
HAL Id: hal-03878406
https://hal.science/hal-03878406

Submitted on 29 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cutoff for the non reversible SSEP with reservoirs
Hong-Quan Tran

To cite this version:
Hong-Quan Tran. Cutoff for the non reversible SSEP with reservoirs. Electronic Journal of Probability,
2023, 28 (152), pp.1-24. �10.1214/23-EJP1044�. �hal-03878406�

https://hal.science/hal-03878406
https://hal.archives-ouvertes.fr


Cutoff for the non reversible SSEP with reservoirs

Hong Quan Tran∗
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Abstract

We consider the Symmetric Simple Exclusion Process (SSEP) on the segment with two
reservoirs of densities p, q ∈ (0, 1) at the two endpoints. We show that the system exhibits cutoff
with a diffusive window, thus confirming a conjecture of Gantert, Nestoridi, and Schmid in [6]. In
particular, our result covers the regime p ̸= q, where the process is not reversible and there is no
known explicit formula for the invariant measure. Our proof exploits the information percolation
framework introduced by Lubetzky and Sly, the negative dependence of the system, and an
anticoncentration inequality at the conditional level. We believe this approach is applicable to
other models.
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1 Introduction

1.1 Model

The simple exclusion process is an interacting particle system where the particles attempt to perform
simple random walk on a graph, but they are not allowed to jump on top of each other (the exclusion
rule). Since its introduction by Spitzer as a simplified model for a gas of interacting particles
in [25] (see also [18]), it has been shown to exhibit many interesting phenomena, thus received
a lot of attention from mathematicians and theoretical physicists, see, for example, [8, 17, 27].
Recently, a huge amount of work has been devoted to studying the convergence to equilibrium of
the conservative (without reservoirs) model in finite volume, see [26, 23, 12, 11, 13, 15, 29, 9, 10].
In this article, we study the non-conservative variant: the SSEP on the segment (the bulk) with
reservoirs at the two endpoints, where the particles are allowed to enter or exit the bulk through
the reservoirs. We refer the readers to the papers [2, 14] for an introduction and motivations on the
model and to [6, 7, 24] for recent developments. More precisely, let N ∈ Z+ be the length of the
segment, and let p, q ∈ [0, 1] be the densities of the reservoirs at the two endpoints. We consider
the process (ηt)t≥0 taking values in the state space Ω = {0, 1}N , whose infinitesimal generator L
acts on an observable φ : Ω → R by

Lφ(η) =
N−1∑
i=1

N2(φ(ηi↔i+1)− φ(η))

+N2[pφ(η1,1) + (1− p)φ(η1,0)− φ(η)]

+N2[qφ(ηN,1) + (1− q)φ(ηN,0)− φ(η)],

(1)

where ηi↔i+1, ηi,0, ηi,1 are the configurations obtained from η by swapping the i-th and (i + 1)-th
coordinates, resetting the i-th coordinate to 0, resetting the i-th coordinate to 1, respectively. Here,
time is accelerated by a factor N2 so that the process is observed on a diffusive time scale. Then
(ηt)t≥0 is a SSEP on the segment [N ] := {1, . . . , N} with one reservoir of density p placed at site
1 and the other reservoir of density q placed at site N . If (p, q) /∈ {(0, 0), (1, 1)}, then the process
is irreducible, and there is a unique invariant distribution π. When p ̸= q, there is no known
explicit formula for π, and the process is not reversible. The classical theory of Markov processes
ensures that the system will converge to the invariant distribution π, no matter from which initial
configuration it starts. The distance to equilibrium is measured with respect to the total variation
distance dtv (·, ·), defined by

dtv (µ, ν) = max
A⊂Ω

|µ(A)− ν(A)|,

for any distributions µ, ν on Ω. The worst-case distance to equilibrium at time t is defined by

d(t) = max
η∈Ω

dtv (Pη [η(t) ∈ ·] , π) ,

where Pη is the law of the process starting from η. The speed of convergence is quantified by the
so-called mixing times:

tmix(ϵ) = inf {t ≥ 0 : d(t) ≤ ϵ} .

Cutoff phenomenon. Consider a family (Pn)n≥1 of Markov processes. To lighten the notation,
we keep the dependence on n implicit as much as possible. The family (Pn)n≥1 is said to exhibit
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cutoff if, in the limit where n tends to infinity, the asymptotic behavior of tmix(ϵ) does not depend
on ϵ anymore:

∀ϵ ∈ (0, 1) fixed,
tmix(ϵ)

tmix
→ 1,

with tmix = tmix(1/4). This means that d(t) undergoes a phase transition around tmix, where it
drops from near 1 to near 0 in a time of order o(tmix). When cutoff occurs, a natural question is to
determine the window in which the phase transition occurs. More precisely, the family is said to
exhibit cutoff with a window of size O (ωn) if ωn = o(tmix) and

lim
α→−∞

lim inf
n→∞

d(tmix + αωn) = 1,

lim
α→∞

lim sup
n→∞

d(tmix + αωn) = 0.

The cutoff phenomenon was discovered by Aldous, Diaconis, and Shahshahani when studying card
shuffling [5, 1, 4], see also [16] for an introduction to the subject.

Previous works. The conservative SSEP (without reservoirs) has been thoroughly studied in
[23, 26, 12, 11, 13]. In particular, cutoff, and even the limit profile, have been proved by Lacoin in
[12, 11, 13] for the segment and the circle. On the contrary, only a few works have been written on
the non-conservative model. We mention here some recent development. In [6], Gantert, Nestoridi,
and Schmid prove a pre-cutoff for the model: for any fixed ϵ ∈]0, 1[,

1

2π2
≤ lim inf

N→∞

tmix(ϵ)

logN
≤ lim sup

N→∞

tmix(ϵ)

logN
≤ C,

for some constant C independent of ϵ, and they conjecture that the system exhibits cutoff with the
right estimate on the mixing time given by the lower bound. Their proof relies on an extension of
the coupling used by Lacoin in [12] for the conservative model. In [7], Gonçalves, Jara, Marinho,
and Menezes study the reversible case where the two reservoirs have the same density, p = q. Using
Yau’s famous relative entropy method in [28], they prove that

tmix(ϵ) =
logN +Oϵ(1)

2π2
.

