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Abstract 20 

Accurate estimation of evapotranspiration (ET) is of crucial importance in water science and 21 

hydrological process understanding especially in semi-arid/arid areas since ET represents more 22 

than 85% of the total water budget. FAO-56 is one of the widely used formulations to estimate 23 

the actual crop evapotranspiration (ETc act) due to its operational nature and since it represents 24 

a reasonable compromise between simplicity and accuracy. In this vein, the objective of this 25 

paper was to examine the possibility of improving ETc act estimates through remote sensing data 26 

assimilation. For this purpose, remotely sensed soil moisture (SM) and Land surface 27 

temperature (LST) data were simultaneously assimilated into FAO-dualKc. Surface SM 28 

observations were assimilated into the soil evaporation (Es) component through the soil 29 

evaporation coefficient, and LST data were assimilated into the actual crop transpiration (Tc act) 30 

component through the crop stress coefficient. The LST data were used to estimate the water 31 

stress coefficient (Ks) as a proxy of LST (LSTproxy). The FAO-Ks was corrected by assimilating 32 

LSTproxy derived from Landsat data based on the variances of predicted errors on Ks estimates 33 

from FAO-56 model and thermal-derived Ks. The proposed approach was tested over a semi-34 

arid area in Morocco using first, in situ data collected during 2002-2003 and 2015-2016 wheat 35 

growth seasons over two different fields and then, remotely sensed data derived from 36 

disaggregated Soil Moisture Active Passive (SMAP) SM and Landsat-LST sensors were used. 37 

Assimilating SM data leads to an improvement of the ETc act model prediction: the root mean 38 

square error (RMSE) decreased from 0.98 to 0.65 mm/day compared to the classical FAO-39 

dualKc using in situ SM. Moreover, assimilating both in situ SM and LST data provided more 40 

accurate results with a RMSE error of 0.55 mm/day. By using SMAP-based SM and Landsat-41 

LST, results also improved in comparison with standard FAO and reached a RMSE of 0.73 42 

mm/day against eddy-covariance ETc act measurements. 43 

Key words: Evapotranspiration; Data assimilation; FAO-dualKc; Soil moisture; Land surface 44 

temperature. 45 

1. Introduction 46 

Accurate estimation of surface evapotranspiration (ET) is crucial to understand land-surface 47 

interaction processes. Additionally, ET is the dominant factor in the water cycle, especially in 48 

arid and semi-arid regions. About 85 to 90 % of precipitation returns to the atmosphere through 49 

ET (Rosenberg et al., 1983). Moreover, ET estimates have an important role in monitoring 50 

drought (Bhattarai et al., 2019; Gerhards et al., 2019) and other extreme climatic events (Littell 51 
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et al., 2016; Molden et al., 2010), as well as water resource management (Madugundu et al., 52 

2017; Tasumi, 2019). In this case the objective is to have accurate ET estimates that allow 53 

computing irrigation requirements. Precise actual crop evapotranspiration (ETc act) estimates are 54 

the key for the quantification of crop water requirements, which allow the optimization of 55 

irrigation especially in semi-arid and arid areas that suffer from a pronounced shortage of water 56 

(Allen et al., 2011; French et al., 2015). Several techniques were developed and used to monitor 57 

ETc act at different space-time scales. At plot or field scale, we found the eddy correlation system 58 

(Allen et al., 2011; Baldocchi et al., 1988), while at a larger scale, the scintillometer can provide 59 

ETc act over a transect up to 5 km (Ezzahar and Chehbouni, 2009; Kohsiek et al., 2002). Other 60 

approaches for measuring ETc act were discussed in Alfieri et al. (2018) and Er-Raki et al. 61 

(2013). 62 

Concerning ETc act predictions, several models with different degrees of complexity have been 63 

developed during the past 30 years (Li et al., 2009; Seguin and Itier, 1983). Note that,crop ET 64 

(ETc) refer to optimal, well-watered conditions and pristine cultivated crops, i.e. cropped in 65 

conditions without any stress conditions and may be estimated with models while under field 66 

conditions actual ET is estimated with models because crops are generally subject to water 67 

(and/or other stress conditions). Some of these models use remotely sensed data such as surface 68 

albedo, Leaf Area Index (LAI), Normalized Difference Vegetation Index (NDVI), Land Surface 69 

Temperature (LST) (Allen et al., 2011; Granger, 2000; Kharrou et al., 2013; Kustas and 70 

Norman, 1996; Li et al., 2009) and soil moisture (Elfarkh et al., 2021; Gokmen et al., 2012; 71 

Walker et al., 2019). ETc act component can be predicted based on water balance at a daily time 72 

scale. Among this family of models, the FAO dual crop coefficient model (FAO-dualKc, Allen 73 

et al., 1998) is the most common and operational model to retrieve ETc act, which was 74 

extensively used for modeling water consumption and growth of plants (e.g., Alberto et al., 75 

2014; Barker et al., 2018; Ko et al., 2009; Liu and Luo, 2010). The SIMDualKc software (Paço 76 

et al., 2014; Paredes et al., 2014; Pereira et al., 2020; Rosa et al., 2012b, 2012a) was set up 77 

based on FAO-dualKc to simulate ETc act and its components. In contrast with other models 78 

based on energy balance theory, the FAO-56 model requires limited input parameters. Several 79 

studies used the FAO model to retrieve ETc act over various crop types where wheat is the most 80 

studied crop among small grain cereals (e.g. Amazirh et al., 2021; Drerup et al., 2017; French 81 

et al., 2020; Rafi et al., 2019). Recently, Pereira et al. (2021) provides a review of the studies 82 

using the FAO-dualKc over wheat and other crop types. The FAO-dualKc approach allows for 83 

the partitioning of ETc act into soil evaporation (Es) and plant transpiration (Tc act) by separating 84 
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the crop coefficients (Kc act) into a basal crop (Kcb act) and soil evaporation (Ke) coefficients. 85 

Despite the operationality of the FAO-dualKc, several studies stated that FAO-dualKc tends to 86 

under/overestimate soil evaporation (Es) at the beginning or the end of the season when the 87 

surface is under bare soil conditions (Amazirh et al., 2021; Boulet et al., 2019; Olivera-Guerra 88 

et al., 2018). In this context, many papers deal with the use of soil moisture (SM) data to retrieve 89 

soil evaporation under bare soil conditions (Amazirh et al., 2018; Zribi et al., 2011). Moreover, 90 

the crop Tc act estimates is based on the root zone water balance reflecting the variation of the 91 

root zone soil moisture (RZSM). Therefore, using RZSM measurements will improve the Tc act 92 

estimates.  The root zone soil moisture is a state variable that is quite difficult to estimate from 93 

meteorological data alone or remote sensing data. For this reason, as an attempt to improve ETc 94 

act estimates, Kalma et al. (2008) and Li et al. (2009) used LST data to estimate water stress 95 

indices. More recently, LST data were used to retrieve the stress coefficient (Ks) used by the 96 

FAO approach (DeJonge et al., 2015; Ihuoma and Madramootoo, 2017; Kullberg et al., 2017).  97 

Other techniques attempt to combine complementary information from hydrological models 98 

and observed data for mapping ETc act. This technique is named data assimilation (Kumar et al., 99 

