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Résumé—Les algorithmes statistiques d’apprentissage automa-
tique (ou machine learning) connaissent un essor sans précédent dans
le monde industriel, notamment pour l’aide à la décision en ingénierie
des systèmes critiques. Toutefois, leur manque d’“interprétabilité” est
un verrou à lever afin de rendre ces outils intelligibles et auditables.
Ce papier vise à dresser une cartographie de certaines métriques
d’interprétabilité (appelées ”mesures d’importance”) dont le but est de
quantifier l’impact de chaque prédicteur sur la variance de la sortie
du modèle statistique. Il est montré que le choix d’une métrique
pertinente doit être guidé par les contraintes inhérentes aux données
et au modèle considéré (caractère linéaire ou non du phénomène
d’intérêt, dimension du problème, dépendance des prédicteurs) et par
le type d’étude que l’utilisateur souhaite mener (détecter les variables
influentes, les hiérarchiser, etc.). Enfin, ces métriques sont estimées
et analysées sur un jeu de données public afin d’illustrer certaines de
leurs propriétés théoriques et empiriques.

Keywords—apprentissage statistique, interprétabilité, analyse de
sensibilité, effets de Shapley, indices de Sobol’

Abstract—Machine learning algorithms benefit from an unprece-
dented boost in the industrial world, in particular in support of
decision-making for critical systems. However, their lack of “inter-
pretability” remains a challenge to leverage in order to make these
tools fully intelligible and auditable. This paper aims to track and
synthesize of a panel of interpretability metrics (called “importance
measures”) whose aim is to quantify the impact of each predictor on
the statistical model’s output variance. It is shown that the choice of
a relevant metric has to be guided by proper constraints imposed by
the data and the considered model (linear vs. nonlinear phenomenon
of interest, input dimension, input dependency) together with taking
the type of study the user wants to perform into consideration
(detect influential variables, rank them, etc.). Finally, these metrics
are estimated and analyzed on a public dataset so as to illustrate some
of their theoretical and empirical properties.

Keywords—statistical learning, interpretability, sensitivity analysis,
Shapley effects, Sobol’ indices

I. INTRODUCTION

Machine learning (ML) is one of the sound and substantial
branches of artificial intelligence technology and provides a
large panel of algorithmic tools to learn from data (e.g., numer-
ical data, images, sounds, texts). However, ML algorithms are
often considered as black-box models, linking features (also
called “inputs”) to variables of interest (also called “outputs”),

and may provide predictions which turn out to be difficult to
explain or interpret. Therefore, the industrial deployment of
these solutions requires tools together with a panel of best
practices to perform explainable and interpretable ML [1]–[3].
For example, in the industrial nondestructive testing field (e.g.,
for aeronautics or nuclear industry), generalized automated
inspections (that will allow a large gain in terms of efficiency
and economy) are planned to be used intensively. However, for
these analyses (and the underlying algorithms that are used),
some transparency guarantees are required to ensure strong
confidence in the predictions [4].

ML interpretability is linked to the ability, for a human
mind, to understand representations of the ML model such
as resulting predictions and associated decisions. ML models
are intensively used to make predictions on output quantities
of interest and these quantities are used to make decisions
(e.g., regarding safety criteria or economic efficiency and
profitability ones). In this view, the strong connections that
exist between ML interpretability [5] and sensitivity analysis
(SA) of model outputs [6], [7] have been recently recognized
[8], [9]. Indeed, in its broadest sense, SA aims at studying
how the uncertainty in a model output can be apportioned
to different sources of uncertainty in its inputs. As in SA,
ML interpretability can be based either on visualization tools,
global metrics (to interpret the global model behavior) or on
local ones (to interpret the model output for a given instance).

To interpret ML models, a large panel of methods are
available. Some of them are original contributions from the
ML community, while others have been purely reinvented [10].
However, these methods are often empirical or approximate
and the description of their underlying assumptions and condi-
tions of applicability is often omitted (see, e.g., [5]). Therefore,
developing synthetic and methodological overviews, as done
in SA (see, e.g., [11]), would be useful to develop a global
understanding of the different methods.

A taxonomy of interpretability methods can be built with
various criteria [10]. A first classification could be proposed
following the type of results provided by the method (e.g.,



visualization tools or summary statistics). Such an approach
is useful from a user-friendly perspective but does not really
help, neither to understand the underlying similarities and
differences between the methods, nor to take quantitatively
informed decisions. Moreover, the literature on the subject of-
ten distinguishes intrinsically interpretable models and model
interpretability techniques. In the first case, models are called
“transparent”, while in the second case, the techniques are
referred to as “post-hoc interpretability” [2], [10]. By post-
hoc techniques, one considers that a supplementary layer of
statistical quantities (e.g., sensitivity indices, feature impor-
tance measures) is required to achieve a proper interpretation
of the model results and a full understanding of the model
behavior. As an example, linear models (such as linear and
logistic regressions) are often assumed to be the prototype of
intrinsic transparent models. However, even for this simple
class of models, direct interpretability might be tricky for
many reasons (as, e.g., strong dependencies between inputs).
Thus, from an industrial perspective where generic tools are
often required, post-hoc and model-agnostic techniques, that
are independent of the type of ML model, seem inevitable.

Inspired by what has been achieved in SA and taking a
generic application viewpoint based on variance-based metrics,
this work discusses three main challenges which compose the
outline of the paper: complexity of the input-output relation-
ship (and, consequently, the complexity of the ML model),
dependence among inputs and large input dimension. Section
II aims at primarily describing some practical ML settings.
Then, Section III distinguishes the ML models along with
the underlying complexity they try to capture. Several popular
global metrics, gathered under the common term “importance
measures” (IM) in the rest of this paper, are investigated. In
particular, the variance-based IM which are able to measure
the nonlinearity degree (as well as the degree of interaction
between inputs) in a ML model, are reviewed. Section IV
focuses on the dependence between inputs which appears to be
underrepresented in the ML interpretability literature, even if
such a problem is ubiquitous in daily ML-based applications.
Section V discusses the high-dimensional input space issue.
Indeed, whether in SA or in ML, the computation of IM
(such as, for instance, the popular Shapley effects) is known
to be subject of the curse of dimensionality. In Section VI, the
different IM are applied to a public dataset, while Section VII
gives synthesizes this work.