Recently, Salez studies in [24] the model on general graphs where reservoirs can be placed at
arbitrary sites. By exploiting the negative dependence property of the system, he proves that,
under some mild conditions on the graph,

tmix(ϵ) =
logN +Oϵ(1)

λN
,

where N is the size of the graph and λN is the spectral gap of the random walk of a single particle.
We stress that the works above provide a more comprehensive study than the results we just
mentioned. [6] is more devoted to studying the case where the random motion of the particles is
asymmetric. [7] provides the convergence profile for the system from any smooth initial condition.
[24] is more concerned with the characterization of cutoff. However, as far as we know, cutoff
has been established in the works [24, 7] only for the case where every reservoir has the same
density, which subsequently implies that the invariant distribution is a product measure, and that
the system is reversible.
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Our contribution. In this paper, we prove cutoff for the SSEP on the segment with reservoirs
of arbitrary densities p, q ∈ (0, 1), thus confirming the conjecture of Gantert, Nestoridi, and Schmid
(see Conjecture 1.7 in [6]), and also making a step towards the study of irreversible models. Our
proof exploits the information percolation framework introduced by Lubetzky and Sly in [20], the
negative dependence of the system, and an anticoncentration inequality at the conditional level.
We believe that this approach is applicable to other models.

1.2 Results

Our main result is that the model exhibits cutoff at time
logN

2π2
with a window of order O (1), as

conjectured by Gantert, Nestoridi, and Schmid.

Theorem 1 (Main theorem). For any p, q, ϵ ∈ (0, 1) fixed, we have

tmix(ϵ) =
logN

2π2
+Op,q,ϵ(1).

In fact, we will prove a stronger result, which makes precise the dependence of the lower order
term on p, q, ϵ and is subsequently still valid when we allow p, q to vary with N . Without loss of
generality (by the symmetry between p and q and the duality between particles and holes), we
suppose that

q ≤ min{p, 1− p}. (2)

We define the weight of the configuration η to be

S(η) =
∑
i∈[N ]

η(i).

We denote by E0 the expectation w.r.t the absorbing model where the two reservoir densities p, q
are zero. Let 1 denote the configuration where every site is occupied, and let t∗ be the time that
the expected weight of the process starting from 1 falls under a specific threshold:

t∗ := inf
{
t ≥ 0 : E0

1 [S(ηt)] ≤
√
Np ∨ 1

}
. (3)

In fact, we will see that t∗ is the time at which the expected weight of the process (with densities of
the reservoirs p, q) starting from the assumingly worst initial condition 1 becomes “close enough”
to the expected weight at equilibrium. We prove that t∗ is a good estimate on the mixing time.

Theorem 2 (Non asymptotic estimates). Under assumption (2), there exists a universal constant
C such that for any ϵ ∈]0, 1[,

t∗ − C

(
1 + log

(
1

1− ϵ

))
≤ tmix(ϵ) ≤ t∗ + C

(
1 + log

(
1

ϵ

)
+ log

(
1

1− p

))
. (4)

Estimating t∗ is a classical problem corresponding to the study of the discrete heat equation on
the segment. It can be shown (see Appendix A in [7] for example) that,

t∗ =
1

π2
log

(
N√

Np ∨ 1

)
±O (1) , (5)

where the lower order term is bounded by some universal constant. This immediately implies the
following corollary, of which Theorem 1 is a direct consequence.
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Corollary 3. Under assumption (2), the system exhibits cutoff at t∗ when

1

1− p
= No(1). (6)

Moreover, if p is bounded away from 1, then the cutoff window is of order O (1), and if p is also

bounded away from 0, then t∗ =
logN

2π2
+O (1).

We conjecture that cutoff should not be restrained by the condition (6).

Conjecture 4. The system still exhibits cutoff at time
logN

2π2
if p = 1, q = 0.

Structure of the proofs. In Subsection 2.1, we recall the negative dependence property of the
SSEP with reservoirs and the exponential bound introduced by Miller and Peres. In Subsection
2.2, we collect some elementary but useful estimates. In Subsection 2.3, we introduce our method.
Section 3 and Section 4 are devoted to the proofs of the upper and lower bound in Theorem 2,
respectively. Finally, in Section 5, we compute t∗ explicitly.

Acknowledgment. The author warmly thanks Justin Salez for numerous fruitful discussions,
thorough reading, and valuable comments on the draft. The author also thanks Hubert Lacoin for
helpful discussions.

2 Preliminary

2.1 Negative dependence property

We recall the notion of negative dependence, which is essential throughout our proof.

Definition 5 (Negative dependence). A random vector Z = (Z1, . . . , Zn) taking values in {0, 1}n
is said to be negatively dependent (ND) if it satisfies

∀A ⊂ [n], E

[∏
i∈A

Zi

]
≤

∏
i∈A

E [Zi] . (7)

An important property of the SSEP with reservoirs is that it preserves the negative dependence
property.

Proposition 6 (The negative dependence property is preserved by SSEP with reservoirs, Lemma
12 in [24]). Let the generator L on Ω be defined by

L =

N∑
i,j=1

ai,jLi,j +

N∑
i=1

a0iL
0
i +

N∑
i=1

a1iL
1
i ,

where

Li,jf(η) = f(ηi↔j)− f(η),

L0
i f(η) = f(ηi,0)− f(η),

L1
i f(η) = f(ηi,1)− f(η),
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where ai,j , a
0
i , a

1
i ∈ R+, 1 ≤ i, j ≤ N . Then L preserves the negative dependence property, i.e. if

Z(0) ∼ µ is a negatively dependent vector for some measure µ on Ω, then Z(t) ∼ µeLt is also ND.

In fact, the SSEP with reservoirs preserves a much richer property called the Strongly Rayleigh
property, of which negative dependence is a consequence. We refer the readers to the beautiful
paper [3] for more details.

A particular case of inequality (7) is when |A| = 2, which implies that the coordinates of an ND
vector Z are negatively correlated, and as a consequence, the weight of vector Z is concentrated
around its mean.

Lemma 7 (Concentration of the weight of an ND vector). Let Z = (Z1, . . . , Zn) be an ND vector.
Let S =

∑n
i=1 Zi. Then

Var [S] ≤ E [S] . (8)

2.2 Some elementary estimates

We first give a lemma about the symmetric simple random walk on the segment.

Lemma 8 (Simple random walk on the segment). Let (X(t))t≥0 be a continuous-time symmetric
simple random walk on {0, . . . , N+1}, which jumps to the left (or to the right) at rate N2. For any
i ∈ {0, . . . , N + 1}, let Ti be the first time that the walk reaches i, i.e. Ti = inf {t ≥ 0 : X(t) = i}.
Then there exists a constant c > 0 (independent of N) such that for any i ∈ {0, . . . , N + 1},

Pi [T0 ≥ 2] < e−c. (9)

This lemma can be proved by a classical hitting time estimate for non-negative supermartingale
(see, e.g. Proposition 2.1 in [16], for the discrete version).

