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Abstract

Motivation: Over the centuries, there have been occurrences of var-
ious viral pandemics, one after another. There were major outbreaks
caused by the Ebola virus, influenza virus, Mers-COV virus, Sars-COV
virus, and most recently, the COVID-19 pandemic caused by Sars-COV-2.
These pandemics caused havoc in the world, killed millions of humans and
severely effected the world economy. Statistics indicate that COVID-19
will probably become endemic very soon. However, as the cases of mon-
keypox caused by the monkeypox virus (MPV) are seen to be increasing
rapidly, there are fears that we might enter into another pandemic. The
COVID-19 pandemic researchers faced numerous challenges in creating a
viable vaccine, including a scarcity of time, high costs, and the potential
for adverse effects due to lack of proper testing. In order to avoid these
problems now use of existing drugs seem to be the best way to treat the
infected individuals. This is called drug repositioning. This research aims
to repurpose existing drugs for treating monkeypox. We aim to solve
the problem of drug-virus interaction (DVA) through deep probabilistic
matrix factorization with graph regularization. Here, we recast the cu-
rated database of drug–virus associations as a binary matrix, indicating
whether the specific drug (from row) has been utilized for treating the
associated virus (from column). This matrix is sparse. Prospective treat-
ment regimes planning (using existing drugs) require to infer the missing
entries of this matrix. We also utilize metadata for drugs and viruses, ob-
tained from chemical and mechanism of action based similarities between
drugs and genomic and symptomatic similarities between the viruses. We
demonstrate that our proposed approach significantly outperforms state-
of-the-art MF methods. Moreover, when our algorithm is used to make in
silico predictions of anti-virals for monkeypox, it returns the drugs that
are already being used to treat infected patients.This shows the high effi-
cacy of our algorithm.

1



1 Introduction

Monkeypox is a viral disease that usually heals on its own; symptoms usually last
two to four weeks 1. It is rarely life - threatening, but patients may experience
excruciating blister-like sores in delicate areas. Cases in youngsters and persons
with impaired immune systems are more likely to be severe [1].

Monkeypox has historically been present in rural regions of West and Central
Africa. The infection was typically spread by animals to people, so there wasn’t
much dispersion among the populace. But now, as the virus is spreading widely
in countries where monkeypox is not regularly found, the current outbreak is
an extremely rare occurrence and a matter of great concern 2.

Monkeypox is not just a threat to nations in west and central Africa, but
is also a major health risk worldwide. In 2003, monkeypox was first detected
outside of Africa in the United States, where contact with infected prairie dogs
had led to the infection. More than 70 monkeypox cases were reported in the
U.S. during this outbreak. It has also been reported that travelers from Nigeria
have been responsible for monkeypox cases in Israel in September 2018, the
United Kingdom in September 2018, December 2019, May 2021, and May 2022,
Singapore in May 2019, and the United States of America in July and November
2021. As recently as May 2022, monkeypox outbreaks have been reported in
a number of non-endemic nations 3. Case numbers quickly increased in the
aftermath of this report. More than 1,500 cases had been documented in 43
countries by June 10, 2022, including Europe and North America [2]. Studies
are now being conducted to better understand the epidemiology, sources of
infection and patterns of transmission. The Centers for Disease Control and
Prevention (CDC) confirmed that there are no particular treatments for the
2022 monkeypox virus infection; however, existing antivirals proved effective
against smallpox and may reduce the spread of monkeypox 4.

Given the current global state, the World Health Organization (WHO) has
warned that the world may face another daunting infectious disease crisis. Fur-
thermore, the current increase in number of cases worldwide may continue and
become an international hazard. With this in mind, ways to limit the spread of
the monkeypox virus and finding viable treatments are necessary.

In order to avoid the drastic situation faced by the researchers during the
COVID-19 pandemic, where they faced a scarcity of time and resources to de-
velop a viable vaccine as new strains kept on emerging. The best method ap-
pears to be repositioning/repurposing current drugs to treat the disease. In
this strategy, existing drugs (those that have already been approved for use)
are investigated for use in treating novel diseases. Because the relevant drug’s
effects have been well researched, the recommendation and inquiry procedure is

1https://www.cnbc.com/2022/10/01/monkeypox-unlikely-to-be-eliminated-in-the-us-cdc-
says.html

2https://www.cnbc.com/2022/10/01/monkeypox-unlikely-to-be-eliminated-in-the-us-cdc-
says.html

3https://www.who.int/news-room/fact-sheets/detail/monkeypox
4mileto2022new
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less expensive, less dangerous, and faster than producing a new drug or vaccine.
In short, we use existing data about drugs, viruses, and previously verified

drug-virus interactions to train a predictive model, which is then used to predict
interactions between drugs and corresponding viruses.

