www.sciencedirect.com/science/article/pii/S0045782522004947
https://doi.org/https://doi.org/10.1016/j.cma.2022.115461
https://doi.org/https://doi.org/10.1016/j.cma.2022.115461
https://doi.org/https://doi.org/10.1016/j.cma.2022.115461
https://www.sciencedirect.com/science/article/pii/S0045782522004947
https://www.sciencedirect.com/science/article/pii/S088832702200632X
https://www.sciencedirect.com/science/article/pii/S088832702200632X
https://www.sciencedirect.com/science/article/pii/S088832702200632X
https://doi.org/https://doi.org/10.1016/j.ymssp.2022.109529
https://www.sciencedirect.com/science/article/pii/S088832702200632X
https://linkinghub.elsevier.com/retrieve/pii/S0888327020307743
https://linkinghub.elsevier.com/retrieve/pii/S0888327020307743
https://linkinghub.elsevier.com/retrieve/pii/S0888327020307743
https://doi.org/10.1016/j.ymssp.2020.107388
https://doi.org/10.1016/j.ymssp.2020.107388
https://doi.org/10.1016/j.ymssp.2020.107388
https://linkinghub.elsevier.com/retrieve/pii/S0888327020307743
http://www-cast3m.cea.fr
https://www.sciencedirect.com/science/article/pii/088832708890060X
https://www.sciencedirect.com/science/article/pii/088832708890060X
https://www.sciencedirect.com/science/article/pii/088832708890060X
https://doi.org/10.1016/0888-3270(88)90060-X
https://www.sciencedirect.com/science/article/pii/088832708890060X
https://www.semanticscholar.org/paper/A-Complete-Review-of-the-Complex-Mode-Indicator-(-)-Allemang-Brown/5184ead6fcde301507bad9aa09b6bce08d97dceb
https://www.semanticscholar.org/paper/A-Complete-Review-of-the-Complex-Mode-Indicator-(-)-Allemang-Brown/5184ead6fcde301507bad9aa09b6bce08d97dceb
https://www.semanticscholar.org/paper/A-Complete-Review-of-the-Complex-Mode-Indicator-(-)-Allemang-Brown/5184ead6fcde301507bad9aa09b6bce08d97dceb
https://www.semanticscholar.org/paper/A-Complete-Review-of-the-Complex-Mode-Indicator-(-)-Allemang-Brown/5184ead6fcde301507bad9aa09b6bce08d97dceb
https://www.semanticscholar.org/paper/A-Complete-Review-of-the-Complex-Mode-Indicator-(-)-Allemang-Brown/5184ead6fcde301507bad9aa09b6bce08d97dceb
https://www.semanticscholar.org/paper/A-Complete-Review-of-the-Complex-Mode-Indicator-(-)-Allemang-Brown/5184ead6fcde301507bad9aa09b6bce08d97dceb

	Introduction
	Optimal sensor placement techniques for SHM at a glance
	Bayesian framework and Fisher Information Matrix
	Information Entropy

	The modified Constitutive Relation Error in dynamics
	FE framework, measurements and stiffness parametrization
	mCRE-based model updating problem in dynamics
	Additional remarks

	A mCRE-oriented OSP strategy
	blackInterpretation of the mCRE from a Bayesian viewpoint black 
	mCRE-based OSP: modified Fisher Information Matrix

	Application to accelerometer optimal placement for damage detection
	Description of the problem
	OSP benchmark
	OSP results - first comments
	Modal identification

	Structural identification OSP results
	mCRE-based OSP results

	Assessment of sensor configurations for mCRE-based model updating
	Model updating contexts
	Discussion on the relevance of the modified FIM


	Conclusion and prospects
	Appendix Analytical expressions of the mCRE derivatives
	Analytical mCRE gradient
	Semi-analytical Hessian matrix

	Appendix Confidence intervals to assess mCRE-based model updating in terms of relative uncertainty

