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Classification of Different Irrigation Systems at

Field Scale Using Time-Series of Remote

Sensing Data
Giovanni Paolini, Maria Jose Escorihuela, Olivier Merlin, Magí Pamies Sans, Joaquim Bellvert

Abstract

Maps of irrigation systems are of critical value for a better understanding of the human impact on the water

cycle, while they also present a very useful tool at the administrative level to monitor changes and optimize irrigation

practices. This study proposes a novel approach for classifying different irrigation systems at field level by using

remotely sensed data at sub-field scale as inputs of different supervised Machine Learning (ML) models for time-series

classification. The ML models were trained using ground-truth data from more than 300 fields collected during a

field campaign in 2020 across an intensely cultivated region in Catalunya, Spain. Two hydrological variables retrieved

from satellite data, actual evapotranspiration (ETa) and soil moisture (SM ), showed the best results when used for

classification, especially when combined together, retrieving a final accuracy of 90.1±2.7%. All the three ML models

employed for the classification showed that they were able to distinguish different irrigation systems, regardless of

the different crops present in each field. For all the different tests, the best performances were reached by ResNET,

the only Deep Neural Network model among the three tested. The resulting method enables the creation of maps

of irrigation systems at field level and for large areas, delivering detailed information on the status and evolution of

irrigation practices.

Index Terms

irrigation systems, actual evapotranspiration, soil moisture, time-series classification, machine learning, remote

sensing, field scale.

I. INTRODUCTION1

Irrigation is an anthropogenic process recognized to globally account for roughly 70% of total withdrawals [1],2

[2]. On a global scale, Rosegrant and Cai, 2002 [3] estimated that, under their baseline scenario, total consumption3

of water will increase by 23% from 1995 to 2025. Monitoring total water consumption is particularly important in4
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semi-arid areas where freshwater resources are limited such as the Mediterranean region, where irrigation currently5

accounts on average for 69% [4], [5], and it goes up to over 84% for south and east-Mediterranean countries [6].6

These percentages are projected to increase between 4 and 18% by the end of the century [7], [8], but important7

uncertainty factors such as population growth and food demand may raise this estimate to between 22% and 74% [9].8

9

Monitoring, understanding, and improving the efficiency of irrigation practices is a fundamental step toward10

controlling and mitigating water demands. Precise knowledge of irrigation practices is needed to better constrain and11

reduce uncertainty in hydrological models that predict future trends for water use and account for the anthropological12

impact on the water cycle. At the local scale, it is important to have an overview of irrigation practices at fine13

spatial resolution for administrative and irrigation management purposes, such as monitoring irrigation water usage14

and optimizing the efficiency of irrigation. Field irrigation efficiency mainly depends on the irrigation system and15

the level of field modernization. Generally, irrigation systems used in semi-arid areas include surface systems such16

as flood and furrow and pressurized systems such as sprinkler and drip [10]. Efficiencies vary between 90% for17

drip, 75% for sprinkler, and 60% for flood irrigation[11]: clearly, pressurized systems are more efficient. The low18

application efficiencies obtained by surface systems are mainly due to water losses associated with deep infiltration,19

soil evaporation, and flooding in some parts of the soil because of a poor flow design at the entrance of the furrow20

[12], [13].21

22

Remote sensing is a unique and valuable tool, capable of addressing the lack of large-scale precise information23

over irrigation practices, and overcoming the limitations of analyses based on in-situ observations, which are often24

prone to inconsistencies and gaps in the information collected. Current results in the field of remote sensing for25

irrigation practices featured the creation of global or regional scale maps of irrigated areas [14], [15], [16], [17],26

[18], [19], irrigation timings [20], [21], [22] and quantification of irrigation amounts at variable resolutions [23],27

[24], [25], [26], [27], [28], [29], [30]. In particular, for studies oriented on the mapping of irrigated areas, remote28

sensing data are often coupled with Machine Learning (ML) models, proving to be successful with both supervised29

[14], [15] and unsupervised approaches [16].30

31

Among ML models for classification, one of the most popular algorithms for classification is Random Forest [31],32

widely used in the field of earth observation [32] both for land cover mapping [33], [34], [35] and irrigation mapping33

[18], [14], [15]. Recently, an adaptation of the Random Forest model for time-series classification was proposed34

by Deng et al., 2013 [36] and it is particularly useful for classification problems involving temporal changes. This35

model is often the baseline to test for new more performing ML models [37] such as Rocket [38], which has proven36

to be competitive with the state-of-the-art algorithms for classification of multivariate time-series [39], but with a37

much faster computational speed. Deep learning models have also been recently adapted to time-series classification38

[40]. ResNET [38] is a Deep Neural Network model that presents a more complex architecture than traditional39

models, which allows it to adapt to complex tasks at the expense of computational power. Fawaz et al., 2019 [40]40

proved how ResNET outperforms traditional models for classification tasks in a comparison study performed using41
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a large variety of multi-disciplinary datasets. Moreover, in the field of irrigation mapping, Bazzi et al., 2020 [22]42

confirmed how deep learning models outperform traditional ML techniques.43

44

The study of irrigation practices employs one or a combination of remotely sensed datasets from different45

sensors, from optical/thermal to active/passive microwave, at different spatial resolutions, but generally, two main46

hydrological variables are recognized to be key for the monitoring of irrigation practices: Actual Evapotranspiration47

(ETa) and Soil Moisture (SM ) [41]. ETa has been widely assessed during the last decades through Surface Energy48

Balance (SEB) models [42], [43], [44]. To be applied at field scale, SEB models require accurate Land Surface49

Temperature (LST) data with sufficient spatial resolution. Novel methods have been recently developed to derive ETa50

and potential evapotranspiration (ETp) at 20 m resolution using data from the European Commission’s Copernicus51

program [45]. In particular, the method employed for this study consists in applying the Two-Source Energy Balance52

(TSEB) model [46] with data from Sentinel-2 and Sentinel-3 in combination with meteorological data forcing from53

the Copernicus Climate Data Store (CDS) [47], [48]. This approach relies on downscaling Sentinel-3 thermal bands54

to Sentinel-2 spatial resolution using a data mining sharpener (DMS) approach [49].55

56

Similarly, SM data from remote sensing has also been obtained at 20m resolution through disaggregation57

techniques. Passive L-band microwave sensors are usually preferred as low resolution SM input since they are58

recognized to have the highest sensitivity to SM and lower signal-to-noise ratio with respect to active radar or59

optical sensors [50], [51], at the expense of spatial resolution, which is in the order of tens of kilometers. A60

common solution to overcome this limitation in terms of spatial resolution is the downscaling of the SM products61

with optical/thermal data, which provides land surface parameters at higher spatial resolution than their radar62

counterparts [52]. DisPATCh (Disaggregation based on Physical And Theoretical scale Change) [53], [54] has been63

applied numerous times to disaggregate SM from passive microwave sensors to higher spatial resolution, through64

the use of optical/thermal products from MODIS and Sentinel-3 at 1 km [54] or Landsat at 100 m [55], [56]. A65

disaggregation at 20 m has been recently proposed [57] with the use of SMAP daily low resolution SM gridded66

at 9 km, Sentinel-2 Normalized Difference Vegetation Index (NDV I) at 20 m, and the enhanced Sentinel-3 LST67

products disaggregated at 20 m.68

69

As noted by Massari et al., 2021 [41] there is still an open question on obtaining maps of irrigation systems from70

satellite data. So far, studies have been limited to mapping irrigated from non-irrigated areas or singular irrigation71

systems. Numerous studies have been performed to distinguish irrigated from rain-fed areas. At field level, Gao72

et al., 2018 [14] proposed to directly use a Sentinel-1 backscatter product to train two ML models (random forest73

and support vector machine) and detect differences in the satellite signal between irrigated and not-irrigated fields,74

reaching an overall classification accuracy of 81%. Similarly, Bazzi et al., 2019 [15] trained different ML models75