To put it briefly, we train a predictive model with data already available on
drugs, viruses, and previously confirmed drug-virus interactions. This model
is then used to anticipate unknown interactions between drugs and the corre-
sponding viruses.

2 Approach

Traditionally, neighborhood models, matrix completion models, network diffu-
sion models, and feature-based classification models have been used to solve
the drug-virus interaction predicition problem. Recent empirical research using
well-known drug-target interaction databases [3] shows that matrix completion
models perform best at making drug virus association predictions.

Therefore, in this paper, we propose to solve the problem of drug-virus
association prediction using graph regularized deep probabilistic matrix factor-
ization. We offer a novel, theoretically sound approach (DPMFG framework)
for this task.

Our current work is algorithmic in nature. We are proposing a probabilis-
tic formulation for deep matrix factorization on graphs. To the best of our
knowledge, this is the first proposition of a formulation and sounded inference
method, for probabilistic deep matrix factorization. Studies like [4, 5] are not
probabilistic or Bayesian in their formulations as they rely on regular deep neu-
ral networks trained via stochastic gradient descent. Our work can be thought
of as a deep extension of probabilistic graph regularized matrix factorization [6].

We gathered data on drugs and viruses, including details on the chemical
makeup and mode of action of drugs as well as the genomic sequences and
symptoms related to viruses. In order to make graph-regularized approaches
applicable, we then expressed it as drug and virus similarity matrices. Our
models are assessed using a variety of metrics, including AUC, AUPR, precision,
and recall. Additionally, using computational methods, we forecast potential
medications that could be successful against the relevant viruses, including the
novel Monkeypox virus.

3 Background

This section provides an introduction to matrix factorization approaches for
matrix completion.

3.1 Matrix Completion Problem

Let us consider that we have a partially known matrix Y ∈ R
N×M , and we have

to recover a full matrix R ∈ R
N×M from it. Let us define the set D as the set
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of indices belonging to the partially observed matrix:

D = {i ∈ {1, . . . , N}, j ∈ {1, . . . ,M} s.t. (i, j) is observed}.

The partially known matrix Y can be expressed as:

Y = B ⊙R, (1)

where ⊙ is the Hadamard product and matrix B ∈ {0, 1}N×M masks the indexes
outside the set D, and is defined such that Bij = 1 if (i, j) ∈ D, and Bij = 0
otherwise.

The task of matrix completion (MC) is to recover the entries of R (or equiv-
alently, of Y ) that do not belong to the set of observed indices D.

3.2 Matrix Factorization (MF)

In MF [7], the missing entries in matrix R are recovered by minimizing a simple
least-squares function under some structural prior constraints on R. Specifically,
R is assumed to be the product of two matrices U1 ∈ R

N×K and U2 ∈ R
K×M ,

where K ≥ 1 defines a latent space dimension (typically low compared to
(N,M)). The matrices U1 and U2 are inferred by solving:

minimize
U1,U2

‖Y −B ⊙ (U1U2)‖
2
F . (2)

Then, the full matrix is recovered as R = U1U2. The problem (2) is, however,
still ill-posed, and additional priors are frequently added to produce better so-
lutions.

The NMF (nonnegative MF) formulation, created by imposing a positivity
constraint on the entries of the latent components (U1, U2), is probably one of
the most well-known formulations. Nuclear norm minimization [8] is another
strategy imposing low rank on R. In such approaches, additional regularization
procedures based on graph modelling have been considered in [9] and [10], re-
spectively. The so-called deep MF method, which is studied, for example, in
the context of MC in [11], relies on MF models with more than two components
(i.e., factors). The recent study [12] has proposed a graph regularized variant
for deep MC.

3.3 Probabilistic Matrix Factorization (PMF)

PMF [13] introduces probabilistic models on the latent factors U1 and U2 in the
aforementioned MF formulation. Precisely:

• Each observed entry (Yij)(i,j)∈D is assumed to be the realization of a
Gaussian distribution, with mean [U1U2]i,j and variance σ2 (positive scalar
assumed to be known).

