
HAL Id: hal-03878419
https://hal.science/hal-03878419

Submitted on 29 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Validated autonomous train perception using
interpretable machine learning

Luca Jourdan, Mohamed Sallak, Walter Schön, Benjamin Quost, Yohan
Bouvet

To cite this version:
Luca Jourdan, Mohamed Sallak, Walter Schön, Benjamin Quost, Yohan Bouvet. Validated au-
tonomous train perception using interpretable machine learning. Lambda Mu 22 - Congrès de maîtrise
des risques et de sûreté de fonctionnement, Oct 2022, Paris Saclay, France. �hal-03878419�

https://hal.science/hal-03878419
https://hal.archives-ouvertes.fr

Validated autonomous train perception using
interpretable machine learning

*Perception validée du train autonome par des modèles d’apprentissage interprétables

Luca Jourdan∗, Mohamed Sallak†∗, Walter Schön†∗, Benjamin Quost†∗ and Yohan Bouvet†

∗ Railenium
Valencienne, France

luca.jourdan@railenium.eu

† Université de technologie de Compiègne,
CNRS, Heudiasyc

(Heuristique et Diagnostic des Systèmes Complexes),
CS 60 319 - 60 203
Compiègne, Cedex

mohamed.sallak@hds.utc.fr, walter.schon@hds.utc.fr, benjamin.quost@utc.fr, yohan.bouvet@hds.utc.fr

Résumé—Le développement de trains autonomes requiert le
développement de nombreuses fonctions pour détecter, percevoir,
reconnaı̂tre et prendre en considération les situations dangereuses.
Une de ces fonctions est la capacité à détecter un obstacle sur la
voie. Le choix a été fait, au sein du projet auquel nous travaillons,
d’utiliser le deep learning pour effectuer cette tâche.
Dans ce papier, nous proposons d’utiliser un arbre de décision, une
méthode issue de l’apprentissage machine, pour combiner les sorties
d’un classifieur basé sur un réseau de neurones avec des informations
extérieures tel que la météo afin d’obtenir un système présentant
de meilleures performances. L’interprétabilité des arbres de décision
nous permet de faire une analyse de sûreté de fonctionnement du
travail proposé. Cette analyse de sureté de fonctionnement est une
première étape vers la certification d’un système basé sur l’intelli-
gence artificielle pour répondre à une fonction sécuritaire.

Abstract—The development of autonomous trains will require the
development of many functions to detect, perceive, recognize and take
into consideration hazardous situations. One of those functions is the
ability to detect obstacles on the track. Due to the high accuracy of
deep learning, the choice has been made, in the context of our work,
to use it in order to characterize the environment.
In this paper, we propose to use a decision tree, a machine learning
method, to combine the probability output of a neural-network
classifier with external information such as the weather to obtain
a better performing decision system in terms of availability and
safety. The interpretability of the decision tree allow us to make a
safety analysis of the proposed work which is a first step toward the
certification process of an AI-based system used in a safety-related
function.

This research work was granted public funds within the scope of the French
Program “Investissements d’Avenir”.

Keywords—Autonomous train, GoA4, classification tree, machine
learning, validation.

I. INTRODUCTION

A. Context

Autonomous trains can drive themselves and make decisions
using both their own sensors and potential track-side sensors
without human intervention. This approach differs from an
automatic metro, which already exists, but which, unlike a
train, drives only in a closed and controlled environment. The
degree of automation of an autonomous train is indicated by
the grade of automation (GoA) specified by the standard IEC
62290-1 [19]. The GoA range from GoA0 (no automation
at all) to GoA4 where no personnel is needed onboard the
train. An autonomous train should be more cost-effective, less
prone to failure, and more energy (Huang et al. [22], [24],
[25], Yin et al. [23]), and time efficient than a human driver
(Huang et al. [22]). Following the recent success in GoA2
train operations where the autonomous system drives between
stations in nominal situations more and more projects such
as the Australian AutoHaul project [20] or the French’s TFA
and TASV project [21] aim to develop GoA4 trains.