To help the reader, Table I provides a table of acronyms
used all along the paper.

II. A METHODOLOGICAL VIEW OF MACHINE LEARNING

A. Machine learning methodology

Supervised learning consists in building a statistical model
from a set of labeled (i.e., input-output) samples. Such a model
is then used in order to predict, for a new set of input values,
the corresponding output value [12]. Mathematically, one

Table I
ACRONYMS.

HSIC Hilbert-Schmidt Independence Criterion
IM Importance Measure
LMG Lindeman-Merenda-Gold measure
MDA Mean Decrease Accuracy
MDI Mean Decrease Impurity
ML Machine Learning
OOB Out Of Bag
PME Proportional Marginal Effects
PMVD Proportional Marginal Variance Decomposition
RF Random Forest
RKHS Reproducing Kernel Hilbert Space
RWA Relative Weight Analysis
SA Sensitivity Analysis
SAGE Shapley Additive Global Importance
SHAFF SHApley eFfects via random Forests
SHAP SHapley Additive exPlanations
SPVIM Shapley Population Variable Importance Measure
SRC Standard Regression Coefficient
SVD Singular Value Decomposition
VIF Variance Inflation Factor

assumes that the phenomenon under study can be expressed
by a relationship given by :

Y = ftrue(X) , (1)

where Y is the output (supposed to be scalar here, for the
sake of simplicity) and X = (X1, . . . , Xd) a vector of d
inputs, usually called “predictors” or “features” in ML. The
idea is that the true relationship ftrue(·) is unknown, but
one can build a surrogate statistical model f(·) based on
the available data gathered in a n-size sample denoted by(
X

(i)
1 , . . . , X

(i)
d , Y (i)

)
i=1...n

. Note that, if Y is quantitative,
one lies in the regression framework, while if Y is qualitative,
one lies in the classification framework.

Figure 1 synthesizes the general scheme of building and
using (for prediction and/or for interpretation) a ML model
(denoted by f(·)). Different steps are required, from the data
and features extraction/selection (Step A), to the ML model
building process (Step B) and its validation (Step B’). The ML
model is then used to make predictions from new inputs (Step
C), associated with interpretative elements (Step C’).

B. Settings for machine learning interpretability

Step C’ of the ML scheme (Fig. 1), which mainly consists
in calculation/estimation of IM, is closely related to the SA
step of the uncertainty quantification of numerical experiments
methodology [13]. In the SA community, four main settings
have been recently recognized [7] in real-world studies: the
model exploration which aims to understand the behavior of a
model by trying to investigate the input-output relationship, the
factor fixing (or screening) which aims to reduce the number of
uncertain inputs by setting unimportant factors as constants,
the factor prioritization (or ranking) which aims to give a
quantitative ranking among the most important factors, and the
input distribution robustness which aims to analyze variation
of the quantity of interest with respect to uncertainty in inputs’
distributions.



Figure 1. Machine learning global methodology.

Therefore, by analogy with the SA methodology, and in-
spired from the analyses of [2], [3], [10], [14], four main
settings of ML interpretability can be defined: visualization,
features identification, measures of importance, robustness
of the decision boundary. They are briefly explained in the
following subsections. Note that the objectives and results
could be different if a tool is applied to the data or to ML
model predictions.

1) Visualization: The visualization of the relationship be-
tween the output (label) and the features can be made via
the use of well-known plots in ML interpretability (partial
dependence plots, individual conditional expectation, accumu-
lated local effects) [10] and in SA (scatterplots or conditional
expectation plots, parallel coordinate plot) [7]. A fruitful
discussion about interpretation of these graphs is given in [15].

Figures 2 and 3 provide illustrations of a scatterplot and a
parallel coordinate plot applied to the Boston housing dataset
(see Section VI). The parallel coordinate plot (usually called
“cobweb plot” in SA [16]) consists in visualizing the data as
a set of trajectories. By interactively selecting a small number
of trajectories corresponding to a specific event of interest
for the user (e.g., the 10% largest output values, as shown
in Fig. 3), specific values of other variables are automatically
emphasized, which leads to visually identify the influential
input values regarding the occurrence of this event.

2) Features identification: Identifying features in the data
(or with a ML model) aims to find the minimal number of
inputs that reach a maximized accuracy of the ML model
(see, e.g., [17], [18]). It involves the use of statistical tech-
niques such as correlation measures (e.g., Pearson coefficient,
Spearman’s rank correlation coefficient, Kendall’s tau, copula,
Hoeffding’s D, distance correlation) and kernel-based metrics
[19]. Even if the context is slightly different, it mainly cor-
responds to the “factor fixing” setting in SA that is achieved

Figure 2. Scatterplot between one input and the output of the Boston housing
dataset.

using the so-called “screening” techniques [7].
3) Measures of importance: This setting consists in mea-

suring, in a quantitative manner, the impact of the inputs on
the output (see, e.g., [20], [21]). It corresponds to the “factor
prioritization” setting in SA, where the goal is to detect and
rank influential inputs to explain the model (e.g., to experts or
authorities). One can be interested in two types of impact.
The first one, which is global, consists in explaining how
a feature or a set of features impact the output distribution.
The second one, which is more local, consists in explaining
how the features impact the model’s output for one specific
instance. Once again, IM can be computed on the ML model
predictions or directly on the data. Note that a confidence on



Figure 3. Parallel coordinate plot of the Boston housing dataset. The last column corresponds to the variable of interest (median value of owner-occupied
homes).

the ML model needs the equality between the IM of the ML
model with the IM computed on the data.