(random forest and a convolutional neural network) using Sentinel-1 backscatter signal and Sentinel-2 NDVI time-76

series, and reaching an overall accuracy of 94%. Passive microwave sensors also showed promising results in the77

detection of irrigation signals [58], [59] but their coarse resolution does not allow for detection at field-level. Dari78
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et al., 2021 [16] produced irrigation maps at 1 km resolution from SMOS and SMAP products disaggregated at79

1 km, using an unsupervised clustering ML model and suggesting the need for high spatial resolution product to80

resolve the high spatial variability of irrigated areas.81

82

Regarding the detection of unique irrigation systems, different studies have used deep learning to recognize the83

rounded shape of center pivot systems [60], [61], [62]. Moreover, a deep learning approach was recently employed84

by Liang et al., 2021 [63] to map contour-levee (flood) irrigation from aerial pictures. Despite these techniques being85

very effective in identifying a unique irrigation system, a general approach for creating maps of irrigation systems86

is still missing. To this date, there is no study (to the best of our knowledge) on creating maps of irrigation systems87

(i.e. sprinkler, drip, flood) at field level. These maps can have a wide application in the scientific community since88

they could replace the simplistic assumption of irrigation scenarios used in many Land Surface Models (LSM), e.g.89

Noah [64], [65], [58], [66], or ORCHIDEE [67] models. Additionally, maps of irrigation systems could provide90

a useful tool for local policies, given that a complete and continuous overview of irrigation systems is lacking91

in many areas. These maps could give unprecedented insights to monitor the evolution of irrigation practices and92

promote and supervise the shift towards more sustainable and efficient irrigation methods.93

94

In this context, we propose a novel methodology to produce maps at the field scale distinguishing between95

the three main irrigation systems, drip, sprinkler and flood, and also not irrigated fields. The hypothesis of this96

study is that differences between irrigation systems should be detectable by analyzing temporal patterns of Actual97

Evapotranspiration (ETa) and Soil Moisture (SM ) at the field or sub-field scale, through the use of a supervised98

ML model. It is expected that time series of remote sensing data reveal distinctive temporal patterns among different99

irrigation systems, given the large variation in the amount and timing of water applied for the different systems.100

The proposed methodology will be applied to a semi-arid area of the Ebro basin (Spain) that is characterized by101

high variability of crop types and irrigation systems. The methodology will be then validated against both in-situ102

data and independent administrative data, retrieved from statistical estimations at the district level and large surveys103

among farmers.104

105

The study is organized as follows: Section II presents the study area, the field campaign, the administrative106

dataset, and remote sensing data used. The first part of Section III presents how time-series of remote sensing107

data are prepared, the additional crop classification of the ground truth dataset, the ML methods used, the final108

post-processing applied after the ML classification and the metrics used for evaluation of the performances. A109

second part of section III then introduces the different experiments performed in this study. Section IV presents the110

results in classifying irrigation systems using different remote sensing variables and ML methods. Finally, section111

V presents a final summary of the results and discussion.112
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II. MATERIALS113

A. Study Area114

The selected study area (41.28-42.02 N, 0.27-1.3 E) is located in the northeast of the Iberian Peninsula, in the115

province of Lleida (Spain). The climate in the region is typically Mediterranean with an average annual precipitation116

and reference evapotranspiration (ET0) of 350 mm and 1100 mm, respectively. Irrigation in the area usually starts in117

mid-March and lasts until the end of November. The area is densely irrigated, with a variety of different techniques118

depending on the degree of modernization and the water allocation for the respective irrigation district: from119

traditional irrigation systems based on flooding techniques to more recent and efficient techniques that use sprinkler120

or drip irrigation.121

122

The study area is divided into eight irrigation districts, covering a total surface of around 3000 km2. An overview123

of the study area is provided in Fig. 1. Irrigation practices vary depending on the seasonal water allocation, the124

different crop types, and the modernization level of each irrigation district. As an example, the "Canals d’Urgell"125

district is one of the oldest districts in the area, and irrigation is mainly performed through flooding. Farmers have126

full water availability throughout the growing season, but irrigation is performed in turns every 15-20 days. On the127

other hand, Algerri-Balaguer is a modernized pressurized irrigation district with a water allocation of 6000 m3/ha.128

Crops are mainly irrigated by sprinkler or drip irrigation. The Garrigues Sud district, located in the southern part of129

the study area, has a seasonal water allocation of around 1300 m3/ha, affecting, therefore, the type of crops grown130

(mostly olives and almonds) and irrigation practices (sustained deficit irrigation). The region has various types of131

cultivated crops, that can be grouped into: winter cereals (accounting for around 34 % of the total area according to132

administrative databases), maize (accounting for around 7 %, but not considering the percentage of maize growing133

as a second crop after winter cereals), fruit and nut trees (14 %), vineyards (1 %) and olives (9 %).134
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Fig. 1. Depiction of the study area (black square in the top right figure) with eight of its biggest irrigation districts. The bottom figure depicts

the spatial distribution of the fields sampled during the field campaign. The number above each circle represents the number of fields clustered

by proximity, and the color goes from green to orange to indicate the increasing quantity of clustered fields.
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B. Field Campaign135

A field campaign was performed inside the study area during 2020, in order to collect a dataset of ground truth136

samples of fields with different irrigation systems and crop types. More than 300 fields were classified using 4137

different labels: sprinkler, flood, drip, and non-irrigated. Fig. 1 shows how the samples were randomly distributed138

across all the irrigation districts considered, in order to have a representative dataset for the area. Table I summarizes139

the different irrigation systems of all the fields collected. It is possible to notice how approximately the same number140

of samples was collected for each irrigation system, ensuring a balanced dataset. In addition, each field was initially141

classified also by crop type by visual inspection and grouped in different classes: winter cereals, maize, alfalfa, olive,142

vineyards, or fruit and nut trees. Collecting these two variables provided an overview of the relationship between143

irrigation systems and crop types, which was needed to ensure the collection of a complete dataset representative144

of the different typologies of fields in the area.145

C. SIGPAC-DUN administrative dataset146

An administrative database, SIGPAC-DUN (Sistema d’informació geogràfica de parcelles agricoles), was used in147

order to verify and expand the information about crop types collected during the field campaign, and to extract the148

exact shape contour of each field. SIGPAC-DUN is provided by the Catalan Ministry of Climate Action, Food and149

Rural Agenda and it contains a large variety of spatial and alphanumeric information about agricultural practices at150

parcel level, with yearly updates. Most of the information contained in SIGPAC-DUN is directly submitted by the151

farmers through an annual agrarian declaration of cultivated crops and it gathers multiple details over the usage of152

the fields such as crop type. Parcel’s shapes are also contained in SIGPAC-DUN, created from cadastral maps and153

image interpretation [68]. The dataset also contains information on presence of irrigation, indicated as a percentage154

of the field subject to irrigation (from 0 to 100), exclusively based on administrative data that indicates if irrigation155

is installed in the field, not its actual usage.156

157

Table I summarizes all the samples collected during the field campaign divided by irrigation systems, as detected158

during the campaign, and crop types, as indicated in SIGPAC-DUN.159
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TABLE I

INITIAL CATALOG OF THE FIELDS COLLECTED DURING THE FIELD CAMPAIGN IN 2020. CROP TYPES ARE INITIALLY TAKEN FROM

SIGPAC-DUN, WHILE IRRIGATION SYSTEMS COME FROM THE LABELLING ACTIVITY DURING THE FIELD CAMPAIGN.