The TFA (Train de Fret Autonome, ”autonomous freight
train”) project, initiated by the SNCF (Société Nationale
des Chemins de Fer, ”french’s national society of railway”)
regrouping the SNCF, Railenium, a technological research

institute, academic partners (UTC and LAMIH) and industrials
(Alstom Transport, Altran, Apsys, Hitachi Rail STS), aim to
create a GoA4 autonomous freight train prototype by 2023.

To be able to run autonomously in an open, uncontrolled
environment, the autonomous train must be able to sense and
characterize its environment and, from those perceptions, take
decisions in hazardous situations. As with autonomous cars
(Kuutti et al. [2]) the need to characterize an open environment
led the TFA project to use deep learning to characterize the
environment. The usage of machine learning (ML) in railway
applications is rare and, as far as we know, there are only a
few examples of such usage. Most of the examples that we do
know of, do not come to replace a human but to assist him
in its function during the development process or to fulfill
functions that were not met before. A good example of the
usage of ML to assist humans is to help to assess the risk
of railway accidents [3] or to assess the safety of critical
software used in railway transport [4]. An example of the
usage of AI to fulfill functions not fulfilled by humans can
be found in the work of Fantini et al [5] which used AI
to detect rock falling on the track or the work of Xu et al
[6] which used ML for smart power allocation in railway.
However, the usage of machine learning to replace humans
operator is, to the best of our knowledge, only attempted in
autonomous driving projects such as in TASV (Mahtani et
al. [7]). The main reason why the usage of ML to replace
a human operator in railway operations is so rare is due to
the concern that it raises about the safety impact and that, for
this reason, it is usually advised against by safety standards
such as the EN 50128 [10] for railway or the more general
IEC 61508-7[2]. However, due to the increasing demand to
use AI, the EPSF, a French public railway safety institution, is
working to define the necessary condition to authorize systems
using AI and more specifically machine learning algorithms.
Furthermore, during the definition in 2020 of a ”smart and
durable mobility” strategy, the European commission insisted
on the need to stimulate innovation, the usage of data, and AI
to serve smarter mobility.

B. Motivations and objectives

Annex A of the software certification standard EN
50128 lists techniques of development associated with
the requirements level for each safety integrity level
(SIL). This requirement ranges from mandatory to Not
Recommended. Table A.3 – Software Architecture, lists the
technique “Artificial Intelligence – Fault Correction” as not-
recommended for safety-related functions (SIL1, SIL2, SIL3,
and SIL4 functions). While the norm limits the perimeter of
this requirement to the tasks of ”fault correction” it is usually
acknowledged that this restriction is only due to the limitation
of AI at the time when this rule has been written and is
to be applied for any safety-related function. In the case
where this non-recommendation is not respected, the norm
demands a “... rationale for using alternative techniques ...”.
From the references used to justify this non-recommendation

[24][25] we can deduct that the main argument for the
non-recommendation of AI is its lack of interpretability. For
this reason, we believe that a highly interpretable AI system
on which we are able to make a safety analysis should
be acknowledged as potentially usable in a safety-related
function.

In the TFA project, deep learning, a subset of AI, is used
to characterize the perceptions coming from the sensor. The
characterized perceptions are then used to take decisions in
the presence of obstacles. The decision process actually used
by trains conductor has been rationalized through an SNCF
document and adapted to an autonomous system through the
TFA project. As of now, trains conductor thinks in absolute
term and not in probabilistic term and, for this reason, the
rules that they used and that the autonomous train will use can
be interpreted as a binary rule-based system. For this reason,
it is expected that the decision process will only use binary
input and then apply the rule corresponding to the hazardous
situation. The problem with such a system is that, unlike
a human perception, the output of a perception based on a
neural network is an uncalibrated probability associated with
the predicted class (Guo et al. [18]). For those reasons, the
perception system will have to choose at which probability
levels a detection should be considered as ’true’ or ’false’.