2008; McLaughlin et al., 2006). The data assimilation technique is based on minimizing the 100 

mismatch between the model outputs and observations, by making the optimal use of all 101 

available information. We distinguish between two categories of data assimilation schemes: 102 

sequential assimilation like Ensemble Kalman Filter and optimal interpolation. The former 103 

technique has been widely used in hydrology (Chen et al., 2013; Moradkhani et al., 2005; Wang 104 

et al., 2009; Xie and Zhang, 2010). The latter is variational assimilation (e.g., 4-dimensional 105 

variational assimilation (Caparrini et al., 2004; Courtier et al., 1993)). Several research works 106 

used data assimilation techniques to estimate ETc act at different levels (Er-Raki et al., 2008; 107 

Merlin et al., 2006; Neale et al., 2012; Pipunic et al., 2008). Recently, many research works 108 

used the variational data assimilation technique to update and improve the ETc act estimates and 109 

its components (e.g. Abdolghafoorian and Farhadi, 2020; Tajfar et al., 2020; Xu et al., 2019, 110 

2016). For the sequential data assimilation technique, Kalman Filter (KF) and its variants are 111 

the widely used techniques for the ETc act retrieval due to their simple conceptual formulation 112 

and relative ease of implementation compared to other techniques (Bateni and Entekhabi, 2012; 113 

Er-Raki et al., 2008; He et al., 2019; Xu et al., 2011). KF provides a sequential, unbiased, and 114 

minimum error variance estimate under the assumption of known statistics of system and 115 

measurement errors for a linear problem. The KF provided a comparable result with other 116 

popular assimilation methods, despite its simple conceptual formulation which did not require 117 

https://www.sciencedirect.com.eressources.um6p.ma/topics/earth-and-planetary-sciences/hydrology
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any integrations backward in time compared to other variational assimilation techniques 118 

(4DVAR, 3DVAR…). However, KF does not account for nonlinearities in hydrological 119 

systems, for this, a variant of KF (e.g. extended Kalman filters) could solve some nonlinear 120 

problems. Even that, KF affords very good results compared to other complicated models such 121 

as the variational method (Tian et al., 2008). In addition, KF requires few restrictive 122 

assumptions which make it operational. Therefore, KF seems to be suitable for hydrological 123 

linear problems such as modeling ETc act. Data assimilation technique seems to be a promising 124 

tool to improve the ETc act estimates when combining with FAO model. Er-raki et al. (2008) 125 

have shown that assimilating LST data into FAO-56 single crop model improves the overall 126 

ETc act estimates. Er-raki et al. (2008) in their paper reach a satisfactory result after assimilating 127 

LST data in FAO single crop coefficient with RMSE values dropping down from 0.69 to 0.46 128 

mm/day compared to open-loop FAO, which corresponds to an improvement of 40% when 129 

assimilating LST into the FAO56 approach. In the same vein, the objective of this paper is to 130 

use data assimilation in conjunction with FAO-dualKc methods to improve ETc act estimates. 131 

We first assimilate time domain reflectometry (TDR) near-surface SM (0-5cm) observations 132 

into FAO-dualKc to improve the soil Es estimates. Then, TDR-SM and infrared thermal 133 

radiometer (IRT) derived LST data were jointly assimilated to improve soil Es and wheat crop 134 

Tc act, respectively. A sequential assimilation scheme was applied to update the Es and Tc act 135 

estimates. Secondly, Landsat 7/8 derived-LST and disaggregated Soil Moisture Active Passive 136 

(SMAP)-SM data at 100 m resolution were used in conjunction with a sequential assimilation 137 

approach over two wheat fields named B123 and F16 near Marrakech city in central Morocco.  138 

2. Sites and data description  139 

2.1. Sites description 140 

The present work was conducted over the Tensift region in central Morocco (Figure 1). This 141 

area is known as a semi-arid area with low and irregular precipitation against high potential 142 

ETo. Numerous studies have been performed in this region since 2002-2003 to address various 143 

problems regarding the use of water, understanding the integrated hydrological functioning of 144 

the Tensift semi-arid basin, as well as improving our knowledge of fundamental hydrological 145 

processes (Amazirh et al., 2017; Chehbouni et al., 2008; Merlin et al., 2018). The Tensift basin 146 

receiving about 250 mm/year of rainfall, while the reference evapotranspiration (ETo) is about 147 

1600 mm/year, according to the FAO-56 model (Allen et al., 1998). Two study fields have been 148 
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monitored during 2002-2003 and 2015-2016 wheat agricultural seasons named by B123 and 149 

F16, respectively. Both fields were irrigated by flood gravitation irrigation systems. Flowmeters 150 

were used to collect precisely the irrigation volumes of the two irrigated fields. Irrigation was 151 

applied every 1 to 3 weeks from December 2015 to April 2016 during the 2015–2016 season. 152 

The 4 ha F16 field was irrigated 8 times with a volume of 64 mm each, while the B123 field 153 

was irrigated 4 times with a volume of 24 mm each. These fields are located in an irrigated 154 

perimeter named by R3 situated about 40 km east of the city of Marrakech (31°40′9.46″N, 155 

7°35′45.64″W). The B123 and F16 fields occupied an area of approximately 4 ha each (0.85 156 

km * 4.15 km) involving 7 pixels. The surrounding two fields were also cultivated with wheat 157 

crops and were similar to the same irrigation system. Both fields were known for high clay 158 

contents (47%) and 18% of sand fraction. The sowing dates were the 13th December 2015 and 159 

14th January 2003 for the F16 and B123 irrigated sites, respectively (Amazirh et al., 2017; 160 

Olivera-Guerra et al., 2018). 161 

 162 

Figure 1: Location of the study area R3 (red rectangle). Study fields are illustrated with blue 163 

rectangles.  164 

2.2. Experimental data set  165 

2.2.1. Weather station  166 
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During the investigated agricultural seasons, an experiment has been set up for each site. An 167 

automatic weather station was set up, over an alfalfa cover near the studied wheat fields, to 168 

provide continuous climatological data at a sub-hourly time step, including air temperature (Ta, 169 

HMP60, Vaisala, Oyj, Helsinki, Finland), relative humidity (rha, HMP60, Vaisala, Oyj, 170 

Helsinki, Finland), solar radiation (Rg, pyranometer, LI-COR LI-200X, Lincoln, NE, USA), 171 

wind velocity (ua, anemometer, R.M. Young 3002, Traverse City, USA) and precipitation (P, 172 

automatic rain gauge, Texas Electronics TE525 MM, USA). Reference evapotranspiration 173 

(ET0) was calculated on a daily basis using the Penman-Monteith equation for short canopies 174 

(Allen et al., 1998).  175 

2.2.2. Eddy covariance stations 176 

Each field was equipped with an eddy covariance station (EC) consisting of a 3D sonic 177 

anemometer (CSAT3, Campbell Scientific Ltd. Logan, UT, USA) that measures the three 178 

components of wind speed and a Krypton hygrometer (KH21, Campbell Scientific Ltd. Logan, 179 

UT), providing continuous measurements of energy fluxes, vertical sensible heat (Hobs) and 180 

latent heat (LEobs) fluxes which is equivalent to ETc act obs. The net radiometer (Kipp and Zonen 181 

CNR4, Campbell Sci, Delft, The Netherlands) measured the surface net radiation (Rn) at 2.6 m 182 

height and the soil heat flux (G) was measured at 5 cm depth by using two heat flux plates 183 