IRRIGATION CROP
TOTAL

SYSTEM TYPE

DRIP

FRUIT and NUT TREES 78

101VINEARD 12

OLIVE 11

SPRINKLER

WINTER CEREALS 53

71MAIZE 11

ALFALFA 7

FLOOD

WINTER CEREALS 41

82
MAIZE 13

ALFALFA 10

FRUIT and NUT TREES 18

NOT IRRIGATED

WINTER CEREALS 40

77
FRUIT and NUT TREES 13

VINEARD 7

OLIVE 17

Despite being very detailed, only the latest version of the dataset, corresponding to the year 2021, contains160

information about two important aspects of the fields: which secondary crop type (if present) was cultivated during161

the year and what irrigation system (if present) was installed in the field. For this reason, when using SIGPAC-DUN162

it is not possible to catalog the fields with double crops when a second crop type is present during the year. When163

comparing the systems of irrigation declared in the latest SIGPAC-DUN database against the ground-truth dataset164

collected during the field campaign, a discrepancy of around 10% was found between the two datasets (33 out of165

332 collected fields for 2020, as shown in Fig. 2). This discrepancy seems to suggest that SIGPAC-DUN reflects an166

outdated catalog of irrigation systems, since most of the misclassification between SIGPAC-DUN and the ground-167

truth dataset are between traditional flooding systems or not irrigated fields for SIGPAC-DUN and modern irrigation168

systems for the ground-truth dataset. This suggests that a process of modernization of the irrigation systems is taking169

place in the area, but it is not registered. As a matter of fact, Fig. 2 clearly shows that the highest discrepancy is170

found for the 10 fields mis-classified as flood by SIGPAC-DUN, which are in reality sprinkler systems.171
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Fig. 2. Confusion Matrix representing the discrepancies between the Ground Truth dataset collected during the field campaign and SIGPAC-

DUN information.

D. Remote Sensing Data172

Various remote sensing products were evaluated as potential inputs for the classification task, derived from173

different satellite data. ETa and SM at the sub-field level (20 m) were the main hydrological variables considered,174

but additional variables were also considered in order to evaluate their feasibility in the classification task. These175

inputs can be broadly grouped into two categories, called Level 4 (L4) and Level 2 (L2) variables. A general176

overview of these variables is presented in Table II.177

178
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TABLE II

OVERVIEW OF REMOTE SENSING VARIABLES USED IN THIS STUDY.

Variable name Spatial Resolution Details References

L2 Variables

SMAP SM
33 Km

(gridded at 9 Km)
SMAP L3 soil moisture enhanched product. [69]

S3 LST 1 Km Sentinel-3 daily Land Surface temperature. [70]

S2 NDVI 20 m Sentinel-2 NDVI from Band 4 (VIS) and Band 8A (NIR). -

L4 Variables

ETa 20 m
Obtained with the Priestley-Taylor Two-Source Energy Balance (TSEB-PT)

using Copernicus-based inputs.
[47]

SM 20 m DisPATCh algorithm to disaggregate SMAP SM using S3 LSt and S2 reflectances. [57]

Ks 20 m Ratio of ETa and potential evapotranspiration (ETpot). [47]

S2 LAI 20 m
Calculated mainly from Sentinel-2 reflectances using PROSAIL

radiative transfer model and Neural Networks algorithm.
[71]

L4 variables were estimated by the combination of multiple satellite data into different models, in order to obtain a179

set of more detailed hydrological information with a unified spatial resolution of 20 m, while L2 variables represent180

data directly retrieved from the satellites at their original processing level. L4 variables are: Actual Evapotranspiration181

(ETa), DisPATCh Soil Moisture (SM ), crop water stress coefficient (Ks) and Sentinel-2 Leaf Area Index (LAI).182

Ks was considered given the proven strong link between this stress index and root-zone water depletion [72], which183

could provide new additional information about the field water content at a different depth level than surface SM .184

LAI was instead selected to test if a variable only related to vegetative growth could perform well in the task of185

classifying irrigation systems.186

187

ETa estimates were obtained with the Priestley-Taylor Two-Source Energy Balance (TSEB-PT) model using188

Copernicus-based inputs [42], [46], [73] and following the methodology described by Guzinski et al. 2020 [47]189

which produced and validated a 20 m ETa product derived by applying TSEB-PT to remotely sensed data. The main190

input data required to run the TSEB-PT were retrieved from Sentinel-2 shortwave observations, Sentinel-3 LST ,191

and ERA5 meteorological reanalysis data. Sentinel-2 images were used to retrieve the biophysical parameters of the192

vegetation through the Biophysical Processor [71]. These biophysical parameters were used to derive inputs needed193

in the TSEB-PT such as leaf area index (LAI), leaf optical properties, and transmittance. High-resolution thermal194

data at 20 m was retrieved by applying a Data Mining Sharpening algorithm [49] to Sentinel-3 SLSTR LST images195

at 1 km, using shortwave multi-spectral data from Sentinel-2 [47], [48] as a higher resolution proxy. Meteorological196

parameters were retrieved from the ERA5 meteorological reanalysis, which delivers an hourly product gridded at197

0.1º. The required meteorological parameters are: air and dew point temperature at 2m, wind speed at 100 m,198

surface pressure, and total column water vapor. Finally, ancillary data such as vegetation height, and leaf inclination199

angle were set based on a land cover map obtained from the Copernicus Global Land Service and a look-up table.200

Instantaneous energy fluxes at the satellite overpass were upscaled to daily water fluxes, expressed in units of201

mm/day, by multiplying the instantaneous ratio of latent heat flux over solar irradiance by the average daily solar202
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irradiance [74].203

204

Crop stress coefficient (Ks) was retrieved from the ratio of ETa and potential evapotranspiration (ETpot). In order205

to be consistent with the TSEB-PT, the two-layer Shuttleworth-Wallace (SW ) model [75] was used to estimate the206

latter. The theoretical base of the SW model was provided by the Penman-Monteith energy combination equation,207

which has two parts: one for the soil surface and another for the plant surface. ETpot was computed with the SW208

model by setting a minimum stomatal resistance value of 100 sm−1.209

210

SM was created from the disaggregation of low-resolution original data employing the DisPATCh algorithm.211

DisPATCh uses a semi-empirical soil evaporative efficiency model and a linearized relationship between Soil212