• Each observed entry ([U1]ik)1≤i≤N,1≤k≤K is assumed to to be the realiza-
tion of a Gaussian distribution with zero mean and variance σ2

U1
(positive

scalar assumed to be known).
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• Each observed entry ([U2]kj)1≤k≤K,1≤j≤M is assumed to to be the realiza-
tion of a Gaussian distribution with zero mean and variance σ2

U2
(positive

scalar assumed to be known).

The maximum a posteriori (MAP) estimator of (U1, U2) given Y , associated
with the above model is obtained by solving:

minimize
U1,U2

1

2σ2
‖Y − B ⊙ (U1U2)‖

2
F +

1

2σ2
U1

‖U1‖
2
F +

1

2σ2
U2

‖U2‖
2
F . (3)

The minimization of the above cost function with respect to U1 (resp. U2)
amounts to inverting a linear system, which can be performed using a con-
jugate gradient solver (for instance). The PMF formulation can be enhanced
by incorporating correlated Gaussian distributions, which results in the PMFG
formulation described hereafter.

3.4 Probabilistic Matrix Factorization with Graph regu-
larization (PMFG)

A graph regularization approach, called PMFG, is introduced in [6], to the prior
distributions of U1 and U2. This strategy entails jointly inferring correlations
along the rows (resp. columns) of U1 (resp. U2), in top of estimating the factors
U1 and U2. Two precision matrices, ΓU1

∈ S++
N and ΓU2

∈ S++
M , are used

to model these correlations. Here, we denote SN (resp. S++
N ) as the set of

symmetric (resp. symmetric positive definite matrices) of size N × N . Hence,
the PMFG prior can be explained as:

• The columns ([U1]:,k)1≤k≤K ∈ R
N of U1 are independent realizations of a

multivariate Gaussian distribution with zero mean and covariance CU1
=

Γ−1
U1

;

• The rows ([U2]k,:)1≤k≤K ∈ R
M of U2, are independent realizations of a

multivariate Gaussian distribution with zero mean and covariance CU2
=

Γ−1
U2

.

The precision matrices ΓU1
and ΓU2

are related to Gaussian graphical models
associated with the two underlying Gaussian distributions [14], which justifies
the name for graph regularization. Expressly, the matrix ΓU1

(resp. ΓU2
) can

be understood as the adjacency matrix of an undirected graph where each edge
(i.e., non zero entry in the precision matrix) identifies with two entries of [U1]:,k
(resp. [U2]k,:) being correlated, given all the others.

The MAP estimate can now be obtained by solving:

minimize
U1, U2,ΓU1

,ΓU2

1

2σ2
‖Y −B ⊙ (U1U2)‖

2
F +

1

2
tr(U1

⊤ΓU1
U1)

+
1

2
L(ΓU1

) +
1

2
tr(U2ΓU2

U2
⊤) +

1

2
L(ΓU2

), (4)
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where tr(·) denotes the trace operation and

(∀ΓU1
∈ SN ) L(ΓU1

) =

{

− ln det(ΓU1
) if ΓU1

∈ S++
N

+∞ otherwise
(5)

with det(·) the determinant operation.

The PMFG formulation does not include any physical information for the
sought factors (U1, U2). However, such expert knowledge is present in many
applications and determines if specific correlations between the variables are
more or less likely. Extending the PMFG paradigm, the current work aims to
propose a novel formulation to account for such prior knowledge.

4 Proposed Formulation

4.1 Incorporating the prior knowledge as regularization

It is expected that one expert has access to some prior information about the
position of the graph edges (i.e. non zero elements in the precision matrices ΓU1

and ΓU2
). Following our previous work on drug-drug interaction [15], we propose

to incorporate such expert knowledge through an extra regularization term in
the loss function. Two symmetric adjacency matrices, AU1

∈ [0,+∞)N×N and
AU2

∈ [0,+∞)M×M , play a fundamental role in this new prior. These matrices,
set by the user, are used to eliminate erroneous edges and favor anticipated ones
in the estimated graph:

• [ΓU1
]ij = [ΓU1

]ji should be encouraged to be high if [AU1
]ij is large for

some (i, j) with i 6= j.

• [ΓU1
]ij = [ΓU1

]ji should be encouraged to be low if [AU1
]ij is small for

some (i, j) with i 6= j.