(HPF01, Campbell Sci, Logan, USA) over the wheat crop fields. An average output of the two 184 

plates was used. The two plates were buried with thermocouples at two depths to account for 185 

heat storage. Note that, the EC systems were installed at a height of 2.6 m, and the maximum 186 

height of wheat was 0.74 m and 0.90 m for B123 (2002-2003) and F16 (2015-2016) sites, 187 

respectively. Therefore, the EC system was at least 1.70 m above the canopy. The choice of the 188 

installation height actually resulted in a compromise between two constraints: 1) sampling 189 

within the field for a range of wind directions and 2) measuring above the roughness layer all 190 

along the agricultural season. The relative height of 1.70 m above the canopy ensures that the 191 

EC is in the constant flux layer, which is located approximately 1.5-2 canopy heights above the 192 

soil surface (Burba, 2013). The two energy fluxes were extracted from KH21 hygrometer 193 

measurements, which quantify the fluctuations of atmospheric water vapor and temperature. 194 

The collected raw EC data at 20 Hz are processed in the laboratory using the EC-pack software 195 

developed by the Meteorology and Air Quality Group, Wageningen University (available for 196 

download at http://www.met.wau.nl/). The flux tower ETc act is calculated as a multiplication of 197 

the air density by the fluctuation of the mean density of water vapor in the air, the fluctuation 198 

of the mean vertical wind velocity, and the latent heat of vaporization. Before using such an 199 

http://www.met.wau.nl/
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energy flux data set, a verification of the reliability and the quality of these measurements is 200 

needed. The energy balance closure is a way to assess that, by comparing the surface available 201 

energy (Rn-G) to the sum of turbulent fluxes (Hobs+ LEobs). For the F16 field, the energy budget 202 

closure was achieved in Amazirh et al. (2017). The ratio of the turbulent energy flux to available 203 

energy (EBR) was 78%, with a strong coefficient of determination (R2=0.91), while for B123 204 

field, the EBR is equal to 80% with an R2 equal to 0.92 (Er-Raki et al., 2011). The slope of the 205 

regression forced through the origin was about 1.30 and 1.22 for F16 and B123 fields, 206 

respectively. The closure error is close to 10 % for both field which is in the acceptable ranges 207 

(from 10% to 30%) reported in Twine et al. (2000). The obtained results are relatively good and 208 

the closure of the energy balance is relatively well verified in comparison with other studies 209 

(Elfarkh et al., 2021; Testi et al., 2004; Twine et al., 2000). To correct some small uncertainties 210 

of non-closure of the energy balance, the Bowen ratio was used to recompute H and LE by 211 

forcing the energy balance closure with the measured values of Bowen ratio. The observed data 212 

were carefully processed and rigorously screened, some gaps were observed in the collected 213 

data, these data were excluded. 214 

2.2.3. In situ soil moisture and land surface temperature measurements 215 

Soil moisture data were also collected over both sites at different depths (5, 10, 20, 30, 50, 70 216 

cm), at a half-hourly time step, using time-domain reflectometer (TDR) probes buried under 217 

the eddy covariance system for each field. Only one point was selected under the eddy 218 

covariance stations for each field. This is due to fact that the fields are irrigated with flooding 219 

system which implies a homogeneous fraction of wetted areas, where all the pixels have the 220 

same percentage of irrigation water, which means uniform soil moisture within the site. Also, 221 

the wheat crop covers the field uniformly (uniform distribution of seeds), which means that the 222 

shaded area within the field is uniform. This homogeneity all over the field could explain the 223 

use of one location instead of several locations. Note that, SM was measured up to 0.7 m, but 224 

only data from 0.05 to 0.5 m were used in this study. This is due to, the measured rooting depths 225 

which are 0.52 and 0.50 m for F16 and B123 fields (Er-Raki et al., 2007). The collected SM 226 

data were calibrated using the gravimetric technique by taking soil samples at each depth. SM 227 

at the surface was used in this study to improve soil Es through assimilation technic. 228 

In addition, brightness surface temperature (Tbs) was measured by an Apogee 8–14 μm thermal 229 

radiometer sensor (SI-121, Apogee IRTS-P's, Inc., Logan, Utah, USA) in each field, set up at a 230 

2 m height looking at nadir. The Tbs is corrected from sensor errors using the sensor body 231 
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temperature, then was converted to surface temperature as in Tardy et al. (2016), using the 232 

approach proposed by Olioso (1995). The thermal data were corrected from atmospheric effects 233 

using the spectral atmospheric transmission and the atmospheric downwelling and upwelling 234 

radiances. The atmospheric parameters are obtained from an atmospheric radiative transfer 235 

model (MODTRAN, Berk et al., 2005). Finally, LST was estimated by inverting the simplified 236 

Plank’s law. The derived spectral atmospheric parameters and the surface emissivity permit the 237 

conversion of the at-sensor radiance into the top of canopy radiance exempt from atmospheric 238 

effects. The corrected temperature was used to improve Tc act by updating the stress coefficient 239 

(Ks). 240 

2.3. Remote sensing data  241 

In this work, Landsat-7 (L7) and Landsat-8 (L8) data were used to provide land surface 242 

temperature (LST) while SMAP data were used to extract surface soil moisture (SM) Table (1). 243 

Only data over the F16 field were derived because SMAP sensor was launched in 2015 and 244 

B123 field was set in 2002. 245 

2.3.1. Landsat data 246 

L7 ETM+ and L8 OLI-TIRS were used in this study. The surface reflectance and thermal 247 

radiance (TIR) were downloaded from the USGS website (https://earthexplorer.usgs.gov/). L7 248 

provides one thermal band (band 6) while the L8 provides two thermal bands (bands 10 and 11) 249 

but only band 11 was considered which is recommended to be used regarding the quality. TIR 250 

data were freely acquired with a spatial resolution of 60 and 100 m for L7 and L8, respectively. 251 

The revisit time for each sensor is 16 days with an 8-day offset between the two overpasses, 252 

which offers TIR data every 8 days. 13 cloud-free images were collected in the 2015-2016 253 

agricultural season over F16 study field. As mentioned in section 2.1, the F16 field occupied an 254 

area of approximately 4 ha (0.85 km × 4.15 km) involving 7 pixels. However, a selection of the 255 

pixel where the eddy covariance system was installed has been performed to overcome the edge 256 

problem, which can involve the pixels of the surrounded fields. Even if an average over the 257 

field was made, it would not impact the results because the surrounding fields are also cultivated 258 

with wheat crop with the same irrigation system (gravity) and at the same time. 259 

L7 and L8 have different resolutions, a rescaling approach is needed. Since the spatial resolution 260 

of L7 thermal data (60 m) is much finer than spatial resolution of L8 thermal data (100 m), the 261 

60 m TIR data were resampled linearly to 100 m resolution which is the lowest spatial resolution 262 

between L7 and L8. The 13 TIR data were then preprocessed to extract the LST. TIR data were 263 

https://earthexplorer.usgs.gov/
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converted to LST data after applying atmospheric correction and correction of surface 264 

emissivity. The followed steps are described in Tardy et al. (2016) and the same processing 265 

chain was used in Amazirh et al. (2019, 2018). The different correction steps defined in Tardy 266 

et al. (2016) allow converting the Landsat digital number to top of atmosphere radiance to top 267 

of canopy radiance then, to the physical LST at the surface. An atmospheric correction of the 268 

thermal infrared bands’ data was firstly carried out using the MODTRAN atmospheric radiative 269 

transfer model software. The atmospheric profile composition (vertical air temperature and 270 

water content) needed as input to the model has been obtained from the ECMWF European 271 