Evaporative Efficiency (SEE) and low resolution SM to perform the disaggregation [54]. Differently from the213

classical version of the algorithm, a modification of DisPATCh for areas under high vegetation cover was added214

to the classic DisPATCh algorithm, as proposed by Ojha et al., 2021 [76]. For this study, SM was retrieved from215

the disaggregation of the original SMAP enhanced L2 SM product (L2_SM_P_E) gridded at 9 km. The Sentinel216

missions provided the high resolution optical and thermal data: NDV I maps at 20 m were extracted from the217

combination of bands 4 and 8A of the MSI instrument from Sentinel-2, while thermal maps were retrieved from the218

Sentinel-3 mission and sharpened at 20 m using Sentinel-2 reflectances bands. A Digital Elevation Map (DEM ) at219

30 m from the Shuttle Radar Topography Mission was also used in order to account for topographic effects during220

the disaggregation process.221

222

The considered L2 variables were: SMAP SM , Sentinel-3 LST and Sentinel-2 NDV I . SMAP SM is the223

enhanced L2 passive SSM product (L2_SM_P_E) from the SMAP mission, gridded at 9 km [77]. LST is the224

L2 product from the SLSTR instrument on-board the Sentinel-3 satellite, which delivers daily 1 Km data [78].225

NDV I was produced by combining band 4 (visible) and band 8A (near-infrared) from the Level 2 product of the226

Sentinel-2 satellite, with a 20 m resolution and a temporal resolution of around five days.227

III. METHODS228

A. Time Series Data Preparation229

Annual time-series were extracted for each pixel of each field of the ground truth database. Three different years,230

2018, 2019, and 2020 were used to create three annual time-series per pixel. While data on irrigation systems were231

only collected during the field campaign of 2020, no changes in irrigation systems were assumed for the two previous232

years: an assumption that was confirmed for the majority of the fields by inquiry with farmers and/or professionals233

working in the area. Considering multiple years is beneficial to 1) substantially increase the ground truth dataset234

and 2) allow the models to learn and generalize from a larger dataset, more diverse in terms of meteorological and235

crop growing conditions. This increased variability in the dataset allows the ML models to be more robust to changes.236

237
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After the extraction of each time-series, a strategy was selected in order to fill the gaps whenever the data238

was unavailable for a particular day or pixel. For the case of ETa time-series, gaps were filled following the239

methodology proposed by Jofre-Čekalović et al., 2022 [79]: when not available, ETa was retrieved by multiplying240

reference evapotranspiration (ET0) with the crop coefficient (Kcs). Kcs was obtained as the ratio between ETa241

and ET0 for those days with available data, while temporally interpolated for the missing dates. For the case of242

the DisPATCh SM time-series, the filling was performed using the original SM values from SMAP SM . For the243

rest of the variables used in this study, a simple linear interpolation was implemented as a gap-filling methodology.244

245

As an additional pre-processing step, every time-series from each pixel and each variable are scaled through246

z-normalization, a standard technique that can speed up ML model convergence and improve performances [37],247

[80]. From this dataset at the pixel level, a field level dataset was created by calculating the median of all pixels248

contained in each field. The dataset at field level was used for the experiment with simpler ML models, while for249

deep neural network models the large dataset at pixel level was needed in order to tune all the parameters and250

avoid overfitting. Finally, these datasets were split into two equal parts, 50% for training and 50% for testing of the251

classical ML models. keeping an equal distribution of irrigation systems and crop types in the two groups in order to252

avoid imbalances towards a particular irrigation or crop type in the training or testing of the classification. Moreover,253

time-series from the same field were used consistently for only one task, training or testing, in an attempt to avoid254

undesired correlation between the two datasets. Finally, for each ML model, 10 different runs were performed in255

order to extract more reliable performance metrics. During the different runs, train and test datasets were shuffled256

each time in a random fashion, but keeping the same constraints on the distribution of crop types, irrigation systems257

and using same-field time-series for training or testing only.258

B. Classification of Crop Types259

Regarding specific information about crop types, using the SIGPAC-DUN dataset only partially completed the260

missing information about the years previous to 2020. SIGPAC-DUN does not contain information on the presence261

of secondary crops. For this reason, an additional analysis was performed on the fields with annual crops. This262

analysis consisted of a simple crop classification algorithm applied to the LAI time-series to detect the number of263

peaks occurring during the growing season and check for the presence of multiple crops along the same year. More264

specifically, LAI time series from Sentinel-2 at 20 m resolution were collected for each ground truth field and265

for each considered year. The median value was extracted among the pixels inside every field, for every available266

date. The resulting time series were first processed in order to remove outliers with the Hampel filter algorithm267

(using a threshold value of 3 and a window length equals to 3) and then linearly interpolated to daily intervals.268

Each time-series was classified based on the number of peaks present during the year using a simple peak detection269

algorithm which distinguished among winter crops (a single peak in the winter/spring period), summer crops (a270

single peak in the summer period), double crops (double peaks), or alfalfa, grown and harvested multiple times271

during the spring-summer period (multiple peaks in the summer period). Fig. 3 shows the LAI time-series for the272

different classes of annual crops that are grouped based on the number and position of peaks.273
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Fig. 3. LAI time-series from Sentinel-2, smoothed (with Hampel filter) and linearly interpolated to be used for the crop-type classification. A

simple peak-detection algorithm was employed to differentiate the crop types. The bold blue lines represent the numerical average of all the

time-series inside each category.

Table III summarizes the number of fields collected in the campaign and used in this study as a dataset to train274

and test the ML models. These fields are divided per crop type and irrigation system, for each one of the three275

years considered. It is possible to notice how fields with annual crops vary in number throughout the three years276

since they showed changes in crop type from one year to another. Additionally, the total number of fields varies277

across the years varies since for a small number of fields the crop type could not be identified clearly, hence they278

were not considered for the specific year.279
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TABLE III

SUMMARY OF THE TOTAL NUMBER OF FIELDS COLLECTED DURING THE FIELD CAMPAIGN PERFORMED IN 2020. FIELDS ARE DIVIDED BY

CROP TYPE AND IRRIGATION SYSTEM, TOTALS ARE SHOWN ON THE SIDE TOGETHER WITH THE SUM OF ALL THE 20M PIXELS CONTAINED

IN THE FIELDS COLLECTED.

IRRIGATION SYSTEM CROP TYPE
Number of Fields FIELD

LEVEL

PIXEL

LEVEL2018 2019 2020

DRIP

FRUIT and NUT TREES 78 78 78 234 24201

VINEYARD 12 12 12 36 4599

OLIVE 11 11 11 33 3201

SPRINKLER

MAIZE 8 8 8 24 10950

DOUBLE CROPS 55 56 56 167 43849

ALFALFA 7 7 7 21 3777

FLOOD

WINTER CEREALS 9 9 9 27 444

MAIZE 14 14 13 41 1322

DOUBLE CROPS 32 33 33 98 5859

ALFALFA 9 9 9 27 2733

FRUIT and NUT TREES 18 18 18 54 1734

NOT IRRIGATED

WINTER CEREALS 40 36 40 116 27584

FRUIT and NUT TREES 13 13 13 39 1578

VINEYARD 7 7 7 21 867

OLIVE 17 17 17 51 6231

TOTAL 330 328 331 989 138929

C. ML Models280

Time Series Classification (TSC) is a specific machine learning class of algorithms that classifies data taking281

into account their ordered structure. This class of algorithms is chosen in this study since timing is a key element282

to distinguish different systems of irrigation [41]. Three different ML models were used, slightly adapted from the283

model presented in [81] and [40]. Table IV summarizes the reason of the selection of these particular models.284
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TABLE IV

OVERVIEW OF THE MODELS USED IN THIS STUDY.

