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Fig. 1. Model wav2vec2 -BERT (model-level fusion), corpus (CEMO) and main results in this work There has been growing interest in using deep learning techniques to recognize emotions from speech. However, real-life emotion datasets collected in call centers are relatively rare and small, making the use of deep learning techniques quite challenging. This research focuses on the study of Transformer-based models to improve the speech emotion recognition of patients' speech in French emergency call center dialogues. The experiments were conducted on a corpus called CEMO, which was collected in a French emergency call center. It includes telephone conversations with more than 800 callers and 6 agents. Four emotion classes were selected for these experiments: Anger, Fear, Positive and Neutral state. We compare different Transformer encoders based on the wav2vec2 and

BERT models, and explore their fine-tuning as well as fusion of the encoders for emotion recognition from speech. Our objective is to explore how to use these pre-trained models to improve model robustness in the context of a real-life application. We show that the use of specific pre-trained Transformer encoders improves the model performance for emotion recognition in the CEMO corpus. The Unweighted Accuracy (UA) of the french pre-trained wav2vec2 adapted to our task is 73.1%, whereas the UA of our baseline model (Temporal CNN-LSTM without pre-training) is 55.8%. We also tested BERT encoders models: in particular FlauBERT obtained good performance for both manual 67.1% and automatic 67.9% transcripts. The late and model-level fusion of the speech and text models also improve performance (77.1% (late) -76.9% (model-level)) compared to our best speech pre-trained model, 73.1% UA. In order to

INTRODUCTION

Research on multimodal analysis of users's behavior, such as speech and text analysis, has demonstrated the potential for estimating a user's emotion from of these modalities [START_REF] Wagner | Dawn of the Transformer Era in Speech Emotion Recognition: Closing the Valence Gap[END_REF]. Such studies suggest that similar analyses can serve in the context of emergency call centers where human agents must listen and understand callers quickly, taking into account their emotional state.

Calls to emergency services can be made by the patient or by a third party (family, friend, colleague, neighbor) or home/health assistant. Such call center data constitute a particular form of natural conversational data that is collected in a real-life context from a large number of speakers. The call centers are staffed 24 hours a day, 7 days a week and are intended to be used as a resource by individuals in times of crises. The operators are trained to quickly assess callers' states of mind, the crisis level, and the urgency of the situation and to decide which services are needed: ambulance assistance, psychiatric care, or advice to call their doctor.

Real-life emotional data collected in call centers are relatively rare and are difficult to share due to privacy constraints.

Although there is a vast quantity of raw data, annotated corpora are generally small due to the high annotation costs including data anonymization. These small data sets make the popular deep learning techniques challenging to us. Recent advances have shown that Transformer-based methods, such as wav2vec2 and BERT pre-trained models, outperformed previous approaches for emotion recognition tasks [START_REF] Wagner | Dawn of the Transformer Era in Speech Emotion Recognition: Closing the Valence Gap[END_REF]. The research objective of this work is to explore the use of these speech and text pre-trained models applied to speaker's emotion recognition in order to increase the model robustness for recordings in an emergency context. More specifically, this paper reports experiments using Transformer-based encoder pre-trained models on speech data and their transcripts for Emotion Recognition from speech. We used the 4 major emotions (Anger, Fear, Positive and Neutral) occurring in a real corpus of agent-patient conversations called CEMO [START_REF] Devillers | Challenges in Real-Life Emotion Annotation and Machine Learning Based Detection[END_REF]. In our baseline study, we explored the acoustic modality of speech emotion recognition with spectrogram-like representations and CNN Bi-LSTM models [START_REF] Deschamps-Berger | End-to-End Speech Emotion Recognition: Challenges of Real-Life Emergency Call Centers Data Recordings[END_REF]. In this study, we investigate the effects of different wav2vec2 and fine-tuning variations [START_REF] Baevski | Wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations[END_REF][START_REF] Pepino | Emotion Recognition from Speech Using Wav2vec 2.0 Embeddings[END_REF]. An off-the-shelf system was used to generate automatic transcripts, and a performance comparison was conducted on manual and automatic transcripts for the text modality using French pre-trained Transformers such as FlauBERT [START_REF] Le | FlauBERT: Unsupervised Language Model Pre-training for French[END_REF] and CamemBERT ( [START_REF] Martin | CamemBERT: A Tasty French Language Model[END_REF]). Finally, we explored the complementarity of the wav2vec2 and BERT pre-trained models and different fusions (late and model) of the speech and text modes.

The remainder of this paper is as follows. The next section overviews the related work, followed by the description of the emergency call center corpus in Section 3. Sections 4 and 5 describe the experimental setup and results: the architectures and the datasets tested (CEMO end IEMOCAP), and contrastive experiments with CEMO, presenting and analyzing the results. Section 6 summarises our best results on CEMO and provides results obtained on IEMOCAP.

Finally, Section 7 discusses ethical aspects and reproducibility and Section 8 highlights some discussion points and conclusions.

