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A POSTERIORI ERROR ESTIMATES FOR THE TIME DEPENDENT NAVIER-STOKES SYSTEM COUPLED WITH THE CONVECTION-DIFFUSION-REACTION EQUATION

Keywords: A posteriori error estimation, Navier-Stokes problem, convection-diffusion-reaction equation, finite element method, adaptive methods

In this paper we study the a posteriori error estimates for the time dependent Navier-Stokes system coupled with the convection-diffusion-reaction equation. The problem is discretized in time using the implicit Euler method and in space using the finite element method. We establish a posteriori error estimates with two types of computable error indicators, the first one linked to the space discretization and the second one to the time discretization. Finally, numerical investigations are performed and presented.

Introduction

The modeling of physical phenomena arising in engineering and sciences leads to partial differential equations in space and time, expressing the mathematical model of the problem to be solved. In general, analytical solutions of these equations do not exist, hence numerical methods such as the finite element method are employed. A major feature of numerical methods is that they involve different sources of numerical errors. The focus of this paper is on an a posteriori error analysis for the time dependent Navier-Stokes system coupled with the convection-diffusion-reaction equation . The a posteriori analysis was first introduced by Babuška and Rheinboldt [START_REF] Babuška | Error estimates for adaptive finite element computations[END_REF][START_REF] Babuška | A posteriori error estimates for the finite element method[END_REF], and developed, among other authors, by Verfürth [START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement techniques[END_REF] or Ainsworth and Oden [START_REF] Ainsworth | A posteriori error estimation in finite element analysis[END_REF]. This analysis controls the overall discretization error of a problem by providing error indicators that are easy to compute. Once these error indicators are constructed, their efficiency can be proven by bounding each indicator by the local error, a property also called optimality. A large amount of work has been made concerning the a posteriori errors. With no claim to exhaustivity, we can cite for example, Ladevèze [START_REF] Ladevèze | Constitutive relation error estimators for time-dependent nonlinear FE analysis[END_REF] for constitutive relation error estimators for time-dependent non-linear Finite Element analysis, Verfürth [START_REF] Verfürth | A posteriori error estimates for finite element discretizations of the heat equation[END_REF] for the heat equation, Bernardi and Verfürth [START_REF] Bernardi | A poesteriori error analysis of the fully discretized time dependent Stokes equations[END_REF] for the time dependent Stokes equations, Bernardi and Süli [START_REF] Bernardi | Time and space adaptivity for the second order wave equation[END_REF] for the time and space adaptivity for the second-order wave equation, Bergam, Bernardi and Mghazli [START_REF] Bergam | A posteriori analysis of the finite element discretization of some parabolic equations[END_REF] for some parabolic equations, Ern and Vohralík [START_REF] Ern | A posteriori error estimation based on potential and flux reconstruction for the heat equation[END_REF] for estimations based on potential and flux reconstruction for the heat equation. A chronological perspective of a posteriori error estimation in various norms for parabolic problems is presented in [START_REF] Ern | Equilibrated flux a posteriori error estimates in L2(H1)-norms for highorder discretizations of parabolic problems[END_REF].

As far as incompressible flow problems are concerned, various works deal with a posteriori error estimators for mixed finite element discretizations of the Navier-Stokes equations. We may cite Luo and Zhu [START_REF] Luo | A nonlinear Galerkin mixed element method and a posteriori error estimator for the stationary Navier-Stokes equations[END_REF], El Akkad, El Khalfi and Guessous [START_REF] El Akkad | An a posteriori estimate for mixed finite element approximations of the Navier-Stokes equations[END_REF], Bernardi et al. [START_REF] Bernardi | A posteriori analysis of iterative algorithms for Navier-Stokes problem[END_REF], Durango and Novo [START_REF] Durango | A posteriori error estimations for mixed finite element approximations to the Navier-Stokes equations based on Newton-type linearization[END_REF]. Bernardi and Sayah establish a posteriori error estimates for the time dependent Stokes [START_REF] Bernardi | A posteriori error analysis of the time dependent Stokes equations with mixed boundary conditions[END_REF] and then Navier-Stokes [START_REF] Bernardi | A posteriori error analysis of the time dependent Navier-Stokes equations with mixed boundary conditions[END_REF] systems with mixed boundary conditions; for the latter, Nassreddine and Sayah propose improved estimates in [START_REF] Nassreddine | New Results for the A Posteriori Estimates of the Two dimensional Time Dependent Navier-Stokes Equation[END_REF]. In the stationary case, Dakroub, Faddoul and Sayah [START_REF] Dakroub | A posteriori analysis of the Newton method applied to the Navier-Stokes problem[END_REF] present an a posteriori analysis of the Newton method applied to the Navier-Stokes problem, while a posteriori error estimations of the Large Eddy Simulation methodology applied to the Navier-Stokes Problem are given by Nassreddine, Omnes and Sayah [START_REF] Nassreddine | A posteriori error estimates for the Large Eddy Simulation applied to stationary Navier-Stokes equations[END_REF].

