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We consider the stochastic system of interacting neurons introduced in
De Masi et al. (2015) and in Fournier and Löcherbach (2016) and then fur-
ther studied in Erny, Löcherbach and Loukianova (2021) in a diffusive scal-
ing. The system consists of N neurons, each spiking randomly with rate
depending on its membrane potential. At its spiking time, the potential of
the spiking neuron is reset to 0 and all other neurons receive an additional
amount of potential which is a centred random variable of order 1/

√
N. In

between successive spikes, each neuron’s potential follows a deterministic
flow. In our previous article Erny, Löcherbach and Loukianova (2021) we
proved the convergence of the system, as N →∞, to a limit nonlinear jump-
ing stochastic differential equation. In the present article we complete this
study by establishing a strong convergence result, stated with respect to an
appropriate distance, with an explicit rate of convergence. The main technical
ingredient of our proof is the coupling introduced in Komlós, Major and Tus-
nády (1976) of the point process representing the small jumps of the particle
system with the limit Brownian motion.

1. Introduction. In the present paper we continue the study started in Erny, Löcherbach
and Loukianova (2021) and establish strong error bounds for a mean field limit of systems
of interacting neurons in a diffusive scaling. More precisely, we are interested in the large
population limit of the Markov process XN = (XN

t )t≥0, X
N
t = (XN,1

t , . . . ,XN,N
t ) which

takes values in RN and has generator AN given by
(1)

ANϕ(x) =−α
N∑
i=1

∂xiϕ(x)xi +

N∑
i=1

f(xi)

∫
R
ν(du)

ϕ(x− xiei +
∑
j 6=i

u√
N
ej)−ϕ(x)

 ,

for any smooth test function ϕ : RN → R. In the above formula, x = (x1, . . . , xN ) ∈ RN
is the vector of membrane potential values of the N neurons and ej denotes the j−th unit
vector in RN . Moreover, α> 0 is a fixed parameter, f : R→R+ a Lipschitz continuous rate
function and ν a centred probability measure on R having a second moment. System (1) is
a version of the model of interacting neurons considered in De Masi et al. (2015), inspired
by Galves and Löcherbach (2013), and then further studied, among others, in Fournier and
Löcherbach (2016), Robert and Touboul (2016) and Cormier, Tanré and Veltz (2020). The
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system consists of N interacting and spiking neurons represented by their membrane poten-
tial values. Spiking occurs randomly following a point process of rate f(x) for any neuron of
which the membrane potential equals x. Each time a neuron emits a spike, the potentials of
all other neurons receive an additional amount of potential. In De Masi et al. (2015), Fournier
and Löcherbach (2016), Robert and Touboul (2016) and Cormier, Tanré and Veltz (2020) this
amount is of order N−1, leading to classical mean field limits as N →∞. On the contrary to
this, here we continue the work started in Erny, Löcherbach and Loukianova (2021) where we
consider a diffusive scaling in which all neurons j receive the same random quantity U/

√
N

at spike times t of neuron i, i 6= j. The random variable U is distributed according to the fixed
probability measure ν, it is chosen independently of anything else at each spike time and it
is centred modeling the fact that the synaptic weights are balanced. Moreover, right after
its spike, the potential of the spiking neuron i is reset to 0, interpreted as resting potential.
Finally, in between successive spikes, each neuron has a loss of potential of rate α.

In Erny, Löcherbach and Loukianova (2021) we have established a weak convergence re-
sult, namely, we have proved that for all K > 0, the joint law L(XN,1,, . . . ,XN,K) converges
weakly to a limit law L(X̄1, . . . , X̄K) in D(R+,R)K . Here, the limit process (X̄i)i≥1 is an
infinitely exchangeable system given by

(2) X̄i
t = X̄i

0 − α
∫ t

0
X̄i
sds−

∫ t

0
X̄i
s−dZ̄

i
s + σ

∫ t

0

√
E(f(X̄i

s)|Ws)dWs, t≥ 0, i ∈N,

σ2 = E(U2). In the above system, each counting process Z̄i has intensity t 7→ f(X̄i
t−), W

is a standard one dimensional Brownian motion, created by the central limit theorem, repre-
senting a source of common noise, andWs = σ{Wt, t≤ s}.

To prove the convergence in distribution of the finite system to the above limit system, in
Erny, Löcherbach and Loukianova (2021) we made use of a new martingale problem, and
we used the exchangeability both of the finite and the limit system. In particular, we proved
there that the conditional propagation of chaos property holds, that is, in the limit system,
neurons are conditionally independent, if we condition on the source of common noise. And
this source of common noise is the presence of the Brownian motion W which appears as a
consequence of the central limit theorem.

In the present paper, we complete the above study and prove the strong convergence of a
given neuron, sayXN,1, to its corresponding limit quantity X̄1. To do so, we couple the point
processes underlying the evolution of (1) with the Brownian motion appearing in the limit
equation (2) using ideas that go back to Kurtz (1978). This coupling is based on a corollary
of the KMT inequality (see Theorem 1 of Komlós, Major and Tusnády (1976)).

The idea of using the KMT coupling in this context is not new. It has been successfully
applied to interacting particle systems in the scaling 1/N, corresponding to the scale of the
law of large numbers, in Kurtz (1978), an approach that has been improved in the recent
paper Prodhomme (2020). To the best of our knowledge, to use this coupling in the diffusive
scaling is however entirely new.

Let us now describe more precisely the strategy of our coupling. Before doing so, we
precisely define the processes we are interested in and recall important results obtained before
that we rely on in the sequel.

1.1. Notation. In what follows, C denotes an arbitrary positive constant whose values
can change from line to line in an equation. We write Ct if the constant depends on time t.
We write C(R+,R) for the space of continuous functions from R+ to R, Ckb (R,R+) for the
space of all bounded continuous functions from R to R+ being k times differentiable with
bounded derivatives up to order k, and finally RN for the space of all functions from N to R.

Finally, to ease notation, we shall write f̄(x) =
∑N

i=1 f(xi), for any x = (x1, . . . , xN ) ∈
RN . We will also frequently use the notation [s] = max{n ∈ N : n≤ s} for the integer part
of a positive real number s ∈R+.
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1.2. A representation by means of Poisson random measures. Let ν and ν0 be two prob-
ability measures on R, where ν is centered. A first ingredient of our coupling is to construct
the two systems using the same underlying jump noise. To do so, it is convenient to represent
the evolution of both systems as the solution of a stochastic differential equation driven by
Poisson random measures. For that sake, we consider an i.i.d. family of Poisson measures
(πi(ds, dz, du))i≥1 on R+ × R+ × R having intensity measure dsdzν(du), as well as an
i.i.d. family (Xi

0)i≥1 of R-valued random variables, independent of the Poisson measures,
distributed according to ν0. Denoting π̄i(ds, dz) = πi(ds, dz,R), the projection of πi on its
first two coordinates, we may represent each neuron’s potential within the finite system as

XN,i
t =Xi

0 − α
∫ t

0
XN,i
s ds−

∫
[0,t]×R+

XN,i
s− 1{z≤f(XN,i

s− )}π̄
i(ds, dz)(3)

+
1√
N

∑
j 6=i

∫
[0,t]×R+×R

u1{z≤f(XN,j
s− )}π

j(ds, dz, du),

and the associated limit system
(
X̄i
)
i≥1

as
(4)

X̄i
t =Xi

0−
∫ t

0
αX̄i

sds−
∫

[0,t]×R+

X̄i
s−1{z≤f(X̄i

s−)}π̄
i(ds, dz) +

∫ t

0

√
E
[
f
(
X̄i
s

)∣∣Ws

]
dWs,

starting from the same initial positions Xi
0, i ≥ 1, and driven by the same π̄i, i ≥ 1, as the

finite system. In the above equation, (Ws)s≥0 is a standard one-dimensional Brownian mo-
tion which is independent of the Poisson random measures (π̄i(ds, dz))i≥1 and of Xi

0, i≥ 1.
Moreover,Ws = σ{Wt, t≤ s}.

The above system (4) is an infinite exchangeable system, and W is the only source of
common noise. In particular, for each fixed K, X̄1, . . . , X̄K are i.i.d. conditionally to W.
Under appropriate assumptions on f, ν and ν0 (Assumptions 1 and 2 of Section (2) below)
the existence and the well-posedness of the above systems are shown in Erny, Löcherbach
and Loukianova (2021).