RELATED WORK FOR SPEECH EMOTION RECOGNITION

Classical approaches

Over the years, the research community has explored many approaches to address emotion recognition tasks. On the one hand, researchers tried to find reliable and relevant speech representations, investigating a wide range of features ranging from low-level descriptors like the GeMAPS configuration [START_REF] Eyben | The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) for Voice Research and Affective Computing[END_REF] to audio transformations like Mel-spectrograms [START_REF] Satt | Efficient Emotion Recognition from Speech Using Deep Learning on Spectrograms[END_REF]. On other hand, the research community also explored different speech emotion recognition systems, such as Convolutional Neural Networks to extract speech features, or Recurrent Neural Networks to detect near and longer dependencies in audio features or linguistic information [START_REF] Etienne | CNN+LSTM Architecture for Speech Emotion Recognition with Data Augmentation[END_REF].

Pre-trained Transformer encoders

A few years ago the concept of intra-or self-attention started attracting growing interest by the research community [START_REF] Cheng | Long Short-Term Memory-Networks for Machine Reading[END_REF].

Moreover, the progress made on attention [START_REF] Vaswani | Attention Is All You Need[END_REF] for RNNS led to the introduction of new models called Transformers. These new models have been used primarily in the fields of natural language processing and computer vision. Transformerbased encoders have been growing in popularity and have led to language representation models such as BERT [START_REF] Devlin | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[END_REF] which was designed to serve as a pre-trained core model. It is trained in a self-supervised mode on huge amounts of data in order to serve for a wide range of applications, with the idea of being able to refine it to tackle low-resource domains [START_REF] Acheampong | Transformer Models for Text-based Emotion Detection: A Review of BERT-based Approaches[END_REF]. The BERT model was applied to the French language with CamemBERT [START_REF] Martin | CamemBERT: A Tasty French Language Model[END_REF] and FlauBERT [START_REF] Le | FlauBERT: Unsupervised Language Model Pre-training for French[END_REF]. In other research work, the Transformer encoder has been extended to speech segments to address speech recognition in low-resourced situations, with wav2vec [START_REF] Schneider | Wav2vec: Unsupervised Pre-training for Speech Recognition[END_REF] and wav2vec2 [START_REF] Baevski | Wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations[END_REF]. The wav2vec2 model is comparable to the masked BERT language model, but it introduces a contrastive task in the pre-training that aims at discretizing audio frames [START_REF] Baevski | Vq-Wav2vec: Self-Supervised Learning of Discrete Speech Representations[END_REF]. It was also applied to French by LeBenchmark [START_REF] Evain | LeBenchmark: A Reproducible Framework for Assessing Self-Supervised Representation Learning from Speech[END_REF]. Transformer-based encoder models have shown good capabilities for solving downstream tasks, including speech emotion recognition [START_REF] Macary | On the Use of Self-supervised Pre-trained Acoustic and Linguistic Features for Continuous Speech Emotion Recognition[END_REF][START_REF] Pepino | Emotion Recognition from Speech Using Wav2vec 2.0 Embeddings[END_REF]. According to [START_REF] Hsu | Robust Wav2vec 2.0: Analyzing Domain Shift in Self-Supervised Pre-Training[END_REF][START_REF] Wagner | Dawn of the Transformer Era in Speech Emotion Recognition: Closing the Valence Gap[END_REF], they appear to be invariant to domain, speaker, and gender characteristics. In this study, we investigated the performance of these pre-trained models based on the speech or/and text modalities to detect real-life emotions in an emergency call center context.

Fusion approaches

Given the importance of both speech and text for speech emotion recognition, multimodal fusion approaches have been addressed in a number of research works with classical approaches and recently with pre-trained models as in [START_REF] Wagner | Dawn of the Transformer Era in Speech Emotion Recognition: Closing the Valence Gap[END_REF] and have yielded significant improvement of results for speech emotion recognition [START_REF] Busso | Analysis of Emotion Recognition Using Facial Expressions, Speech and Multimodal Information[END_REF][START_REF] Rodrigues Makiuchi | Multimodal Emotion Recognition with High-Level Speech and Text Features[END_REF]. Previous research has explored various strategies for combining the two modalities, which can be classified into three groups: early fusion; model-level fusion; and late fusion [START_REF] Zeng | A Survey of Affect Recognition Methods: Audio, Visual, and Spontaneous Expressions[END_REF]. Early fusion consists of concatenating the features of the different modalities and using these as the input to the model [START_REF] Busso | Analysis of Emotion Recognition Using Facial Expressions, Speech and Multimodal Information[END_REF][START_REF] Wimmer | Low-Level Fusion of Audio, Video Feature for Multi-Modal Emotion Recognition[END_REF]. Model-level fusion involves combining the hidden representation of modalities during training [START_REF] Han | Strength Modelling for Real-World Automatic Continuous Affect Recognition from Audiovisual Signals[END_REF][START_REF] Han | Prediction-Based Learning for Continuous Emotion Recognition in Speech[END_REF], which can be achieved with attention mechanisms [START_REF] Chen | A Multi-Scale Fusion Framework for Bimodal Speech Emotion Recognition[END_REF][START_REF] Delbrouck | Modulated Fusion Using Transformer for Linguistic-Acoustic Emotion Recognition[END_REF][START_REF] Han | EmoBed: Strengthening Monomodal Emotion Recognition via Training with Crossmodal Emotion Embeddings[END_REF][START_REF] Liu | Group Gated Fusion on Attention-based Bidirectional Alignment for Multimodal Emotion Recognition[END_REF][START_REF] Tzirakis | Speech Emotion Recognition Using Semantic Information[END_REF]. Finally late fusion is the aggregation of scores according to specific criteria [START_REF] Busso | Analysis of Emotion Recognition Using Facial Expressions, Speech and Multimodal Information[END_REF][START_REF] Devillers | Real-Life Emotions Detection with Lexical and Paralinguistic Cues on Human-Human Call Center Dialogs[END_REF][START_REF] Metallinou | Decision Level Combination of Multiple Modalities for Recognition and Analysis of Emotional Expression[END_REF]. In this work, we explored the relevance of model-level and late fusions in the context of a real application to assess their help in disambiguating real-life emotions.