Reanalysis (ERA) Interim product (Dee et al., 2011). As the second step, the at-sensor radiance 272 

was converted into surface radiance using the estimated surface emissivity. Then the LST was 273 

obtained by inverting Plank's law. 274 

2.3.2. SMAP 275 

 SMAP mission was launched in January 2015. This satellite was launched by the National 276 

Aeronautics and Space Administration (NASA) with an L-band passive sensor onboard 277 

(Entekhabi et al., 2014). SMAP satellite (Entekhabi et al., 2014) is the first L-band mission that 278 

combines both radiometer (passive) and radar (active) data dedicated to the study of soil 279 

moisture at a range of resolutions from 3 km (active) to 36 km (passive) with a revisit cycle of 280 

2–3 days. It orbits at an altitude of 658 km and provides SM from both descending and 281 

ascending overpasses. Despite the high frequency of SMAP data acquisition, the spatial 282 

resolution is very low which limits their application, especially to agricultural fields. To fill the 283 

gap, many disaggregation methodologies were developed to provide SM at high spatial 284 

resolution (Abbaszadeh et al., 2019; Peng et al., 2017). Ojha et al. (2019) used DISPATCH 285 

(DISaggregation based on Physical And Theoretical scale Change) method to disaggregate 36 286 

km-SMAP SM resolution to 100 m resolution. All the followed disaggregation steps were 287 

described in Ojha et al. (2019). Three steps were followed to downscale the 36 km SMAP SM 288 

to 100 m. The 36 km SM is first disaggregated to 1 km resolution using MODIS LST and NDVI 289 

(DISPATCH-1 km). The 1 km resolution disaggregated data is next aggregated to the 290 

intermediate spatial resolution, and then further disaggregated to 100 m resolution using 291 

Landsat-derived LST and NDVI (DISPATCH-100 m). The disaggregation approaches are 292 

based on thermal-derived soil evaporative efficiency (SEE) which is a normalization of LST 293 

data by its maximum and minimum values derived from the energy balance model. The 294 

disaggregated SMDISPATCH products were evaluated over 22 irrigated fields in the same used 295 

area. The in situ SM measurements have been collected and calibrated as in Amazirh et al. 296 



11 
 

(2018) during the 2015–2016 season. The disaggregation procedure was tested on 7 dates at 297 

Landsat overpass against in situ SM. The evaluation of disaggregated SM was done based on 298 

statistical results in terms of the correlation coefficient (R), the slope of the linear regression, 299 

absolute mean bias, and root mean square difference (RMSD). The results show good results in 300 

terms of R which is ranged between 0.6 and 0.9 with a relatively low absolute bias lower than 301 

0.03 m3/m3. This approach developed by Ojha et al. (2019), was applied during this work to 36 302 

km-SMAP resolution data products, and the disaggregated data set was used in this study. In 303 

this study, only 9 available dates were selected on the Landsat overpass, due to in situ data gaps. 304 

Another issue is that the evaluation was assessed from December 27, 2015 to January June 01, 305 

2016 (winter wheat growth season) which limit the number of satellite overpasses. In addition, 306 

the disaggregated SM products include data gaps, which on some dates unfortunately covered 307 

the wheat site.  308 

Table 1 lists the characteristics and the selected dates of L7/8 and SMAP overpasses used in 309 

this work. 310 

Table 1: Technical characteristics of satellite products and the selected dates collected in clear 311 

sky conditions over the study site. 312 

Sensors 

/Mission 

Acquisition 

Time 

Bands Spatial 

resolution 

(m) 

Temporal 

resolution 

(Day) 

Acquisition date of 

used data  

(2016) 

Soil Moisture 

Active Passive 

(SMAP) 

06:00 

AM/PM 

Brightness 

temperature 

36 km* 2-3  

14, 22, 30 January  

02, 10 March  

03, 27 April  

13, 29 May 

 

Landsat 7 and 

Landsat 8 

(L7/L8) 

~11:30 AM - VNIR+ (L7: B3 & 

B4; L8: B4 & B5) 

- TIR (B6 for L7 and 

B10 et B11 for L8) 

60 m and 100 

for TIR× 

15 m for 

VNIR 

8  

06, 14, 22, 30 January  

07, 23 February  

02, 10, 18 March  

03, 27 April  

21, 29 May 

* SMAP data were disaggregated from 36 km to 100 m resolution.  313 

+ VNIR stands for Visible-near infrared. × TIR stands for Thermal infrared. B stands for Band. 314 
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3. Methodologies  315 

3.1. FAO-56: Dual crop coefficient  316 

FAO-56 (Allen et al., 1998) was extensively used to retrieve ET and irrigation scheduling. This 317 

is due to its operationality and its simplicity of implementation. The FAO dual crop coefficient 318 

(FAO-dualKc) comes to improve the ET estimates by partitioning ET into soil Es and plant Tc 319 

using reduction evaporation coefficient (Ke) and basal crop coefficient (Kcb), respectively, from 320 

standard evapotranspiration (ET0). Under well-watered condition ETc is written as: 321 

 ETc = (Kcb + Ke)ET0            (1) 322 

ET0 being the ET rate over a well-watered crop land covered by a short green, grass-like crop 323 

(reference ET), depending only on atmospheric conditions (ASCE-EWRI, 2004). Equation (1) 324 

depends only on atmospheric conditions and is adapted to non-hydric stressed crops (standard 325 

conditions). To take into account the crop water stress and to catch the real ET (ETc act), a water 326 

stress coefficient (Ks) was introduced into Equation (1) and it becomes:  327 

         ETc act =  ETFAO = KcbKsET0 + KeET0 = Tc act + Es     (2) 328 

Where ETc act ≡ ETFAO is the actual crop evapotranspiration under non-standard conditions. 329 

Kcb, Ke, and Ks are basal crop Tc act coefficient under non-standard conditions, soil evaporation, 330 

and water stress coefficients, respectively. 331 

The Kcb values are defined for each crop growth stage. The wheat growth stages are distinct by 332 

their lengths (initial (Lini), development (Ldev), mid-season (Lmid), and late (Llate)). Lengths of 333 

growth stages are usually calculated based on the fractional vegetation cover (fc) derived from 334 

normalized difference vegetation index (NDVI) as in Er-raki et al. (2008), Er-Raki et al. (2007), 335 

Olivera-Guerra et al. (2018) and Rafi et al. (2019). During the initial stage, Kcb named Kcb ini, 336 

mid-season named Kcb mid, and at the end of the growing season, Kcb named Kcb end where the 337 

values were taken from Allen et al. (1998). Local calibration of the FAO model has been 338 

stressed in this work, by adjusting the default values of lengths of growth stages reported in 339 

FAO based on the different equations provided in FAO-56 for adjusting the Kcb values. Lengths 340 

of growth stages significantly differ from the FAO-56 default values, especially for the duration 341 

of phenological phases. However, the calibrated lengths of growth stages were in accordance 342 

with the NDVI measurements carried out on the site. Note that, the lengths of the growth stage 343 

reported in FAO-56 are informative values which can only be used in locations with no data. 344 

Also, the stages durations are changing from one year to another due to its dependence on the 345 
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thermal accumulation. The Kcb parameter was decomposed into Kcb ini, Kcb mid, and Kcb end. The 346 

Kcb dev is the Kcb during the development stage and is estimated using linear interpolation 347 

between Kcb ini, and Kcb mid. The Kcb was interpolated at the daily scale between the start and 348 

end value (Kcb ini, Kcb mid, Kcb end) of each phenological phase as in the FAO-56 documentation. 349 