As seen in Fig. 1, in such a system, choosing the right
threshold to binarize the output of the neural network is the
same as taking the decision to react or not to a perception.
If the threshold is put too low, the system will not disregard
potential hazards, but it will lead to many false positives
which will impact the performance of the system. On the
other hand, a threshold put too high will lead to disregarding
potential hazards and will lead to disastrous situations.
Choosing the right threshold is equivalent to choosing the
right compromise between the safety and the performance of
the autonomous train. We believe that such a decision should
be taken by legislators, train operators, railway companies,
and civil society and, for this reason, we will not try to define
the right compromise. Instead, in this paper, we will address
the issue of decreasing the number of false positives without
negatively impacting the false negative rate. The reason for
this choice is that, as of now, the system does not exhibit
instances of failing to detect obstacles in videos and the false
negatives only come from the fact that the system perceive
objects at a short range compared to humans. We will then
show that our work can be analyzed using existing safety
analysis methods. To make this demonstration, we choose to
analyze the remaining risk when using our algorithm using a
fault tree analysis.

While standards discourage the usage of AI in a safety
critical function, we think that it will be useful for the purpose
of choosing the ”good” threshold. For this reason, we propose
in this paper to use ML, to fix the threshold value of the
perception system. The usual approach to obtain a binary

Figure 1. Decision process using a threshold

output from deep learning consists in choosing a threshold that
will be used to classify each instance. Such a threshold often
defaults to the value of 0.5 but can be changed to optimize the
ROC-curve, the precision-recall curve, or any other pertinent
metrics. However, such approaches do not take into account
other information which might change the threshold, such as
the weather. For this reason, we will not use one of those
techniques and will use a classification tree, a ML technique,
to learn which threshold should be used depending on weather
and light conditions. A classification tree, such as defined
by Breiman et al. [12], is a tree structure in which a node
represents a condition on a feature and a leaf represents a
class label (see Fig. 2 for a simple example). Such trees are
used in machine learning as a predictive modeling approach
and have the advantage, over many other ML algorithms, of
being easily interpretable. Due to this interpretability, they
have been used in work on safety-related functions such as
autonomous car driving (Schmidt et al. [13]). However, the
safety demonstration of decision tree usage is, to the best
of our knowledge, only addressed on the prism of constraint
violation (Schmidt et al. [13]). While this approach is pertinent
for some usage, it is impractical for problems when we are
unable to express clear constraints that should not be violated
such as in an environment characterization’s setting. For this
reason, we propose to work on the analysis of the induced risk
of our approach using fault tree analysis.

II. BACKGROUND

A. Existing system

As of now the perception system on which we work is
composed of cameras capturing the environment, a YOLO
(Redmon et al. [1]) based classifier, and a threshold fixed
at the value of 50% for each class. The YOLO classifier
(You Only Look Once), a deep learning classifier model
using convolutional neural networks to convolve multiple
filters (also called kernels) to produce feature maps can
detect, position, and classify objects on images. Each YOLO
detection is associated with a probability. As described in 1,
the threshold is in charge of transforming those probabilities
into binary values.

According to the rules that our decision system should
follow, the train should use the emergency brake when any
kind of obstacle is on the track on which the train rolls.

For this reason, differencing between the different kinds of
existing obstacles is not important to choose to apply or not the
emergency brake (it might however be a necessity to consider
complementary actions).

The existing system is highly performant at close distances
but lacks performance at higher distances. For this reason,
the system produces a lot of false negatives for images of
obstacles at high distances of the train but has a low number of
false negatives on wholes videos sequences. More problematic,
though, the system produces, when looking at the probability
per hour, a high rate of false positives ultimately hurting the
train’s performance.

B. Decision tree and gridsearch

As seen in Fig. 2, a tree is a machine learning model
with a tree-like structure. In this structure, an internal node
corresponds to a test on one of the features, which splits a
region of the input space into two regions. In the classification
step, a leaf is reached after visiting a series of nodes: the
decision associated with it corresponds to the majority class in
the subset of training instances falling into the corresponding
region. During the learning stage, the algorithm needs to
determine when to split the dataset, which variable to use for
each split, and with which value.

As with many ML methods, decision tree’s performances
can vary greatly depending on the hyperparameters used.
Of those hyperparameters, the more important ones are the
following: the criterion, which is the metric used to decide
which split to choose, the maximum depth of the tree, and
the maximum number of leaf nodes that impacts the ability
of the tree to learn and to overfit, the max feature which
indicates how many features should be considered, as most,
when splitting a node and the class weight which allows
putting more or less importance on different classes.