1.3. The coupling. Equations (3) and (4) define already partially a coupling of the finite
and the limit system, since we use the same underlying π̄i to produce the reset jumps of the
spiking neurons. The next step of our coupling is to couple the Brownian motion W with the
small jumps u/

√
N appearing in the second line of (3). To do so, we inspect the process

ξNt =

N∑
j=1

∫
[0,t]×R+×R

u1{z≤f(XN,j
s− )}π

j(ds, dz, du)

appearing in (3) above. Notice that, since the variables u are centered (recall that
∫
udν(u) =

0), the above expression actually defines a purely discontinuous martingale.
Up to an error of order N−1/2, N−1/2ξNt represents the contribution of the small jumps to

the membrane potential of any fixed neuron, up to time t.

1.3.1. A first naive approach. To fix ideas, we start describing a first naive approach. It
turns out that this naive approach does not work in our frame - but it will give us a hint about
the strategy to adopt.

Introducing

ANt =

∫ t

0

N∑
j=1

f(XN,j
s )ds=

∫ t

0
f̄(XN

s )ds,
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the time changed process Z := ξN ◦ (AN )−1 is a centered compound Poisson process having
rate 1 and jump distribution ν (Prop. 14.6.III of Daley and Vere-Jones (2008)).

A celebrated result due to Komlós, Major and Tusnády (1975, 1976) shows that it is pos-
sible – under the condition that the jump size distribution ν admits exponential moments –
to construct Z together with a standard one-dimensional Brownian motion B, on the same
probability space, such that we have the pathwise control

sup
t≥0

|Zt −Bt|
ln(t∨ 2)

≤E <∞,

where E is a random variable admitting exponential moments (Corollary 5.5 in Chapter 7
of Ethier and Kurtz (2005)). Therefore, we may rewrite the evolution of any (say the first)
neuron as

XN,1
t =X1

0 − α
∫ t

0
XN,1
s ds−

∫
[0,t]×R+×R

XN,1
s− 1{z≤f(XN,1

s− )}π
1(ds, dz, du) +

1√
N
ZANt

=X1
0 − α

∫ t

0
XN,1
s ds−

∫
[0,t]×R+×R

XN,1
s− 1{z≤f(XN,1

s− )}π
1(ds, dz, du)

+
1√
N
BANt +Kt,(5)

whereBANt is the time changed Brownian motion, using the integrated jump intensity as time
change, and where the error term is such that

(6) |Kt| ≤
ln(tN‖f‖∞)E√

N
.

A natural idea is to compare (5) to the evolution of an auxiliary particle system where the
error term is absent. This auxiliary particle system, interpolating between the finite system
XN and the limit system X̄, should therefore be defined by
(7)

X̃N,1
t =X1

0 − α
∫ t

0
X̃N,1
s ds−

∫
[0,t]×R+×R

X̃N,1
s− 1{z≤f(X̃N,1

s− )}π
1(ds, dz, du) +

1√
N
BÃNt ,

completed with an analogous evolution for the other particles X̃N,j , j ≥ 2, such that the evo-
lution is exchangeable, and using the same Brownian motionB and the same Poisson random
measures πi as in (5). In the above evolution, ÃNt =

∫ t
0

∑N
j=1 f(X̃N,j

s )ds. To compare the
two systems, we need to compare the time changed Brownian motions, that is, to produce a
control of

1√
N
BANt −

1√
N
BÃNt ,

relying on the continuity properties of the Brownian motion. Since Brownian motion is al-
most Hölder continuous of order 1/2, up to an error term which is logarithmic,∣∣∣∣ 1√

N
BANt −

1√
N
BÃNt

∣∣∣∣≤R
√
|ANt − ÃNt |

N
,

where R is the logarithmic error term. Disregarding this error term, we therefore end up with
a control

|XN,1
t − X̃N,1

t | ≤R

√
|ANt − ÃNt |

N
+ other terms.
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Obviously, the presence of the square root on the rhs of the above inequality makes it im-
possible to use Gronwall’s lemma and to take expectations – this is however what one needs
to obtain a precise control of the error within this approximation. We invite the interested
reader to Kurtz (1978), where clever tricks are applied that overcome the above difficulty
in the 1/N−scaling corresponding to the law of large numbers and the study of the asso-
ciated fluctuations. These tricks do however not apply in the present 1/

√
N−scaling, see

Section A.2 below for more precise arguments. Another problem of this naive approach is
that necessarily B and the Poisson random measures (πi)i≥1 are dependent – while we wish
to construct the limit system such that Brownian motion and Poisson random measures are
defined with respect to the same filtration – and hence necessarily independent (see e.g. The-
orem II.6.3 of Ikeda and Watanabe (1989)).

In what follows we show how to improve the above approach such that we will be able
to avoid to use the modulus of continuity of Brownian motion and to produce a Brownian
motion that is independent of the Poisson random measures.

1.3.2. Freezing positions: Time-discretization and a piecewise KMT coupling. To over-
come the above difficulty, we freeze the coefficients over short time intervals such that the
martingale SN of small jumps with frozen coefficients is indeed equal to a centered com-
pound Poisson process and such that we can use a suitable coupling on each such time inter-
val without being bothered by time changes. More precisely we decompose time into small
intervals of length δ where δ = δ(N) < 1 has to be chosen in a convenient way. We shall
use the KMT coupling on each such interval and then concatenate all these couplings pretty
much in the same spirit as in Prodhomme (2020).

More precisely, we decompose for any k ≥ 0 the evolution of a given, say the first, neuron
according to

XN,1
(k+1)δ =XN,1

kδ − α
∫ (k+1)δ

kδ
XN,1
s ds−

∫
(kδ,(k+1)δ]×R+

XN,1
s− 1{z≤f(XN,1

s− )}π̄
1(ds, dz)(8)

+
1√
N

N∑
j=1

∫
(kδ,(k+1)δ]×R+×R

u1{z≤f(XN,j
kδ )}π

j(ds, dz, du) +Rkδ ,

where Rkδ is an error term.
If we condition on the values of the process at time kδ in (8), say (x1, . . . , xN ), then the

centered process of small jumps

(9) t 7→
N∑
j=1

∫
(kδ,t]×R+×R

u1{z≤f(XN,j
kδ )}π

j(ds, dz, du), kδ < t≤ (k+ 1)δ,

now has constant jump rate given by f̄(x) =
∑N

j=1 f(xj). The scaling property of Brownian
motion enables us to directly couple this process of small jumps, using the KMT construction,
to a centered Brownian motion having variance f̄(x), that is, to√

f̄(x)WN,k
t ,

where WN,k is a one dimensional standard Brownian motion, independent of Fkδ, the past
before time kδ, and of the projected Poisson random measures (π̄i)i≥1.

An important point of our argument is that we use the time discretization to decouple
the acceptance/rejection procedure – which is represented by the terms 1{z≤f(XN,j

kδ )} in (9),
depending only on the frozen position of the neurons at time kδ and performed using the
projected measures π̄j ,1≤ j ≤N – from the random jump heights U representing the third
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coordinates of the atoms of πj ,1≤ j ≤N. We construct the Brownian motion WN,k using
only these centered random variables U. In this way, WN,k is indeed independent of the
(π̄i)i≥1 (but not of the original (πi)i≥1).

We perform such a coupling on each time interval (kδ, (k + 1)δ] and obtain independent
Brownian motions WN,k for each of them, together with error termsK [k] for each such inter-
val. We then glue all these pieces of Brownian motion together to obtain a global Brownian
motion WN defined on R+ which we use to construct the limit system (4), driven by this
particular Brownian motion WN .

Notice that in this way, the coupling is tailored to work for fixed size N ; changing the size
of the system would lead to the construction of a different Brownian motion and hence of a
different coupling.

The total error that contributes to the distance between XN,1
t and X̄1

t is then given as the
consequence of the following contributions.

• The contribution of the error terms Rkδ , k ≤ t/δ, in (8). Writing τ(s) = kδ if kδ ≤ s <
(k+ 1)δ, k ≥ 0, this contribution is of order Ctδ1/4, due to the fact that

E

∣∣∣∣∣∣ 1√
N

N∑
j=1

∫
[0,t]×R+×R

u(1{z≤f(XN,j
s− )} − 1{z≤f(XN,j

τ(s−))}
)πj(ds, dz, du)

∣∣∣∣∣∣
≤Ctδ1/4,

which follows from the L2−isometry for stochastic integrals with respect to compensated
Poisson random measures and the fact that E|XN,j

t −XN,j
τ(t)| ≤Ct

√
δ (see Appendix).

• The contribution coming from all error terms K [k], due to the coupling attempts on each
time interval (kδ, (k + 1)δ]. We upper bound this contribution by the sum of all contribu-
tions (we have [t/δ] such contributions) which is given by

Ct
lnN√
N

[
t

δ
].

• The contribution coming from the fact that we approximate the limit system (4) by its
mean field version where the stochastic volatility E(f(X̄i

t)|Wt) is replaced by its mean-
field version 1

N

∑N
i=1 f(X̄i

t). This is a variance term of order Ct/
√
N.