We write Ber(p) for the Bernoulli distribution of parameter p. Now we recall a result about
perturbation of product measures, first introduced by Miller and Peres in [22] for the product
of Ber(1/2), extensively used by Lubetzky and Sly to prove cutoff for Ising model in a series of
impressive papers [19], [20], [21], and extended to the case of product of Ber(p) by Salez in [24].

Lemma 9 (Perturbation of the product lemma). Let Ω = {0, 1}n. For each subset S ⊂ [n], let φS

be a distribution on {0, 1}S. Let p ∈ (0, 1), and let ν be the product measure Ber(p)⊗n on Ω. Let
µ be the measure on Ω obtained by first sampling a subset S ⊂ [n] via some measure µ̃, and then,
conditionally on S, generating independently the values on S via φS and the values on [n] \ S via
Ber(p)⊗[n]\S. Then

4dtv (µ, ν)
2 ≤

∥∥∥µ
ν
− 1

∥∥∥2
L2(ν)

≤ E
[
a|S∩S

′|
]
− 1,

where S, S′ are i.i.d. with law µ̃, and a = max

{
1

p
,

1

1− p

}
.

We identify a subset S ⊂ [n] with the vector (1{i∈S})1≤i≤n. We remark here that the negative
dependence property comes in very handy, as it allows us to bound the exponential moment in
the above lemma by some quantity that depends only on the marginal of the random vector S, as
stated in the following lemma.
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Corollary 10 (Negative dependent perturbation of a product measure). Under the above notations,
if the random set S is ND, then

4dtv (µ, ν)
2 ≤ e(a−1)

∑n
i=1 P[i∈S]

2

− 1.

For the proofs of Lemma 9 and Corollary 10, see Lemma 9 in [24].

2.3 Framework and some definitions

The SSEP with reservoirs (ηt)t≥0 evolves according to the following transitions:

1. η 7→ ηi↔i+1 (exchange between site i and site i+ 1), which occurs at rate N2,

2. Resampling the value at site 1 by an independent Bernoulli Ber(p), which occurs at rate N2,

3. Resampling the value at site N by an independent Bernoulli Ber(q), which occurs at rate N2.

We introduce another Markov process closely related to the SSEP with reservoirs.

The colored interchange process. Let X := SN × {R,B,G}N , where SN is the symmetric
group on [N ], and R,B,G stand for red, blue, and green. Each element (σ, b) ∈ X describes a
way to put N colored labelled individuals on the segment as follows. The individuals are labelled
1, 2, . . . , N . For any i ∈ [N ], the individual labelled i is located at site σ(i) and is colored b(i). The
colored interchange process X is defined as the Markov process taking values in the state space X
which evolves according to the following transition:

1. (σ, b) 7→ ((i, i+ 1) ◦ σ, b) (the individuals at sites i and i+ 1 exchange their positions), which
occurs at rate N2, for 1 ≤ i ≤ N − 1,

2. (σ, b) 7→ (σ, bσ
−1(1),B) (recoloring the individual at site 1 blue), which occurs at rate N2,

3. (σ, b) 7→ (σ, bσ
−1(N),G) (recoloring the individual at site N green), which occurs at rate N2.

There is a natural coupling between (ηt)t≥0 and X as follows.

Natural coupling between (ηt)t≥0 and X. A coupling of the two processes is given by making
the transitions 1, 2, 3 listed above of the two processes (ηt)t≥0 and X occur at the same time.

Roughly speaking, the labels and colors are added to keep better track of the exchange of in-
formation inside the bulk and to memorize which reservoirs the resamplings come from. For an
introduction to the interchange process and its relation with the exclusion process, see [16], chapter
23.

The “pushforward” function Let the function f∗ : Ω×X ×Ω×Ω → Ω be defined by, for any
x = (σ, b) ∈ X and η, vB, vG ∈ Ω,

f∗(η, x, v
B, vG)(i) =


η(σ−1(i)) if b

(
σ−1(i)

)
= R,

vB(i) if b
(
σ−1(i)

)
= B,

vG(i) if b
(
σ−1(i)

)
= G.

(10)
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The interest of introducing the process X is the following lemma, whose proof is straightforward
from the definition of the natural coupling.

Lemma 11. Let x0 ∈ X be the configuration where for any i ∈ [N ], the individual labelled i is
located at site i and is colored red:

x0 = (Id, (R, . . . , R)) ,

Let X, ξB, ξG be independent and as follows.

• X is a colored interchange process starting at x0.

• ξB ∼ Ber(p)⊗N .

• ξG ∼ Ber(q)⊗N .

Let (ηt)t≥0 be the SSEP with reservoirs started from some configuration η ∈ Ω. Then for any t ≥ 0,

ηt
d
= f∗(η,Xt, ξ

B, ξG), (11)

where
d
= means equal in distribution.

Red, blue, and green regions. For any x ∈ X , we denote by R(x) the red region, i.e. the
set of the sites containing the red individuals:

R(x) := {i ∈ [N ]
∣∣b(σ−1(i)) = R}.

The blue region B(x) and the green region G(x) are defined similarly. As the two reservoirs recolor
the particles blue or green, the red region evolves exactly as a SSEP with two reservoirs of density
0. Then t∗ is the time at which the red region becomes small enough:

t∗ = inf
{
t ≥ 0 : Ex0 [|R(Xt)|] ≤

√
Np ∨ 1

}
, (12)

with x0 as in Lemma 11. We present a graphical construction of X that allows us to reveal the
green region before the red and blue regions.

Graphical construction of the colored interchange process. We can construct X in the
following way.

X = Ψ(σ, b,Ξ1,ΞN , , (ΞG
i )1≤i≤N−1, (Ξ

BR
i )1≤i≤N−1), (13)

where (σ, b) ∈ X and Ξ1,ΞN , (ΞG
i )1≤i≤N−1, (Ξ

BR
i )1≤i≤N−1 are independent and as follows.

• Ξ1 and ΞN are homogeneous Poisson processes of intensity N2dt which indicate the times at
which we recolor the individuals at site 1 and site N , respectively.

• ΞG
i and ΞBR

i are homogeneous Poisson processes of intensity N2dt, 1 ≤ i ≤ N −1. Each time
ΞG
i jumps, the two individuals at sites i and i + 1 exchange their positions if at least one of

them is green, and each time ΞBR
i jumps, the two individuals at sites i and i + 1 exchange

their positions if none of them is green.

This construction gives us the colored interchange process X with initial condition (σ, b).
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Trajectories of a single individual. It is well known, see e.g. Chapter 23 of [16], that if we
observe the trajectory of a single labelled individual, we see a continuous-time simple random walk
on the segment where the conductance of any edge is N2. As we add the colors here, we also see
that the labelled individual is always recolored at rate N2 when it is at site 1 or N .