Similar prior is enforced on the second pair (AU2
,ΓU2

).
In order to build a suitable regularization function, we introduce the follow-

ing sets:

EU1
= {(i, j) ∈ {1, . . . , N}2, i 6= j and [AU1

]ij > τ} (6)

EU1
= {(i, j) ∈ {1, . . . , N}2, i 6= j and [AU1

]ij ≤ τ} (7)

EU2
= {(i, j) ∈ {1, . . . ,M}2, i 6= j and [AU2

]ij > τ} (8)

EU2
= {(i, j) ∈ {1, . . . ,M}2, i 6= j and [AU2

]ij ≤ τ} (9)

with τ ≥ 0 a given detection threshold. We propose to use an ℓ1 term to promote
sparsity in the regions where edges should not appear (i.e., EU1

and EU2
), while

we introduce a log-barrier term, smoothed by δ > 0, in regions where edges
should be promoted (i.e., EU1

and EU2
). A quadratic term that can be viewed
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as an elastic-net penalty is added to avoid unbounded values in the entries of
the sought covariance matrices.

In previously introduced MF-based formulations, for instance in PMFG, the
non-linearity introduced by the factor B ⊙ U1U2 inside the least-squares data
fidelity term makes the minimization problem intricated. To stabilize conver-
gence, we finally propose to introduce an auxiliary variable X ∈ R

N×M , that we
penalize so as to be close to the product U1U2. As a result, the binary mask B

and the factorized expression U1U2 are splitting, which simplifies the resolution
through an alternating minimization method.

In a nutshell, we end up with solving:

minimize
X,U1, U2,ΓU1

,ΓU2

1

2σ2
‖Y −B ⊙X‖2F

+
1

2
tr(U1

⊤ΓU1
U1) +

1

2
L(ΓU1

) +
1

2
tr(U2ΓU2

U2
⊤) +

1

2
L(ΓU2

)

+ λU1

∑

i,j∈EU1

|[ΓU1
]ij |+ λU2

∑

i,j∈EU2

|[ΓU2
]ij |

− λU1

∑

i,j∈EU1

ln(|[ΓU1
]ij |+ δ)− λU2

∑

i,j∈EU2

ln(|[ΓU2
]ij |+ δ)

+
λU1

2
‖ΓU1

‖2F +
λU2

2
‖ΓU2

‖2F +
λR

2
‖X − U1U2‖

2
F . (10)

Parameter λR > 0 controls the fulfillment of the equality constraint X =
U1U2 while parameters (λU1

, λU2
) > 0 control the regularization imposed on

both precision matrices.

4.2 Integrating deep structure within PMF

The widespread use of deep learning has led to the development of deeper ver-
sions of shallow models [16, 17, 18]. Recently, [19] proposed a matrix completion
problem involving deep factorization. Following these recent lines, we propose to
generalize the previous model by considering that X can be factorized into more
than 2 factors. Without losing in generality, we explicit our methodology in the
case of three factors (i.e., 2 layers), denoted U1 ∈ R

N×k1 , U2 ∈ R
k1×k2 , U3 ∈

R
k2×M . Parameters k1 and k2 represent the (usually small) latent factor di-

mensions, typically finetuned through cross-validation over a training set. We
preserve the graphical priors on the first and last factors, here U1 and U3, re-
lated to precision matrices ΓU1

and ΓU3
. No expert knowledge is introduced for
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the middle factors (here, U2). The resulting minimization problem now reads:

minimize
X ∈ R

N×M , U1 ∈ R
N×k1 , U2 ∈ R

k1×k2 ,

U3 ∈ R
k2×M ,ΓU1

∈ SN ,ΓU3
∈ SM

1

2σ2
‖Y −B ⊙X‖2F +

1

2
tr(U⊤

1 ΓU1
U1)

+
1

2
L(ΓU1

) +
1

2
tr(U3ΓU3

U⊤
3 ) +

1

2
L(ΓU3

)

+ λU1

∑

i,j∈EU1

|[ΓU1
]ij |+ λU3

∑

i,j∈EU3

|[ΓU3
]ij |

− λU1

∑

i,j∈EU1

ln(|[ΓU1
]ij |+ δ)− λU3

∑

i,j∈EU3

ln(|[ΓU3
]ij |+ δ)

+
λU1

2
‖ΓU1

‖2F +
λU3

2
‖ΓU3

‖2F +
λR

2
‖X − U1U2U3‖

2
F . (11)

Note that, in the case of two factors, we retrieve the model from Section 4.1.