4) Robustness of the decision boundary: This last setting
looks at the variability of some results obtained from the ML
model as a function of perturbations in the data (inputs or
output). It concerns two major topics: (i) the counterfactual
examples which consist in explaining the prediction related to
one individual by another close individual with an opposite
target prediction [10]; (ii) the robustness with respect to the
input data, i.e., to tackle the way the output label changes when
the distribution of one input (or a group of inputs) change due
to a perturbation in the data [22]. It corresponds to the “input
distribution robustness” setting in SA.

All in all, this paper is mainly devoted to the “Measure
of importance” setting, and discusses several adapted inter-
pretability metrics in the following sections.

III. MACHINE LEARNING MODEL COMPLEXITY

In this section, the goal is to discuss how ML model
complexity might affect the interpretability step. The term
“complexity” denotes here the linearity or nonlinearity of the
ML model (assuming that the complexity of the model is
adapted and validated regarding the linearity / nonlinearity
of the underlying phenomenon of interest, e.g., by using
some diagnostics tool). The occurrence of interaction effects
between inputs is also symptomatic of complexity [23]. It
is considered in this paper as nonlinearity for the sake of
simplicity.

As a consequence, choosing a specific ML model leads to a
specific complexity which may induce some relevant choices
for interpretability. Thus, in this section, we first discuss
existing “post-hoc” interpretability methods dedicated to two
classes of models with different complexity: on the one hand,
the linear regression model and on the other hand, the random
forest algorithm (which can easily capture nonlinearities).
These basic algorithms have been chosen, not only because
of their simplicity, but also as they remain some of the most
versatile and popular algorithms among the ML practitioners
(see, e.g., [12], [24]). Finally, we present more general and
“model-agnostic” interpretability metrics.

Note that, in the remaining of this section, the predictors
are assumed to be independent.

A. IM for independent inputs in the linear context

From the n-size input-output sample, it is possible to fit the
following linear model:

Y = Y (X) =

d∑
j=0

βjXj + ε, (2)

where X0 = 1, β = (β0, . . . , βd)
t ∈ Rd+1 is the vector of

regression parameters, and ε ∈ R the model’s error of constant
variance σ2. Since there is an intercept term in Eq. (2), we
consider that all inputs are centered (i.e., EXj = 0 for j =
1, . . . , d) without any loss of generality.

A global IM of the model given by Eq. (2) can be under-
stood as a “relative importance” or a “relative contribution”



of a given input variable Xj (with j ∈ {1, . . . , d}) on the
dispersion of another variable, typically the output variable
Y [25], [26]. A usual and useful dispersion metric can be
the coefficient of determination R2 (of the linear regression
model) given by:

R2 = R2
Y (X) = 1−

∑n
i=1

[
Y (i) − Ŷ (X(i))

]2
∑n

i=1

[
Y (i) − E[Y ]

]2 , (3)

where Ŷ (·) is the predictor of the model built from the data.
This quantity represents the percentage of output variance
explained by the model.

Thus, in the context of linear models, a formal definition
of an IM has been proposed by [26]: “The proportionate
contribution each variable makes to R2, considering both
its direct effect (i.e., its correlation with the response) and
its effect when combined with the other variables in the
model.” In addition to that, four desirability criteria for the
R2 decomposition into shares (due to each input) have been
proposed by [27]:

1) Proper decomposition: the sum of all shares should be
equal to the model variance;

2) Non-negativity: all shares should be non-negative;
3) Exclusion: if βj = 0 (with βj being the regression

coefficient associated to Xj), the share of Xj should
be zero;

4) Inclusion: if βj ̸= 0, the share of Xj should be nonzero.
The associated IM of the linear model are called the

standard regression coefficients (SRC):

SRCj = βj

√
VarXj

VarY
. (4)

This metric is used for relative importance [28] as it indicates
“the effect of moving an input away from its expected value
by a fixed fraction of its standard deviation while holding
all other variables fixed at their expected values” [29]. Each
SRC2

j , also known as the “betasq” [28], are variance-based IM
which expresses the part of the R2 explained by the input Xj .
However, this interpretation is only valid when all the inputs
are mutually independent.

B. IM for independent inputs in the RF context

For features ranking in ML, importance score methods as-
sociated to permutation and resampling techniques are widely
used, for example via the random forest (RF) model [29],
[30]. The RF model is a substantial modification of boostrap
aggregating (also known as “bagging”) that builds a large
collection of decorrelated trees, and then averages them. In
particular, bagging [31] is a ML ensemble meta-algorithm
designed to improve robustness and accuracy of ML algo-
rithms used for classification or regression. It consists in
generating B bootstrap samples from the original dataset,
train B ML models and aggregate their predictions (e.g., by
averaging in the regression case, or by voting for a supervised
classification). An important feature of RF is the use of
out-of-bag (OOB) samples. For each observation, the RF

predictor is constructed by averaging only the trees of the RF
corresponding to bootstrap samples in which the observation
did not appear.

A well-known RF-based IM is the Mean Decreasing Impu-
rity (MDI) [32]. For this criterion, at each split in each tree,
the improvement in the split-criterion is the IM attributed to
the splitting feature, and is accumulated over all the trees in
the forest separately for each feature. However, it is known
that MDI is biased, in particular because it tends to inflate
the importance of continuous or high-cardinality categorical
variables [33]. RF also uses the OOB samples to construct a
different IM, apparently to measure the prediction strength of
each feature. When the b-th tree is grown, the OOB samples
are passed down the tree, and the prediction accuracy is
recorded. Then the values for the j-th feature are randomly
permuted, i.e., the values of the features are shuffled, in
the OOB samples, and the accuracy is again computed. The
decrease in accuracy as a result of this permuting is averaged
over all trees, and is used as a measure of the importance of
feature j in the RF. This criterion is called Mean Decreasing
Accuracy (MDA). It is a variance-based IM that can be
generalized to any ML model as explained in the next section.