Trajectories of the green regions. The above construction allows us to reveal (G(Xt))t≥0

before (R(Xt))t≥0 and (B(Xt))t≥0. In fact, (G(Xt))t≥0 is measurable with respect to the σ-algebra
HG generated by Ξ1,ΞN , and ΞG.

Number of crossings. Let (Lt)t≥0 be the process that counts the number of times that a blue
or red individual is recolored green. Note that if an individual is recolored blue at site 1, then it
needs to cross the bulk to be recolored green. Accordingly, we call (Lt)t≥0 the number of crossings.
A simple but important observation is that (Lt)t≥0 is also HG-measurable.

3 The upper bound

Since we do not have an explicit formula for the invariant measure, we will compare two processes
from two arbitrary configurations η and η̃ and use the fact that

d(t) ≤ max
η,η̃∈Ω

dtv (Pη [ηt ∈ ·] ,Pη̃ [ηt ∈ ·]) , (14)

which is due to the convexity of the total variation distance. Our goal now is to compare the
distributions of those two processes at our predicted mixing time t∗. Our strategy is to match
perfectly the green region of the two processes by the graphical construction above and to view the
distributions on the remaining sites as a product measure perturbed by the red region to compare
them using Lemma 9.

We will need the following lemmas and propositions.

Lemma 12 (Exponential decay of the red region). For any x ∈ X , for any t ≥ 0,

Ex [|R(X2t)|] ≤ e−c⌊t⌋ |R(x)| ,

where c is the constant in Lemma 8.

Lemma 13 (Fast increase of the number of crossings). There exists a constant C such that for
t2 = C(1 + log(1/ϵ)), for any initial configuration x ∈ X ,

Px [Lt2 < 2N ] ≤ ϵ/4.

Proposition 14 (Negative dependence property of conditional law). For any initial configuration
x ∈ X , almost surely, conditionally on HG, R(Xt) is negatively dependent at any time t ≥ 0.

Lemma 15 (Conditional anticoncentration inequality). Let t be a positive number, and let x =
(σ, b) ∈ X be an initial configuration. For any individual i that is colored blue or red in x, for any
site j, on the event {Lt ≥ 2N},

Px

[
σt(i) = j, σs(i) /∈ G(Xs), ∀0 ≤ s ≤ t

∣∣HG

]
≤ 1

N
.
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The following is a direct consequence, obtained by summing the inequality in Lemma 15 over
all red individuals in configuration x.

Corollary 16 (Conditional marginal of R(Xt)). Let t be a positive number, and let x ∈ X be an
initial configuration. For any site j, on the event {Lt ≥ 2N},

Px

[
j ∈ R(Xt)

∣∣HG

]
≤ |R(x)|

N
.

Now we are ready to prove the upper bound in Theorem 2.

Proof of the upper bound. Let η, η̃ ∈ Ω arbitrary, and let c be the constant in Lemma 8. Let
x0, X, ηB, ηG be defined as in Lemma 11. Let (ζt)t≥0 and (ζ̃t)t≥0 be defined by

ζt = f∗(η,Xt, ξ
B, ξG),

ζ̃t = f∗(η̃, Xt, ξ
B, ξG).

For x ∈ Ω, we denote by Px [·] the law of the process X starting from x. By Lemma 11,

Pη [ηt ∈ ·] = Px0 [ζt ∈ ·] ,

Pη̃ [ηt ∈ ·] = Px0

[
ζ̃t ∈ ·

]
.

So now we can compare the distributions of ζt and ζ̃t instead of those of ηt and η̃t. We divide the
proof into two cases: Np ≤ 1 and Np > 1.

Case 1: Np ≤ 1. We see that if |R(Xt)| = 0, then Px0

[
ζt ∈ ·

∣∣Xt

]
= Px0

[
ζ̃t ∈ ·

∣∣Xt

]
, by definition

of f∗. Hence for t = t∗ + 2m, for some m ∈ Z+,

dtv

(
Px0 [ζt ∈ ·] ,Px0

[
ζ̃t ∈ ·

])
≤ E

[∥∥∥Px0

[
ζt ∈ ·

∣∣Xt

]
− Px0

[
ζ̃t ∈ ·

∣∣Xt

]∥∥∥
TV

]
≤ Px0 [|R(Xt)| > 0]

≤ Ex0 [|R(Xt)|] ≤ e−cmEx0 [|R(Xt∗)|] = e−cm,

where the first inequality is due to Jensen’s inequality, the second inequality is by upper bounding
∥·∥TV by 1 on the event {R(Xt) > 0}, the third inequality is because |R(Xt)| ∈ Z+, the last

inequality is by Lemma 12, and the equality is by (12). We can take m =


log

1

ϵ
c

 to make e−cm

smaller than ϵ, which finishes the proof.

Case 2: Np > 1. Let t1, t2, α be some positive numbers that we will choose later. We see that,

dtv

(
Px0 [ζt ∈ ·] ,Px0

[
ζ̃t ∈ ·

])
≤ Ex0

[∥∥∥Px0 [ζt ∈ ·|Xt1 ]− Px0

[
ζ̃t ∈ ·|Xt1

]∥∥∥
TV

]
= Ex0

[∥∥∥PXt1
[ζt2 ∈ ·]− PXt1

[
ζ̃t2 ∈ ·

]∥∥∥
TV

]
≤ Px0 [|R(Xt1)| > α] + max

x:|R(x)|≤α

∥∥∥Px [ζt2 ∈ ·]− Px

[
ζ̃t2 ∈ ·

]∥∥∥
TV

, (15)
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where the first inequality is by Jensen’s inequality, the equality is due to the Markov property of the
process X at time t1, and the second inequality is by upper bounding the total variation distance
by 1 on the event {|R(Xt1)| > α}. For any x ∈ X , we use the graphical construction in Section 2
to construct the process X starting from x. Then∥∥∥Px [ζt2 ∈ ·]− Px

[
ζ̃t2 ∈ ·

]∥∥∥
TV

≤ E
[∥∥∥Px [ζt2 ∈ ·|HG]− Px

[
ζ̃t2 ∈ ·|HG

]∥∥∥
TV

]
≤ Px [Lt2 < 2N ] + E

[∥∥∥Px [ζt2 ∈ ·|HG]− Px

[
ζ̃t2 ∈ ·|HG

]∥∥∥
TV

1{Lt2≥2N}
]
, (16)

where the first inequality is by Jensen’s inequality, and the second inequality is simply by upper
bounding the total variation distance by 1 on the event {Lt2 < 2N}. Combining (15) and (16), we

deduce that dtv

(
Px0 [ζt ∈ ·] ,Px0

[
ζ̃t ∈ ·

])
does not exceed

Px0 [|R(Xt1)| > α] + max
x∈X

Px [Lt2 < 2N ]

+ max
x:|R(x)|≤α

E
[∥∥∥Px [ζt2 ∈ ·|HG]− Px

[
ζ̃t2 ∈ ·|HG

]∥∥∥
TV

1{Lt2≥2N}
]
. (17)

We separately estimate the three terms in the sum (17).