Choosing δ = δ(N) such that all these error terms are balanced, we end up with a strong
error of the form Ct(lnN)1/5N−1/10, and this is the content of our main Theorem 2.1 stated
in Section 2 below.

1.4. A reader’s guide through this article. Most of the technical proofs of our paper rely
on the same ideas. Therefore we have given the explicit details of one of these proofs, the
proof of Theorem 2.3 in Subsection 3.5, and the proof of Proposition 4.1 given in Section
4.1. In most of the other proofs, these details are then skipped.

2. Main results. In the sequel, ν and ν0 denote probability measures on (R,B(R)) sat-
isfying

ASSUMPTION 1.
∫
R xdν(x) = 0,

∫
R x

2dν(x) = 1, and
∫
R x

2dν0(x)<+∞.

Recall that we consider a family of i.i.d. Poisson measures (πi(ds, dz, du))i≥1 on R+ ×
R+ ×R having intensity measure dsdzν(du) and an i.i.d. family (Xi

0)i≥1 of R-valued ran-
dom variables independent of the Poisson measures, distributed according to ν0. In what
follows we use the associated canonical filtration

(10) Ft = σ{πi([0, s]×A), s≤ t,A ∈ B(R+ ×R), i≥ 1} ∨ σ{Xi
0, i≥ 1}, t≥ 0.
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Recall also that the projected Poisson random measures are defined by

(11) π̄i(ds, dz) = πi(ds, dz,R),

having intensity dsdz. For any N ∈ N, the finite system (XN,i
t ), t≥ 0, 1≤ i≤N, is given

by

XN,i
t =Xi

0 − α
∫ t

0
XN,i
s ds−

∫
[0,t]×R+

XN,i
s− 1{z≤f(XN,i

s− )}π̄
i(ds, dz)(12)

+
1√
N

∑
j 6=i

∫
[0,t]×R+×R

u1{z≤f(XN,j
s− )}π

j(ds, dz, du),

and its associated limit system
(
X̄i
t

)
, t≥ 0, i≥ 1, by

(13)

X̄i
t =Xi

0−
∫ t

0
αX̄i

sds−
∫

[0,t]×R+

X̄i
s−1{z≤f(X̄i

s−)}π̄
i(ds, dz) +

∫ t

0

√
E
[
f
(
X̄i
s

)∣∣Ws

]
dWs.

In the above equation, (Ws)s≥0 is a standard one-dimensional Brownian motion which is
independent of the Poisson random measures (π̄i(ds, dz))i≥1 and of Xi

0, i ≥ 1. Moreover,
Ws = σ{Wt, t ≤ s}. To grant existence and the well-posedness of the above systems, we
impose the following assumption.

ASSUMPTION 2. 1. f is bounded and lower bounded such that inf f > 0.
2. Moreover, f ∈C1

b (R,R+) with

(14) |f ′(x)| ≤ C

(1 + |x|)1+ε

for all x ∈R, where C and ε are some positive constants.

Notice that this assumption implies in particular that f is Lipschitz. Under Assump-
tion 2, both systems (3) and (4) are well-posed and admit a unique strong solution (Theo-
rem IV.9.1 of Ikeda and Watanabe (1989) for the finite neuron system and Theorem 2.6 of
Erny, Löcherbach and Loukianova (2021) for the limit system).

Our result of strong convergence is stated in terms of a convenient distance that has already
been introduced in Erny, Löcherbach and Loukianova (2021). This distance is used to deal
with the big jump terms appearing both in the finite and in the limit system. More precisely,
under Assumption 2 we may introduce the function

a(x) =

∫ x

−∞

dy

(1 +ψ(y))1+ε
,

where ψ is any smooth non-negative function satisfying ψ(y) = |y| for |y| ≥ 1, and where
ε is the bound appearing in the control on f ′ in Assumption 2. The function a(·) belongs to
C3
b (R,R+) and is strictly increasing. By construction, we have that |f(x)−f(y)| ≤C|a(x)−

a(y)|, since |f ′(t)| ≤C|a′(t)| for all t ∈R. Moreover, one easily verifies that

|a′′′(t)|+ |a′′(t)|+ |ta′′(t)| ≤C|a′(t)|,

for all t ∈R, such that for all x, y ∈R,

(15) |a′′(x)−a′′(y)|+ |a′(x)−a′(y)|+ |xa′(x)−ya′(y)|+ |f(x)−f(y)| ≤C|a(x)−a(y)|,

where C is some fixed constant.
To be able to perform our coupling, in addition to Assumption 2, we also need to impose

the following assumption on the jump size distribution.
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ASSUMPTION 3. We assume additionally that
∫
R e

axν(dx)<∞ for all |a| ≤ a0 for some
a0 > 0.

In what follows, (Ω,A,P) denotes a probability space where are defined the Poisson ran-
dom measures (πi)i≥1 and the initial positions Xi

0, i≥ 1.

THEOREM 2.1. Grant Assumptions 1, 2 and 3 and fix N ∈ N∗. Let a : R→ R+ satisfy
(15). Then it is possible to construct on an extension of (Ω,A,P) a one-dimensional stan-
dard Brownian motion WN which is independent of the initial positions Xi

0, i ≥ 1, and of
(π̄i)i≥1, i≥ 1, such that the following holds. Denoting (X̄N,i)i≥1 the strong solution of (4)
driven by WN and by (π̄i)i≥1, we have for every t > 0, and for any 1≤ j ≤N,

(16) E( sup
0≤s≤t

|a(XN,j
s )− a(X̄N,j

s )|)≤Ct(lnN)1/5N−1/10.

REMARK 2.2. The above result is stated with respect to the distance a(·) in order to be
able to deal with the big jumps since∫

R
|x1{z≤f(x)} − y1{z≤f(y)}|dz

is (in general) not of order C|x−y|. Imposing the existence of exponential moments for ν0, it
is also possible to use the famous x lnx extension of the Gronwall lemma (Osgood’s lemma)
and to obtain upper bounds directly for E(sup0≤s≤t |X

N,j
s − X̄N,j

s |). The prize to pay is that
in this case the rate of convergence will be of order

N−
1

2
e−Ct ,

without explicit expression of the constant Ct, yielding a rate of convergence which may be
worse than N−1/10 for large t whenever Ct grows with t.

To prove (16), by exchangeability, it is sufficient to concentrate only on the first neuron,
and the proof will be given for j = 1. Using Ito’s formula,

a(XN,1
t ) = a(XN,1

0 )− α
∫ t

0
a′(XN,1

s )XN,1
s ds(17)

+

∫
[0,t]×R+

[a(0)− a(XN,1
s− )]1{z≤f(XN,1

s− )}π̄
1(ds, dz) +MN

t ,

where

(18) MN
t :=

N∑
j 6=1

∫
[0,t]×R+×R

(a(XN,1
s− + u/

√
N)− a(XN,1

s− ))1{z≤f(XN,j
s− )}π

j(ds, dz, du).

This last term represents the contribution of small jumps (of order 1/
√
N ) to the dynamic

of XN,1
t . When N →∞, by the central limit theorem, the small jumps create a Brownian

motion. The proof of Theorem 2.1 is based on the coupling of MN
t with an Ito integral

directed by this Brownian motion. Recall that we write f̄(x) =
∑N

i=1 f(xi). We have the
following representation.
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THEOREM 2.3. Grant Assumptions 1, 2 and 3 and fix N ∈ N∗ and a time horizon
t > 0. Then it is possible to construct on an extension of (Ω,A,P) a one-dimensional stan-
dard Brownian motion WN which is independent of the initial positions Xi

0, i ≥ 1, and of
(π̄i)i≥1, i≥ 1, such that for any 0≤ t1 < t2 < t,

MN
t2 −M

N
t1 =

∫ t2

t1

a′(XN,1
s )

√
1

N
f̄(XN

s )dWN
s +

1

2

∫ t2

t1

a′′(XN,1
s )

(
1

N
f̄(XN

s )

)
ds

+RNt1,t2 ,(19)

where RNt1,t2 is an error term satisfying

E|RNt1,t2 | ≤Ct(|t2 − t1|+
√
|t2 − t1|)(lnN)1/5N−1/10.

3. Proof of Theorem 2.3. In what follows, we decompose time into small intervals of
length δ where δ = δ(N) < 1 will be chosen later. Our strategy is discrete, that is, we first
approximate the continuous time process by its discrete time skeleton, sampled at time mul-
tiples of δ. And then we use each such interval to couple the sum of the small jumps felt by
a given neuron with the increment of the Ito integral in the limit process.