4.3 Optimization Algorithm

We propose to use an alternating minimization strategy to solve (10). Hereagain,
we specify it, without loss of generality, in the case of three factors.

Let us denote F (X,U1, U2, U3,ΓU1
,ΓU3

) the loss function presented in (10).

The initial matrix U
(0)
1 is obtained through the singular valued decomposition of

Y = SDZ⊤. We further decompose the right part of the decomposition, DZ⊤,

to initialize U
(0)
2 and U

(0)
3 respectively (for the case with 4 factor matrices, U

(0)
3

and U
(0)
4 would be obtained by decomposing again the right part of the decompo-

sition). Then, starting for an initialization (X(0), U1
(0), U2

(0), U3
(0),Γ

(0)
U1

,Γ
(0)
U3

),
for every iteration p ∈ N, the algorithm updates follow an alternating mini-
mization scheme. The complete method is given in Algorithm 1, when using
P ≥ 1 iterations. The explicit update rules (S1) to (S6) are provided in the
supplementary file.
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Algorithm 1 DPMFG (2 layers) for DVA Prediction

1: Input: Y , AU1
, AU2

.
2: Parameters: (σ, s(0), λR, λU1

, λU3
) > 0, (k1, k2, P, L) ≥ 1.

3: Initialization: Set U1
(0), U2

(0), U3
(0) with SVD of Y .

4: Set ΓU1

(0) = s(0)IdN and ΓU3

(0) = s(0)IdM .
5: Compute EU1

and EU1
using (6) and (7).

6: Compute EU3
and EU3

using (8) and (9).
7: for p = 1, 2, . . . , P iterations
8: Update X(p+1) using (S1)
9: Update U1

(p+1) using (S2)
10: Update U2

(p+1) using (S3)
11: Update U3

(p+1) using (S4)
12: Update ΓU1

(p+1) using (S5)
13: Update ΓU3

(p+1) using (S6)
14: end

15: Return: R = U1
(P )U2

(P )U3
(P )

5 Results

5.1 Dataset Description

We used the DVA dataset [20] to train and assess how well our novel algo-
rithm performed. It combines drugs shown via research to be effective against
viruses affecting people. This dataset contains M = 38 viruses and N = 119
drugs. In addition to the new monkeypox virus, this dataset is very helpful in
analyzing and shortlisting the best effective antivirals for other viruses. Addi-
tionally, it can be used to find viruses that a potential new medicine might tar-
get computationally. Medical professionals can benefit from performing analysis
and improving their comprehension with the help of supplementary metadata
(information about how the drugs and viruses are similar; described in the next
section). The database contains information on human-infecting DNA and RNA
viruses.

5.2 Metadata Computation

The metadata is computed in the similar way as in our previous work [12].
We computed two types of drug-drug similarities. One is a chemical structure
based similarity by using SIMCOMP scores [21]. The second is a similarity
based on the mechanism of action of drugs, which is obtained by finding cosine
similarities between one hot encoded representation of drug classes. Moreover,
we computed two types of similarities between the viruses. One is a genomic
structure based similarity using the ONF (Oligonucleotide frequency) measure
by computing d2∗ distance [22]. Second, we calculate the cosine similarities
between one hot encoded representations of the symptoms caused by a virus.

Hence, we obtain two drug-drug similarity matrices, each of size 119 × 119
that we sum to form AU1

, and two virus-virus similarity matrices, each of size
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38× 38, that we sum to form AU2
.

5.3 Data Preprocessing

After computing the similarity matrices between drugs and viruses, the matrices
are sparsified using a p-nearest neighbour graph [23], which is generated by
keeping the similarity values of the closest neighbours for each drug or virus in
the similarity matrices. This is done to remove noise and keep only the relevant
information to improve the model performance. We have utilised the normalised
versions of the graph laplacians instead of the conventional ones. Normalised
laplacians outperform their non-normalised counterparts.

5.4 Experimental Evaluation

We used three cross-validation (CV) settings, each consisting of ten repetitions
of 10-fold cross-validation.

• In CV1 setting, 10% of all drug-target pairs are hidden randomly and used
as the test set while the remaining 90 % are used as the train set.

• In CV2 setting, 10% of the viral profiles are hidden randomly and used as
the test set.

• In CV3 setting, 10% of the drug profiles are hidden randomly and used as
the test set.