The first term. We choose t1 = t∗ + 2m for some m ∈ Z+ that we will choose later. Then
by Lemma 12 and equality (12), Ex0 [|R(Xt1)|] ≤ Ex0 [|R(Xt∗)|] e−cm =

√
Npe−cm. Hence by

Markov’s inequality,

Px0 [|R(Xt1)| ≥ α] ≤
√
Npe−cm

α
.

The second term. This term is smaller than ϵ/4 for t2 as in Lemma 13.

The third term. Let x ∈ X . Observe that, under Px, R(Xt2) ∪ B(Xt2) = [N ] \ G(Xt2) is
HG-measurable. We write ζRB

t2 for ζt2(R(Xt2) ∪ B(Xt2)) and ζ̃RB
t2 for ζ̃t2(R(Xt2) ∪ B(Xt2)). Con-

ditionally on HG, by construction, the distribution of ζt2 and ζ̃t2 on G(Xt2) is a product of Ber(q),
independent of the restriction of ζt2 and ζ̃t2 on R(Xt2) ∪ B(Xt2), so we can safely project onto
R(Xt2) ∪B(Xt2) to obtain

E
[∥∥∥Px [ζt2 ∈ ·|HG]− Px

[
ζ̃t2 ∈ ·|HG

]∥∥∥
TV

1{Lt2≥2N}
]

= E
[∥∥∥Px

[
ζRB
t2 ∈ ·|HG

]
− Px

[
ζ̃RB
t2 ∈ ·|HG

]∥∥∥
TV

1{Lt2≥2N}
]

(18)

≤ 2 sup
η

E
[∥∥∥Px

[
ζRB
t2 ∈ ·|HG

]
− νR(Xt2 )∪B(Xt2 )

∥∥∥
TV

1{Lt2≥2N}
]
,

where νR(Xt2 )∪B(Xt2 )
is the product measure of Ber(p) on R(Xt2)∪B(Xt2), by the triangle inequality.

By construction of ζ, conditionally onHG, the variable ζ
RB
t2 can be constructed by first sampling the

set R(Xt2), then sampling the values of ζt2 on R(Xt2) conditionally on R(Xt2), and then sampling
independently the values of ζt2 on B(Xt2) by a product of Ber(p). So thanks to Corollary 10, for

11



a =
1

min{p, 1− p}
,

2
∥∥∥Px

[
ζRB
t2 ∈ ·|HG

]
− νR(Xt2 )∪B(Xt2 )

∥∥∥
TV

≤

√√√√√exp

 ∑
i∈R(Xt2 )∪B(Xt2 )

(a− 1)Px

[
i ∈ R(Xt2)

∣∣HG

]2− 1,
(19)

By Corollary 16, on the event {Lt2 ≥ 2N},

∑
i∈R(Xt2 )∪B(Xt2 )

Px

[
i ∈ R(Xt2)

∣∣HG

]2 ≤ |R(Xt2) ∪B(Xt2)|
|R(x)|2

N2
≤ N

|R(x)|2

N2
=

|R(x)|2

N
. (20)

(18), (19), and (20) together imply that the third term is upper bounded by

√
e

(a− 1)α2

N − 1.
So altogether, with t1 = t∗ + 2m and t2 as in Lemma 13,

dtv

(
Px0 [ζt ∈ ·] ,Px0

[
ζ̃t ∈ ·

])
≤

√
Npe−cm

α
+

ϵ

4
+

√
e

(a− 1)α2

N − 1. (21)

We take α =
ϵ
√
N√
8a

. Then

a− 1

N
α2 ≤ ϵ2

8
≤ log

(
1 +

ϵ2

4

)
,

where we have used the inequality log(1+x) ≥ x/2 if 0 < x < 1. This implies that the last term on
the right-hand side of (21) is smaller than ϵ/2. The first term on the right-hand side of (21) now

becomes

√
8ap

ϵ
e−cm. Observe that

ap = pmax

{
1

p
,

1

1− p

}
= max

{
1,

p

1− p

}
≤ 1

1− p
,

Hence √
8ap

ϵ
e−cm ≤ 1

ϵ

√
8

1− p
e−cm.

We can take

m =

⌈
1

c

(
1

2
log(128) +

1

2
log

(
1

1− p

)
+ 2 log(1/ϵ)

)⌉
to make that term smaller than ϵ/4. Hence for t = t∗ + 2m + t2 with m and t2 defined as above,
dtv (Pη [η(t) ∈ ·] ,Pη̃ [η̃(t) ∈ ·]) < ϵ, for any η, η̃ ∈ Ω, which finishes our proof.

The rest of this section is dedicated to proving Lemma 12, Lemma 13, Lemma 15, and Propo-
sition 14. First, we prove Lemma 12.

12



Proof of Lemma 12. As we mentioned near the end of Subsection 2.3, each labelled individual
moves as a continuous-time simple random walk on the segment where every edge has conductance
N2. Each individual is also recolored at site 1 and N at rate N2. Hence the time at which a red
individual is recolored is also the time that a continuous-time random walk on Z, whose edges are
given conductance N2, starting from the same site reaches 0 or N + 1 (we imagine that the red
individual jumps to site 0 or site N + 1 when it is recolored). Hence by Lemma 8, the probability
that an individual remains red up to time 2 is smaller than e−c. Summing over all red individuals,
we get

Ex [|R(X2)|] ≤ e−c |R(x)| .

Moreover, since |R(Xt)| stochastically decreases with respect to t as the individuals are only re-
colored blue or green, the conclusion is obtained simply by iterating the above inequality via the
Markov property.

To prove Lemma 13, Proposition 14, and Lemma 15, we need to understand the evolution of
the system conditionally on HG. We start by describing how the system evolves once we fix a
realization of Ξ1,ΞN , and ΞG.

Observation 17 (Evolution of the red and blue individuals conditionally on HG). Let T0 = 0,
and let (Ti)i≥1 be the times at which a point of Ξ1,ΞN , or ΞG appears, which are HG-measurable
and strictly increase to infinity almost surely. From the graphical construction of X, we see that
conditionally on HG, when ΞBR is revealed, the red and blue individuals evolve as follows. On any
time interval (Ti, Ti+1), i ≥ 0, two neighbor (red or blue) individuals exchange their positions at
rate N2, and at time Ti, i ≥ 1, the system is forced to take some transitions by the environment,
as follows.