REAL-LIFE EMOTIONAL DATA IN EMERGENCY CALL CENTER

The CEMO corpus used in this work was collected in an Emergency call center in France. The caller can be either the patient or a third party (family, friend, colleague, neighbor, home assistant). The agents are trained to quickly assess callers' states of mind, level of crisis, and urgency of the situation. The complete CEMO corpus and the emotional data annotation scheme are described in [START_REF] Devillers | Challenges in Real-Life Emotion Annotation and Machine Learning Based Detection[END_REF][START_REF] Vidrascu | Detection of Real-Life Emotions in Call Centers[END_REF]. During the annotation process, two coders were given the opportunity to choose one major and one minor emotion for each extracted segment and the 21 fine-grained labels were grouped into seven macro-classes: Fear (Anxiety, Stress, Fear, Panic, Dismay, Embarrassment), Anger (Impatience, Annoyance, Cold Anger, Hot Anger), Sadness (Resignation, Disappointment, Sadness, Despair), Pain, Surprise, Positive (Relief, Interest, Compassion, Amusement), and Neutral. Table 1 gives the details of the 34202 annotated segments, from 756 real emergency call center conversations between 870 callers and 7

Emotional annotations

agents. In previous work [START_REF] Devillers | Challenges in Real-Life Emotion Annotation and Machine Learning Based Detection[END_REF], reports the inter-annotator agreement on the major macro-classes annotations between the two coders with a Kappa value of 0.54 for the callers and 0.35 for the agents. Since the agent's Kappa value is significantly lower, it was hypothesized that this could be due to the fact that agents need to remain calm and lucid in emergency situations and thus control their emotions, resulting in more complex emotional segments for the coders to annotate. In addition, as shown in Table 1, the agents' major emotions differ from those of the patients: in his or her work, the agent must be able to support the patients both morally and via medical assistance, thus there are fewer emotional segments for the agents.

Transcriptions

The manual transcripts were performed by 2 coders, using transcription guidelines similar to those used for spoken dialogues in Amities project [START_REF] Hardy | Multi-Layer Dialogue Annotation for Automated Multilingual Customer Service[END_REF]. Some additional markers were added to denote named-entities, breath, silence, unintelligible speech, throat clearing and other noises. The manual transcripts contain 2393 speech markers included 1472 silences, 751 mouth noise (i.e. breath) and 170 non-intelligible speech. The vocabulary size of the manual transcripts is 2.6k, with a mean and median of about 10 words per segment (minimum 1 word, maximum 47 words). An off-the-shelf Automatic Speech Recognition system (Factored TDNN, 70k-word vocabulary) for conversational telephone speech from VOCAPIA Research, a partner of the CNRS-LISN, was used to generate automatic transcripts for the calls. In addition to the word level transcription, the system also hypothesizes long silences and filler words. In our segments, there were 251 filler words located.

EXPERIMENTAL SETUP

In this section, we describe the data sets used for training and evaluation, as well as the models and strategies used in our research study. Appropriate data is critical for training deep learning models, especially for real-world applications.

Datasets: CEMO and IEMOCAP

• CEMO: In application specific data, emotions are scarce accounting from 10% (banking context) [START_REF] Hardy | Multi-Layer Dialogue Annotation for Automated Multilingual Customer Service[END_REF] to 30%

(emergency call context) of speech turns/segments [START_REF] Devillers | Challenges in Real-Life Emotion Annotation and Machine Learning Based Detection[END_REF]. Data preparation is a key step to achieving good performance and robustness. Here we describe the selection of a balanced subset of the CEMO data used for model training and validation. for which the annotators were in agreement. This results in a smaller number of speakers for Anger compared to the other classes as can be seen in Table 2, as there are only 7 agents in the CEMO corpus. Compared to the subset of the CEMO corpus that was used in a prior study [START_REF] Deschamps-Berger | End-to-End Speech Emotion Recognition: Challenges of Real-Life Emergency Call Centers Data Recordings[END_REF], we selected a more balanced and richer subset for this paper which we refer to as CEMO 𝑠 . CEMO 𝑠 is comprised of 4224 segments (2h40) equally distributed over the 4 main emotion classes. As can be noted in Table 2, the Positive class has the largest number of speakers and dialogues, potentially being richer and more heterogeneous than the other classes. However, at the same time, the total duration of the Positive segments and the average number of words, is less than that of the other classes. Consequently, the vocabulary size is also largely reduced.