As the number of hyperparameter combinations increases
rapidly with the allowed space search, it is highly impractical
to test all of them by hand. As an answer, gridsearch allows us
to compare the result for all of those hyperparameters in one
go. The idea behind gridsearch is simply to test every possible
combination of parameters. For this reason, the space search
should still be limited.

Figure 2. Example of a learned decision tree

C. Fault tree

Fault tree analysis is a visual, deductive failure analysis
in which an undesired event of a system is analysed. This
analysis, performed using boolean logic to combine lower-
level events, can, among other usages, be used to calculate the
probability of an undesired event. The top event of a fault tree,
called the ”undesirable event”, is the event that we which to
avoid or, in the case of a quantitative analysis, that we which to
know the probability of occurrence. The leaves of the fault tree
represent the basic events and the intermediate nodes between
the leaves and the top event are logical gates including (but not
limited to) AND and OR gates. By propagating and combining
probabilities or probabilities intervals from low-level events
to upper-level events one can calculate the probability or a
probability interval of occurrence of the undesirable event.
During this calcul, an OR gate correspond to an addition
of each corresponding leaves probabilities and an AND gate
correspond to a multiplication of each corresponding leaves
probabilities.

III. METHODOLOGY

A. Decision tree

As seen in the example of a decision tree, interpreting the
decision made by a tree is straightforward; it will remain
understandable by a human expert as long as the tree has a
reasonable depth. This parameter also limits the understanding
of the overall behaviour of the tree, since the number of
decision regions grows exponentially with it. Last, it should
be stressed that large trees tend to overfit the data. For all of
these reasons, we considered trees with a maximum depth of
10.

In our context, the variables used to train the decision tree
(and consequently used in the sequences of tests required

Table I
GRIDSEARCH PARAMETERS AND RESULTS

criterion maximum
depth

max
features

class
weight

maximum
number of
leaf nodes

Search
space

gini,
entropy

[3;10] {’sqrt’,
0.2, 0.4,
0.6, 0.8,

1}

{[1,5],
[1,5]}

{5, 10,
15, 20,
25, 30,
35, 40,

50}
Best

param-
eters

entropy 9 0.4 {4,3} 40

to classify an instance) are the outputs of the perception
system (both the detected class and the associated probability),
the luminosity conditions, and the weather since these latter
arguably change the output distribution of the perception
system and should therefore be taken into account by the
decision process.

We used the scikit-learn (Pedregosa et al. [14]) imple-
mentation of decision trees. To train the tree from both
numerical and categorical inputs, we re-encoded categorical
data (weather, detected class, and day/night conditions) using
one-hot encoding.

Finally, as previously discussed, we used gridsearch to
choose the best hyperparameters of the decision tree for
our problem with 3-fold cross-validation. While training and
testing a tree take seconds with a dataset of the size used
in this work, a gridsearch can cover millions of parameters
combination and, for this reason, the search has been limited
to a subset of the possible search space allowing to limit
the learning phase to a few hours on a CPU running at 4.7
GHz. This search has been done on the split criterion (which
determines when and how to split a node), the maximum depth
of the three, the maximal number of features to be tested
for each new split, and the maximum number of leaf nodes
(which can have a great impact on overfitting), and the classes
weights, which indicate the relative importance of the classes.

B. Dataset

Due to the difficulty to obtain enough real-life images of
a diversity of obstacles in different meteorological situations,
we used images coming from Heudiasyc’s freight train 3D
simulator [15]. This simulator allowed us to play and save
videos scenario containing obstacles of the different classes
with different weather.

Using this simulator, we created a dataset of 24 videos
for a total of 800 seconds at 30fps. Those videos combine a
total of 30 situations with obstacles from which we extracted
5095 images containing at least one obstacle. Combined with
20229 images without obstacles, the obtained dataset contains
25324 images. Each kind of obstacle (humans, animals, cars,
buses, and trucks) is present on both snowy, foggy, nights
with good meteorological conditions and days with good
meteorological conditions environments. A few samples of

Table II
REPARTITION OF THE CONSTITUTED DATASET

Weather’s
condition

clear (neither
snow, fog or
night)

Snow Fog Night

No obstacle 9239 3909 1258 4670
Obstacle 2652 1079 2411 106

the images contained in our dataset can be visualized in Fig. 3
and the repartition of the dataset between day, nighty, snowy
and foggy environments can be found on II. The ground truth
has been obtained by manual annotation and refers to the fact
that a human operator is able or not to detect an obstacle.
In cases where a human is unsure of whether or not there is
an obstacle or not on the image, we delete it from our database.