MODELS Reason for selection

Time Series Forest

Random forest is widely used in similar

research [14]. Used as a benchmark.

ROCKET

State-of-the-art accuracy [39]

with low computational requirements.

ResNet

Deep neural network with flexible structure,

it outperforms other models in general reviews [40].

Time series forest [36] comes from the family of (decision) tree ensemble classifiers: it is a random forest [31]285

adapted to detect temporal features. Random forest is a set of classification trees, where each tree is trained on a286

random but independent portion of training data, using bagging or bootstrapping to select these training subsets287

[82]. Random forest algorithm are widely used [14], [15], [18], [32], [33], [34], [35]: the reason for their success288

lies in the low computational power required when compared to similar ML techniques, its stability (by design)289

against over-fitting, and its robustness against mislabelled training data. Additionally, this algorithm has a notable290

advantage in terms of interpretability of its prediction: each prediction has a confidence level that is retrieved from291

the percentage of trees that voted the same class. Time-series Forest is a variation of Random Forest where each tree292

is split using a combination of distance and entropy gain: an approach that captures well temporal characteristics of293

the inputs. The model also allows for an insightful inspection of the classification process thanks to the possibility294

of producing temporal importance curves. These curves underline the parts of the time-series that contain the most295

useful information and reveal which is the most important statistical feature among the ones extracted. Given the296

wide diffusion of this ML method and its interpretability, Time Series Forest was chosen as the benchmark model297

to run the classification experiment presented in this study.298

299

ROCKET (RandOm Convolutional KErnel Transform) is another algorithm designed for time-series classification.300

It was proposed by Dempster et al., 2020 [38] and proven to be competitive with the state-of-the-art algorithms for301

classification of multivariate time-series [39], but with a much faster computational speed. It is a kernel-approach302

classification inspired by convolutional neural networks. After producing a large number of kernels, two main303

features are extracted (maximum value and portion of positive values) that are then used to train a linear classifier304

(a ridge regression algorithm, as proposed in the original paper). An innovative aspect of ROCKET is the existence305

of a single hyper-parameter, corresponding to the number of kernels (set to 10, 000 by default), which avoids306

computationally intensive hyperparameters’s tuning, a task required by many other classifiers.307

308
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ResNET (Residual networks) is a Deep neural Network model which was designed initially for computer vision309

task and adapted to time-series classification [40], [83], given their success in terms of performances and wide310

diffusion for similar classification tasks. ResNET was shown to consistently outperform traditional ML models311

when applied to a large variety of different datasets [40]. ResNET main architecture is used as in Wang et al., 2017312

[83]. This model was adapted in this study to be run with multiple variables (multivariate model), through the use313

of a late fusion of parallel networks [22], [84], [85], [86], [87].314

315

The more complex architecture of this Deep Learning model requires the use of a large training dataset in order to316

prevent the rapid over-fitting of the model. For this reason, pixel-level time-series were used. Time-series contained317

in this dataset could be redundant, since adjacent pixels are expected to show similar values, given that spatial318

variability at 20 m resolution is limited. Nevertheless, the small variations that they present could still potentially319

improve the model accuracy, similarly to the improvement produced by most of the data-augmentation techniques,320

often used in deep learning, where slight changes are introduced in the dataset to create new training data [40], [88].321

Training and testing datasets are still selected following the criteria of the other ML models, keeping all time-series322

from the same fields either for training or testing, thus avoiding data-leaking effects. Final performance metrics are323

still evaluated at field-level (after a spatial aggregation of the irrigation systems).324

D. Post-Processing325

After the model’s training, annual maps of irrigation systems were produced and two main post-processing326

steps are implemented in order to correct for possible misclassification. Correcting the classification output with327

a statistical or knowledge-based approach is commonly used for multi-temporal geo-spatial classifications [89],328

[90], [91]. The first post-processing steps involved spatial aggregation at field-level for the irrigation systems maps329

produced at pixel-level. The SIGPAC-DUN field shapes were used as a mask and spatial aggregation was performed330

in order to select only one irrigation system for each field, based on the most recurring irrigation system predicted331

among all the pixels contained in the field. This approach is also realistic since only one system of irrigation is332

expected to be found for each field. The second post-processing step involved a temporal analysis to detect and333

filter unlikely single-year changes of irrigation for a specific field. As a general rule, the presence of a single-year334

anomaly in the irrigation systems was always corrected, except for cases where the anomaly was found in the first335

or last year analyzed and the change could be explained by a modernization of the irrigation system (from not336

irrigated to irrigated or from traditional irrigation as flood to more modern irrigation systems such as drip and337

sprinkler). This knowledge-based temporal correction assumes that irrigation practices are not interrupted from one338

year to another and that modern irrigation systems are never replaced by traditional irrigation, given the significant339

infrastructure cost and no real production benefits of such change.340

E. Evaluation Metrics341

In order to compare the results from different ML models and variables, standard evaluation metrics are calculated342

by comparing the predicted versus actual irrigation system of the fields present in the test dataset. The Accuracy is343
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computed as the number of correct predictions over the total number of samples. The Precision, also called User344

Accuracy, is instead calculated for each irrigation system category as the number of correct predictions over the345

number of samples predicted with the same category. The Average Precision is expressed as the average of all the346

precisions calculated for all the categories. The Recall, also called Producer Accuracy, is instead calculated for each347

irrigation system category as the number of correct predictions over the number of samples with the same category348

in the ground truth. The Average Recall is expressed as the average of the recalls calculated for all the categories.349

F. Experiment Design350

Tree different experiments were designed in order to explore different approaches in classifying irrigation systems.351

1) Influence of Crop Types: The first experiment aimed at verifying if the model was able to correctly identify352

differences exclusively related to irrigation practices, or if it was merely classifying irrigation systems based on the353

crop type present in each field. There is a proven relationship between crop types and irrigation systems, where354

in most of the cases few prevalent systems of irrigation are present for each particular crop type, as shown in355

Table III. Different models of Time Series Forest were trained on each crop type to predict the irrigation systems356

separately. Their aggregated accuracy was then compared with a general Time Series Forest model trained without357

discriminating by crop types in order to detect which approach was more favourable. The experiment was performed358

to assess the accuracy of SM , ETa, and both the variables together, SM+ETa.359

2) Importance of crop vegetative period: A second experiment was also designed using the same variables and360

the time-series forest model. This second experiment was used to check whether time-series classification models361

required to be manually cropped in advance or whether the model was able to independently select the period of362

more intensive irrigation. Time-series forest was run with only a part of the time-series, which was cropped to363

isolate only the vegetative period of crops, in which there was a greater intensity of irrigation. Cropping implied364

selecting the spring and summer period (from the 15th of May) for all the crops except for winter cereals, where365

the winter season (until the 15th of July) was used. The need for cropping time-series was evaluated through a366

comparison of the overall accuracies from the classification of irrigation systems using cropped time-series with the367

accuracies retrieved using entire time-series (e.g. ETa vs ETa,cropped, SM vs SMcropped, etc.). Another approach368

used to evaluate the need for cropping time-series was to visualize Temporal Importance Curves in order to verify369

if the Time Series Forest model trained with the complete time-series was able or not to independently select the370

most important part of the year for the classification of irrigation systems. These curves do not only show the most371

important period of the year for the classification task, but they also provide information on which of the extracted372

features is most useful (among the ones selected in this study: mean, standard deviation, and slope).373