Kcb values were adjusted in each growing stage using climatic data. Ke is the evaporation 350 

coefficient which is calculated as: 351 

Ke = min{[Kr(Kc max − Kcb )], [fewKc max]}            (3) 352 

where Kc max is the maximum value of crop coefficient (following rain or irrigation), ranged 353 

from 1.05 to 1.30 and estimated using meteorological data (Allen et al., 1998). few is the fraction 354 

of exposed and wetted soil from which most Es occurs. It is calculated as a function of fraction 355 

cover derived from NDVI as suggested by Er-raki et al. (2007). Kr is the reduction coefficient 356 

of evaporation. This coefficient depends on the amount of water that can be depleted by Es 357 

during a complete drying cycle (TEW) and the cumulative depth of water depleted at the end 358 

of day i-1 (De,i-1). It is calculated as: 359 

              Kr,FAO =
TEW−De,i−1

TEW−REW
      ; De,i-1>REW   (4) 360 

    Kr,FAO = 1                   ; De,i-1<REW 361 

where REW is the readily evaporated water, which is the maximum depth of water that can be 362 

easily evaporated without restriction. REW (mm) depends on soil properties. FAO provides 363 

REW value for each soil texture (Allen et al., 1998) ranging from 5 to 12 mm. To estimate the 364 

maximum amount of water that can be evaporated (TEW), the top layer depth that can be 365 

evaporated (Ze), the soil moisture at field capacity (SMFC), and the soil moisture at wilting point 366 

(SMWP) are required. TEW is calculated as: 367 

TEW = 1000(SMFC − 0.5SMWP)Ze    (5) 368 

SMFC and SMWP are reported for each soil texture classification in FAO-56. 369 

A daily water balance is required to estimate the cumulative depth of Es (depletion) from the 370 

soil surface layer (De). A simplification of the water balance equation was established, where 371 

runoff flux is ignored when working on a flat area. 372 

De,i = De,i−1 − Pi − (
Ii

fw
) +

Es,i

few
+ DPe,i     (6) 373 
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where Pi is precipitation input (mm) on day i and  Ii is irrigation measured for each site (mm) 374 

on day i, Es,i is soil evaporation (mm) on day i, calculated as Ke × ET0 (Allen et al., 1998; Bos 375 

et al., 2008) and fw is the fraction of soil surface wetted by irrigation. In case of irrigation event 376 

or precipitation more than 3 mm/day, fw is taken equal to 1, otherwise, fw is set to zero. In this 377 

study, fields are irrigated by flood-irrigation technique, therefore, fw set to 1 during irrigation 378 

event. The DPe,i is deep percolation loss (downward drainage) from the topsoil layer on day i 379 

(mm). Deep percolation occurs when soil moisture exceeds field capacity following heavy rain 380 

or irrigation. The DPe,i equation assumes that water content is at field capacity so that De,i set 381 

to zero and the Es process switch off on the day of a complete wetting event. From equation (6), 382 

DPe,i  then is calculated as follow: 383 

DPe,i = Pi + (
Ii

fw
) − De,i−1     (7) 384 

The procedure to estimate the transpiration reduction factor Ks [0-1] is similar to Kr.  Ks is 385 

calculated based on a daily computation of the water balance for the root-zone layer Zr (m) 386 

which is written as follow:  387 

Ks,FAO =
TAW−Dr

TAW−RAW
=

TAW−Dr

(1−p)TAW
    (8) 388 

When Dr > RAW the stress is presumed to start, and Ks is calculated using Equation (8). 389 

Conversely, when Dr ≤ RAW then Ks is equal to 1. 390 

Dr is the root zone depletion (mm), TAW is total available water in the root zone [mm], RAW 391 

is readily available soil water of the root zone (p*TAW) and p is the depletion fraction for no 392 

stress which is a fraction of TAW that a crop can extract from the root zone without causing 393 

water stress. The TAW is linked to the root depth and to the difference between the water 394 

content at field capacity and wilting point as expressed in Equation (9): 395 

TAW = 1000(SMFC − SMWP)Zr    (9) 396 

3.2. Assimilation approaches  397 

Through assimilation, we seek to improve first daily soil Es by integrating observed and 398 

remotely sensed SM, then integrating observed and remotely sensed LST into the Tc act rate. 399 

Figure 2 presents an illustration of how the correction is performed using sequential 400 

assimilation to improve state variables using observations to correct the model. The state 401 

variables in our case are the soil Es and the plant Tc act. The used sequential assimilation 402 



15 
 

approach is based on generating an ensemble of perturbations, to obtain the forecast error 403 

covariance information required by the standard Kalman filter update equation. 404 

 405 

Figure 2: Sequential data assimilation principle to obtain corrected value (analysis) by 406 

updating model using observation (Stanev and Schulz-Stellenfleth, 2014). 407 

Two assimilation methods were used, the first one, by assimilating SM into FAO-dualKc soil 408 

Es component and the second, by assimilating jointly SM and LST into FAO-dualKc soil Es 409 

and wheat Tc act. Both approaches are detailed below. 410 

3.2.1. Method 1: SM only 411 

As a first step, SM was assimilated into the FAO model to improve the Es component estimates. 412 

The data assimilation scheme is used to correct the depletion depth De used by the FAO-dualKc 413 

by using first, in situ and then remote sensing SM at field scale integrated into Ke equation. 414 

Data assimilation is based on the use of an optimal and simple linear scheme to sequentially 415 

assimilate Ke as proposed by Schuurmans et al. (2003) and used by Er-Raki et al. (2008). This 416 

method has been chosen due to its simplicity and to keep FAO method operational. The 417 

assimilated Ke is written as: 418 

Ke,New = Ke,FAO + 𝐊𝐞𝐯𝐚𝐩(Ke,SM − Ke,FAO)         (10) 419 

where Kevap is the Kalman gain that minimizes the analyzed error covariance, calculated as:  420 

𝐊𝐞𝐯𝐚𝐩 =
σKe,FAO

2

σKe,FAO
2 +σKe,SM

2      (11) 421 
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𝜎𝐾𝑒,𝐹𝐴𝑂
2  and 𝜎𝐾𝑒,𝑆𝑀

2  are the variances of predicted errors on Ke estimates from FAO-dualKc 422 

model and SM observations, respectively. 423 

Ke,FAO and Ke,New are the estimated Ke by the FAO-dualKc approach before and after data 424 

assimilation, respectively. While Ke,SM is the Ke estimated from SM observations derived from 425 

in situ or SMAP disaggregated data. The Ke,SM is calculated as Equation (3) except that the De 426 

equation is forced by SM data instead of using the water balance model at the surface. The De 427 

equation using SM information is written as follow: 428 

    De = 1000(SMFC − SM𝑜𝑏𝑠)Ze    (12) 429 

3.2.2. Method 2: Combined assimilation of SM and Land Surface Temperature    430 

FAO-dualKc model is based on water balance model to estimate Ks. In order to improve wheat 431 

crop Tc act estimates, surface temperature can be used to reflect the crop water status by 432 

calculating stress index for the root-zone layer. The used assimilation scheme is the same used 433 

for assimilating SM (sequential assimilation): 434 

Ks,New = Ks,FAO + 𝐊𝐬𝐭𝐫𝐞𝐬𝐬(Ks,LST − Ks,FAO)         (13) 435 

where the 𝐊𝐬𝐭𝐫𝐞𝐬𝐬 is the Kalman gain calculated as equation: 436 

𝐊𝐬𝐭𝐫𝐞𝐬𝐬 =
σKs,FAO

2

σKs,FAO
2 +σKs,LST

2              (14) 437 

Ks,FAO is the stress coefficient calculated by water balance in the root zone layer, While Ks,LST 438 

is estimated as a proxy of LST, where the LST is normalized by its maximal and minimal values 439 

as in Idso et al. (1981). 440 

 Ks,LST = LSTproxy =
(LST−Ta)max−(LST−Ta)