• IEMOCAP: So as to place our studies within the scientific community, we also report results on the widely used IEMOCAP [START_REF] Busso | IEMOCAP: Interactive Emotional Dyadic Motion Capture Database[END_REF] data in Section 6. This database was recorded from ten actors in dyadic sessions during hypothetical oral communication scenarios for the purpose of eliciting emotions. The Table 3 summarizes the characteristics of the IEMOCAP dataset. 

Architectures

This section describes the pre-trained models which are publicly available off-the-shelf systems at "https://huggingface.co/" that were explored in our experiments on speech emotion detection with the French corpus CEMO. We tested wav2vec 2.0 models, BERT models and fusions.

• Wav2vec2 models: Wav2vec2 is a self-supervised pre-trained model that learns to predict a masked part of the signal provided as input. Our aim is to assess the impact of a pre-trained model to provide powerful representations that can be adapted to the CEMO task. The databases used in pre-trained models are detailed in [START_REF] Conneau | Unsupervised Cross-lingual Representation Learning for Speech Recognition[END_REF][START_REF] Schneider | Wav2vec: Unsupervised Pre-training for Speech Recognition[END_REF]. They differ in the choice of the languages (mono or multilingual), the types and amount of data composing the training database, the styles of speech (read, spontaneous/acted, conversational), the number of speakers (accents, gender, age), the emotional content and the quality of the recordings (noise, distance of the microphone). We selected, among the available pre-trained wav2vec2 encoders, 2 encoders which included in their training database at least one of the following criteria: French data, spontaneous dialogs, telephone-recorded data and emotional content, as shown in the Table 4. • BERT models: We selected, among the available pre-trained models based on the BERT architecture, two widely used French language models: CamemBERT [START_REF] Martin | CamemBERT: A Tasty French Language Model[END_REF] and FlauBERT [START_REF] Le | FlauBERT: Unsupervised Language Model Pre-training for French[END_REF]. More specifically we used BERT 𝐵𝐴𝑆𝐸 (12 layers, 768 hidden dimensions, 12 attention heads) and BERT 𝐿𝐴𝑅𝐺𝐸 (24 layers, 1024 hidden dimensions, 16 attention heads). CamemBERT 𝐵𝐴𝑆𝐸 and CamemBERT 𝐿𝐴𝑅𝐺𝐸 both of which were trained on the French dataset CCNet [START_REF] Huang | CCNet: Criss-Cross Attention for Semantic Segmentation[END_REF]) with different filtering processes of the CommonCrawl database2 . According to the authors, CCNet was constructed with a language model trained on Wikipedia, making it able to filter out noise (tables, code, etc).

FlauBERT 𝐵𝐴𝑆𝐸 and 𝐿𝐴𝑅𝐺𝐸 are also trained on a filtered part of the CommonCrawl database in addition to some sources from Wikipedia, books, news and subtitles [START_REF] Le | FlauBERT: Unsupervised Language Model Pre-training for French[END_REF]. The tokenizer and masking strategy also differ in both models see Table 5. According to Wang et al. [START_REF] Wang | Extracting Multiple-Relations in One-Pass with Pre-Trained Transformers[END_REF] and Fan et al. [START_REF] Toan | Transformers without Tears: Improving the Normalization of Self-Attention[END_REF], the training of large Transformers is known to be sensitive to instability and normalization techniques are typically used to train these models [START_REF] Le | FlauBERT: Unsupervised Language Model Pre-training for French[END_REF]. • Fine-tuning: In order to adapt the wav2vec2 and BERT models, we added a classifier on top of them, adapted to our speech emotion recognition task, as detailed in Figure 2. To reduce the computational overhead of an experiment we chose to use a pre-trained encoder as a feature extractor, and subsequently simply train a classifier on the generated features. We tested different variations of fine-tuning with the wav2vec2 and BERT encoders:

No encoder fine-tuning, Convolutional layers (wav2vec)/ embedding layers (BERT) frozen and Full fine-tuning, as shown in Figure 2.

• Fusion strategies: We explored two fusion strategies [START_REF] Han | EmoBed: Strengthening Monomodal Emotion Recognition via Training with Crossmodal Emotion Embeddings[END_REF]: late fusion (or decision-level fusion) which consists of combining predictions (in this paper we simply average the emotional class scores of the model outputs) and the model-level fusion which concatenates the intermediate representation of each model to learn potential hidden correlations between features as shown in Figure 3. 