The accuracy of interaction prediction tasks can be assessed using the valida-
tion approach [24, 25]. The CV2 and CV3 settings are of significant importance.
CV2 helps to evaluate the accuracy of drug recommendations for a novel virus,
while CV3, helps to evaluate the efficiency of a recently introduced drug against
a virus.

Further, cross-validation on the training set is used to determine the values
of the parameters (σ, s0, λR, λU1

, λU3
, k1, k2, θ1, θ2) for DPMFG. Additionally,

we set the number of iterations P = 10, which is enough to achieve stability.

We evaluate our approach with two, three or four factor matrices, denoted
by DPMFG-1L, DPMFG-2L and DPMFG-3L respectively. Note that DPMFG-
1L can be viewed as a modified version of our previously proposed algorithm in
[15] to fit in our non-symmetric drug-virus interaction task. We compare with
state-of-the-art matrix completion methods, including Deep Matrix Comple-
tion (DMF) [26], Graph Regularized Matrix Completion (GRMC-ADMM) [27]
, Graph Regularized Matrix Factorization (GRMF) [28], Graph Regularized
Binary Matrix Completion (GRBMC) [29], Probabilistic Matrix Factorization
with Graph Regularization (PMFG) [6].
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Table 1: AUC and AUPR obtained for the novel algorithm and the
benchmarks

Parameter AUC AUPR AUC AUPR AUC AUPR
CV Setting CV1 CV1 CV2 CV2 CV3 CV3
DPMFG-3L 0.8131 0.5934 0.6975 0.3002 0.8241 0.5588
DPMFG-2L 0.8215 0.5951 0.6809 0.3078 0.8317 0.5600
DPMFG-1L 0.8297 0.5482 0.7140 0.3036 0.8295 0.5569
GRMF 0.8418 0.5016 0.6934 0.2994 0.8151 0.4717
GRMC(ADMM) 0.8670 0.4825 0.6601 0.3390 0.8166 0.4723
GRBMC 0.8378 0.3870 0.6975 0.2927 0.8120 0.5272
DMF 0.6974 0.2615 0.5557 0.0911 0.5722 0.1389
PMFG 0.6136 0.3007 0.4943 0.0895 0.5633 0.1158

We look at the standard metrics such as the area under the ROC curve
(AUC) and area under the precision-recall curve (AUPR) in order to statis-
tically quantify and compare the performance of the proposed algorithm and
the benchmarks. The AUPR metric is more significant here as the classes are
highly imbalanced [30]. The results are shown in Table 1. The AUC and AUPR
values in bold represent the best values obtained amongst all the algortihms
considered. As seen clearly, our proposed algorithm (DPMFG-2L) gives the
best results in terms of AUPR and is comparable to the benchmarks in terms of
AUC. Also, we can see that the results did not improve for the deeper version
of our algorithm (DPMFG-3L) for the current dataset. Therefore, for the DVA
dataset, the version with 3 factor matrices performs the best.

Table 2: Execution times (in seconds) for all techniques

Parameter/ Execution Time
Algorithm (in seconds)
DPMFG-3L 0.1678
DPMFG-2L 0.1843
DPMFG-1L 0.1915
GRMF 0.0854
GRMC(ADMM) 16.9083
GRBMC 0.8501
DMF 0.1184
PMFG 0.1946

Table 2 shows the execution times of all the algorithms for one fold for CV
setting 1. It can be clearly seen that the proposed method takes about the same
amount of time as most of the benchmarks and is much faster than two of them,
i.e. GRMC(ADMM) and GRBMC.

Finally, we display in Figure 1 the evolution of the loss function along iter-
ations of the proposed Algorithm 1. This confirms the validity of the proposed
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minimization method.
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Figure 1: Loss function evolution across iterations of DPGMF-2L for CV1
setting.

5.5 Monkeypox Prediction

Globally the number of monkeypox cases have risen to 53,000 5 . It has spread to
106 countries. Monkeypox virus is symptomatically similar to smallpox, albeit
less severe 6 . Smallpox has been eradicated by vaccination [31]; it was empir-
ically seen that the smallpox vaccine was able to prevent monkeypox infection
by about 85%. However, since the eradication of smallpox, its vaccination pro-
gramme has also been discontinued in many countries. Perhaps the reduction
in vaccination is a reason for the current global monkeypox outbreak; in such a
condition the only option is to depend on therapeutics for treating the patients.
Furthermore an animal study from 2006 [32] showed that antiviral treatment is
indeed more effective than vaccination. In this sub-section, we study how good
the antiviral recommendations are from the different algorithms. We did such
a comparison in our previous study [20] with coronavirus as a case study. The
top 5 recommended antivirals recommended by different algorithms are shown
in the following table.