(LST−Ta)max−(LST−Ta)min
    (15) 441 

where LST − Ta is the difference between surface temperature and air temperature; (LST− Ta)min 442 

is the lower limit of (LST − Ta) of a surface which is transpiring at the potential rate, and 443 

(LST−Ta)max the expected differential in the case of a non-transpiring crop. 444 

An overview of the methodologies using remote sensing data is represented in the flowcharts, 445 

Figure 3. 446 

 447 
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   448 

 449 

Figure 3: Schematic diagrams presenting an overview of the main inputs, models and outputs 450 

of the assimilation of soil moisture into FAO-dualKc (a) and SM & LST conjointly (b). 451 

Standard FAO-dualKc is also presented in (a). 452 
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4. Results and discussions  453 

4.1. Remote sensing data analysis 454 

4.1.1. Landsat against in situ LST 455 

As an important step for investigating the use of LST data for the assimilation approach, it is 456 

essential to investigate the relevance between the Landsat LST data and in situ measurements. 457 

In this section a comparison between the 100 m Landsat LST and in situ TIR measurements 458 

was performed. In Figure 4, Landsat LST is plotted against in situ LST data in order to check 459 

the reliability of the remote sensed Landsat LST. 460 

 461 

Figure 4:  Land surface temperature derived from Landsat-7 (L7) and -8 (L8) versus in situ 462 
(In situ LST) measurements for F16 field. Line 1:1 (dotted blue line) and regression line 463 

(black solid line) were also presented. 464 

The comparison between both temperatures showed good agreement, with a determination 465 

coefficient equal to 0.95 and an error (RMSE) equal to 2.16 °C. The results are slightly 466 

consistent with the one obtained in Amazirh et al. (2018), where they found an error close to 3 467 

°C, over a field near the study field, by applying the same algorithm used in this work. Landsat 468 

overestimates slightly LST. This is due to the difference in the spatial extent of remotely sensed 469 

and in situ observations, where the Apogee radiometer was installed at a 2-m height, which 470 

limits the spatial representativeness of its measurements. The observed underestimation is quite 471 

similar for both L7 and L8 compared to in situ measurements. An RMSE of 2.33 °C and MBE 472 
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of -1.30 °C were obtained when comparing L-7 and in situ measurements, while when 473 

comparing L8 against in situ LST, an RMSE of 1.98 °C and MBE of -1.18 °C were obtained. 474 

This allows, to combine the both satellites to benefit from the temporal resolution of both 475 

satellites. 476 

4.1.2. TDR against disaggregated-SMAP soil moisture 477 

Before using the 100 m resolution SMAP disaggregated SM (SMDISPATCH), it is important to 478 

check their reliability and quality. To this end, an evaluation against in situ SM over the F16 479 

study field was performed. The comparison results are illustrated in Figure 5. 480 

 481 

Figure 5: Disaggregated SMAP-soil moisture (SMDISPATCH) against in situ soil moisture (In 482 

situ SM) over the F16 field.  Line 1:1 (dotted blue line) and regression line (black solid line) 483 

were also presented. 484 

The comparison results show that SMDISPATCH matches relatively well the TDR in situ 485 

measurements with a root mean square error (RMSE) of 0.05 m3.m-3 and mean bias error of -486 

0.02 m3.m-3. The regression line is close to the 1:1 line and the determination coefficient is 487 

equal to 0.47 which corresponds to Pearson correlation coefficient (R) value equal to 0.69  that 488 

lies in the results range [0.5-0.9] reached by Ojha et al. (2019) over the 22 fields in the same 489 

area. This result is encouraging despite the acceptable statistics considering the localization of 490 
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the in situ measurements within the disaggregated SMAP SM pixel. Moreover, another issue 491 

that could lead to differences between the disaggregated and in situ SM is that the ground SM 492 

sensors are buried at a depth of 5 cm, while the penetration of the L-band wave varies between 493 

2 and 5 cm depending on soil conditions (eg. soil texture). 494 

4.2. In situ evaluation of the assimilation approaches  495 

As an assessment of the assimilation methodologies, this procedure was tested over both B123 496 

and F16 sites. In situ SM and LST data are available over both sites. The first step was to test 497 

the effect of near-surface SM assimilation alone into FAO-dualKc Es component. The second 498 

step was to assess the performance of coupled assimilation of both SM and LST variables into 499 

FAO-dualKc ETc act. Assimilating LST alone into the FAO model was also tested over both 500 

sites. Results (results not shown) indicate that assimilating LST only, slightly improves the ETc 501 

act estimations (an error difference of 0.92 mm/day) and an R2 equal to 0.64 with and an MBE 502 

less than 0.57 m/day for the F16 site. The slightly improvement of ETc act estimates using LST 503 

only is due to the fact that LST data is representing the soil and wheat temperatures and a 504 

partition of LST is needed to incorporate LST data into FAO model. Otherwise, assimilating 505 

LST data into FAO single approach coefficient could improve the ETc act results significantly 506 

as found in Er-Raki et al. (2008).  507 

Figure 6 presents the daily temporal comparison of the ETc act estimates using the assimilation 508 

approaches and the observed ETc act. The statistical results of the assimilation approaches and 509 

the standard FAO-dualKc are presented in Table 2. The ETc act estimates are evaluated by 510 

comparing them with the measured ETc act by the Eddy covariance system from both wheat sites 511 

(B123 and F16). Ground-based SM and LST data are available at a 30 min time scale, which 512 

allows us to choose the number of assimilation dates without restrictions. In our case, an 8-day 513 

frequency was used, which corresponds to the Landsat revisit time-frequency over our study 514 

sites. First only SM data are assimilated (SM-only) then SM and LST couple are assimilated.  515 

 516 
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 517 

 518 

Figure 6: Daily temporal comparison between FAO-dualKc and observed ETc act without 519 

assimilation (ETFAO) and when assimilating SM-only and when assimilating SM and LSTproxy 520 

couple for B123 (top) and F16 (bottom) sites. 521 

Table 2: Statistical analysis of ETc act simulated by the FAO-dualKc before assimilation and 522 

after assimilations for both wheat fields. 523 

Statistics  R2 RMSE (mm/day) MBE (mm/day) 

                                   Fields 

Methods 

 

B123 F16 B123 F16 B123 F16 

ETFAO (no assimilation) 0.72 0.63 1.01 0.98 -0.44 -0.47 

SM-only 0.77 0.85 0.73 0.65 -0.14 -0.32 

SM+LSTproxy 0.77 0.87 0.71 0.55 0.03 -0.14 
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NOTE. ETFAO (no assimilation): open loop FAO model. SM-only: assimilating only soil moisture data 524 

into FAO model. SM+LSTproxy: Assimilating conjointly soil moisture and Land surface temperature 525 

into FAO model. 526 

From Table 2 the RMSE between measured and estimated ETc act using standard FAO-dualKc 527 

(no assimilation) for the F16 and B123 sites are, 0.98 and 1.01 mm/day, respectively. As seen 528 

in Figure 6, without assimilation, standard FAO-dualKc severely underestimates ETc act (see the 529 