EXPERIMENTAL RESULTS ON CEMO

In this section we present results obtained with several pre-trained models (wav2vec2-xlsr-53, wav2vec2-Fr-3K, Camem-BERT and FlauBERT) and with a baseline model (Temporal CNN-BiLSTM) similar to that used in previous work [START_REF] Deschamps-Berger | End-to-End Speech Emotion Recognition: Challenges of Real-Life Emergency Call Centers Data Recordings[END_REF].

For each pre-trained model we added a classification layer including the averaging of the outputs of our pre-trained layers followed by twice a sequence of a dropout of 10% layer and a dense linear (adapted to the size of the pre-trained model), with a tanh activation layer in between as shown in Figure 2. All evaluations are performed on 5 folds with a Comparing the confusion matrix of our baseline model in Figure 4a, a significant improvement in the separation of our classes and particularly for our pair Anger-Positive can be seen in Figure 4c. If we compare the best configuration of each wav2Vec2 model in the Table 6 and plot their confusion matrices in Figures 4b and4c, we notice that the wav2vec2-xlsr-53 𝐿𝐴𝑅𝐺𝐸 still has a difficulty discriminating the Fear-Neutral pair (as is the case for the CNN-BiLSTM model), while the wav2vec2-FR-3K 𝐿𝐴𝑅𝐺𝐸 does a better job at disambiguating this pair. Indeed, the overall improvement in Unweighted Accuracy seems to come from the model pre-training on appropriate datas.

Textual modality

Four models were explored with the textual modality: CamemBERT 𝐵𝐴𝑆𝐸 , CamemBERT 𝐿𝐴𝑅𝐺𝐸 , FlauBERT 𝐵𝐴𝑆𝐸 and FlauBERT 𝐿𝐴𝑅𝐺𝐸 . First, two sizes for each model (base and large) were tested with No encoder fine-tuning on our manual transcripts to select the best off-the-shelf system on our task. We followed the same fine-tuning nomenclature as in Section 4.2. The results of the base models, CamemBERT 𝐵𝐴𝑆𝐸 , and FlauBERT 𝐵𝐴𝑆𝐸 were less good so we decided to use the larger models in the remaining experiments. FlauBERT 𝐿𝐴𝑅𝐺𝐸 produced the best overall score for emotion detection. A possible explanation for the better performance of FlauBERT 𝐿𝐴𝑅𝐺𝐸 compared to CamemBERT 𝐿𝐴𝑅𝐺𝐸 could be the larger vocabulary size (50K vs 32K tokens, see Table 5) of FlauBERT 𝐿𝐴𝑅𝐺𝐸 . Due to its bigger vocabulary, FlauBERT 𝐿𝐴𝑅𝐺𝐸 might be able to better process French real-life conversational transcripts and provide better contextual representation. We used FlauBERT in its 𝐿𝐴𝑅𝐺𝐸 configuration (1024 dimensional output vectors) for the following experiments, as it yielded the best results. We fine-tuned the FlauBERT large model at three levels as described the section 4.2. As illustrated in Table 8, the fine-tuning on our task is not very useful for the classification. The fine-tuning version (Embedding layers frozen) is slightly better than the No encoder fine-tuning, but there is a huge gap in the number of trainable parameters, the FlauBERT (Embedding layers frozen) configuration model is 300 times bigger than the FlauBERT (No encoder fine-tuning). We kept the FlauBERT 𝐿𝐴𝑅𝐺𝐸 (No encoder fine-tuning) for our next experiment, where we use automatic transcriptions rather than the manual ones for emotion classification.

It can be seen in Table 9 that compares the emotion recognition results with the automatic transcripts are quite close to those obtained with the manual ones. This is a very interesting result as it means that we can use a semi-automatic protocol for transcribing and annotating more data in future experiments. Auto. 57.6 66.2 65.9 81.9 67.9 To assess the potential fusion of the two modalities (speech and text), a comparison was made of the segments correctly classified by the best pre-trained models, respectively, wav2vec2-FR-3K 𝐿𝐴𝑅𝐺𝐸 (frozen convolutional layers) correctly classified by only one of the models that could be exploited with a multimodal system.

Fusion strategies

We explicitly show here two transcribed segments that were classified differently by the speech encoder (wav2vec2-FR-3K 𝐿𝐴𝑅𝐺𝐸 (frozen convolutional layers)) and the text encoder (FlauBERT 𝐿𝐴𝑅𝐺𝐸 (no encoder fine-tuning)):

Example 1: Manual transcript: "et j' ai appelé le le médecin SOS" -"and I called the the SOS doctor"

Example 2: Manual transcript: "Je je pas à côté mais juste en face" -"I I not next door but right across the street"

Example 1 was correctly classified as Fear by FlauBERT 𝐿𝐴𝑅𝐺𝐸 but classified as Neutral by wav2vec2-FR-3K 𝐿𝐴𝑅𝐺𝐸 .