• Two neighbor green individuals exchange their positions. Then nothing happens to the red
and blue individuals,

• A red or blue individual, say at site i, is forced to exchange positions with a green individual,
say at site i+ 1, due to a point of ΞG.

• The reservoirs recolor a green individual blue at site 1 or recolor a blue (or red) individual
green at site N , due to a point of Ξ1 or ΞN .

In short, the blue and red individuals evolve as a simple exclusion process conditionally on the
environment created by the green region.

Now we prove Proposition 14.

Proof of Proposition 14. The proof is inspired by that of Proposition 6. We fix a realization of
Ξ1,ΞN ,ΞG and let (Ti)i≥0 be defined as in Observation 17. We will prove the following two
statements, which are conditional on HG:

1. For any i ≥ 0, if R(XTi) is ND, then R(Xt) is also ND, for any t ∈ [Ti, Ti+1[.

2. For any i ≥ 0, if R(XTi−) is ND, then R(XTi) is also ND.

13



These two statements clearly imply that if R(X0) is ND (which is the case whenX0 is deterministic),
then at any time t ≥ 0, R(Xt) is still ND. Now we prove the first statement. From Observation
17, we see that on the time interval [Ti, Ti+1[, the red region evolves according to the generator L̃
given by

L̃ = N2
∑
i

Li,i+1,

with Li,i+1 as in Proposition 6, where the sum is taken over all the site i such that {i, i + 1} ∩
G(XTi) = ∅. We can now apply Proposition 6 to conclude that the ND property of the red region is
preserved from time Ti to Ti+1−. Now we prove the second statement. According to Observation
17, at Ti, only a few following things can happen.

• Two green individuals exchange their positions. Then nothing happens to the red region, i.e.
R(XTi) = R(XTi−). It is straightforward that ND property is preserved.

• A red or blue individual is forced to exchange positions with a green individual, say the
exchange happens between two sites j and j + 1. Then R(XTi) = R(XTi−)

j↔j+1. This does
not affect the ND property as the inequality (7) for R(XTi) is exactly that for R(XTi−) when
we replace A by Aj↔j+1.

• The reservoirs recolor an individual, for example, at site 1. This corresponds to setting the
first coordinate to 0. If 1 /∈ A, this operation does not affect the inequality (7). If 1 ∈ A, the
two sides of inequality (7) become 0. In both cases, this operation preserves the inequality
(7) and hence the ND property.

This finishes our proof.

Proof of Lemma 13. Let (Ti)i≥0 be as in Observation 17. Let m ∈ N be a number that we will
choose later. We call the modified dynamics the evolution of the system where we close the reservoir
at site N during the time interval [0, 2m] and close the reservoir at site 1 during time ]2m, 4m], i.e.
we ignore the points of ΞN on the time interval [0, 2m] and the points of Ξ1 on ]2m, 4m]. We claim
that at time 4m, we have fewer blue and red individuals recolored green in the modified dynamics
than in the original dynamics (actually, closing some reservoirs during any time only decreases
(Lt)t≥0). More precisely, suppose that in the modified dynamics, some individual labelled i is
recolored blue while being green at some time Tk (or simply a blue or red individual if k = 0)
and then keeps its color until being recolored green at some time Tl for some l > k. Then in the
original dynamics, the individual labelled i is still green at time Tk− and is recolored blue at time
Tk (or simply blue or red if k = 0), and after that either it is recolored green at some time in
the interval [0, 2m], or it stays blue (or red) until time 2m and then being recolored green at time
Tl, which proves the observation. Now we prove that in the modified dynamics, there are many
recolorings occurring at site N . The point here is that when we close the reservoir at site N , the
other reservoir at site 1 quickly paints almost the whole bulk blue, and vice versa, when we close
the reservoir at site 1, the reservoir at site N quickly paints almost the whole bulk green, and hence
there are many blue individuals recolored green. More precisely, we write E [·] ,P [·] ,Var [·] for the
expectation, the probability, and the variance taken with respect to the modified dynamics. In the
modified dynamics, for any initial configuration x, the set G(X2m) is ND, by the same argument
as in Proposition 14. Hence by Lemma 6,

Varx [|G(X2m)|] ≤ Ex [|G(X2m)|] .

14



By Lemma 8 and a proof similar to that of Lemma 12, for any m ∈ Z+,

Ex [|G(X2m)|] ≤ |G(x)| e−cm ≤ Ne−cm.

Then for m =

⌈
1

c
log

1000

ϵ

⌉
,

Px [|G(X2m)| ≥ N/4] = Px

[
|G(X2m)| − Ex [|G(X2m)|] ≥ N/4− Ex [|G(X2m)|]

]
≤ Px

[
|G(X2m)| − Ex [|G(X2m)|] ≥ N/4−Ne−cm

]
≤ Varx [|G(X2m)|]

(1/4− e−cm)2N2
≤ Ne−cm

(1/4− e−cm)2N2
≤ ϵ

32
.

By the same argument,

Px [|G(X4m)| ≤ 3N/4] = Px [|R(X4m)|+ |B(X4m)| ≥ N/4] ≤ ϵ/32.

We conclude that

Px [L4m ≥ N/2] ≥ Px [|G(X2m)| < N/4, |G(X4m)| > 3N/4]

≥ 1− Px [|G(X2m)| ≥ N/4]− Px [|R(X4m)| ≤ 3N/4]

≥ 1− ϵ/16.

This implies that, in the original dynamics, we also have

Px [L4m ≥ N/2] ≥ 1− ϵ/16.

Therefore, by an argument of union bound and the Markov property,

Px [L16m ≥ 2N ] ≥ 1− 4× ϵ/16 = 1− ϵ/4.

We choose t2 = 16m to conclude the proof.

Remark 18. The number t2 above is not meant to be optimal. In fact, if we are interested only in

the case of large N , we can choose m =
1 + o(1)

c
log 4.