All images have been passed to our YOLO-based classifier
from which we obtained the prediction for the following
classes: pedestrians, cars, buses, trucks, animals, and others
(referring to unknown obstacles). During this step, the images
have been downsized to a dimension of 1920*1080 pixels. As
the classifier can detect multiple obstacles in the same image,
we only keep the one having the highest probability.
As seen in Fig. 4, for most of the images the neural network is
fairly certain to not detect an object but, for a few thousands
of pictures, the uncertainty is much more important.

Using a random split strategy, 80% of the dataset has
been used to train our algorithms and 20% has been used
to test our results. As two succeeding frames of a video
are usually visually close and to limit the correlation
between the two datasets, the split has been done on parts of
the videos (cut into 1s videos) instead of directly on the image.

For simplicity, we choose to limit the weather to only three
classes: snow, fog, and ”clear” (ie neither snow nor fog). For
the same reason, the luminosity conditions are only divided
between ”night” and ”not night”.

Figure 3. A few examples of the images present in our dataset

C. Safety analysis

In order to demonstrate the possibility to perform a safety
analysis of the proposed algorithm, we focused on the
construction and analysis of a fault tree. By doing so, we
aim to estimate the residual risk associated with the use of
the learned tree. In the context of our safety analysis, we
identified two undesirable events. The first event is related
to the safety and is defined as ”the non-application of the
emergency braking when an obstacle (human, animal, or
object) is present on the track”. The second event, linked to
the railway performance, is defined as ”the application of the
emergency braking when no obstacle is present on the track”.
While the second undesirable event can be triggered by only
one false positive, the first undesirable event need to miss the
obstacle in every frame of the video.

To demonstrate the possibility to make a fault tree analysis
of our algorithm we first need to demonstrate that we can
construct the said fault tree and, as we build automatically
our fault tree, on a second time that the constructed fault tree
is not too complex to be effectively analysed.

1) Decision tree to fault tree: As both of our undesirable
events can be decomposed as only two events: ”there is no
obstacle on the track” (respectively ”there is an obstacle on
the track”) and ”the classification tree detect an obstacle”
(respectively ”the classification tree do not detect an obstacle”)
and that the second one corresponds to a class output of our
decision tree, we choose to automatically extract the set of
rules leading to those events from the decision tree. To do
so, we used an implementation of the following pseudocode
to obtain the set of rules leading to a class (i.e event) :

def get_fault_tree(tree, event):
#return : a list of all the rules leading
to the "event" event.
#event : a class output of the tree.
#if there is no such rule "True" will
be returned.

if tree is leaf
if tree.class == event

return True
else:

return False

else :
paths = []

left_path = get_path(left_child,
class)

right_path = get_path(rigth_child,
class)

if (left_path == True
& right_path == True)

Figure 4. Probability repartition of the predictions made on our dataset using a YOLO-based classifier

return True

if left_path == True:
paths = [[["OR", tree.feature,

"<=", tree.threshold]]]
else:

for i in left_path:
i.append(["AND", tree.feature,

"<=" tree.threshold,])
paths.append(i)

if right_path == True:
paths.append([["OR", tree.feature,

">", tree.threshold]])
else:

for i in right_path:
i.append(["AND", tree.feature,

">", tree.threshold])
paths.append(i)

return paths

Coupled with an extra code to delete redundant subrules,
the implementation of the aforementioned pseudo-code allows
the obtention of the minimal cut of the fault tree. As seen in
Fig. 5 and Fig. 6, the obtained set of rules is fairly small
facilitating both its analysis and the attribution of basic event
probabilities. Note, however, that those sets of rules do not lead
to our previously defined undesirable event, but to the events
”considering that there is no obstacle” for 6 and ”considering

that there is an obstacle” for image 5. To obtain our final fault
tree as presented in appendix A, we need to incorporate the
actual presence or not of an obstacle on the track.