Indeed, this segment sounds completely neutral when we listen to it but the content clearly demonstrates an urgency and was annotated as Fear (The two annotators detected Anxiety at a fined-grained emotion level). The second example was correctly classified as Fear by wav2vec2-FR-3K 𝐿𝐴𝑅𝐺𝐸 , but classified as Neutral by FlauBERT 𝐿𝐴𝑅𝐺𝐸 and had been annotated as Fear (One coder indicated Stress and Anxiety at a micro emotion level). Even in an emergency context the agent needs to get precise information about the location of the callers, such a description is often provided by the patients and could be detected as Neutral segments by the linguistic model. This shows the importance of using both modalities to detect emotions in real-life spontaneous conversational speech segments.

As mentioned in Section 4.2, we studied two fusion strategies, model-level fusion and late fusion. As can be seen in 10, both fusions improve our system with the addition of explicit linguistic information to original the speech information, obtaining a UA of about 77% for both fusion strategies.

EXPERIMENTAL RESULTS ON CEMO AND IEMOCAP

In order to situate our work for the scientific community, we report results on IEMOCAP with our best configurations.

All models use a five-fold cross-validation strategy, independent of the speaker. The scientific contributions have no fixed pattern to determine the validation set [START_REF] Etienne | CNN+LSTM Architecture for Speech Emotion Recognition with Data Augmentation[END_REF], so for example in IEMOCAP (10 speakers) we dedicate in each fold, 4 sessions for training (8 speakers) and divide the last session for validation (1 speaker) and testing (1 speaker). IEMOCAP is an english corpus, so we used English pre-trained models, the wav2vec2 𝐵𝐴𝑆𝐸 and RoBERTa 𝐵𝐴𝑆𝐸 which shared the same neural network architecture with wav2vec2-Fr-3K 𝐿𝐴𝑅𝐺𝐸 and FlauBERT 𝐿𝐴𝑅𝐺𝐸 in a different size. [START_REF] Xu | Learning Alignment for Multimodal Emotion Recognition from Speech[END_REF] Text 57.8 LSTM model-level fusion [START_REF] Xu | Learning Alignment for Multimodal Emotion Recognition from Speech[END_REF] Speech + Text 67.7 -LSTM attention fusion [START_REF] Xu | Learning Alignment for Multimodal Emotion Recognition from Speech[END_REF] Speech + Text 70.9 -

We validated these fusion strategies against similar work with IEMOCAP in the same configuration, as shown in the table 11. With CEMO, we explored the use of pre-trained models and classical fusion strategies to improve the performances of our models and showed better results with late fusion of the speech and text models (77.1 %).

ETHICS AND REPRODUCIBILITY

The use of the CEMO database or any subsets of it, carefully respected ethical conventions and agreements ensuring the anonymity of the callers. All the experiments were carried out using Pytorch on two GPUs (GeForce GTX 1080 Ti with 11 Gbytes of RAM). We used Adam Optimizer with a learning rate of 2𝑥10 -5 (IEMOCAP) and 10 -4 (CEMO) per step. To ensure the reproducibility of the runs, we set a random seed to 0 and prevent our system from using non-deterministic algorithms.

To be comparable to related work with IEMOCAP (10 speakers) cited in this work, we dedicate in each fold, 4 sessions for training (8 speakers) and divide the last session for validation (1 speaker) and testing (1 speaker).

DISCUSSION AND CONCLUSION

In these studies, we explored and adapted several pre-trained models for speech emotion recognition in a real-world context. The use and adaptation of self-supervised representations, such as Transformer encoders previously trained on large and varied of corpora, provided reasonable generalizations of performance on unseen data. In particular, we compared several pre-trained models and our hypothesis is that the good performance of the French wav2vec2-Fr-3K 𝐿𝐴𝑅𝐺𝐸 model on the CEMO corpus can be attributed to the amount of French data used during pre-training and its similarity with the CEMO corpus. These characteristics may in part explain the better performance of this model over its multilingual version wav2vec2-xlsr-53 𝐿𝐴𝑅𝐺𝐸 , (73.1% versus 68.8% UA). Nevertheless both models showed an overall gain in performance compared to the baseline Temporal CNN-LSTM model (55.8%). In addition, fine-tuning of the pre-trained models for Speech Emotion Recognition with CEMO 𝑠 was essential for both wav2vec2 models' performance. Indeed wav2vec2-xlsr-53 𝐿𝐴𝑅𝐺𝐸 increased from 33.6% (without fine-tuning) to 68.8% (with fine-tuning) and the wav2vec2-Fr-3K 𝐿𝐴𝑅𝐺𝐸 increased from 27.7% (without fine-tuning) to 73.1% (with fine-tuning). For the textual modality, fine-tuning the core layers of the BERT-based models was not useful, undoubtedly due to the limited vocabulary variety and training set size of CEMO, compared to the amount of data used to pre-train the BERT-based models. The good predictions on automatic transcripts bodes a strong future for speech emotion recognition in real-world applications. We also studied the complementarity of speech and text modalities with the manual transcripts, combining them with two variants of fusion mechanisms (model-level and late fusion) obtaining respectively 76.8% and 77.1% UA. This combined approach helped predicting more complex segments of the CEMO corpus, when speech characteristics deviate from the surface meaning of the transcripts, which occurs when expressing irony or when people attempt to control or exaggerate their emotions.