The rest of this section is devoted to proving the anticoncentration inequality in Lemma 15.
We introduce some notations that we will use in Lemma 15 and Proposition 19. Let (Ti)i≥0 be
defined as in Observation 17. We fix t ∈ R+ and denote by Ta1 , . . . , Tar the times at which a green
individual is recolored blue at site 1, and Tb1 , . . . , Tbs the times at which a red or blue individual
is recolored green at site N , during the time interval [0, t]. All these times are HG-measurable. By
an abuse of notation, we relabel those individuals by ã1, . . . , ãr, b̃1, . . . , b̃s. We denote the random
walks killed when being recolored at site N of the individuals ã1, . . . , ãr by A1, . . . , Ar, respectively.
If the individual labelled i is blue or red at time 0, we denote by σ̃(i, ·) the walk of the individual
i killed when being recolored at site N as well. Observe that the walk σ̃(i, ·) either survives up to
time t or is killed at some time Tbl . We will use the notation {σ̃(i, t) = j} to indicate the event
that the walk survives up to time t and ends up at site j, and {σ̃(i, t) = b̃l} to say that the walk is
killed at time Tbl . Similar notations are used for the walk Ak, 1 ≤ k ≤ r
We will need the following proposition.
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Proposition 19 (Crossing inequality). For any x ∈ X , for any individual labelled i that is either
blue or red in x, for any site j, for any 1 ≤ k ≤ r, 1 ≤ l ≤ s,

Px

[
σ̃(i, t) = j, Ak(t) = b̃l

∣∣HG

]
≤ Px

[
σ̃(i, t) = b̃l, Ak(t) = j

∣∣HG

]
. (22)

We show how we can prove Lemma 15 using Proposition 19.

Proof of Lemma 15. Let i, j be as in the statement of Lemma 15. Summing the inequality in
Proposition 19 over l, we get

Px

[
σ̃(i, t) = j, Ak is killed by time t

∣∣HG

]
≤ Px

[
σ̃(i, ·) is killed by time t, Ak(t) = j

∣∣HG

]
.

Now summing over k, we get

Ex

[
1{σ̃(i,t)=j} ×#{walks among A1, . . . , Ar that are killed by time t}

∣∣HG

]
≤

s∑
k=1

Px

[
σ̃(i, ·) is killed by time t, Ak(t) = j

∣∣HG

]
.

(23)

On the event {Lt ≥ 2N}, there are at least 2N times at which a blue or red individual is recolored
green by time t. Since originally there are at most N blue and red individuals, then there are
always at least N times a green individual is recolored blue at site 1 and then recolored green again
by time t. In other words, at least N walks are killed at site N by time t among A1, . . . , Ar. Hence
the left-hand side of equation (23) is at least N × P

[
σ̃(i, t) = j

∣∣HG

]
. On the other hand, we can

realize the trajectories of σ̃(i, ·) and A1, A2, . . . , Ar altogether by revealing ΞBR. Subsequently, the
events on the right-hand side of (23) are pairwise disjoint since Ak and Al cannot both occupy site
j at time t, for any k ̸= l. This implies that the sum on the right-hand side of (23) is smaller than
1. So overall, on the event {Lt ≥ 2N},

N × Px

[
σ̃(i, t) = j

∣∣HG

]
≤ 1. (24)

Furthermore,

Px

[
σ̃(i, t) = j

∣∣HG

]
= Px

[
σt(i) = j, σs(i) /∈ G(Xs), ∀0 ≤ s ≤ t

∣∣HG

]
. (25)

Combining (24) and (25), we get what we want.

We now prove Proposition 19.

Proof of Proposition 19. The idea is to use the monotonicity of the exclusion process. By Obser-
vation 17, we see that σ̃(i, ·) is a simple random walk conditionally on the environment created by
the green region. If that walk is still alive at the time when ãk is born, then it must be on the
right of ãk at that time (since ãk is born at site 1). Those two individuals then evolve as a simple
exclusion process with two individuals conditionally on the environment as we realize ΞBR, still by
Observation 17. We propose another graphical construction of those two walks as follows. At any
time t, if there are two walks alive, say at two sites u, v with u < v, we refer to the individual at site
u as the individual on the left and to the individual at site v as the individual on the right. In case
there is only one walk alive, we refer to it as the only individual. Let ΞR,ΞL,ΞE be 3 independent
Poisson processes with ΞR and ΞL of intensity N2dt ⊗ Card on R+ × {L,R}, and ΞE of intensity
2N2dt. R, L, and E stand for right, left, and exchange. The rule of evolution is as follows.
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• For each point (s, w) of ΞR, the individual on the right at time s− (or the only individual if
there is only one walk alive) attempts to make a jump at time s to the left if w = L or to
the right if w = R. It succeeds except when trying to jump on a site occupied by a green
individual or the individual on the left, in which case the jump is cancelled.

• For each point (s, w) of ΞL, the individual on the left at time s− (if there exists) attempts to
make a jump at time s to the left if w = L or to the right if w = R. It succeeds except when
trying to jump on a site occupied by a green individual or by the individual on the right, in
which case the jump is cancelled.

• For each point s of ΞE , we exchange the positions of the two individuals with probability 1/2
if they are adjacent at time s.

• For each time Ti, the two walks make the jump forced by the environment, as explained in
Observation 17.

This construction gives us the same distribution of the two walks as the one given by ΞBR, as the
rates of transition given by the two constructions are always the same. In short, ΞR and ΞL are
used to generate the walks on the right and the left, respectively. When we realize ΞR,ΞL, we
observe two random walks that are not allowed to jump on top of each other. ΞE is then used
to make precise where those two walks exchange their positions. With this construction, the set
{σ̃(i, s), Ak(s)} is entirely determined by ΞR,ΞL, for any 0 ≤ s ≤ t, since ΞE has no effect on that
set. Now conditionally on the (ΞR,ΞL)-measurable event {σ̃(i, t), Ak(t)} = {j, b̃l} (which means
that one walk reaches j at time t and the other walk was killed at bl), we realize ΞE to obtain a
number m of exchange edges between the two walks. We see that if m = 0, then we necessarily
have σ̃(i, t) = b̃l, Ak(t) = i due to monotonicity, which means

0 = Px

[
σ̃(i, t) = j, Ak(t) = b̃l,m = 0

∣∣HG

]
≤ Px

[
σ̃(i, t) = b̃l, Ak(t) = j,m = 0

∣∣HG

]
. (26)

If m > 0, we cannot distinguish the two individuals anymore since the probability that the sum of
m independent Bernoulli variables of parameter 1/2 is even (or odd) is 1/2, which means

Px

[
σ̃(i, t) = j, Ak(t) = b̃l,m > 0

∣∣HG

]
= Px

[
σ̃(i, t) = b̃l, Ak(t) = j,m > 0

∣∣HG

]
, (27)

since both are equal to
1

2
Px

[
{Xt(t), Ak(t)} = {j, b̃l},m > 0

∣∣HG

]
. Summing (26) and (27), we get

what we want.

4 The lower bound

We finish the proof of Theorem 2 by proving the lower bound on tmix(ϵ) in Theorem 2.