2) Fault tree analysis: The fault trees obtained (see ap-
pendix A) from our decision tree are of a size that allows us to
effectively analyse them. In order to compute the residual risk
induced by our algorithm, we need to make some hypotheses
on the probabilities of the presence of the different kinds
of obstacles, of the different weather conditions, of the light
conditions, and of the repartition of the YOLO-based classifier
output. Using information from Meteo France [16] we retained
an average of 47 days of fog per year in France. As for the
number of days with snow, we retained an average of 20 days
in average for France. Finally, we assume that the night covers
a third of the travels. We also assume, for simplicity, that train
circulation happens uniformly in the time and in the territory.
As for the uncertainty to encounter a vehicle (car, bus, or
truck) as an obstacle, we retained a probability of 1.5 ∗ 10−3
per hour. This value corresponds to the statistics of vehicle
presence observed on a particular SAL2 level crossing. As the
chance to encounter a vehicle on a level crossing is higher
than any vehicle outside of a level crossing, we consider this
as an acceptable upper bound. As a default value, we used the
same value for animals and human’s presence on the track.

To fix the probability repartition of the classifier’s output
(both the class and the estimated probability associated with
it) we checked the repartition on our dataset. Such a statistical
approach is, to the best of our knowledge, the only feasible
way to estimate the output’s repartition of a neural network-
based classifier. Finally, we also assume that the basic events

Figure 5. Set of rules leading to consider that there is an obstacle

Figure 6. Set of rules leading to consider that there is no obstacle

of the fault tree are independent.
Those estimations are used to show the effectiveness of our

methodology and might be debatable. However, we believe
that they will suffice to demonstrate the interpretability and the
possibility to make a safety analysis of the learned decision
tree (see appendix B).

A limitation of fault tree’s analysis is the necessity to as-
sume independency between events. As such, our probabilities
are assumed to be independent during the safety analysis.

IV. RESULTS

As we can see in table III, there is no instance, in the
constituted videos dataset, where either the proposed method
or the threshold method where unable to detect an obstacle
on at least one frame of the video. This means that, at least in
our dataset, both the threshold function and the decision tree
do not lead to the unwanted event of ”the non-application of
the emergency braking when an obstacle is present on the
track”. While only indirectly linked to one of our undesirable
events, we can see that the number of false negatives slightly
decreases with our method. As the high number of false
positives on images is linked to the fact that we have
difficulties detecting obstacles at a great distance, we can
conclude that we slightly decrease the distance at which we
are able to detect an obstacle. The second undesirable event,
defined as ”the application of the emergency braking when
no obstacle is present on the track” being directly linked to
the number of false positives, we can see in the table III
that our approach reduces by more than 40% the number of
undesirable emergency brake use.

Table III
OBTAINED RESULTS WITH DECISION TREE COMPARED TO THE RESULTS

OBTAINED WITH THE THRESHOLD

False posi-
tive

False nega-
tive (on im-
age)

False
negative (on
video)

F1-score

Threshold
of 50%

222 743 0 0.553

Decision
tree

125 714 0 0.599

The calculated probability of occurrence of our undesirable
events using the previously described supposition and the
constructed fault tree is 5.7669e − 006 for the event of non-
application of emergency braking when an obstacle is on the
track. While this value is quite high for a safety-related event,
please note that not using the emergency brake at all would
require not seeing the obstacle on any frame of the video
before reaching it and not on only one frame as calculated
here. Unfortunately, a fault tree analysis is not able to take
into account temporal evolutions and for this reason, we would
have to assume independencies between each video frame to
estimate the risk of totally missing an obstacle.

Using the previously defined fault tree and the aforemen-
tioned assumption, the calculated residual probability of the
undesirable event ”the application of the emergency braking
when no obstacle is present on the track” is 0.031486

While both of those numbers are quite high, they demon-
strate that we can analyse, from a safety point of view, the
proposed approach.