3) Model and variable selection: After verifying the capability of the model to classify irrigation systems, a final374

experiment was designed to investigate which variables are most suited for the classification of irrigation systems375

and which model performs better for this classification task. The classification of irrigation systems was performed376

with both L2 and L4 variables, training the different models with each variable separately and with a combination377

of them. All the different ML models proposed in this study were used for the comparison: the two classic ML378

learning models (time-series Forest and Rocket) applied to both L4 and L2 variables and trained at field level (one379
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time-series per field), and ResNET, the DNN model, applied only to L4 variables at pixel level, since the low380

spatial resolution of the L2 variables did not provide a large enough dataset for training and testing of this model.381

Each model and each variable were trained and evaluated 10 times, changing each time the train and test datasets’382

distributions and the models’ random initial weights. Median and standard deviation of the overall accuracies were383

used as a comparison metric.384

385

IV. RESULTS AND DISCUSSION386

A. Influence of Crop Types387

Table V summarizes the accuracy retrieved from the simulations. The experiment was performed to assess the388

accuracy of SM , ETa, and both variables together, SM+ETa. Results from these initial experiments show that a389

general model (last column of Table V) has comparable accuracy with respect to the aggregated accuracy (second to390

the last column) of multiple models trained separately for each crop type (with a small difference of ∆ = 2.16%).391

Using a general model, trained on every crop type has a noticeable advantage of not requiring a crop type map,392

which makes the approach more versatile since it can be adapted to areas where crop types are not known or where393

there are different crop types from the ones analyzed in this study.394

395

TABLE V

ACCURACIES OF THE CLASSIFICATION OF THE TIME-SERIES FOREST APPLIED TO DIFFERENT INPUT VARIABLES, WITH ANNUAL LENGTH

OR CROPPED TO THEIR VEGETATIVE PERIODS. FINAL RESULTS ARE PRESENTED IN THE LAST TWO COLUMNS, BETWEEN THE AGGREGATED

ACCURACIES OF THE MODELS TRAINED FOR EACH CROP TYPES AND A GENERAL MODEL TRAINED WITH ALL CROP TYPES TOGETHER.

HIGHEST ACCURACY FOR EACH COLUMN IS PRESENTED IN BOLD.

Variables
Crop types RESULTS

Winter

Cereals
Maize

Double

Crops
Alfalfa

Fruit & Nut

Trees
Olives Vineyards

Aggregated

Models

General

Model

ETa-TSEB 94.00% 76.36% 90.00% 58.33% 92.59% 100.00% 85.56% 89.94% ± 2.23 86.11% ± 3.20

ETa-TSEB cropped 93.20% 77.27% 88.18% 48.33% 92.96% 100.00% 84.44% 89.07% ± 1.70 -

SM Dispatch 90.80% 79.09% 86.36% 58.33% 90.74% 99.23% 86.67% 88.02% ± 2.33 83.77% ± 1.85

SM Dispatch cropped 89.60% 82.73% 85.23% 58.33% 90.37% 96.92% 82.22% 87.22% ± 1.81 -

ETa+SM 93.20% 82.73% 92.95% 58.33% 93.70% 100.00% 88.89% 91.60% ± 2.11 89.44% ± 2.97

ETa+SM cropped 93.20% 81.82% 92.27% 53.33% 94.26% 100.00% 86.67% 91.23% ± 1.63 -

B. Importance of crop vegetative period396

Table V also shows two additional results: first, it is possible to notice how combining ETa+SM leads to397

consistently higher classification accuracies than when using these two variables separately. All crop types show398

better accuracy when both variables are used for classification. The only exception to these results seems to be399

the classification of irrigation types for alfalfa, where accuracies remains low even when using ETa + SM , when400
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comparing the two different irrigation systems present, flood and sprinkler. A possible explanation could be the401

multiple rapid vegetative growth cycles that characterize this crop. The rapidity may result in very similar irrigation402

practices between flood and sprinkler, since a shorter period of time available for irrigation reduces the variability403

of the two irrigation systems both in terms of water amount and intervals of time between consecutive irrigations.404

405

A second result is that cropping does not lead to improvements in terms of accuracy. Removing parts of the time-406

series actually degrades the final results, confirming that ML models for time-series are able to independently select407

and exploit the most valuable part for the time-series with no need for this preprocessing step. As an additional proof408

of the capability of the ML model to independently select the most interesting part of the time-series, Temporal409

Importance Curves from the Time Series Forest were calculated. Fig. 4 shows the importance curves for the irrigation410

classification task for the different crop types and the corresponding variables (ETa and SM ) used to generate411

them.412

Fig. 4. Temporal Importance Curves from the Time Series Forest model trained over specific crop types and corresponding input time-series

of ETa and SM .

Temporal importance curves show that the model only focuses on a specific part of the year that corresponds to413

the irrigation and growing periods for each crop. It is noticeable that the feature importance curves for ETa and SM414

do not always select the same period and the same feature, suggesting that both variables provide complementary415

information for this classification task.416

417
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Among the three feature importance curves for the ETa time-series, the ’mean’ curve has a higher value for418

most of the crop types. This is also visually evident when looking at the time-series ETa under different irrigation419

systems: ETa shows a clearer difference in magnitude for fields irrigated with different irrigation systems, which420

has a direct relationship with the amount of water supplied to the field. Flood-irrigated fields tend to have the highest421

values of ETa, especially during the warmest period, when water is almost exclusively supplied by irrigation. This422

behavior was expected since flood irrigation is a traditional system that notably employs the largest quantities of423

water. Flood-irrigated fields show higher ETa for all the annual crops, from Fig. 4(a) to 4(d), especially for winter424

cereals, where flood-irrigated fields are compared to non-irrigated fields. For fields cultivated with double crops,425

alfalfa, and maize, flood is compared with sprinkler-irrigated fields and it is notable how flood-irrigated fields426

are still evapotranspirating more, even if the difference between these two systems is less evident. The second row427

corresponds to orchards, from Fig. 4(e) to 4(g): it is noticeable that when comparing non-irrigated and drip-irrigated428

fields (for the case of olive and vineyard fields), the model is still selecting the ’mean’ as the most important among429

the feature importance curves since drip-irrigated fields shows higher values than non-irrigated fields. Only in the430

case of fruit and nut-bearing trees ’slope’ is most important. The ’slope’ curve produced from the ETa time-series is431

calculated as the first derivative of the time-series, and can be interpreted as the degree of change of the time-series432

during the season: Fig. 4(e) shows a clear different timing in irrigating with drip and flood, so there is a clear433

difference in temporal changes of ETa, while non-irrigated fields have almost constant values during the summer434

season, thus not showing temporal changes.435

436

Regarding SM time-series, it is most evident how fields irrigated differently have a different range of variation437

of SM , especially during the warmest periods. For this reason, the ’std’ feature importance curve is selected by438

the model as the most informative: For winter cereals, it is evident that the ’std’ curve detects differences between439

the different irrigation systems during the crop growing period. Similarly, the ’std’ feature importance curve is also440

showing the highest peaks during the summer period for the case of alfalfa, double crops, vineyard, and olive fields.441