The results stated this section hold for any fixed δ < 1, up to Subsection 3.5. It is only
at the very end, within the proof of Theorem 2.3, that we have to choose δ = δ(N) :=
(lnN)4/5N−2/5.

3.1. Time-Discretization. For k ≥ 0, N ∈N∗, denote
(20)

MN,k
δ :=

N∑
j=1

∫
(kδ,(k+1)δ]×R+×R

(a(XN,1
kδ + u/

√
N)− a(XN,1

kδ ))1{z≤f(XN,j
kδ )}π

j(ds, dz, du).

The following proposition summarizes the error due to the time discretization and to the
symmetrization (adding the term j = 1 to the sum over j 6= 1) of MN

t .

PROPOSITION 3.1. For all t≥ 0, N ∈N∗ and 0< δ < 1,

E|MN
t −

[t/δ]−1∑
k=0

MN,k
δ | ≤Ct(t+

√
t)(δ1/4 + 1/

√
N).

The proof of Proposition 3.1 is given in Section 5.

3.2. Representation by means of a compound Poisson process. In what follows our goal
is to couple each MN,k

δ with a Gaussian random variable. To construct this coupling we
consider the family (π̄j(ds, dz))j≥1 of i.i.d. Poisson random measures on R+ ×R+, having
Lebesgue intensity, independent of the initial positions Xi

0, i≥ 1, introduced in (11) above.
These measures are used to represent the acceptance and/or rejection of jumps of particles.

Introduce

(21) Nk
δ =

N∑
i=1

∫
(kδ,kδ+δ]×R+

1{z≤f(XN,i
kδ )}π̄

i(ds, dz).

We have the following alternative representation of MN,k
δ .
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PROPOSITION 3.2. There exists an i.i.d. sequence (Ukl )k≥0,l≥1 of random variables dis-
tributed according to ν, which is independent of the initial positions Xi

0, i ≥ 1, and of the
Poisson random measures π̄j , j ≥ 1, such that for all k, almost surely,

(22) MN,k
δ =

Nk
δ∑

l=1

[a(XN,1
kδ +Ukl /

√
N)− a(XN,1

kδ )].

Moreover, for fixed k ≥ 0, (Ukl )l≥1 are independent of Fkδ, where Fkδ has been introduced
in (10) above.

Notice that in (22) we have decoupled the noise of the acceptance/rejection scheme from
the random synaptic weights. The proof of Proposition 3.2 is given in Section 5.

We continue further developing MN,k
δ . We have the following representation.

PROPOSITION 3.3.

(23) MN,k
δ = a′(XN,1

kδ )
1√
N

Nk
δ∑

l=1

Ukl +
1

2
a′′(XN,1

kδ )

(
1

N
f̄(XN

kδ)

)
δ +RN,1,kδ +RN,2,kδ ,

where

(24) RN,1,kδ =
1

2
a′′(XN,1

kδ )
1

N

Nk
δ∑

l=1

(Ukl )2 − f̄(Xkδ)δ


and

(25) RN,2,kδ =
1

6N3/2

Nk
δ∑

l=1

a′′′(ξ(Ukl ))(Ukl )3,

with ξ(Ukl ) ∈ [XN,1
kδ − |U

k
l |/
√
N,XN,1

kδ + |Ukl |/
√
N ].

PROOF. For any fixed U we have that

a(XN,1
kδ +U/

√
N)− a(XN,1

kδ ) = a′(XN,1
kδ )

U√
N

+
1

2
a′′(XN,1

kδ )
U2

N
+

1

6

a′′′(ξ(U))U3

N3/2
,

where the intermediate value ξ(U) is taken such that ξ(U) ∈ [XN,1
kδ − |U |/

√
N,XN,1

kδ +

|U |/
√
N ]. Replacing U with Ukl and summing over l= 1, . . . ,Nk

δ gives the result.

The main observation is now that the term
∑Nk

δ

l=1U
k
l arising in (23) is equal to a time

changed random walk Sk ◦Nk
δ , where

(26) Skn =

n∑
l=1

Ukl , n≥ 0.

It is precisely this random walk that we couple with a Brownian motion by making use of the
famous KMT coupling introduced by Komlós, Major and Tusnády (1976).
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3.3. KMT couplings. Let S = (Sn)n≥0 be the random walk defined by Sn = U1 + . . .+
Un, with (Un)n≥1 i.i.d., Un ∼ ν (where ν is as in Assumption 1, satisfying also Assump-
tion 3). Let B be a standard one-dimensional Brownian motion. Following the terminology
proposed by Prodhomme (2020), and relying on Corollary 7.5.5 of Ethier and Kurtz (2005)
which summarizes Komlós, Major and Tusnády (1976), we say that (S,B) is a KMT coupling
if S and B are constructed on the same probability space, such that

(27) sup
n≥0

|Sn −Bn|
ln(n∨ 2)

≤E <∞

almost surely, where E is a random variable having exponential moments.1

In what follows we use a classical coupling result. It is based on the fact that it is always
possible to realize a probability law on a product space Ω1×Ω2, where Ω1,Ω2 are Polish, by
means of a measurable functionG : Ω1× [0,1]→Ω2.More precisely, it suffices to first simu-
late a random variable X1 according to the first marginal law and then, independently of this,
a uniform random variable V, uniformly distributed on [0,1]. The couple (X1,G(X1, V ))
then follows the prescribed joint distribution. Despite the fact that this result seems to be
common folklore we did not find a reference within one of the classical text books. For the
same reason, Prodhomme (2020) has summarized this result in his Lemma 3.12 from where
we quote the result. Applying this result to the joint distribution of the random walk and the
Brownian motion which is defined by the KMT coupling, we obtain the following

LEMMA 3.4. There exists a measurable function G : RN × [0,1]→C(R+,R) such that,
if (Sn)n is a centered random walk with jump law ν, satisfying Assumptions 1 and 3, and if
V is uniformly distributed on [0,1], independent of S, then (S,G(S,V )) is a KMT coupling.

We will use the above coupling on each interval (kδ, (k + 1)δ]. To do so, we shall also
use an i.i.d. family (V k)k≥0 of uniform random variables, uniformly distributed on [0,1],
independent of anything else.

PROPOSITION 3.5. Let Nk
δ be given by (21), (Ukl )l≥1 as in Proposition 3.2 and (Skn)n≥0

as in (26). Then

Bk :=G(Sk, V k)

is a Brownian motion which is independent of (π̄i), i≥ 1, and of Fkδ, and

SkNk
δ

=

Nk
δ∑

l=1

Ukl =Bk
Nk
δ

+Kk
δ ,

where the random variable Kk
δ satisfies

E
[
|Kk

δ |
]
≤C ln(N‖f‖∞δ).

PROOF. By construction, the random walk (Skn)n≥0 is independent of (π̄i), i≥ 1, and of
Fkδ. According to Lemma 3.4, Bk =G(Sk, V k) achieves the KMT-coupling of the random
walk Sk with its approximating Brownian motion Bk. Moreover, by construction, Bk is also
independent of (π̄i), i≥ 1, and of Fkδ.

1The fact that E admits exponential moments follows from the proof of Corollary 7.5.5 of Ethier and Kurtz
(2005).
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In this way, we may rewrite the contribution of the small jumps as

(28) SkNk
δ

=

Nk
δ∑

l=1

Ukl =Bk
Nk
δ

+Kk
δ , with an error term Kk

δ = SkNk
δ
−Bk

Nk
δ

which satisfies

|Kk
δ | ≤ [ln(Nk

δ ∨ 2)]Ek,

with Ek = supn≥0
|Skn−Bkn|
ln(n∨2) the error bound of the KMT-coupling. This error term depends

only on Sk and V k and hence is independent of Fkδ and in particular of Nk
δ .

Using this independence and Jensen’s inequality, we conclude that

E
[
|Kk

δ |
]
≤ E

[
ln(Nk

δ ∨ 2)
]
E [|Ek|]≤ ln

(
E
[
Nk
δ

]
+ 2
)
E [|Ek|] ,

implying the assertion, since Ek has an exponential moment and

(29) E[Nk
δ ] = E[E

[
Nk
δ |Fkδ

]
] = δE[f̄(XN

kδ)]≤N‖f‖∞δ.

In what follows we propose another representation of the time changed Brownian motion
Bk
Nk
δ
.

PROPOSITION 3.6. Define

(30) WN,k
δ :=

√
δ/Nk

δ B
k
Nk
δ
1{Nk

δ 6=0} +Bk
δ 1{Nk

δ =0}.

Then WN,k
δ ∼N (0, δ) is independent of (π̄i), i≥ 1, and of Fkδ.