Table 3: Top-5 ranked recommendations/drugs predicted for MPV
by DPMFG and the bench-marks.

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5
DPMFG Darunavir Bictegravir Indinavir Dolutegravir Etravirine

GRMF Bictegravir Ganciclovir Darunavir Amprenavir Fosamprenavir
GRMC Bictegravir Darunavir Ganciclovir Amprenavir Fosamprenavir
GRBMC Bictegravir Darunavir Ganciclovir Amprenavir Fosamprenavir
DMF Cidofovir Pleconaril Baloxavir mbxl Ibuprofen Favipiravir
PMF Pleconaril Ribavirin Tenofovir Ibuprofen Trifluridine

DPMFG-2L is used for comparison here as it has a less complex structure
while showing better performance than DPMFG-3L. We refer to the standard
treatment guideline for sever monkeypox from https://www.hivguidelines.org/antiretroviral-
therapy/monkeypox/.

5https://en.wikipedia.org/wiki/2022 monkeypox outbreak
6https://www.who.int/news-room/fact-sheets/detail/monkeypox
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The drugs in bold represent the ones that are actually being used to treat mon-
keypox. We see that ours have correctly predicted 4 out of the 5 drugs; the
other benchmarks have only predicted 2 out of 5. This clearly shows the effi-
cacy of our algorithm compared to the others. One must note that the drug
Darunavir (predicted by all three) needs to be administered with caution owing
to potential adverse drug-drug- interaction effects.
Our code is available at https://github.com/Stuti-code-dot/DGPMF-
for-DVA.

6 Conclusion

In the discipline of bioinformatics, computational analysis and methodologies
facilitate the quick and effective discovery of new knowledge, technical advance-
ments, and accurate analysis. Recently, it was suggested that there were chances
of a monkeypox virus epidemic after the several waves of COVID-19. Fortu-
nately, there has been active research in the past few years in utilization of AI
to predict drug-target interactions and therefore, existing drugs can be repur-
posed and polypharmacology avoided, especially since the COVID-19 pandemic.
Studies have shown that purposing an existing drug would qualify it for Phase II
clinical trials directly [33, 34]. This work is our contribution in helping to control
and cure monkeypox infections through drug repurposing. As part of this work,
we propose a deep probabilistic matrix factorization framework with multiple
graph regularization. The algorithm penalizes the non-interacting drug-virus
pairs and promotes the interacting pairs. Also, the parameters’ updates over
the iterations are novel and efficient in terms of optimization and results in a
stable convergence.The biological contributions of this work are the ability of
the algorithm in providing drug recommendations for the monkeypox virus and
ranking them w.r.t. their predicted effectiveness level.
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SUPPLEMENTARY:

Deep Probabilistic Matrix Factorization on Graphs: Application to

Drug Repositioning for Monkeypox

In this supplementary file, we explicit the updates for a given iteration p ∈ N of Algorithm 1 presented in the
main file.

1 Update of X

The update reads:

X(p+1) = argminX∈RN×M

1

2σ2
‖Y −B ⊙X‖2F +

λR

2
‖X − U1

(p)U2
(p)U3

(p)‖2F .

This is a strictly convex quadratic problem, whose solution satisfies the following optimality condition:

1

σ2
Y + λRU1

(p)U2
(p)U3

(p) =
1

σ2
B ⊙X(p+1) + λRX

(p+1). (S1)

The above equation is a linear system that can be solved efficiently by linear conjugate gradient solver.

2 Update of U1

The update reads:

U
(p+1)
1 = argminU1∈RN×k1

1

2
tr(U⊤

1 Γ
(p)
U1

U1) +
λR

2
‖X(p+1) − U1U

(p)
2 U

(p)
3 ‖2F .

This amounts to search for U (p+1) satisfying

Γ
(p)
U1

U1 + λR(U1U
(p)
2 U

(p)
3 −X(p+1))(U

(p)
2 U

(p)
3 )⊤ = 0,

or, equivalently,

Γ
(p)
U1

U1 + U1(λRU
(p)
2 U

(p)
3 (U

(p)
2 U

(p)
3 )⊤) = λRX

(p+1)(U
(p)
2 U

(p)
3 )⊤. (S2)

Solving the above Sylvester equation , we get U
(p+1)
1 .