MBE values in Table 2). The assimilation of surface soil moisture alone is significantly 530 

improving the estimate of soil Es component, which ameliorates ETc act estimates at the field 531 

scale. Without and with SM assimilation, the RMSE decreases from 0.98 and 1.01 to 0.65 532 

mm/day and 0.73 mm/day, and the R2 increases from 0.63 and 0.72 to 0.85 and 0.77 for F16 533 

and B123, respectively. The classical FAO-dualKc is based on an estimated SM from a 534 

simplified water balance budget (Equation 6), where some water fluxes were neglected in our 535 

case (runoff, deep percolation, and capillarity rise…). Where runoff flux takes place above a 536 

certain threshold value of soil moisture present in the soil (Manabe, 1969), which can generate 537 

some uncertainties. The underestimation of ETc act is observed at the beginning of the season, 538 

during the germination and emergence stage of growing crops and at the end (senescent stage) 539 

of the agricultural season, due to the limitation of the standard FAO-56 model in the estimation 540 

of the Es component where water is lost mainly by Es.  541 

These results are in accordance with several works (Amazirh et al., 2021; Er-Raki et al., 2007; 542 

Olivera-Guerra et al., 2018; Rafi et al., 2019). Realistic dynamics of SM allow reflecting 543 

correctly the water budget closure to catch the variability of soil Es. The better results obtained 544 

when assimilating SM into FAO-dualKc confirm this improvement where the integration of SM 545 

data allows better control of the model variation, and by assimilation, we tend to adjust soil 546 

water content and calibrating FAO-dualKc model. In the classical FAO, the evaporation 547 

coefficient Ke is linked mainly to soil texture based on a standard formulation using SM data 548 

(ad-hoc relationship with soil texture). This could provide a limitation to some extent in the Es 549 

estimation over bare soil conditions (under/overestimation). By assimilating SM, we tend to 550 

correct this issue by adjusting the soil evaporation coefficient, based on a relationship between 551 

SM and Es process taking into account soil types and surface conditions as in Merlin et al. 552 

(2018, 2016). 553 

Results of the coupled assimilation of SM and LST into FAO-dualKc for both sites are also 554 

given in Table 2. As seen from Table 2, combining LST and SM assimilation schemes provides 555 

good results in comparison with standard FAO-dualKc. The RMSE and the bias are reduced 556 

from 0.98 mm/day and -0.47 mm/day to 0.55 mm/day and -0.14 mm/day while R2 increases 557 
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from 0.63 to 0.87 using FAO-dualKc without assimilation and with assimilation of both SM and 558 

LST-proxy conjointly, for F16 site, respectively. These results reveal that the best statistical 559 

parameters are provided by jointly assimilating LSTproxy and SM data. Looking at the results, 560 

for B123 site, it is noticed that the best results are provided when assimilating SM and LST 561 

couple with an RMSE of 0.71 mm/day and MBE equal to 0.03 mm/day. While before 562 

assimilation, the RMSE and MBE values for the ETc act were 1.01 and -0.44 mm/day for the 563 

B123 field, respectively. In the case of assimilating SM and LST couple, the effectiveness of 564 

the assimilation process is mainly dominated by SM assimilation. Overall, the assimilation 565 

approaches provide better results than the standard FAO-56. For F16 sites as an example, the 566 

main discrepancies between ETc act estimates before and after assimilation can be observed 567 

during the development (between December 2015 to January 31, 2016) and late (from 10 May 568 

to the end of the season) stages due to great differences in Ke estimates and thus in Es. Late in 569 

the season, a difference is observed between Es estimates before and after the assimilation 570 

procedure. In the standard FAO which is based on daily water balance, the water in the surface 571 

evaporable layer is fully depleted means Ke,FAO ~ 0, and Es≈0.. Whereas, when assimilating SM, 572 

we tend to update the Ke, and then the evaporation increases to catch better the EC observations. 573 

The increase in Es can be explained by an increase of the sun-exposed soil due to the reduction 574 

of vegetation and the capillary rise from the root zone, which can be detected from the SM 575 

assimilated into the Es estimates. Moreover, the underestimation of Es by FAO-56 could be 576 

explained by the definition of the depth of Ze, where a 5 cm SM was used in this study to be 577 

consistent with the remote sensing depth. As FAO suggested, Ze should be ranging from 0.10-578 

0.15 cm based on the soil texture and this could affect the final result of Es estimation as shown 579 

previously in Amazirh et al. (2021). 580 

4.3. Assimilating remote sensing data into FAO-dualKc 581 

To evaluate the spatial extensibility of the assimilation scheme, the daily ETc act over the 582 

selected F16 field during 2015–2016 was simulated at a spatial resolution of 100 m. Only F16 583 

was chosen for the spatial analysis due to the availability of thermal data at high spatio-temporal 584 

resolution as Landsat 7 and 8 data as well as SM data derived from SMAP. In this case, SM 585 

data was derived from SMAP data product, which were disaggregated to 100 m (Ojha et al., 586 

2019), and LST data were derived from Landsat-7 and Landsat-8 data. As the in situ evaluation, 587 

two assimilation techniques were tested: SM only and assimilating jointly SM and LSTproxy 588 

couple into FAO model. Figures 7 and 8 present the scatter and time series plots of the obtained 589 

results using the assimilation techniques, respectively. 590 
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  591 
Figure 7: Scatter plot comparison between FAO-dualKc and observed ETc act (ETobs) without 592 

assimilation ‘ETFAO’ (a), when assimilating only soil moisture ‘SM-only’ (b) and conjointly 593 

soil moisture and land surface temperature ‘SM and LST’ (c). 594 
  595 
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 596 
Figure 8: Daily temporal comparison between FAO-dualKc and observed ETc act (ETobs) 597 

without assimilation and when assimilating SM-only (SMNew (SM-only)) and conjointly SM 598 

and LST-proxy (SMNew (SM + LSTproxy)). The ETSM is presented also (yellow hexagram) 599 

indicating the assimilation dates. 600 

From the obtained results in Figures 7 and 8, the assimilation approaches tend to improve the 601 

ETc act estimates either using the proposed assimilation approaches. In the first case, the 602 

SMDISPATCH products are only assimilated into FAO-dualKc. Figures 7 and 8 compare the results 603 

of the assimilation procedure with the one from the open-loop ETFAO (no assimilation, Figure 604 

7a and Figure 8 ‘red line’). When assimilating the SMAP based disaggregated SMDISPATCH 605 

(Figure 7b and Figure 8 ‘green line’), the ETc act estimates is improved where the error is reduced 606 

compared to ETFAO from 0.98 mm/day to 0.75 mm/day, as well as the bias decreased from -607 

0.47 mm/day to -0.06 mm/day. For the other case, when coupled assimilation of SMDISPATCH 608 

and LST through using the normalized LST proxy, the RMSE is equal to 0.73 mm/day with a 609 

bias that doesn’t exceed 0.15 mm/day. Comparing both assimilation approaches, the lowest 610 

RMSE is assessed by assimilating both SM and LST into FAO model (Figure 7c and Figure 8 611 