PROOF. Since the Brownian motion (Bk
t )t is independent of π̄i, i ≥ 1, and of Fkδ, we

only have to prove that WN,k
δ has the right law and is independent of Nk

δ . For that sake let φ
be any bounded real valued Borel measurable test function. Since Bk is independent of Nk

δ ,
we have

E
[
φ(WN,k

δ )|Nk
δ

]
1{Nk

δ 6=0} = E

[
φ

(√
δ

Nk
δ

Bk
Nk
δ

)
|Nk

δ

]
1{Nk

δ 6=0} = F (Nk
δ )1{Nk

δ 6=0},

where we define for any n≥ 1,

F (n) = E

[
φ

(√
δ

n
Bk
n

)]
.

On the other hand, using the scaling property of the Brownian motion, for any n≥ 1,

F (n) = E
[
φ(Bk

δ )
]
,

which does not depend on n. Therefore we may conclude that

E
[
φ(WN,k

δ )|Nk
δ

]
1{Nk

δ 6=0} = E
[
φ(Bk

δ )
]
1{Nk

δ 6=0},

implying the assertion.

Noticing that conditionally on Fkδ, Nk
δ is Poisson distributed with parameter f̄(XN

kδ)δ, it
is straightforward to obtain the following final representation of the small jumps.
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PROPOSITION 3.7.

1√
N

Nk
δ∑

l=1

Ukl =

√
1

N
f̄(XN

kδ)W
N,k
δ +RN,3,kδ ,

where E|RN,3,kδ | ≤C ln(Nδ)/
√
N.

The proof of Proposition 3.7 is postponed to Section 5.

REMARK 3.8. Notice that up to now we have only used a coupling of the two compound
Poisson variables (conditionally on f̄(XN

kδ))
∑Nk

δ

l=1U
k
l and Bk

Nk
δ
, and not the coupling with

the continuous time Brownian motion. An embedding of the Gaussian sum into a continuous
time Brownian motion will only be needed in the next step.

3.4. Concatenation. The above construction is discrete and produces independent Gaus-
sian random variables WN,k

δ ∼ N (0, δ), one for each time step (kδ, (k + 1)δ], which are
independent of (π̄i), i≥ 1, and of Fkδ. We now complete this collection of random variables
to a Brownian motion.

More precisely, in a first step, we complete for each k ≥ 0, WN,k
δ to a piece of Brownian

motion by filling in a Brownian bridge (WN,k
t )0≤t≤δ, which is independent of π̄i, i≥ 1, and

of Fkδ, conditioned on arriving at the terminal value WN,k
δ . In such a way all Brownian

motion pieces (WN,k
· )k≥0 attached to different time steps are independent.

In a second step we then paste together all these pieces of Brownian motions by introduc-
ing for any t ∈ [kδ, (k+ 1)δ) and any k ≥ 0,

(31) WN
t :=

k−1∑
l=0

WN,l
δ +WN,k

t−kδ, where we put
−1∑
l=0

:= 0.

Notice that in this way, the WN,l
δ , l≥ 0, serve as increments for this newly defined Brownian

motion WN .

PROPOSITION 3.9. (WN
t )t≥0 is a standard Brownian motion with respect to its own

filtration which is independent of π̄i, i≥ 1, and of Xi
0, i≥ 1.

PROOF. This follows immediately from the above construction by successive condition-
ings.

3.5. Proof of Theorem 2.3. We give the proof only for t1 = 0; the case t1 > 0 is treated
analogously, decomposing the interval (t1, t2) into intervals of length δ.

For s≥ 0 define τ(s) = kδ for kδ ≤ s < (k+1)δ. Using Propositions 3.1, 3.3, 3.7 together
with the definition (31) we can write

MN
t =

∫ τ(t)

0
a′(XN,1

τ(s))

√
1

N
f̄(XN

τ(s))dW
N
s +

1

2

∫ τ(t)

0
a′′(XN,1

τ(s))

(
1

N
f̄(XN

τ(s))

)
ds(32)

+O((t+
√
t)(δ1/4 + 1/

√
N)) +

[t/δ]−1∑
k=0

3∑
i=1

RN,i,kδ ,

where, recalling Proposition 3.1, O((t +
√
t)(δ1/4 + 1/

√
N)) designs a random variable

having L1−norm bounded by Ct(t+
√
t)(δ1/4 + 1/

√
N)).
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Step 1. Using Proposition 3.7 we already know

(33) E
[ t
δ
]−1∑
k=0

|RN,3,kδ | ≤C[t/δ] lnN/
√
N,

where we have used that ln(Nδ)≤ lnN, since δ ≤ 1.

Step 2. We now discuss the control of the error term
∑[ t

δ
]−1

k=0 (RN,1,kδ +RN,2,kδ ). In what
follows we will freely switch between the representation of the finite particle system XN by
means of the original Poisson random measures πi(ds, dz, du) used in (3) and the alternative
representation by means of the centered random variables (Ukl )l,k and the Poisson random
measures π̄i of (11). We have

[ t
δ
]−1∑
k=0

RN,1,kδ =
1

2N

∫
[0,τ(t)]×R+×R

a′′(XN,1
τ(s−))

N∑
j=1

u21{z≤f(XN,j
τ(s−))}

π̃j(ds, dz, du),

where π̃j(ds, dz, du) = πj(ds, dz, du)− dsdzν(du) are the centered Poisson random mea-
sures. Using the independence of π̃j , j = 1,2 . . . ,N, together with the fact that these mea-
sures are compensated, the L2−isometry for stochastic integrals with respect to compensated
Poisson random measures, the fact that U ∼ ν possesses a finite fourth moment (since it pos-
sesses exponential moments), the boundedness of a′′ and f, we can write

E|
[ t
δ
]−1∑
k=0

RN,1,kδ |2 ≤ 1

N2

N∑
j=1

E

(∫
[0,τ(t)]×R+×R

a′′(XN,1
τ(s−))u

21{z≤f(XN,j
τ(s−))}

π̃j(ds, dz, du)

)2

≤ 1

N2

N∑
j=1

E
∫

[0,t]×R+×R
(a′′(XN,1

τ(s−)))
2u41{z≤f(XN,j

τ(s−))})
dsdzdν(u)≤Ct/N.

As a consequence, using the Cauchy-Schwarz inequality,

(34) E(|
[ t
δ
]−1∑
k=0

RN,1,kδ |)≤

E(|
[ t
δ
]−1∑
k=0

RN,1,kδ |)2

1/2

≤C
√
t/N.

Moreover we also have the representation
[ t
δ
]−1∑
k=0

RN,2,kδ =
1

6N3/2

∫
[0,τ(t)]×R+×R

a′′′(ξ(u))

N∑
j=1

u31{z≤f(XN,j
τ(s−))}

πj(ds, dz, du).

Using the exchangeability of the finite neuron system, the boundedness of a′′′ and of f and
the integrability of |U |3, we get

(35) E(|
[ t
δ
]−1∑
k=0

RN,2,kδ |)≤CtN−1/2.

Step 3. We now discuss the discretization error. First remark that using the Cauchy-Schwarz
inequality and the L2−isometry for the stochastic integral, together with the exchangeability
and the boundedness of a′, a′′and f , we immediately get

E

[∣∣∣∣∣
∫ t

τ(t)
a′(XN,1

τ(s))

√
1

N
f̄(XN

τ(s))dW
N
s +

1

2

∫ t

τ(t)
a′′(XN,1

τ(s))

(
1

N
f̄(XN,j

τ(s))

)
ds

∣∣∣∣∣
]
≤C(

√
δ + δ).(36)
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Finally we deal with the discretization error itself. Using the L2−isometry for stochastic
integrals, together with the properties of a and f, we get

E

(∫ t

0

(
a′(XN,1

τ(s))

√
1

N
f̄(XN

τ(s))− a
′(XN,1

s )

√
1

N
f̄(XN

s )

)
dWN

s

)2

= E
∫ t

0

(
(a′(XN,1

τ(s))− a
′(XN,1

s ))

√
1

N
f̄(XN

τ(s))+

+a′(XN,1
s )(

√
1

N
f̄(XN

τ(s))−
√

1

N
f̄(XN

s ))

)2

ds

≤CE
∫ t

0
(a′(XN,1

τ(s))− a
′(XN,1

s ))2 1

N
f̄(XN

τ(s))+a′(XN,1
s )2 1

N

N∑
i=1

|f(XN,i
τ(s))− f(XN,i

s )|ds

≤CE
∫ t

0
|a′(XN,1

τ(s))− a
′(XN,1

s )|+ 1

N

N∑
i=1

|f(XN,i
τ(s))− f(XN,i

s )|ds

≤CE
∫ t

0
|XN,1

τ(s) −X
N,1
s |ds≤Ctt

√
δ.(37)

Here to obtain the fourth line, we have used that |
√
x − √y| ≤ C

√
|x− y|; the fifth line

follows from the boundedness of f and a′, and the last from the Lipschitz continuity of f and
a′, together with Lemma A.2 stated in Appendix. Similar arguments imply
(38)∫ t

0

∣∣∣∣a′′(XN,1
τ(s))

1

N
f̄(XN

τ(s))− a
′′(XN,1

s )
1

N
f̄(XN

s )

∣∣∣∣ds≤C ∫ t

0
E|XN,1

τ(s)−X
N,1
s |ds≤Ctt

√
δ.