C. Model-agnostic IM for independent inputs

In the general ML setting, [34] introduced the so-called
permutation feature importance, based on a similar idea to
MDA. It consists in computing the increase in the model’s
prediction error after permuting the feature. Suppose one has
a trained model, denoted by f̂(·), with X a feature matrix, y
a target vector and L(y, f(·)) an error measure. Algorithm 1
provides the structure of the permutation feature importance
algorithm.

Algorithm 1 Permutation feature importance.
1) Estimate the original error eo = L(y, f(X));
2) For each feature j:

a) Generate a feature matrix Xperm by permuting
feature j in the data X;

b) Estimate the permutation error ep =
L(y, f(Xperm));

c) Compute the permutation feature IM for j: ep/eo

or ep − eo.
3) Sort the features by descending permutation feature IM.

For MDA in RF, the choice of the feature matrix is imme-
diate: it is the OOB samples. Such samples do not exist for a
large majority of ML techniques. Instead of OOB, one can use
a validation set (different from the training set). Permutation
feature IM represents the increase in model error when a single
feature value is randomly shuffled. Feature IM provides a
highly compressed, global insight into the model’s behavior.
Back to Algorithm 1 (see step (c)), note that when the error
ratio is used instead of the difference-based one, the result
is unitless. Thus, results obtained for two different problems
are comparable. The features IM takes into account both



the main feature effect and the interaction effects on model
performance, because by permuting the feature, its interaction
with the others features is broken. Another advantage is that
permutation feature IM does not require to retrain the model.

As explained in [35], [36], and reviewed in [29], the MDA
(and then the permutation feature IM) is equivalent (up to a
multiplicative constant) to the total Sobol’ index [37] which
is one of the most widely used tool in SA and that has been
proven to be robust and easily interpretable [38]. In the case of
independent inputs and a deterministic relationship Y = f(X),
the variance-based sensitivity measures, also called Sobol’
indices [7], [39], write:

Sj =
Var (E [Y |Xj ])

Var(Y )
, (5)

Sj,k =
Var (E [Y |Xj , Xk])

Var(Y )
− Sj − Sk, . . . (6)

The terms Sj (j ∈ {1, . . . , d}) are called “first-order Sobol’
indices” (measures of the individual effect of each input), Sj,k

(j ∈ {1, . . . , d}, k ∈ {1, . . . , d} \ j) “second-order” Sobol’
indices (measures of the second-order interactions) and so
on. Moreover, the total Sobol’ index for any component j
is defined by:

Tj = Sj+

d∑
k=1,k ̸=j

Sj,k+· · ·+S1,...,d =
E [Var(Y |X−j)]

Var(Y )
, (7)

where X−j is the vector X without Xj . This total index mea-
sures the effect of Xj through its individual contribution and
all its interactions with other inputs. Thus, this interpretation
allows to better understand the MDA metric. Finally, let us
note that, in the linear regression model (2), the total Sobol’
indices are equal to the first-order Sobol’ indices and to the
SRC2.

Therefore, Sobol’ indices can be used to identifying the
most influential features learned by ML models, as well
as to detect interactions between features. They have been
used to prune redundant neurons in artificial neural networks
model [40] and to capture high-order interactions between
image regions and their contributions to a neural network
[41]. Thanks to SA-based efficient computation schemes of
total Sobol’ indices, [42] use the notion of “mean dimension”
(which represents the mean interaction degree between inputs
that acts on the output of a model) to characterize the internal
structure of complex modern neural network architectures. The
mean dimension allows to summarize to which extent the
ML model is dominated by high or low-order interactions.
This tool is then useful to analyze architectures or neural
networks-based models regarding some accuracy metrics. The
mean dimension also allows to identify, from a deep analysis,
interactions between layers of the neural network.

IV. PROBLEMS WITH DEPENDENT INPUTS IN MACHINE
LEARNING INTERPRETABILITY

Since the early works of [43] and [44] in the statistical
community, it is well-known that dealing with correlated or

multicollinear explanatory variables may lead to a misinter-
pretation of the regression analysis results. As an example,
the regression weights lose their meaning and become tricky
to interpret. Therefore, various diagnostic tools (e.g., visualiza-
tion tools, dependence and multicollinearity statistics, stepwise
procedures) have been proposed to identify multicollinearity
in the regressors and to allow redundant features removal.

Among the panel of literature reviews or recent state-of-the-
art reports (see, e.g., [45], [46]) which have been proposed
on the topic of ML interpretability (or more generally about
explainable artificial intelligence), the issue of the dependent
features appears to be globally underrepresented, even if such
a problem is ubiquitous in daily applications of ML. A recent
work from [47] clearly points out this pitfall and stresses
the need for better characterization of input dependence.
Therefore, in a preliminary step of ML building, knowing if
there are some dependencies between inputs is essential. The
next section gives a short literature review on this topic.

A. Dependency diagnostics

Linear statistical dependence is called multicollinearity.
Identifying it is of great importance since it affects statistical
estimation of the regression coefficients and influences the
efficiency of least-squares estimation [48]. Two variables are
collinear if they lie almost on the same line, i.e., if they
have a high linear correlation between them. This notion
is generalized to more than two variables by saying that
collinearity exists if there is a high multiple correlation when
one of the variables is regressed on the others. A standard and
simple measure of multicollinearity is the so-called variance
inflation factor (VIF) which writes [43], [49]:

VIFj =
1

1−R2
Xj(X−j)

, (8)

where X−j is the vector of all the inputs except Xj . R2
Xj(X−j)

then represents the R2 from the regression of the input Xj

on the remaining inputs. The smallest value of VIF is 1 and
indicates the absence of collinearity, while a value above 5
if often suspicious and might indicate multicollinearity. For
large values of VIF, removing one of the incriminated variable
would eliminate redundancy in the model and avoid numerical
issues in the regression stage.