‘blue line’). Without assimilation (ETFAO), FAO-dualKc severely underestimates ETc act during 612 

the senescence period (Figure 7a), where both assimilation experiments have slightly similar 613 

accuracy in ETc act estimates. This is seen especially at the beginning and the end of the wheat 614 

growing season (Figure 8), where the SM improves the soil Es when soil is under bare soil 615 

conditions.  616 

We note that the assimilation using in situ data provided better and more accurate results than 617 

using remote sensing ones. This is due first to the data, where in situ data are the truth 618 
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observations while the remotely sensed ones are estimated from model (Dispatch for SM) or 619 

corrected (MODTRAN for LST) which generate a cumulated error. In this study a proxy of 620 

LST was used, therefore the observed error of 2.16 °C when comparing Landsat LST and in 621 

situ LST may less impact the ETc act results since a relative value of LST data (between 0-1) 622 

was used. Then the frequency of the in situ perturbations (observations) is higher than the 623 

remote sensing data (cloud effects and satellite revisit time). This could also impact the results, 624 

where the higher assimilation frequency (sequence), the better the ETc act estimates are, as found 625 

in Er-raki et al., (2008) and Fu et al. (2018). The assimilation of SM allows the updating of the 626 

surface depletion (De), thus controlling the water budget at the surface then updating the Ke 627 

coefficient of evaporation. By integrating the LST information, this allows the updating of the 628 

root zone depletion Dr, which controls the temporal course of the root zone water budget, which 629 

leads to correcting the Ks values. The idea of assimilating LST into the stress coefficient is to 630 

improve the transpiration component. Both sites were well irrigated, and the stress appears just 631 

in some periods during the investigated study. The real impact of LST on the water balance at 632 

the root zone could be seen clearly in the case of a field that undergoes several stress periods 633 

when irrigation is deliberately cut. In this study, just on some dates that the field is undergoing 634 

stress period and by assimilating LST into FAO model we succeeded to capture the stress 635 

periods. To better observe the difference on the assimilated Ke,SM and the surface water balance 636 

based Ke,FAO, Figure 9 illustrates the temporal course comparison between the estimated Ke by 637 

FAO-dualKc model without and with SM assimilation during 2015-2016 growing season for 638 

F16 field. 639 

  640 

Figure 9: Comparison between the FAO-dualKc evaporation coefficient Ke,FAO before 641 

assimilation (red line) and the updated one (Ke,New) after assimilation (blue line). The Ke,SM is 642 



27 
 

presented also (black rectangles) indicating the assimilation dates. Precipitation and 643 

irrigation events are shown as yellow and light blue bars, respectively. 644 

As seen from Figure 9, Ke ranges from 0 to 1.2 for both cases. Nine available dates are used for 645 

the SM assimilation when SMAP SMDISPATCH data are available. For dry conditions (absence 646 

of irrigation or precipitation, e.g. from the 15th to 31st of January), an increase in the surface 647 

depletion leads to a decrease of both Ke and an increase of Es surface resistance, which induces 648 

water stress at the surface. While, after an irrigation or rainfall, soil evaporates at a potential 649 

rate when the soil resistance is decreasing, which leads to an increase of Ke. From Figure 9, the 650 

daily pattern of Ke,FAO, and Ke,New are similar and responds perfectly to water supply 651 

(precipitation or irrigation). Despite that, the assimilated Ke,New is more physical which means 652 

it increased and decreased progressively, especially during the dryness period. This clearly 653 

appears at the 22nd and 11th of January, where the Ke,FAO decreased sharply and suddenly than 654 

the Ke,New that decreased gradually and slowly. It can be concluded that SM assimilation tends 655 

to adjust the duration of the dryness phenomena when the water content in the upper soil 656 

becomes limiting, taken into account the soil properties as shown in Amazirh et al. (2021). 657 

Especially in stage 2 when soil moisture is the limiting factor, the Ke,New decreases progressively 658 

depending on the soil properties, this because of the response and the soil drying time which is 659 

well taken into account in the Ke,New approach. For the coupled assimilation, the Ke,New was 660 

taken to update the Es component, while the introduction of LST data will update the stress 661 

coefficient Ks. Figure 10 shows the time variation comparison between the estimated Ks by 662 

FAO-56 model with assimilation (Ks,New) and without assimilation (Ks,FAO). 663 
 664 

 665 
Figure 10: Comparison between the FAO-dualKc stress coefficient Ks,FAO before assimilation 666 

(red line) and the updated one (Ks,New) after assimilating LSTproxy and SM couple (blue line). 667 
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The Ks,SM (black diamonds) and Ks,T (pink diamonds ) are presented indicating the SM and 668 

LST assimilation dates, respectively. 669 

Looking at Figure 10, it can be seen that the Ks,FAO, and Ks,New follow the same variation and in 670 

some cases are superposed. Ks reached the value 1 when the Dr is lower than RAW, these cases 671 

appeared when the water is supplied by rain or irrigation (Figure 10). When the water supply is 672 

insufficient or ET0 is very high, the root zone depletion increased, and the Ks value dropped 673 

below the value 1, which generated wheat stress. The removal of water by ETc act leads to 674 

activation and an increasing in wheat stomatal resistance as well as an increasing in soil water 675 

depletion, and this induced water stress conditions. Ks,New simulates stress conditions in a more 676 

pronounced way than the classical FAO-dualKc. Both Ks before and after assimilation 677 

responded to water supply and reach the value 1. The main discrepancies between both methods 678 

are observed when Ks dropped below 1, where the Ks,FAO abruptly decreased while Ks,New 679 

decreased progressively.  680 

As seen, the flood-irrigated field (F16) was irrigated every 1 to 3 weeks depending on 681 

precipitation and a sum of 8 irrigations were observed. Generally, the field was well irrigated 682 

and under minimal stress. This makes quantifying the impact of assimilating LST into the FAO-683 

ETc act estimation difficult. However, the stress periods were detected when assimilating LST 684 

into Ks. 685 

Conclusions 686 

The investigated work deals with improving actual crop evapotranspiration (ETc act) estimates 687 

using data assimilation techniques. The idea was to improve the accuracy of the FAO-dualKc 688 

ET components through assimilating remote sensing data. Surface soil moisture (SM) data is 689 

assimilated in order to update soil evaporation and land surface temperature (LST) is 690 

assimilated to update the crop wheat transpiration (Tc act). In situ SM and LST data are firstly 691 

assimilated at the point scale. Then SMAP disaggregated SM and Landsat derived LST was 692 

used at field scale. The investigated techniques were tested over two different fields in central 693 

Morocco, during the 2002-2003 and 2015-2016 wheat growing seasons, respectively. Our 694 

results point out that by assimilating only the SM data, we yield a very satisfying estimation of 695 

ETc act. The modelled ETc act tracks successfully the ETc act observation. By coupling SM and 696 

LST assimilation, the ETc act estimates are slightly improved compared to assimilating only SM 697 

data. However, some uncertainties were observed, and this could be due to the sensing depth of 698 

SM data. The assimilation technique has demonstrated the potential of inferring valuable 699 

information from remotely sensed land surface data (SM and LST) for evaluating distributed 700 
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water balance models, given that forcing data (including irrigation) are accurately known. The 701 

proposed study showed its capability to retrieve ETc act at field scale, a spatialization of ETc act 702 

is needed. This could be done by using LST and SM products at high resolution (Amazirh et 703 

al., 2019; Ojha et al., 2019). Recently, Amazirh et al. (2021) proposed a new Es formulation by 704 

including the soil texture information into the reduction coefficient (Kr). The proposed 705 

formulation demonstrates its better performance than the classical FAO. Combining the 706 

assimilation of SM into Es formulation developed in Amazirh et al. (2021) could provide more 707 

accurate results by improving the Es component. 708 
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