Putting together (33)–(38) we obtain

E|RN0,t| ≤ Ct(t+
√
t)(δ1/4 +N−1/2) + [t/δ] ln(N)/

√
N

≤ Ct(t+
√
t)(

1

δ
lnN/

√
N + δ1/4 +N−1/2).

Choosing δ = δ(N) := (lnN)4/5N−2/5 such that the above error terms are balanced, this
implies the result.

4. Proof of Theorem 2.1.

4.1. An auxiliary system approaching the limit system. We now use, for fixed N and
for δ = δ(N) = (lnN)4/5N−2/5 the above constructed Brownian motion WN together with
the collection of Poisson random measures π̄i, i ≥ 1, which are independent of WN , and
define a mean field version (X̃N,1, . . . , X̃N,N ) of the limit system (X̄i)i≥1 as follows. For
any 1≤ i≤N,

X̃N,i
t =Xi

0 − α
∫ t

0
X̃N,i
s ds−

∫
[0,t]×R+

X̃N,i
s− 1{z≤f(X̃N,i

s− )}π̄
i(ds, dz)(39)

+

∫ t

0

√√√√ 1

N

N∑
j=1

f(X̃N,j
s )dWN

s .
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This is a classical mean-field approximation of the limit system driven by WN and by
(π̄i)i≥1. We have the following

PROPOSITION 4.1. Grant Assumptions 1, 2 and 3. Then for all t≥ 0,

E(sup
s≤t
|a(X̃N,1

s )− a(XN,1
s )|)≤Ct(lnN)1/5N−1/10.

PROOF. We apply again the bijection a(·), now to X̃N . Using Ito’s formula, equation (17)
together with (19), we obtain

a(X̃N,1
t )− a(XN,1

t ) =−α
∫ t

0
(a′(X̃N,1

s )X̃N,1
s − a′(XN,1

s )XN,1
s )ds

+
1

2

∫ t

0
(a′′(X̃N,1

s )(
1

N

N∑
j=1

f(X̃N,j
s ))− a′′(XN,1

s )(
1

N

N∑
j=1

f(XN,j
s )))ds

+

∫ t

0

a′(X̃N,1
s )

√√√√ 1

N

N∑
j=1

f(X̃N,j
s )− a′(XN,1

s )

√√√√ 1

N

N∑
j=1

f(XN,j
s )

dWN
s

+

∫
[0,t]×R+

[a(0)− a(X̃N,1
s− )]1{z≤f(X̃N,1

s− )} − [a(0)− a(XN,1
s− )]1{z≤f(XN,1

s− )}π̄
1(ds, dz)

+RN0,t.

By (15) we know that |xa′(x) − ya′(y)| + |a′′(x) − a′′(y)| ≤ C|a(x) − a(y)|. Since f is
bounded, we therefore obtain, for a suitable constant C, and for any t≥ 0,

1

C

∣∣∣a(X̃N,1
t )− a(XN,1

t )
∣∣∣≤

∫ t

0

∣∣∣a(X̃N,1
s )− a(XN,1

s )
∣∣∣+ 1

N

N∑
j=1

∫ t

0
|f(X̃N,j

s )− f(XN,j
s )|

ds

+

∣∣∣∣∣
∫

[0,t]×R+

[a(0)− a(X̃N,1
s− )]1{z≤f(X̃N,1

s− )} − [a(0)− a(XN,1
s− )]1{z≤f(XN,1

s− )}π̄
1(ds, dz)

∣∣∣∣∣
+

∣∣∣∣∣∣
∫ t

0

a′(X̃N,1
s )

√√√√ 1

N

N∑
j=1

f(X̃N,j
s )− a′(XN,1

s )

√√√√ 1

N

N∑
j=1

f(XN,j
s )

dWN
s

∣∣∣∣∣∣+ |RN0,t|,
where, up to a multiplicative constant, RN0,t is given by Theorem 2.3.

Introducing now

uNt := E
[

sup
0≤s≤t

∣∣∣a(X̃N,1
s )− a(XN,1

s )
∣∣∣] ,

we have, using once more the properties (15) of the function a(·) and the Burkholder-Davis-
Gundy inequality,

uNt ≤CtuNt +E
[∫

[0,t]×R+

|a(XN,1
s− )− a(X̃N,1

s− )|1{z≤f(X̃N,1
s− )∧f(XN,1

s− )} +

|a(0)−a(XN,1
s− )|1{f(X̃N,1

s− )<z≤f(XN,1
s− )}+|a(0)−a(X̃N,1

s− )|1{f(XN,1
s− )<z≤f(X̃N,1

s− )}

]
dπ̄1(s, z)
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+E


∫ t

0

a′(X̃N,1
s )

√√√√ 1

N

N∑
j=1

f(X̃N,j
s )− a′(XN,1

s )

√√√√ 1

N

N∑
j=1

f(XN,j
s )

2

ds


1/2


+Ct(t+
√
t)(lnN)1/5N−1/10

≤CtuNt +Ct(t+
√
t)(lnN)1/5N−1/10 +

+E


∫ t

0

a′(X̃N,1
s )

√√√√ 1

N

N∑
j=1

f(X̃N,j
s )− a′(XN,1

s )

√√√√ 1

N

N∑
j=1

f(XN,j
s )

2

ds


1/2
 ,

where we have used the properties of a(·), the fact that a and f are bounded and the bound
on E|RN0,t| given by Theorem 2.3.

We now deal with the stochastic integral term. Observe that f = infx∈R f > 0 implies that
we can use Lipschitz property of x→

√
x on [f,+∞[ and get∣∣∣∣∣∣

√√√√ 1

N

N∑
j=1

f(X̃N,j
s )−

√√√√ 1

N

N∑
j=1

f(XN,j
s )

∣∣∣∣∣∣≤C 1

N

N∑
j=1

|f(X̃N,j
s )− f(XN,j

s )|.

Therefore,a′(X̃N,1
s )

√√√√ 1

N

N∑
j=1

f(X̃N,j
s )− a′(XN,1

s )

√√√√ 1

N

N∑
j=1

f(XN,j
s )

2

(40)

≤C|a′(X̃N,1
s )− a′(XN,1

s )|2 +C

∣∣∣∣∣∣
√√√√ 1

N

N∑
j=1

f(X̃N,j
s )−

√√√√ 1

N

N∑
j=1

f(XN,j
s )

∣∣∣∣∣∣
2

≤C
(

sup
s≤t
|a(X̃N,1

s )− a(XN,1
s )|

)2

+C

 1

N

N∑
j=1

sup
s≤t
|a(X̃N,j

s )− a(XN,j
s )|

2

.

Here we have used the properties of the function a(·) to obtain the last line. By the exchange-
ability of (XN , X̃N ), this implies

(41) uNt ≤C(t+
√
t)uNt +Ct(t+

√
t)(lnN)1/5N−1/10.

In what follows, t is fixed, serving as our time horizon. We choose t∗ < t sufficiently small
such that C(t∗ +

√
t∗) +Ct(t∗ +

√
t∗)≤ 1

2 . As a consequence, (41) implies

uNt∗ ≤ (lnN)1/5N−1/10.

We now wish to iterate this inequality over time intervals [kt∗, (k+ 1)t∗], k ≥ 1, such that
kt∗ ≤ t. For that sake let

∆k := E( sup
kt∗≤s≤(k+1)t∗∧t

|a(X̃N,1
s )− a(XN,1

s )|).

Then we obtain similarly to (41), using now Theorem 2.3 on [kt∗, (k+ 1)t∗],

∆k ≤ uNkt∗ +C(t∗ +
√
t∗)∆k +Ct(t∗ +

√
t∗)(lnN)1/5N−1/10

≤ uNkt∗ +
1

2
∆k +

1

2
(lnN)1/5N−1/10,
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implying

∆k ≤ 2uNkt∗ + (lnN)1/5N−1/10.