V. CONCLUSION

We used an AI approach to learn an interpretable function,
reducing the number of undesirable emergency braking of the
autonomous train without negative safety impact. We then
showed that building a fault tree from our decision function is
possible and leads to a fault tree of reasonable size. Finally,
using some approximation on the values of the probabilities
associated with some events, we calculated the remaining risk
of using our learned function in regard to the risk of colliding
with vehicles, humans, or animals. While the remaining risk
is too important to use our approach as such, we expect
that adding more data might increase the performance of the
learned function and decrease the remaining risk. Moreover,
this work demonstrated the possibility to use a classification
tree to increase both the performance and the interpretability of
a train’s perception system using the weather and the luminos-
ity conditions as complementary information. Finally, while
not studied in this work, the proposed methodology could be
reused on any system using a deep learning based perception
system on changing weather conditions. Depending on the
safety guarantee needed for a system wishing to reuse this
work, only the decision tree learning and test methodologie
might be reused or the safety analysis methodoly using a fault
tree might be reused too.

We envision adding more meteorological conditions and
the distance between the train and the detected obstacle in
the next iteration of our work as we suspect that it would
be useful data to enhance our decision tree. Adding more
variables to our work will require to use more data and, as the
expert’s time to annotate them is limited, we plan to use active
learning (Aggarwal et al. [17]) in this next iteration of our
work. Finally, in an effort to produce a system more resilient
we ponder the possibility to replace some of our categorical
variables (”fog”, ”clear”, and ”night”) with numerical data
coming from luminosity and humidity sensors.

ACKNOWLEDGMENT

This research work contributes to the french collaborative
project TFA (autonomous freight train), with SNCF, Alstom
Transport, Hitachi Rail STS, Altran and Apsys. It was carried
out in the framework of IRT Railenium, Valenciennes, France,
and therefore was granted public funds within the scope of the
French Program “Investissements d’Avenir”.

REFERENCES

[1] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, ”You Only Look
Once: Unified, Real-Time Object Detection,” 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779-788,
doi: 10.1109/CVPR.2016.91.

[2] S. Kuutti, S. Fallah, R. Bowden, et P. Barber, ≪ Deep Learn-
ing for Autonomous Vehicle Control: Algorithms, State-of-the-Art,
and Future Prospects ≫, Synthesis Lectures on Advances in Au-
tomotive Technology, vol. 3, no. 4, p. 1-80, août 2019, doi:
10.2200/S00932ED1V01Y201906AAT008.

[3] H. Hadj-Mabrouk Contribution of Artificial Intelligence to Risk As-
sessment of Railway Accidents. Urban Rail Transit 5, 104–122 (2019).
https://doi.org/10.1007/s40864-019-0102-3

[4] H. Hadj-Mabrouk. Contribution of artificial intelligence and machine
learning to the assessment of the safety of critical software used in
railway transport[J]. AIMS Electronics and Electrical Engineering, 2019,
3(1): 33-70. doi: 10.3934/ElectrEng.2019.1.33

[5] A. Fantini, F. Matteo and M0 Salvatore. (2017). Rock Falls Impacting
Railway Tracks: Detection Analysis through an Artificial Intelligence
Camera Prototype. Wireless Communications and Mobile Computing.
2017. 1-11. 10.1155/2017/9386928.

[6] J. Xu and B. Ai, ”Artificial Intelligence Empowered Power Allocation
for Smart Railway,” in IEEE Communications Magazine, vol. 59, no. 2,
pp. 28-33, February 2021, doi: 10.1109/MCOM.001.2000634.

[7] A. Mahtani, W. Ben-Messaoud, C. Strauss, S. Niar, A. taleb-ahmed.
(2020). Pedestrian Detection and Classification for Autonomous Train.
10.1109/IPAS50080.2020.9334938.

[8] NF EN 50128: Railways apn – Communication, signaling and processing
systems – Software for railway control and protection systems, 01
October 2011

[9] IEC61508-7. Functional safety of electrical/electronic/programmable
electronic safety-related systems, part 7: Overview of techniques and
measures. In International Organization for Standardization and Interna-
tional Electrotechnical Commission (2000).