Proof of the lower bound. We follow Wilson’s classical method in [26]. We consider the process
with the initial condition η0 = 1. Recall that the weight of a configuration η is

S(η) :=
N∑
i=1

η(i).
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S(η) will be our distinguishing statistic. Recall that, for any t ≥ 0,

ηt
d
= f∗(η,Xt, ξ

B, ξG),

with Xt, ξ
B, ξG defined as in Lemma 11. We write St for S

(
f∗(η,Xt, ξ

B, ξG)
)
, and S∞ for S(η∞),

where η∞ ∼ π. By symmetry, we see that

E [|B(Xt)|] = E [|G(Xt)|] =
N − E [|R(Xt)|]

2
.

Hence

E [St] = E
[
E
[
St

∣∣Xt

]]
= E [|R(Xt)|+ p |B(Xt)|+ q |G(Xt)|]

= E [|R(Xt)|] +
N − E [|R(Xt)|]

2
(p+ q),

Letting t → ∞, and observing that E [|R(Xt)|]
t→∞−−−→ 0 by Lemma 12, we get

E [S∞] = N × p+ q

2
,

E [St]− E [S∞] = E [|R(Xt)|]
(
1− p+ q

2

)
.

By Proposition 6, ηt is ND. Hence by inequality (8),

Var [St] ≤ E [St] ,

and by letting t → ∞,
Var [S∞] ≤ E [S∞] .

Hence, under assumption (2),

max {Var [St] ,Var [S∞]} ≤ N(p+ q)

2
+ E [|R(Xt)|]

(
1− p+ q

2

)
≤ Np+ E [|R(Xt)|] .

So by Proposition 7.9 in [16],

∥∥P t
η0 − π

∥∥
TV

≥ 1− 8
max {Var [St] ,Var [S∞]}

(E [St]− E [S∞])2
≥ 1− 8

Np+ E [|R(Xt)|](
1− p+ q

2

)2

E [|R(Xt)|]2
.

Let t = t∗ − 2m, for some positive integer m < t∗/2 that we will choose later, and let c be the
constant in Lemma 8. By Lemma 12 and the Markov property, E [|R(Xt)|] ≥ E [|R(Xt∗)|] ecm =
(
√
Np ∨ 1)ecm, hence the last term is bigger than

1− 8(
1− p+ q

2

)2

e2cm
− 8(

1− p+ q

2

)2

ecm
.
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Note that with our assumption, 1 > 1 − p+ q

2
>

1

2
. So we conclude that the term above is

greater than 1− 32

e2cm
− 32

ecm
, which is greater than ϵ for m =

⌈
1

c
log

(
64

1− ϵ

)⌉
. This implies that

tmix(ϵ) ≥ t∗ − 2m, if m < t∗/2. Besides, this inequality is trivial when m ≥ t∗/2, which finishes our
proof.

Remark 20. This method can also give a lower bound on the mixing time from any initial config-
uration η. In fact, we can prove that, for some constant C,

tmix(η; ϵ) ≥ t∗(η)− C

(
1 + log

(
1

1− ϵ

))
,

where
t∗(η) = inf

{
t ≥ 0 :

∣∣E0
η [St]− E [S∞]

∣∣ ≤ √
Np ∨ 1

}
.

5 The computation of t∗

For the sake of completeness, we include here the proof of equality (5), which is a particular case
of the computations presented in Appendix A of [7].

Proof of (5). We consider the model where the reservoirs are of density p = q = 0. We define
ut : [N ] → [0, 1] by ut(x) = E1 [ηt(x)]. Then by Dynkin’s formula, {ut; t ≥ 0} is the unique
solution of the system of equations{

d

dt
ut(x) = ∆ut(x) for t ≥ 0 and x ∈ [N ],

u0(x) = 1 for x ∈ [N ],

where ∆ is the discrete Laplacian defined by, for any function f : [N ] → R,

∆f = N2(f(x+ 1) + f(x− 1)− 2f(x)), ∀x ∈ [N ],

with the convention that f(0) = f(N + 1) = 0. The eigenfunctions of ∆ are given by

φl(x) =
√
2 sin

(
πlx

N + 1

)
, 1 ≤ l ≤ N,

with the corresponding eigenvalues −λl given by

λl = 2N2

(
1− cos

(
πl

N + 1

))
, 1 ≤ l ≤ N.

Besides, (φl)1≤l≤N is an orthonormal basis for the scalar product given by

⟨f, g⟩ = 1

N + 1

N∑
x=1

f(x)g(x),
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for any f, g : [N ] → R. Let t be an arbitrary positive number. We see that

E1 [|R(Xt)|] =
N∑

x=1

ut(x) = (N + 1) ⟨ut, u0⟩ . (28)

Let

u0 =

N∑
l=1

clφl

be the decomposition of u0 in the basis (φl)1≤l≤N . Then

ut =
N∑
l=1

cle
−λltφl.

Hence

⟨ut, u0⟩ =
N∑
l=1

c2l e
−λlt. (29)

Note that λ1 = max {λ1, . . . , λN}. Hence

c21e
−λ1t ≤ ⟨ut, u0⟩ ≤ (

N∑
l=1

c2l )e
−λ1t = ⟨u0, u0⟩ e−λ1t =

N

N + 1
e−λ1t.

Plug in (28), we see that

(N + 1)c21e
−λ1t ≤ E1 [|R(Xt)|] ≤ Ne−λ1t,

which means

1

λ1

(
2 log(c1) + log

(
N + 1

E1 [|R(Xt)|]

))
≤ t ≤ 1

λ1
log

(
N

E1 [|R(Xt)|]

)
. (30)

We finish the proof by estimating λ1 and c1. Note that by Taylor’s expansion of function cosine
around 0,

λ1 = 2N2

(
1

2

π2

(N + 1)2
+O

(
π4

(N + 1)4

))
= π2 +O (1/N) . (31)

Besides,

c1 = ⟨1, φ1⟩

=
1

N + 1

N∑
x=1

φ1(x)

=

√
2

N + 1

N∑
x=1

sin
πx

N + 1
.
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By some classical trigonometric computations,

c1 =

√
2

N + 1
×

cos
π

2(N + 1)

sin
π

2(N + 1)

=
2
√
2

π

(
1 +O

(
1/N2

))
, (32)

where we have used the Taylor expansion of the sinus and cosinus functions around 0. Note that
at t∗, E1 [|R(Xt∗)|] =

√
Np ∨ 1, by (12). Then the three equations (30), (31), (32) together imply

t∗ =
1

π2
log

(
N√

Np ∨ 1

)
±O (1) ,

which is precisely what we want.

References

[1] D. Aldous and P. Diaconis. Shuffling cards and stopping times. American Mathematical
Monthly, 93(5):333–348, 1986.

[2] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim. Large deviations for
the boundary driven symmetric simple exclusion process. Mathematical Physics, Analysis and
Geometry. An International Journal Devoted to the Theory and Applications of Analysis and
Geometry to Physics, 6(3):231–267, 2003.
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