Iterating this inequality we end up with

sup{∆k : kt∗ ≤ t} ≤ 2`+1(lnN)1/5N−1/10,

where `= max{k : kt∗ ≤ t}= [t/t∗].
Therefore,

E(sup
s≤t
|a(X̃N,1

s )− a(XN,1
s )|)≤∆0 + . . .+ ∆[t/t∗] ≤ (t/t∗ + 1)2t/t∗+1(lnN)1/5N−1/10,

implying the result.

4.2. Distance between the auxiliary and the limit system. Proof of Theorem 2.1.. Now
we control the distance between the auxiliary system and the limit system. For that sake we
construct the auxiliary system and the limit system using the same Poisson random measures
π̄i, i≥ 1, and the same underlying Brownian motion WN . The conditional independence of
the coordinates of the limit system implies

PROPOSITION 4.2. Grant Assumptions 1, 2 and 3. Let (X̄N,i)i≥1 be the limit system
driven by the same Brownian motion WN and by the same Poisson random measures π̄i, i≥
1, as X̃N . Suppose that X̃N,i

0 = X̄N,i
0 =Xi

0 for all 1≤ i≤N. Then for all t > 0,

E(sup
s≤t
|a(X̃N,1

s )− a(X̄N,1
s )|)≤CtN−1/2.

This result is inequality (4.6) of Erny, Löcherbach and Loukianova (2021).

We conclude with the

PROOF OF THEOREM 2.1. The result is now a straightforward consequence of Proposi-
tions 4.1 and 4.2.

5. Proofs.

5.1. Proof of Proposition 3.1.

PROOF. Using the fact that a ∈ C3
b (R,R+), we immediately get a bound on the sym-

metrization error.

E

[∫
[0,t]×R+×R

(a(XN,1
s− + u/

√
N)− a(XN,1

s− ))1{z≤f(XN,1
s− )}π

1(ds, dz, du)

∣∣∣∣∣(42)

≤ E
∫ t

0

∫
R

∣∣∣∣a′(XN,1
s )

u√
N

+ a′′(XN,1
s )

u2

2N
+ a3(ξ(u))

u3

6N
√
N

∣∣∣∣dsν(du)≤ Ct√
N
.

We now estimate the error due to time discretization. Denote

R̄N,δt :=

N∑
j=1

∫
[0,t]×R+×R

[a(XN,1
s− + u/

√
N)− a(XN,1

s− )]1{z≤f(XN,j
s− )}π

j(ds, dz, du)−

N∑
j=1

∫
[0,t]×R+×R

[a(XN,1
τ(s−) + u/

√
N)− a(XN,1

τ(s−))]1{z≤f(XN,j
τ(s−))}

πj(ds, dz, du).



STRONG ERROR BOUNDS IN CONDITIONAL PROPAGATION OF CHAOS 19

Using Taylor’s formula at order three, we can write R̄N,δt := R̄N,1,δt + R̄N,2,δt + R̄N,3,δt ,

where R̄N,i,δt resumes the contribution of the i-th derivative, i= 1,2,3. Using the exchange-
ability of the finite system, the fact that f is bounded together with the properties of the
distance function a(·), we obtain

E(|R̄N,1,δt |)≤ E

∣∣∣∣∣∣
N∑
j=1

∫
[0,t]×R+×R

[a′(XN,1
s− )− a′(XN,1

τ(s−)]
u√
N

1{z≤f(XN,j
s− )}π

j(ds, dz, du)

∣∣∣∣∣∣
+E

∣∣∣∣∣∣
N∑
j=1

∫
[0,t]×R+×R

a′(XN,1
τ(s−))

u√
N

[1{z≤f(XN,j
τ(s−))}

− 1{z≤f(XN,j
s− )}]π

j(ds, dz, du)

∣∣∣∣∣∣ .
To estimate the first expectation, we use the Cauchy-Schwarz inequality, the independence
of πj , j = 1,2, . . . ,N, the L2−isometry for stochastic integrals with respect to compen-
sated Poisson random measures, the fact that f is bounded and a′ Lipschitz (recall that a′′ is
bounded), and the bound E|XN,1

τ(s)−X
N,1
s | ≤Ct

√
δ, s≤ t (see Lemma A.2 below), to deduce

that

E

∣∣∣∣∣∣
N∑
j=1

∫
[0,t]×R+×R

[a′(XN,1
s− )− a′(XN,1

τ(s−))]
u√
N

1{z≤f(XN,j
s− )}π

j(ds, dz, du)

∣∣∣∣∣∣
≤C

(∫ t

0
E|XN,1

τ(s) −X
N,1
s |2ds

)1/2

≤Ct
√
tδ.

Similar arguments give

E

∣∣∣∣∣∣
N∑
j=1

∫
[0,t]×R+×R

a′(XN,1
τ(s−))

u√
N

[1{z≤f(XN,j
τ(s−))}

− 1{z≤f(XN,j
s− )}]π

j(ds, dz, du)

∣∣∣∣∣∣(43)

≤C

∫ t

0

1

N

N∑
j=1

E|f(XN,j
τ(s))− f(XN,j

s )|ds

1/2

≤Ct
√
tδ1/4.

To treat the higher order derivatives, we use again the exchangeability of (XN,j), j =
1, . . .N, the boundedness of f and of the third derivative of a and the Lipschitz continu-
ity of a′′ to deduce

(44) E(|R̄N,2,δt |)≤Ct
√
δ and E(|R̄N,3,δt |)≤Ct/

√
N.

(43) and (44) together with the assumption δ < 1 imply that

E(|R̄N,δt |)≤Ct
√
tδ1/4 +Ct

√
δ +Ct/

√
N ≤Ct(δ1/4 +N−1/2),

which ends the proof.

5.2. Proof of Proposition 3.2. Conditioning on XN
kδ = x,

Πk(du) :=

N∑
j=1

πj((kδ, (k+ 1)δ]× [0, f(xj)], du)

is a Poisson random measure on R having intensity δf̄(x)ν(du). Its total number of jumps is
given by Nk

δ introduced in (21).
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The basic properties of Poisson random measures imply that we have the representation

Πk(du) =

Nk
δ∑

l=1

δUkl (du),

where the (Ukl )l≥1 are i.i.d., distributed as ν, independent of Nk
δ and of Fkδ.

Conditioning on XN
kδ = x and using Fubini’s theorem, we have that

MN,k
δ =

N∑
j=1

∫
(kδ,(k+1)δ]×R+×R

[a(x1 + u/
√
N)− a(x1)]1{z≤f(xj)}π

j(ds, dz, du)

=

∫
R
[a(x1 + u/

√
N)− a(x1)]

 N∑
j=1

∫
(s,z)∈(kδ,(k+1)δ]×R+

1{z≤f(xj)}π
j(ds, dz, du)


=

∫
R
[a(x1 + u/

√
N)− a(x1)]Πk(du) =

Nk
δ∑

l=1

[a(x+Ukl /
√
N)− a(x)],

and this concludes the proof.

5.3. Proof of Proposition 3.7.

PROOF. Denote Ekδ :=
√
Nk
δ /δ −

√
f̄(XN

kδ). As a consequence of Proposition 3.5 and
Proposition 3.6, we immediately obtain

1√
N

Nk
δ∑

l=1

Ukl =

√
1

N
f̄(XN

kδ)W
N,k
δ +

1√
N
Ekδ W

N,k
δ +

1√
N
Kk
δ .

Remember thatWN,k
δ ∼N (0, δ) is independent of (π̄i), i≥ 1, and ofFkδ . As a consequence,

WN,k
δ and Ekδ are independent and E[|WN,k

δ |]≤
√
δ.

Taking δ = δ(N) = (lnN)4/5N−2/5 such that Nδ(N)→∞ as N →∞, we now show
that there exists a suitable constant such that

(45) E
[
|Ekδ |

]
≤C.

Of course, on the event {Nk
δ = 0}, the error term Ekδ has no chance to be small. However,

conditionally on Fkδ, Nk
δ ∼ Poiss(f̄(XN

kδ)δ), and f(·)≥ f > 0 being lowerbounded, devia-
tion estimates for Poisson random variables imply that

(46) P(Nk
δ ≤N fδ/2)≤ e−c1Nδ,

where c1 does not depend on N nor on δ (see Appendix for a proof). We may therefore
introduce the event

Gk := {Nk
δ /δ >N f/2}.

We use the Lipschitz continuity of x 7→
√
x on [N f/2,∞), with Lipschitz constant

1

2
√
N f/2

≤CN−1/2,

such that for all x, y ≥N f/2,

|
√
x−√y| ≤CN−1/2|x− y|.
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In what follows, we apply the above inequality, on the event Gk, to x = Nk
δ /δ and to y =

f̄(XN
kδ). Using V ar(Nk

δ |Fkδ) = δf̄(XN
kδ) this gives

E
[
|Ekδ |1Gk

]
≤ C

δ
√
N

E
[
|Nk

δ − δf̄(XN
kδ)|
]
≤ C

δ
√
N

E
[
(Nk

δ − δf̄(XN
kδ))

2
]1/2

≤ C

δ
√
N

√
δN‖f‖∞ =

C
√
‖f‖∞√
δ

.