[10] M. Bidoit, F. Losavio, C. Gresse, F. Schlienger. (1986). Automatic
programming techniques applied to software development, an approach
based on exception handling. Applications of artificial intelligence in
engineering problems. Springer, Berlin, Heidelberg, doi: 10.1007/978-
3-662-21626-2 15

[11] G.F. Luger, W.A. Stubblefield (1989) Artificial Intelligence and the
design of expert systems. Benjamin/Cummings

[12] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone (1983). Classifica-
tion and Regression Trees.

[13] L. M. Schmidt, G. Kontes, A. Plinge and C. Mutschler, ”Can You Trust
Your Autonomous Car? Interpretable and Verifiably Safe Reinforcement
Learning,” 2021 IEEE Intelligent Vehicles Symposium (IV), 2021, pp.
171-178, doi: 10.1109/IV48863.2021.9575328.

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, et al. Scikit-learn: Machine learning in Python. Journal of
machine learning research. 2011;12(Oct):2825–30.

[15] Hds.utc.fr. 2022. Simulations ferroviaire - UTC Heudiasyc.
[online] Available at: ¡https://www.hds.utc.fr/recherche/plateformes-
technologiques/simulations-ferroviaire.html¿ [Accessed 13 June 2022].

[16] Meteofrance.com. 2022. Le brouillard — Météo-France. [online]
Available at: ¡https://meteofrance.com/comprendre-la-meteo/nuages/le-
brouillard¿ [Accessed 13 June 2022].

[17] C. Aggarwal, X. Kong, Q. Gu, J. Han, S.P. Yu. “Active Learning: A
Survey.” Data Classification: Algorithms and Applications (2014).

[18] C. Guo, G. Pleiss, Y. Sun,K.Q. Weinberger ”On Calibration of Modern
Neural Networks.” Proceedings of the 34th International Conference on
Machine Learning, vol.70 (2017), pp.1321-1330

[19] IEC 62290-1 Railway applications: urban guided transport management
and command/control systems. Part 1: system principles and funda-
mental concepts. In International Organization for Standardization and
International Electrotechnical Commission (2006).

[20] Hitachi, L., 2022. Heavy Haul Freight Transportation System:
AutoHaul : Autonomous Heavy Haul Freight Train Achieved in
Australia : Hitachi Review. [online] Hitachi Review. Available at:
¡https://www.hitachi.com/rev/archive/2020/r2020 06/06a05/index.html¿
[Accessed 13 June 2022].

[21] DIGITALSNCF. 2022. Train Autonome Voyageurs et Fret
: deux projets désormais en route. [online] Available at:
¡https://www.digital.sncf.com/actualites/train-autonome-voyageurs-
et-fret-deux-projets-desormais-en-route¿ [Accessed 13 June 2022].

[22] J. Huang, Y. Liu, Y. Xia, Z. Zhong, and J. Sun, “Train Driving Data
Learning with S-CNN Model for Gear Prediction and Optimal Driving,”
in 2019 Chinese Automation Congress. IEEE, 2019, pp. 2227–2232.

[23] J. Yin, D. Chen and L. Li, ”Intelligent Train Operation Algorithms
for Subway by Expert System and Reinforcement Learning,” in IEEE
Transactions on Intelligent Transportation Systems, vol. 15, no. 6, pp.
2561-2571, Dec. 2014, doi: 10.1109/TITS.2014.2320757.

[24] J. Huang, F. Yang, Y. Deng, X. Zhao and M. Gu, ”Human experience
knowledge induction based intelligent train driving,” 2017 IEEE/ACIS
16th International Conference on Computer and Information Science
(ICIS), 2017, pp. 335-340, doi: 10.1109/ICIS.2017.7960015.

[25] J. Huang, Y. Cai, J. Li, X. Chen and J. Fan, ”Toward Intelligent Train
Driving through Learning Human Experience,” 2019 1st International

Conference on Industrial Artificial Intelligence (IAI), 2019, pp. 1-6, doi:
10.1109/ICIAI.2019.8850749.

APPENDIX

A. Fault tree

Figure 7. Fault tree of the event ”non application of the emergency braking
when an obstacle is present on the track”. (each gamma is a probability)

Figure 8. Fault tree of the event ”application of the emergency braking when
no obstacle is present on the track”. (each gamma is a probability)

B. Learned decision tree

Figure 9. Learned decision tree