Nonlinear statistical dependence is far more complex to de-
tect [19]. General nonlinear measures exist to detect bivariate
statistical dependence, as the use of the Hoeffdings’D [50] or
the HSIC criteria [51]. Statistical tests based on copulas can
also be used to detect multivariate dependencies [52].

B. IM for dependent inputs in the linear context

When the inputs are dependent, it is difficult to understand
what is the root cause for this correlation. For example, the
coefficients of the linear regression model Eq. (2) are no longer
interpretable because the SRC2 do not sum to one anymore
(see, e.g., [26], [53]).

In the linear regression analysis literature, other measures
have been developed, most often by finding ways to partition



the R2 among the d inputs [26], [27]. A particularly interesting
IM is the so-called LMG (for “Lindeman-Merenda-Gold”, see
[28], [54]) which uses sequential sums of squares from the
linear model and obtains an overall measure by averaging over
all orderings of inputs. Mathematically, let u be a subset of
indices in the set of all subsets of {1, . . . , d} and Xu = (Xj :
j ∈ u) a group of inputs. The underlying idea is to measure the
elementary contribution of any given variable Xj to a given
subset model Y (Xu) by the increase in R2 that results from
adding that predictive variable to the regression model:

LMGj =
1

d!

∑
π∈permutations

of {1,...,d}

r2Y,(Xj |Xπ)
, (9)

where r2Y,(Xj |Xπ)
= R2

Y (Xv∪{j})
−R2

Y (Xv)
with v the indices

entered before j in the order π. By recombinations (and

recalling that
(
n

k

)
=

n!

(n− k)! k!
), we have:

LMGj =
1

d

d−1∑
i=0

∑
u⊆−{j}
|u|=i

(
d− 1

i

)−1

r2Y,(Xj |Xu)
(10)

=
1

d

∑
u⊆−{j}

(
d− 1

|u|

)−1

r2Y,(Xj |Xu)
(11)

=
1

d!

∑
u⊆−{j}

(d− 1− |u|)! |u|! r2Y,(Xj |Xu)
. (12)

In Eqs. (11) and (12) (resp. (9)), this averaging process
over all combinations (resp. permutations) is carried out in
the absence of order between the inputs. Such IM has been
underused in practice due to the large amount of required
calculations for moderate size d. Indeed, the number of linear
regressions that is required in computing the summands in Eq.
(11) dramatically increases with d.

A weighted analog of LMG, called “PMVD” for propor-
tional marginal variance decomposition has been introduced
by [55] and [53]. It is also described in details in [27]. PMVD
aims to favor orderings for which the early inputs have a large
contribution (see also [20]):

PMVDj =
∑

π∈permutations
of {1,...,d}

L(π)∑
π L(π)

r2Y,(Xj |Xπ)
, (13)

L(π) =

d−1∏
i=1

[
r2Y,(Xπi+1,...,πd

|Xπ1,...,πi
)

]−1

. (14)

One of the interest of PMVD is that it forces the IM to be
zero if βj is zero.

C. IM for dependent inputs considering RF model and similar
tree ensemble based model

In the context of RF algorithm, MDA is a standard widely
feature IM. However, it suffers some bias when the inputs
are dependent. To avoid this bias, some authors proposed to
introduce “conditionality” [56] in the MDA estimation. To

illustrate this, the conditional-MDA is presented in Algorithm
2. Note that the dependence of the criteria to the correlation
computation can be an issue since the Pearson’s correlation
coefficient only measures linear relationship.

Algorithm 2 Conditional MDA.
1) For each tree:

a) Compute the OOB-prediction accuracy before the
permutation;

b) Determine a certain number of variables Z to be
conditioned on. It is suggested to include only
variables whose correlation with the variable of
interest Xj exceeds a given threshold (e.g., 0.2);

c) For all variables Z to be conditioned on:
i) Take the cutpoints that split this variable in the

current tree;
ii) Create a grid by bisecting the sample space at

each cutpoint;
iii) Within this grid, permute the values of Xj

and compute the OOB-prediction accuracy after
permutation.

d) Compute the difference between the prediction
accuracy before and after the permutation for one
tree;

2) Compute the average of the difference over all the tree
to obtain the importance of Xj for the forest.

Recently, using a SA formalism, [14], [57] proposed the first
convergence result for Breiman’s MDA without any simplifica-
tion. The study of existing implementations of RF shows that
there are several definitions of MDA. These versions do not
converge to the same theoretical quantity, and therefore lead to
different IM. It has also been demonstrated that these different
MDA can be decomposed as the sum of Sobol’ indices and
a third unknown term. This last term does not correspond
to an IM, and strongly biases the MDA (as empirically
observed) when the inputs are dependent. Therefore, [14],
[57] introduced the Sobol-MDA metric, a new IM for RF.
The general principle is to project the partitions of the trees
according to the input of interest in order to eliminate it from
the prediction mechanism. This principle makes it possible to
define the Sobol-MDA in a consistent way with respect to the
total Sobol’ index, which gives the proportion of variance lost
when the variable considered is removed from the model. This
IM is, in particular, very efficient for the features identification
setting.

D. Model-agnostic IM for dependent inputs

In the general context, IM adapted to dependent inputs
have been extensively studied in SA (see, e.g., [7]). An
interesting (but practically complex) solution is based on the
definition of four Sobol’ indices [58]: the first two ones are
the “independent” first-order and total Sobol’ indices (which
measure the effects of an input that is not due to its dependence
with other inputs); the two others are the “full” first-order and



total Sobol’ indices (which measure the effects of an input
including the effects due to its dependence with other inputs).

Another solution is based on the use of the Shapley value
concept coming from cooperative game theory [59] where it
consists in fairly distributing both gains and costs to several ac-
tors working in coalition. The Shapley value applies primarily
in situations when the contributions of each actor are unequal,
ensuring that each actor gains as much (or more) as they would
have from acting independently. Now, one assumes the actors
are identified with a set of inputs and the value assigned to
each coalition is identified to the explanatory power of the
subset of model inputs composing the coalition. Then, these
Shapley values can be interpreted as IM of model inputs. In the
linear context, Shapley values (using a R2-based cost function)
turn out to be the LMG index introduced previously in Eq.
(11). In the SA community, the so-called Shapley effects have
been proposed by [60], considering the Sobol’ indices as the
cost function. These Shapley effects are valid IM for any finite-
variance model. Similarly to the LMG (Eq. (12)), the Shapley
effect writes:

Shj =
∑

u⊆−{j}

(d− 1− |u|)! |u|!
d!