Moreover, the fact that f is bounded implies that E
[
|Ekδ |2

]
≤CN and

E
[
(Ekδ )2

]1/2
(P((Gk)c))1/2

√
δ ≤C

√
Nδe−(c1/2)Nδ.

Finally,

E
[
|Ekδ |

]
≤ E

[
|Ekδ |1Gk

]
+E

[
|Ekδ |1(Gk)c

]
≤ E

[
|Ekδ |1Gk

]
+E

[
(Ekδ )2

]1/2
(P((Gk)c))1/2.

Since Nδ(N)→∞ as N →∞, we have that supN
√
Nδe−(c1/2)Nδ <∞, which implies

the assertion (45). Together with the bound E[|Kk
δ |]≤C ln(Nδ) given by the Proposition 3.5

it completes the proof.

APPENDIX

A.1. Useful a priori upper bounds and remaining proofs. Assumption 1 together with
the fact that f is bounded implies that the following apriori bounds hold.

PROPOSITION A.1. For all t > 0, for XN,1
s given by (3),

(47) sup
N∈N∗

sup
0≤s≤t

E
[(
XN,1
s

)2]
<+∞ and sup

N∈N∗
E
[

sup
0≤s≤t

∣∣XN,1
s

∣∣]<+∞.

The above assertion is Lemma 4.1 of Erny, Löcherbach and Loukianova (2021).

LEMMA A.2. Suppose δ ≤ 1. Then we have for all s≤ t, E(|XN,1
τ(s) −X

N,1
s |)≤Ct

√
δ.

PROOF. It suffices to perform the proof for s < δ and τ(s) = 0. Then

XN,1
s −X1

0 =−α
∫ s

0
XN,1
r dr−

∫
[0,s]×R+×R

XN,1
r− 1{z≤f(XN,1

r− )}π
1(dr, dz, du)

+
1√
N

∑
j 6=1

∫
[0,s]×R+×R

u1{z≤f(XN,j
r− )}π

j(dr, dz, du).

Thanks to our a priori estimates (47),

E

∣∣∣∣∣
∫ s

0
XN,1
r dr+

∫
[0,s]×R+×R

XN,1
r− 1{z≤f(XN,1

r− )}π
i(dr, dz, du)

∣∣∣∣∣≤Ctδ.
Moreover

E

∣∣∣∣∣∣ 1√
N

∑
j 6=1

∫
[0,s]×R+×R

u1{z≤f(XN,j
r− )}π

j(dr, dz, du)

∣∣∣∣∣∣
≤

 1

N

∑
j 6=1

E

(∫
[0,s]×R+×R

u1{z≤f(XN,j
r− )}π

j(dr, dz, du)

)2
1/2

≤
√
‖f‖∞

√
δ,
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for s≤ δ, since f is bounded and
∫
R u

2ν(du) = 1.

We finally give the

Proof of (46). It is well-known that for a standard Poisson process (Zt)t≥0 having rate 1,

P(sup
s≤t
|Zs − s| ≥ ε)≤ 2 exp(−th(ε/t)),

for all ε < t,where h(x) = (1+x) ln(1+x)−x (see e.g. Theorem 2.3.1 of Brémaud (2020)).
Since conditionally on {XN

kδ = x}, Nk
δ ∼ Zf̄(x)δ, we apply the above inequality with t=

‖f‖∞Nδ and ε=N fδ/2 and obtain

P(Nk
δ ≤N fδ/2|XN

kδ = x) = P(Zf̄(x)δ ≤N fδ/2)≤ P(Zf̄(x)δ ≤ f̄(x)δ/2)

= P(Zf̄(x)δ − f̄(x)δ ≤−f̄(x)δ/2)≤ P(sup
s≤t
|Zs − s| ≥ fNδ/2)

≤ 2 exp(−th(ε/t)),

since N fδ ≤ f̄(x)δ ≤N‖f‖∞δ. Observing that for our choice of t and ε, ε/t= f
‖f‖∞2 does

not depend on N, nor on δ and integrating with respect to the law of XN
kδ implies (46).

A.2. Why the method of Kurtz does not work in a diffusive scaling. The goal of
this section is to explain why the approach proposed in Kurtz (1978), which is based on
time-change and which we have sketched in our Introduction, in Section 1.3.1 above, does
not apply in the present frame. Consider the auxiliary particle system X̃N introduced in (7)
above. In what follows, to stress the main ideas, we suppose w.l.o.g. that the reset terms are
absent, that is, we have for each 1≤ i≤N,

XN,i
t =Xi

0 − α
∫ t

0
XN,i
s ds+

1√
N
ZANt

and

X̃N,i
t =Xi

0 − α
∫ t

0
X̃N,i
s ds+

1√
N
BÃNt ,

and the two processes Z and B are coupled according to Komlós, Major and Tusnády (1975,
1976) such that N−1/2ZANt =N−1/2BANt +Kt, where Kt is the error term coming from the
coupling. For simplicity, we work on some fixed time interval [0, T ] such that αT ≤ 1

2 .

We start investigating 1√
N

∣∣∣BANt −BÃNt ∣∣∣ . Notice that we have the upper bound

ANt ∨ ÃNt ≤NT‖f‖∞.

So we introduce the modulus of continuity of B for this time horizon

M := sup
u,v≤NT‖f‖∞

|Bu −Bv|
ϕ(|u− v|)

,

where

ϕ(x) =

√
x(1 + ln(

NT‖f‖∞
x

)), 0≤ x≤NT‖f‖∞.
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Then there exists some λ > 0 such that E
[
eλM

]
<∞ (see e.g. Kurtz (1978), Lemma 3.2).

We obtain the upper bound

1√
N

∣∣∣BANt −BÃNt ∣∣∣≤ 1√
N
Mϕ

(
|ANt − ÃNt |

)
.

Since f is Lipschitz, we certainly have for all t≤ T,

(48) |ANt − ÃNt | ≤ ‖f‖LipT
N∑
i=1

sup
s≤T
|XN,i

s − X̃N,i
s |=: ‖f‖LipTGNT .

Fix some β ∈ (0,1) and consider the event

GN :=
{
GNT ≥Nβ

}
.

On GcN , we have by exchangeability

E
[
sup
s≤T
|XN,i

s − X̃N,i
s |1GcN

]
=

1

N
E
[
GNT 1GcN

]
)≤N−(1−β)→ 0.

So it is sufficient to work on GN . On this set, using that ϕ is increasing, we have

ϕ
(
|ANt − ÃNt |

)
≤CT

√
GNT
√

1 + lnN,

such that for each 1≤ i≤N and t≤ T, recalling the upper bound on |Kt| given in (6),

|XN,i
t − X̃N,i

t | ≤ αT sup
s≤T
|XN,i

s − X̃N,i
s |+CT

1√
N
M
√
GNT
√

1 + lnN +
ln(TN‖f‖∞)√

N
E

≤ 1

2
sup
s≤T
|XN,i

s − X̃N,i
s |+CT

1√
N
M
√
GNT
√

1 + lnN +
ln(TN‖f‖∞)√

N
E.

Taking the supremum over all t≤ T on the left hand side, subtracting 1
2 sups≤T |X

N,i
s −X̃N,i

s |
on both sides and multiplying by 2, we thus obtain, after having summed over all i,

(49) GNT ≤CT
√
NM

√
GNT
√

1 + lnN +CT
√
N(1 + lnN)E,

and this inequality holds on GN .
The conclusion now follows as in the proof of Theorem 2 in Chevallier, Melnykova and

Tubikanec (2021). Indeed, the above inequality is quadratic in x :=
√
GNT and can be read as

p(x) = x2 + bx+ c ≤ 0, for suitable b, c. All positive x satisfying p(x) ≤ 0 are necessarily
such that x2 ≤ b2, and this upper bound is sharp for large N (we skip the details), whence

GNT ≤CTNM2(1 + lnN),

which holds on GN .
Once more, by exchangeability,

E
[
1GN sup

s≤T
|XN,i

s − X̃N,i
s |
]

=
1

N
E
[
1GNG

N
T

]
≤CT (1 + lnN)E

[
M2
]
,

which does not vanish as N →∞.
Notice that in Kurtz (1978) who works in the scaling of the law of large numbers, in (49)

above, the term
√
N on the right hand side disappears, and this is why this approach works

in this case – while in the present framework of a diffusive scaling the above control does not
allow to conclude.
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