Future research will now focus on finding creative joint-encoding methods across modalities and using semiautomated methods to annotate a larger corpus of call center conversations.
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Fig. 2 .

 2 Fig. 2. Three variations of fine-tuning of the learning parameters: (1) No encoder fine-tuning, (2) Convolutional layers (wav2vec) / Embedding layers (BERT) frozen, (3) Full fine-tuning.

Fig. 3 .

 3 Fig. 3. Two fusions strategies: Late fusion and Model-level fusion, 𝑦 𝑠 : Speech outputs, 𝑦 𝑡 : Text outputs, 𝑒 𝑠 : Speech embeddings, 𝑒 𝑡 : Text embeddings, 𝑦 𝑠,𝑡 : Speech and Text outputs

Fig. 4 .

 4 Fig. 4. Confusion matrices of three speech emotion recognition models with CEMO

Fig. 5 .

 5 Fig. 5. Correct classifications for the 2 models on our dataset (4224 samples), i.e. Wav2vec2-FR-3K 𝐿𝐴𝑅𝐺𝐸 (Convolutional layers frozen) correctly classified (773 + 2314)/4224 ≡ 73, 1% UA.

  

Table 1 .

 1 Top 10 most represented emotions and emotion mixtures for patients and agent.

	(FEA)R, (NEU)TRAL, (POS)ITIVE, (ANG)ER,

Table 2 .

 2 Details of the CEMO subset based on speech signals and manual transcripts.We mainly focused on negative emotions such as stressed (Fear) or impatient (Anger) which could lead to bad decision making in an emergency call center. The positive emotions such as relief or interest were merged in a unique class Positive. In order to build a balanced database, first segments with matching annotations for the four major macroclasses: Anger, Fear, Positive and Neutral were selected, after which we excluded segments outside of 0.4 and 7.5 seconds to avoid high computational costs. Note that the data distribution reported above in Table1is prior to this trimming. After this first filtering, there are only 386 samples of Anger, 1056 Positive samples and around 6000 Fear and Neutral segments. The Anger class was then completed with segments from the agents 1 to obtain 1056 samples, balancing across the agents. The Fear and Neutral classes were subsampled, maintaining 1056 samples for each class, prioritizing a broad representation of speaker diversity and segments

	CEMO 𝑠	ANGER FEAR NEUTRAL POSITIVE Total
	#Speech segments	1056	1056	1056	1056	4224
	#Speakers	149	537	450	544	812
	#Dialogues	280	504	425	516	735
	Durations (min, s)	39	52	49	20	160
	Duration mean (s)	2.2	2.9	2.8	1.1	2.3
	Vocabulary size (#words)	1146	1500	1150	505	2600
	Average word count	9.3	11.9	7.9	3.8	8.2

Table 3 .

 3 Details and distribution of the IEMOCAP corpus.

	IEMOCAP	ANGER SADNESS NEUTRAL HAPPY Total
	#speech segments	1103	1084	1708	595	4490
	#Speakers	10	10	10	10	10
	#Dialogues	84	70	135	76	151
	Duration (min, s)	83	99	111	43	336
	Duration mean (s)	4.5	5.5	3.9	4.3	4.5

Table 4 .

 4 Speech corpora used to train the publicly available encoder models

	Encoder model	Pre-training Total hours	French Total Read Broadcast Spontaneous Acted telephone Acted emotional
	Wav2vec2-xlsr-53 𝐿𝐴𝑅𝐺𝐸 53 languages	56 K	1500	1500	-	-	-	-
	Wav2vec2-FR-3K 𝐿𝐴𝑅𝐺𝐸	French	2.9 K	2900	1100	1600	123	38	29

Table 5 .

 5 Statistics for the text corpora used to train the encoder models

	Encoder model	Tokenizer	Masking strategy Parameters French pre-training data Number of tokens	Size
	CamemBERT 𝐵𝐴𝑆𝐸 CamemBERT 𝐿𝐴𝑅𝐺𝐸	SentencePiece 32K Whole-word	110M 335M	CCNet (135 GB of text)	32.7B	59.4M documents
	FlauBERT 𝐵𝐴𝑆𝐸 FlauBERT 𝐿𝐴𝑅𝐺𝐸	BPE 50K	Sub-word	138M 373M	24 French subcorpora (71 Gb of text)	12.79 B	488.78M sentences

Table 7 .

 7 Comparative experiments with text-based models using manual transcripts with the No encoder fine-tuning configuration (Train)able (p)arameters, UA: %

	Model name	Train. p. ANG FEA NEU POS Total
	CamemBERT 𝐿𝐴𝑅𝐺𝐸	1.1 M	53.6	60.8 58.7 67.6	60.2
	FlauBERT 𝐿𝐴𝑅𝐺𝐸	1.1 M	56.4	60.2 70.8 81.0 67.1

Table 8 .