3 Update of U2

The update is:

U2 = (U
(p+1)
1 )†X(p+1)(U

(p)
3 )† (S3)

4 Update of U3

The update reads:

U
(p+1)
3 = argminU3∈Rk2×M

λR

2
‖X(p+1) − U

(p+1)
1 U

(p+1)
2 U3‖

2
F +

1

2
tr(U3Γ

(p)
U3

U⊤
3 )

1



This amounts to search for U
(p+1)
3 satisfying

λR(U
(p+1)
1 U

(p+1)
2 U3 −X(p+1))U

(p+1)
1 U

(p+1)
2 + U3Γ

(p)
U3

= 0,

or, equivalently,

λR(U
(p+1)
1 U

(p+1)
2 )⊤U

(p+1)
1 U

(p+1)
2 U3 + U3Γ

(p)
U3

= λRX
(p+1)U

(p+1)
1 U

(p+1)
2 (S4)

Solving the above Sylvester equation , we get U
(p+1)
3 .

5 Update of ΓU1

We must solve:

Γ
(p+1)
U1

= argminΓU1
∈SN

tr(U1
(p+1)(U1

(p+1))⊤ΓU1
) + L(ΓU1

)

+ 2λU1

∑

i,j∈EU1

|[ΓU1
]ij | − 2λU1

∑

i,j∈EU1

ln(|[ΓU1
]ij |+ δ) + λU1

‖ΓU1
‖2F .

Let us split the cost function involved above into two terms, so that

Γ
(p+1)
U1

= argminΓU1
∈SN

f(ΓU1
) + g(ΓU1

),

with
(∀U1 ∈ SN ) f(ΓU1

) = tr(U1
(p+1)(U1

(p+1))⊤ΓU1
) + L(ΓU1

),

and
(∀U1 ∈ SN ) g(ΓU1

) = 2λU

∑

i,j∈EU1

|[ΓU1
]ij | − 2λU1

∑

i,j∈EU1

ln(|[ΓU1
]ij |+ δ) + λU1

‖ΓU1
‖2F .

The minimization of f +g does not have a close form solution and an inner solver is required. Function f is convex,
differentiable on S++

N , while g is non-convex, non-differentiable. Luckily, function g is separable over the entries of
ΓU1

, that is:

(∀U1 ∈ SN ) g(ΓU1
) =

∑

1≤i,j≤N

gij([ΓU1
]ij)

with, for every (i, j) ∈ {1, . . . , N}2,

(∀ω ∈ R) gij(ω) =

{
2λU1

|ω|+ λU1
ω2 if (i, j) ∈ EU1

,

−2λU1
ln(|ω|+ δ) + λU1

ω2 if (i, j) ∈ EU1
.

We thus opt for running L ≥ 1 iterations of a proximal gradient algorithm, initialized in domf = S++
N . This reads

as follows:
Γ0
U1

= Γ
(p)
U1

For ℓ = 1, 2, . . . , L

Γ̃ℓ
U1

= Γℓ
U1

− θ1∇f(Γℓ
U1
)

Γℓ+1
U1

= proxθ1g(Γ̃
ℓ
U1
)

Γ
(p+1)
U1

= ΓL
U1
.

(S5)

Hereabove, θ1 is a positive stepsize such that all iterates belong to the domain of f . The expression for the gradient
of f and the proximity operator of g can be found in [15].

6 Update of ΓU3

The update reads:

Γ
(p+1)
U3

= argminΓU3
∈SM

1

2
tr(U3

p+1ΓU3
(U3
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1
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2
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Let us split the cost function involved above into two terms, so that

Γ
(p+1)
U3

= argminΓU3
∈SM

f(ΓU3
) + g(ΓU3

),

with
(∀U3 ∈ SM ) f(Γ3) = tr(U3

(p+1)ΓU3
(U3

(p+1))⊤) + L(ΓU3
),

and
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]ij |+ δ) + λU3

‖ΓU3
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Hereagain, we can run L ≥ 1 iterations of a proximal gradient algorithm, initialized in domf = S++
M , which reads

as follows:
Γ0
U3

= Γ
(p)
U3

For ℓ = 1, 2, . . . , L
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(S6)

with θ2 a positive stepsize such that all iterates belong to the domain of f . The expression for the gradient of f
and the proximity operator of g can be found in [15].
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