[c(u ∪ {j} − c(u)]. (15)

where c(u) = Var (E [Y |Xu]) /Var(Y ) corresponds to the so-
called “closed Sobol’ index”.

For the ranking setting, both Shapley effects [60] and
“SHAP” (SHapley Additive exPlanations) metric [61] are
based on the Shapley value concept and have been developed
for global SA and ML interpretability, respectively. In SA, the
main advantage of Shapley effects over Sobol’ indices lies on
the correct treatment of the dependent inputs’ case. For the
same reason, SHAP is intensively used in ML interpretability
but remains a local metric (contrarily to the Shapley effects
which are global) and explains each individual prediction.

Using the Shapley formulation, several authors have pro-
posed some alternative IM. [21] introduced “SAGE” (Shap-
ley Additive Global Importance), to propose a general view
of global feature importance for different types of learning
models and loss functions. Shapley effects correspond to a
notable specific case of SAGE. [62] proposed a computation-
ally efficient procedure for estimating the “SPVIM” (Shapley
Population Variable Importance Measure) metric, which is
actually a Shapley effect with any value function.

Let us also mention that [14], [63] recently introduced
“SHAFF” (SHApley eFfects via random Forests), a fast and
accurate estimator of Shapley effects, based on the use of a
RF algorithm. The estimation of Shapley effects induces two
major difficulties (see [7] for a review of different techniques):
first, the algorithmic complexity is exponential with respect
to the dimension of the inputs; second, it is necessary to
be able to efficiently estimate the expectation of the output
conditional on a subset of inputs. Because of these two
difficulties, existing algorithms for estimating Shapley effects
are either computationally heavy or biased when the inputs are
dependent. By generalizing the principle of Sobol-MDA (see
Section IV-C), SHAFF solves these problems using importance

sampling and projected random forests. This approach allows
an accurate and fast estimation of conditional expectations,
and thus significantly improves the accuracy of the estimation
of Shapley effects.

It has also been recently observed that Shapley effects
exhibit a particular undesirable feature called the “Shapley’s
joke”: an exogenous input (i.e., not included explicitly in the
model) can be associated to a strictly positive index if it is
correlated to another endogenous input [64]. More generally,
Shapley effects tend to perform an equitable share of the
dependence effect between inputs. However, one could argue
that having a better discrimination between inputs (e.g., for
the features identification setting) might be of better interest.
Therefore, another game-theoretic allocation rule, called the
“proportional value”, has been investigated in [65], [66]. A
first contribution consists in an extension of this solution
concept to the case of null players’ game, i.e., games involving
players for which the cost function is zero, which is of
particular interest considering the Shapley’s joke issue. A
second contribution consists in providing a set of new IM,
called the proportional marginal effects (PME). PME indices
allow to avoid the Shapley’s joke and tend to have much power
of discrimination between inputs than Shapley effects.

V. CURSE OF DIMENSIONALITY

In addition to the problem of correlated features, dealing
with a high dimensional input vector can be a challenge too.
Indeed, building a relevant ML model while avoiding any over-
fitting requires to find the set of the most influential features. In
other words, the idea is to find among a possible large number
of features, the effective dimension [67] which is the dimension
of the most important factors carrying the most information in
the model. Such a notion which is a cornerstone of the global
SA practice, echoes perfectly the definition of an IM and
seems appropriate for the current context of interpretability.

Formally defining what is a“large dimension” d seems
difficult. One could first give an order of magnitude in terms
of number of predictors (typically, when d ≈ 100). However,
such a definition might not be sufficient. One could also argue
that “large” should be defined by combining both d and n.
Considering our applications of interest, one will consider that
the problem becomes “high-dimensional” when d is above 100
and that algorithms such as RF do not perform well. Then,
one would need to apply a more complex ML model (e.g.,
an autoencoder) or to use a dimension reduction technique
(e.g., principal component analysis). At this stage and prior to
that, using IM which enable to capture and analyze the most
influential predictors can be of high interest. Moreover, taking
advantage of the structure of the ML model can help to derive
relevant IM in this context.

A. IM for high-dimensional problems in the linear regression
context

An alternative to the LMG indices has been proposed to
deal with the high-dimensional context, where computation
of the indices becomes intractable due to the combinatorial



complexity. The idea is to first perform a singular value
decomposition (SVD) of the vector of inputs, in order to trans-
form the correlated inputs into uncorrelated variables. Then,
an adequate reweighing process, using the SRC of different
linear regressions, leads to the formulation of the so-called
“relative weight measures” [25], that has been called later
“Johnson indices” or “relative weights analysis” (RWA). These
IM are known to be adapted to large input dimension as well
as providing similar results to those obtained via LMG indices
(see, e.g., [26], [68]), at a highly reduced computational cost.

B. Model-agnostic methods adapted to high-dimensional
problems

Several model-agnostic metrics exist and can be used in
order to identify influential features in a large dimension con-
text. Among several methods, one can mention information-
theoretic methods mostly related to the Shannon entropy (e.g.,
mutual information, variation of information, squared-loss mu-
tual information), dissimilarity measures (e.g., f-divergences)
and dependence measures (e.g., distance correlation). As de-
veloped in [69], all these metrics have theoretical connections.
Note that, most of these metrics go beyond the variance as they
focus more on the entire output distribution.