The only exception is present for the importance curves created from the SM time-series of the fruit and nut-bearing442

trees. In this case, the ’slope’ curve presents the highest peak, which is during the month of May/June: this is also443

visible in the SM curves, where during May the fields irrigated by a drip system show marked differences with444

respect to flood-irrigated and non-irrigated fields.445

446

C. Model and variable selection447

After verifying the capability of the model to classify irrigation systems, we proceeded to investigate which448

variables are most suited for the classification of irrigation systems and which model performs better for this449

classification task. Fig. 5 summarizes the accuracies retrieved for the three different models trained using different450

sets of the input variables described.451
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Fig. 5. Accuracies of different approaches for the classification of irrigation systems (median and standard deviation of 10 different runs).

Multiple ML models and input variables are employed. Input variables are grouped as (a) Level 2 variables, representing the initial satellite

products, and (b) Level 4 variables, representing variables produced from an elaboration of satellite data with different models.

All models have higher accuracy when using L4 variables, with the highest accuracy in terms of average being452

reached when all the L4 variables are used together, followed by the combination of ETa and SM only. Despite453

performing best, the accuracy reached combining all the L4 variables is very close to the accuracy reached using454

ETa and SM together, but it shows a larger standard deviation, caused by the addition of Ks and LAI which455

probably do not positively contribute to the classification. For this reason, we considered ETa and SM to be the456

best combination of variables. These two variables show good accuracy even when used separately, so it could457

be possible to use these single variables in the classification process, only losing a small amount of accuracy.458

Nevertheless, ETa and SM together reach higher accuracies because their information complement each other:459

while SM is capable of distinguishing better large wet surfaces caused by flood irrigation, ETa can detect higher460

plant evaporation from drip with respect to non-irrigated fields. Combining the two variables always brings a general461

improvement of the prediction, as also demonstrated in Table VII.462

463

Regarding the different models used, the ResNET model consistently shows higher results. ResNET did not only464

out-perform the other models in terms of accuracy, but it showed consistently higher results for all the different465

metrics used to compare the different models, as presented in Table VI for experiments performed with ETa and466

SM as input variables.467
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TABLE VI

CLASSIFICATION METRICS FOR THE THREE MODELS WHEN USED WITH ETa AND SM . MEAN AND STANDARD DEVIATION DERIVED FROM

10 DIFFERENT RUNS OBTAINED SHUFFLING THE TRAIN AND TEST DATASET.

MODELS

METRICS (%) tsForest ROCKET ResNET

Accuracy 85.29 ± 2.41 87.56 ± 2.95 90.10 ± 2.70

Average Precision 85.43 ± 2.53 88.80 ± 3.12 90.33 ± 2.78

Average Recall 84.76 ± 2.51 86.81 ± 3.17 90.02 ± 2.76

The final overall accuracy of ResNET in classifying different irrigation systems is comparable (and in some cases468

higher) to accuracies presented in literature for studies involving irrigation mapping at field level, such as Gao et469

al., 2018 [14] and Bazzi et al., 2020 [15]. This result shows that with the presented approach it is possible to keep a470

high overall accuracy even when adding complexity to the problem of irrigation classification. The only drawback471

of ResNET is that it requires a significantly higher computational cost for the model training than the other two472

traditional models. In case computational cost is an issue, a good trade-off between accuracy and computational473

time is offered by the Rocket model, which is less accurate than ResNET for this specific classification task but it474

is around one order of magnitude faster in training and suggested to be used as a default model for multivariate475

classification tasks given its remarkable results for large scale studies [39]. Another advantage for Rocket is that476

its training time is linearly scalable with the size of the training set [38], which could be of great value in case477

this classification approach is applied to large irrigated areas, where the number of training samples inevitably grows.478

479

Finally, Fig. 6 shows the confusion matrix for ResNET with ETa and SM as inputs. The matrix is calculated480

on the final results, after the post-processing step, which included aggregating the model prediction at the field481

level and performing temporal post-processing for the three different years. Precision and recall values are also482

presented and indicate how all the values of the metrics are very close to each other: an additional indicator of483

the robustness of the classification, which is not imbalanced towards any particular irrigation system. The lowest484

metric is represented by the precision for the drip irrigation system, which appears to be the label that is most485

mis-classified by the ML model: as a matter of fact, in a few cases, the model appears to classify drip irrigation486

as flood or non-irrigated. Drip irrigation is sometimes confused with non-irrigated fields due to the low soil wet487

surface around the emitter, which minimizes losses through evaporation and runoff. Additionally, there is also a more488

marked misclassification in those irrigation districts with limited water allocation, where sustained deficit irrigation489

strategies are usually adopted, such as some areas of Segarra-Garrigues or Garrigues Sud. We have also realized490

that some recently planted fields of grapevines, almonds, and pistachios trees were classified as non-irrigated, but491

instead were drip-irrigated. This probably occurred due to its still low canopy vigor, evapotranspiration, and soil492

moisture values throughout the growing season. On the other hand, the confusion between drip and flood irrigation493

could be explained either due to a decrease in SM and ETa on dates between irrigation events or due to a higher494
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ETa caused by crop cover between rows. In both cases, time-series between flood and drip-irrigated fields may495

look similar. In order to improve classification for these particular cases, the selection of more fields with these496

characteristics in further studies will help to obtain a more robust classification.497

Fig. 6. Confusion Matrix at field level (grouped with majority voting of the pixels contained in the field) and post-processed. The matrix shows

the results of one run of the ResNET model using ETa and SM as inputs. Each cell shows a percentage over the total True label and number

of Fields. Precision and Recall are also shown on the side.

D. Comparison with SIGPAC-DUN498

In order to perform a more comprehensive analysis of the quality of the classification of irrigation systems499

derived based on ETa and SM , a comparison of the percentage of different systems of irrigation at the irrigation500

district level was performed. As previously mentioned, the latest SIGPAC-DUN dataset [68] includes the first map501

of irrigation systems at the field level, allowing for a direct comparison between the irrigation maps produced by the502

ResNET model and this administrative classification. Fig. 7 visually compares the distribution of irrigation systems503

as classified by SIGPAC-DUN and by the ResNET model for the selected study area. The borders of the different504

irrigation districts are also shown as black continuous lines and 3 specific areas are selected for a visual comparison.505

It is possible to notice how generally the ResNET model produces a map with more modern irrigation systems506

than SIGPAC, where more fields are not-irrigated or flood-irrigated. Only in the last of the 3 comparisons of Fig 7c507

(bottom-left) there is a large area (in the Segarra-Garrigues district) depicted as flood-irrigated by SIGPAC-DUN508

but predicted as not-irrigated by ResNET (verified to be correct by visual inspection).509
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Fig. 7. Irrigation systems maps (a) as delivered by SIGPAC-DUN [68] and (b) as created by the ResNET model with ETa and SM time-series

for 2020, with 3 zoomed-in areas (c) for a visual comparison, showing an increasing zoom level to verify spatial consistency of the product in

different irrigation districts.