 8 Comparative fine-tuning experiments on manual transcripts. (Train)able (p)arameters, UA: %

	Models	Config.	Train. p. ANG FEA NEU POS Total
		No encoder fine-tuning	1.1 M	56.4	60.2 70.8	81.0 67.1
	FlauBERT 𝐿𝐴𝑅𝐺𝐸	Embedding layers frozen 303 M	57.0	63.4 67.4	83.3 67.8
		Full fine-tuning	374 M	62.3	61.3 63.1	78.8 66.4

Table 9 .

 9 Comparative experiments on transcript configurations.

	FlauBERT 𝐿𝐴𝑅𝐺𝐸	Manual	56.4	60.2 70.8	81.0 67.1

(Tr)

anscriptions (type): Manual/Auto., UA: %

Models

Tr. type ANG FEA NEU POS Total

Table 10 .

 10 Fusion strategy experiments, with speech and manual transcripts, UA: % 3K 𝐿𝐴𝑅𝐺𝐸 + FlauBERT 𝐿𝐴𝑅𝐺𝐸 Speech + Text 77.1 and FlauBERT 𝐿𝐴𝑅𝐺𝐸 (No encoder fine-tuning). The Venn diagram in Figure illustrates their complementarity, explicitly showingthe number of segments correctly classified by each model individually and the number of segments classified by both. The two models share 2314 segments correctly classified (54.8% UA), and there is still over 1200 segments

	Model name	Modality	UA
	Wav2vec2-Fr-3K 𝐿𝐴𝑅𝐺𝐸	Speech	73.1
	FlauBERT 𝐿𝐴𝑅𝐺𝐸	Text	67.1
	Model-level fusion:		
	Wav2vec2-Fr-3K 𝐿𝐴𝑅𝐺𝐸 + FlauBERT 𝐿𝐴𝑅𝐺𝐸 Speech + Text 76.8
	Late fusion:		
	Wav2vec2-Fr-		

Table 11 .

 11 Experimental results on CEMO and related work with IEMOCAP. The results in the top part of the table are ours, with some of the closest reported work on IEMOCAP in the bottom, UA: %

	Model

In Table1it can be seen that there are more segments annotated with anger for the agents than for the patients.

https://commoncrawl.org/
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classical cross-speaker folding strategy that is speaker independent between training, validation and test sets. During each fold, system training is optimized on the best Unweighted Accuracy (UA) of the validation set. The outputs of each fold are combined for the final results.

Speech modality

The results in this subsection compare the performance of the pre-trained models without and with adaptation using the CEMO data. Table 4 gives the emotion recognition results with three models using the speech modality: the baseline CNN-BiLSTM model similar to [START_REF] Deschamps-Berger | End-to-End Speech Emotion Recognition: Challenges of Real-Life Emergency Call Centers Data Recordings[END_REF], the wav2vec2-xlsr-53 model [START_REF] Conneau | Unsupervised Cross-lingual Representation Learning for Speech Recognition[END_REF] and the wav2vec2-French model [START_REF] Evain | LeBenchmark: A Reproducible Framework for Assessing Self-Supervised Representation Learning from Speech[END_REF]. To evaluate the contribution of the pre-trained models, we randomly initialized their parameters and compared them to runs with the pre-trained parameters. We also tested three versions of fine-tuning following the procedure of the fine-tuning section in 4.2 as shown in Figure 2. The Positive and Neutral classes seem to be the easiest to model in our context. The two wav2vec2 encoders in their best configurations outperform the Temporal CNN-LSTM baseline model (68.8% and 73.1% versus 55.8%, c.f. Table 6). Pre-training the convolutional layers appears to provide a better parameter initialization compared to random initialization (entry Convolutional layers frozen: 73.1% and 61.9% vs. 29.1%). The results with fine-tuning exhibit different trends for the wav2vec2-xlsr-53 𝐿𝐴𝑅𝐺𝐸 and the wav2vec2-FR-3K 𝐿𝐴𝑅𝐺𝐸 models. For the multilingual model, full fine-tuning gives the best result, where as for the French model, the best result is obtained by freezing the convolutional layers. Effectively, transfer learning shows its potential for speech emotion recognition when combined with an appropriate version of fine-tuning (either Convolution layers frozen or Full fine-tuning) (68.8% and 73.1%, see Table 6). The CEMO balanced subset contains only 2.6 hours 2, so the inclusion of additional knowledge about spoken French (1500 hours for Wav2vec2-xlsr-53 𝐿𝐴𝑅𝐺𝐸 and 2900 hours for Wav2vec2-FR-3K 𝐿𝐴𝑅𝐺𝐸 , see Table 4) is seen to improve the results. Moreover, the similarity of the datasets used for pre-training with the CEMO corpus might have led to better performance. It appears that the difference in performance of the two pre-trained models (8.3%) can be attributed to differences in the pre-trained datasets. Indeed, the presence of monolingual (French) versus multilingual samples or the presence of spontaneous speech (123 hours), acted telephone (38 hours) and acted emotional (29 hours) samples, as detailed in Table 4 which are similar to the CEMO context, could explain the better performance of the Wav2vec2-FR-3K 𝐿𝐴𝑅𝐺𝐸 model.