A famous screening tool, which goes beyond variance-based
IM, is the Hilbert-Schmidt Independence Criterion (HSIC).
Initially introduced by [51], this measure is built upon kernel-
based approaches for detecting dependence, and more par-
ticularly on cross-covariance operators in reproducing kernel
Hilbert spaces (RKHS). HSIC can be seen as a generalized
notion of covariance between two random variables and thus
makes it possible to capture a very broad spectrum of forms
of dependency between variables. For this reason, [69] and
then [70] popularized this measure for global SA purposes.
Without going too much into details, one considers nonlinear
transformations (called “features”) of the input Xj and the
output Y that lie into two RKHS (here, Xj and Y) equipped
with their characteristic kernels κj(·, ·) and κ(·, ·) which define
inner products, respectively. Then, the HSIC index can be
defined as follows:

HSIC(Xj , Y )Xj ,Y = E
[
κj(Xj , X

′

j)κ(Y, Y
′
)
]

(16)

+ E
[
κj(Xj , X

′

j)
]
E
[
κ(Y, Y

′
)
]

(17)

− 2E
[
E[κj(Xj , X

′

j)|Xj ] E[κ(Y, Y
′
)|Y ]

]
where (X

′

j , Y
′
) is an i.i.d. copy of (Xj , Y ).

A desirable property of HSIC is that it equals zero if
and only if Y and Xj are independent. Moreover, HSIC
indices offer the advantage of having a low estimation cost (in
practice, a few hundred samples vs. several tens of thousands
for the Sobol’ indices) and their estimation is independent
from the input dimension d. In addition, statistical indepen-
dence tests can be built based on HSIC estimates in order to
ensure, despite the finite sample estimation, the significance
of the screening. As recently shown, these tests can be very
efficient for screening purposes [70]–[72]. Several HSIC-based

statistical tests are available: asymptotic versions (i.e., for large
sample size), spectral tests [73], permutation-based versions
[71] for non-asymptotic case (i.e., case of a small sample
size) and even adaptive versions [74]. Finally, one often use a
normalized version of the HSIC index, called “R2-HSIC” and
defined as follows:

R̂2
HSIC,j =

ĤSIC(Xj , Y )√
ĤSIC(Xj , Xj) ĤSIC(Y, Y )

. (18)

This quantity, together with p-values obtained from the tests,
enable to perform screening and ranking of the most influential
inputs.

VI. APPLICATION EXAMPLE ON A PUBLIC DATASET

In this section, various IM described previously are illus-
trated through the Boston housing dataset (BostonHousing2
contained in the R package mlbench), which comes from a
Boston 1970 census. There are n = 506 observations, one
output (Y := cmedv which means “median value of owner-
occupied home”) and d = 12 inputs (mostly economical,
geographical and social factors).

Firstly, we apply several ML models in order to test the
various configurations and estimate the previous IM:

• a linear regression between the output and the inputs gives
R̂2

Lin = 0.739;
• a RF model gives R̂2

RF = 0.893;
• for conditional-MDA estimation, one computes the RF

implementation proposed by [56] where base learners are
some conditional inference trees, with a R̂2

C-MDA = 0.883.
As a result, one can see that the two trees ensemble approaches
show a nice improvement in predictivity capabilities.

Numerical results are given in Table II. Ten metrics are
estimated, namely: VIF, SRC2, LMG, RWA, PMVD, SHAFF,
RF-MDA, CF-MDA, CF-C-MDA and R2-HSIC. Note that,
“RF-MDA” corresponds to the MDA estimated from the stan-
dard RF algorithm, “CF-MDA” to the MDA for the conditional
forest and “CF-C-MDA” to the conditional MDA for the
conditional forest. As a remark, one can mention that the first
metric (VIF) is provided in order to diagnose whether inputs
are multicollinear or not. The next four columns are related
to variance-based IM for a linear model, while the four next
ones are related to variance-based IM for RF-based algorithms.
Finally, the last one is devoted to R2-HSIC indices.

A first primary analysis enables to emphasize three core
results:

• firstly, VIF indices indicate that several inputs are highly
correlated, as a possible significant collinearity between
rad (V̂IF = 7.40) and tax (V̂IF = 8.88);

• secondly, the metrics unanimously identify the same
couple of most influential inputs: lstat (percentage of
lower status of the population) and rm (average number
of rooms per dwelling);

• thirdly, one can see how some metrics sum up to the R2

which is a desirable property for an IM.



Variable Name VIF SRC2 LMG RWA PMVD SHAFF RF-MDA CF-MDA CF-C-MDA R2-HSIC
(%) (%) (%) (%) (%)

X1 crim 1.79 1.09 2.79 3.29 0.72 3.89 7.5 3.2 0.24 0.28
X2 zn 2.30 1.51 2.50 2.81 0.67 2.34 0.4 0.4 0.0 0.16
X3 indus 3.95 0.10 3.74 3.66 0.06 3.17 6.7 5.1 0.1 0.29
X4 nox 4.39 4.79 3.31 3.68 1.54 6.16 10.1 3.5 0.3 0.29
X5 rm 1.93 8.59 19.01 20.59 22.71 22.18 37.1 30.2 5.1 0.45
X6 age 3.09 0.01 2.20 2.70 0.00 4.31 3.4 1.7 0.0 0.25
X7 dis 3.95 12.02 3.17 1.86 2.18 0.51 7.4 1.8 0.1 0.16
X8 rad 7.40 9.56 2.46 2.10 0.83 3.87 1.4 0.7 0.0 0.21
X9 tax 8.88 6.73 3.87 3.64 1.07 6.35 3.7 3.6 0.1 0.27
X10 ptratio 1.78 5.15 7.93 8.70 6.48 4.64 5.0 5.9 0.2 0.23
X11 b 1.34 0.92 2.37 2.97 1.12 4.70 1.5 0.8 0.1 0.14
X12 lstat 2.93 17.64 20.59 17.92 36.56 26.59 61.8 48.3 5.1 0.56
Sum - - 68.10 73.93 73.93 73.93 88.71 - - - -

Table II
RESULTS FROM THE BOSTON HOUSING DATASET STUDY (Y := CMEDV).