Fig. 8 shows a direct comparison between the different systems of irrigation as estimated by SIGPAC-DUN and510

predicted by the ResNET model used for this study. It is noticeable how the ResNET model consistently predicts a511

lower percentage of traditional irrigation by flooding, and in almost all cases (but for Canals d’Urgell and Algerri-512

Balaguer) a decrease in the percentage of non-irrigated fields. This discrepancy was expected, since SIGPAC-DUN513

showed some inaccuracies already from the comparison with the ground truth dataset. In particular, SIGPAC-DUN514

showed a tendency to misclassify modern irrigated fields as not irrigated or irrigated with the traditional system of515

flood. This suggested that the database probably reflects a picture that is not up-to-date, and it is also visible in this516

general comparison of the entire study area with the map produced by the ResNET model. A secondary cause for517

the discrepancy is also the limitation in the classification of the ResNET model, which reaches a final accuracy of518

around 90% when compared to the ground truth database.519
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Fig. 8. Comparison of systems of irrigation estimated by SIGPAC-DUN (S) and predicted by ResNET (R) for the 8 irrigation districts considered

for this study.

Additionally, the maps of irrigation systems from SIGPAC-DUN and ResNET were compared with approximate520

values retrieved from literature for the three largest irrigation districts: Table VII shows the values extracted for521

this comparison. The literature data were collected in 1999 for Canal de Pinyana and Canals d’Urgell [92] and for522

2018 for Canal d’Aragó i Catalunya [23] and they are presented here as the percentage of irrigation systems over523

cultivated area. This comparison among sources belonging to different years allows to establish again the general524

trend for the study area in modernizing irrigation systems. It is possible to notice how old estimates from literature525

present larger percentages of traditional irrigation systems when compared against SIGPAC-DUN, which in turn526

contains larger traditional irrigation percentages than ResNET from 2020, considered the most updated source. As527

a matter of fact, even though the map for SIGPAC-DUN is delivered for 2021, the information contained over528

irrigation systems are a collection of administrative surveys from various previous years.529

530
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TABLE VII

PERCENTAGES OF THE AREA UNDER DIFFERENT SYSTEMS OF IRRIGATION, DIVIDED PER IRRIGATION DISTRICT. THE PERCENTAGES IN

LITERATURE ARE TAKEN FROM LITERATURE AND COMPARED WITH THE LATEST SIGPAC-DUN DATASET [68] AND THE MAP RETRIEVED

WITH THE RESNET MODEL.

Irrigation District IRR systems Literature1 SIGPAC-DUN ResNET

Canals d’Urgell

FLOOD 90 % 81 % 55 %

DRIP 4 % 10 % 11 %

SPRINKLER 2 % 5 % 24 %

NOT IRRIGATED 0 % 4 % 11 %

Canal de Pinyana

FLOOD 79 % 50 % 27 %

DRIP 10 % 33 % 34 %

SPRINKLER 10 % 13 % 38 %

NOT IRRIGATED 0 % 3 % 2 %

Canal d’Aragó i Catalunya

FLOOD 18 % 14 % 2 %

DRIP 28 % 37 % 32 %

SPRINKLER 54 % 46 % 65 %

NOT IRRIGATED 0 % 2 % 1 %

1 Literature are administrative data taken from [23] for "Canal d’Aragó i Catalunya" and from

[92] for "Canals d’Urgell" and "Canal de Pinyana".

V. CONCLUSION531

A key missing information for irrigation management and for hydrological studies over irrigated regions is the532

precise knowledge, at field level, of the different irrigation systems installed in each field, and the trends and533

changes of these systems over different years. This study has provided for the first time a method to classify534

irrigation systems (flood, sprinkler, drip) and not irrigated fields, using remotely sensed time-series at sub-field535

scale resolution. Key hydrological variables were used as inputs for the classification of irrigation systems through536

the use of different ML models.537

538

Two main hydrological variables, ETa and SM at 20 m led to the best performance in the classification of539

irrigation systems when combined together, regardless of the ML model used for the classification. This result is540

indicative of the usefulness of these datasets in providing complementary information: SM directly detects large541

surface soil wetting, thus easily detecting large uses of water, as in flood and sprinkler irrigation. ETa is instead542

able to detect fields that are irrigated with drips, which does not create dramatic changes in the soil water content543

but keeps the plant at high ETa levels (close to potential evapotranspiration) with respect to non-irrigated fields.544

545

An initial experiment was run in order to verify if the difference in crop types was interfering with the prediction546

of irrigation systems. Results showed that crop type does not interfere with the task of classifying irrigation systems,547

and similar performances are reached when using a general model for all the crops or multiple models specialized548
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by crop types. These proved the feasibility of classifying systems of irrigation using only hydrological variables549

from remote sensing.550

551

Among the three ML models tested, ResNET showed the best performance for all the metrics used for this552

classification task. ResNET is the only deep neural network model proposed for this study, and its architecture was553

shown to be more suitable for detecting more complex variations from the analyzed data. This characteristic is an554

advantage since irrigation practices strongly vary, both in timing and amount among different fields, even for fields555

that grow similar crops and employ the same irrigation system.556

557

Finally, we compared a map of irrigation systems derived from the ResNET model using ETa and SM of the558

year 2020 against the irrigation systems map provided by the SIGPAC-DUN administrative catalog. Results at559

the district level showed a general agreement in the percentages of irrigation systems, even though the ResNET560

map appears to classify more fields with more efficient irrigation systems (drip and sprinkler irrigation). These561

differences are present since the ResNET map delivers a more updated depiction of irrigation systems compared562

to the map from SIGPAC-DUN, and captures the ongoing conversion from flood to more efficient irrigation systems.563

564

This work represents the first study dedicated to the automatic detection at the field level of irrigation systems565

from satellite remotely sensed data. It shows how this is achievable with good accuracy when applied to semi-arid566

areas. Over semi-arid areas, the low cloud cover allows for high availability of thermal and optical satellite data,567

and irrigated and non-irrigated areas are easily distinguishable due to the marked difference in soil water availability568

from the surrounding dryland areas.569

570

This study only focused on semi-arid regions since they are areas where water availability is a topic of increasing571

concern, and where optimization in the use and distribution of water for agriculture can bring the most noticeable572

improvements. One research avenue could be to apply the proposed methodology to more temperate areas. This573

application is expected to be challenging for two main reasons: first, in those areas crop phenology is more similar574

between irrigated and non-irrigated crops [93], secondly, there will be larger gaps in the time-series due to more575

frequent cloud cover, that will reduce the amount of information usable by the model.576

577

Other Mediterranean regions are expected to be well suited for applying this methodology, where transfer learning578

techniques could be explored. This approach will require a small amount of local training data, which will only579

be used to tailor the weights of the last layer of the pre-trained ResNET model in order to improve accuracies for580

the specific region of interest. Unsupervised learning could also be explored as a solution that avoids ground truth581

data collections, but which is often less performing than supervised methods.582

583
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