Indeed, one can see that SRC2 estimates do not sum up to
R̂2

Lin since collinearity affects both rad and tax. Moreover,
SRC2 indicates as a second most influential input the dis
variable. Thus, one can easily see that SRC2 are not able
to provide interpretable IM as soon as correlated inputs are
involved. As for LMG, RWA and PMVD, one can see a
coherence between the estimates for rm and lstat. However,
RWA leads to a switch in the ordering (which can be due to
the sample size). While LMG and RWA provide rather close
values (as expected), one can notice that PMVD discriminates
more that these two IM (e.g., by putting values close to zero
for several inputs).

In the context of a RF model, one can see that SHAFF
estimates sum up to R̂2

RF. Again, lstat and rm are well iden-
tified. The same conclusion can be drawn from RF-MDA and
CF-MDA. However, CF-C-MDA gives a similar importance
to these two inputs. One can see that these metrics do not
sum up, neither to R̂2

RF nor to R̂2
C-MDA. Moreover, CF-C-MDA

estimates others features’ importance to be almost zero. This
is caused by the correlation between features: standard MDA
artificially gives importance to the majority of features.

Finally, the last metric is R2-HSIC which still indicates the
same ranking (lstat and rm). However, even if the numerical
values of R2-HSIC are normalized in [0, 1], the estimates are
not widely spread. For this reason, one should rely on the p-
values associated to independence statistical tests (not shown
here, for the sake of clarity).

VII. CONCLUSION

In this paper, several approaches adapted to ML inter-
pretability have been described by distinguishing the linear
and nonlinear ML model cases, the independent and dependent
features’ cases and the low dimensional and high dimensional
cases. Some links between SA and ML interpretability have
been illustrated and emphasized. Moreover, some of these
metrics can be used for various settings: typically, measuring
the features’ importance (ranking), or feature identification
(screening). The illustration shown is based on a public
dataset; similar conclusions have been obtained on an EDF
dataset related to the concentration of fission products released
in the primary circuit’s water of nuclear reactors.

Variance-based IM have been particularly scrutinized and
Fig. 4 gives a synthesis of the various IM discussed in this
paper. In the case of independent inputs, a first approach
consists in testing a linear regression model. If this frame-
work is valid, SRC (or SRC2) indices give an immediate
interpretation. If the linear model is not valid, more general
IM, such as MDA and Sobol’ indices, can be computed, either
by metamodel-based techniques (e.g., in the small-size sample
case), or using RF and permutation-based techniques (e.g., in
the large-size sample case). In the case of dependent inputs,
as in the previous one, linear-regression based indices exist
(namely, LMG and PMVD) but are more costly to compute.
If the model is nonlinear, the Shapley effects allocate a share
of variance to each input and can also be estimated by various
methods. However, it is relevant to note that the PMVD
remains particularly interesting as it respects the exclusion
principle (i.e., putting a null IM to each input with a non causal
relationship with the output but which might be correlated
with another causal input). Such an interesting property is not
fulfilled neither by LMG nor by Shapley effects. As shown in
Fig. 4, a nonlinear IM respecting the exclusion property, as
the PME, is needed [65], [66].

To finish with, Fig. 4 provides other well-known screening
techniques which have not been discussed in this paper, for
the sake of conciseness (e.g., Lasso regression, Elastic net and
the recent HSIC-Shapley effects [75]).
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des données des enregistreurs de vol pour la sécurité aérienne,” Ph.D.
dissertation, Université Paris VI, France, 2015.
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[65] M. Hérin, M. Il Idrissi, V. Chabridon, and B. Iooss, “Proportional
marginal effects for sensitivity analysis with correlated inputs,” in
Proceedings of the 10th International Conference on Sensitivity Analysis
of Model Output (SAMO 2022), Tallahassee, Florida, USA, March 2022.

[66] ——, “Proportional marginal effects for sensitivity analysis with corre-
lated inputs,” Preprint, 2022.

[67] S. Kucherenko, B. Feil, N. Shah, and W. Mauntz, “The identification of
model effective dimensions using global sensitivity analysis,” Reliability
Engineering & System Safety, vol. 96, pp. 440–449, 2011.

[68] L. Clouvel, P. Mosca, J. Martinez, and G. Delipei, “Shapley and Johnson
values for sensitivity analysis of PWR power distribution in fast flux
calculation,” in M&C 2019, Portland, USA, August 2019.

[69] S. Da Veiga, “Global sensitivity analysis with dependence measures,”
Journal of Statistical Computation and Simulation, vol. 85, pp. 1283–
1305, 2015.

[70] M. De Lozzo and A. Marrel, “New improvements in the use of
dependence measures for sensitivity analysis and screening,” Journal of
Statistical Computation and Simulation, vol. 86, pp. 3038–3058, 2016.

[71] A. Meynaoui, M. Albert, B. Laurent, and A. Marrel, “Adaptive
test of independence based on hsic measures,” Preprint, 2019, URL
http://export.arxiv.org/pdf/1902.06441.

[72] A. Marrel and V. Chabridon, “Statistical developments for target and
conditional sensitivity analysis: Application on safety studies for nuclear
reactor,” Reliability Engineering & System Safety, vol. 214, p. 107711,
2021.

[73] Q. Zhang, S. Filippi, A. Gretton, and D. Sejdinovic, “Large-scale kernel
methods for independence testing,” Statistics and Computing, vol. 28,
pp. 113–130, 2018.

[74] R. E. Amri and A. Marrel, “Optimized hsic-based tests for sensitiv-
ity analysis: Application to thermalhydraulic simulation of accidental
scenario on nuclear reactor,” Quality and Reliability Engineering Inter-
national, vol. 38, no. 3, pp. 1386–1403, 2022.

[75] S. Da Veiga, “Kernel-based anova decomposition and shapley
effects–application to global sensitivity analysis,” Preprint, 2021,
arXiv:2101.05487.