As far as the coupling of the convection-diffusion equation with other models is concerned, we may cite Chalhoub et al. [START_REF] Chalhoub | A Posteriori error estimates for the time dependent convection-diffusion-reaction equation coupled with the Darcy system[END_REF] who establish optimal a posteriori error estimation of the time dependent convectiondiffusion-reaction equation coupled with the Darcy equation and Agroum [START_REF] Agroum | A posteriori error analysis for solving the Navier-Stokes problem and convection-diffusion equation[END_REF] for an a posteriori error analysis for solving the stationary coupled Navier-Stokes problem and convection-diffusion equation.

In this paper we consider the time dependent Navier-Stokes problem coupled with the convectiondiffusion-reaction equation and a discrete formulation based on the Euler scheme in time and on a finite element scheme for the space discretization, for which Aldbaissy et al. [START_REF] Aldbaissy | A full discretisation of the time-dependent Boussinesq (buoyancy) model with nonlinear viscosity[END_REF] establish an optimal a priori error estimate. The coupling of both equations is due to the fact that both the viscosity coefficient and the forcing term in the Navier-Stokes equations depend on the concentration, and to the fact that the convective velocity in the transport equation is the velocity involved in the Navier-Stokes system. Here, we establish a posteriori error estimates based on two types of computable error indicators, the first one being linked to the time discretization and the second one to the space discretization. We also show corresponding numerical investigations.

Let Ω be a connected bounded open domain in IR d , d = 2, 3, with a Lipschitz continuous boundary ∂Ω and let [0, T ] be an interval of IR. We consider the following system:

                         ∂u ∂t (x, t) -div(2ν(C(x, t))D(u)(x, t)) + (u(x, t) • ∇)u(x, t) + ∇p(x, t) = f (x, t, C(x, t)) in Ω×]0, T [, ∂C ∂t (x, t) + (u(x, t) • ∇)C(x, t) -α∆C(x, t) + r 0 C(x, t) = g(x, t) in Ω×]0, T [, div u(x, t) = 0 in Ω×]0, T [, u(x, t)
= 0 on ∂Ω×]0, T [, C(x, t) = 0 on ∂Ω×]0, T [, u(x, 0) = u 0 in Ω, C(x, 0) = C 0 in Ω, (1.1) where the unknowns are the velocity u, the pressure p and the concentration C in the fluid. Classically, we have set D(u) = 1 2 (∇u + (∇u) T ). The function f represents an external force that depends on the concentration C and the function g represents an external concentration source. The viscosity ν is the sum of a constant viscosity ν 0 and of an additional term ν c (C) that accounts for the variation of the fluid viscosity as a function of the concentration. In this work, the diffusion coefficient α and the parameter r 0 are positive constants. To simplify, a homogeneous Dirichlet boundary condition is prescribed on the concentration C.

The outline of the paper is as follows:

• In Section 2, we introduce some notations and functional spaces that are useful for the study of the problem. • In section 3, we introduce the variational formulation.

• In section 4, we introduce the discrete problem and we recall its main properties.

• In section 5, we study the a posteriori error estimation.

• Section 6 is devoted to the numerical experiments.

• In section 7, we give some conclusions about this work.

Preliminaries

In this section, we recall the main notations and results which we will use later on.

We denote by L p (Ω) d the space of measurable functions v such that |v| p is integrable. For v ∈ L p (Ω) d , the norm is defined by

∥ v ∥ L p (Ω) d = Ω |v(x)| p dx 1/p .
We introduce the Sobolev space

W m,r (Ω) d = v ∈ [L r (Ω)] d ; ∂ k v ∈ [L r (Ω)] d , ∀|k| ≤ m ,
where k = (k 1 , • • • , k d ) is a vector of non negative integers, such that |k| = k 1 + • • • + k d and

∂ k v = ∂ |k| v ∂x k1 1 • • • ∂x k d d .
This space is equipped with the semi-norm

|v| m,r,Ω =   |k|=m Ω |∂ k v| r dx   1/r
, and is a Banach space for the norm

∥ v ∥ m,r,Ω = m ℓ=0 |v| r ℓ,r,Ω dx 1/r
.

When r = 2, this space is the Hilbert space H m (Ω) d . In particular, we consider the following spaces

H 1 0 (Ω) d = {v ∈ H 1 (Ω) d , v | ∂Ω = 0}, equipped with the norm |v| H 1 0 (Ω) d = |v| 1,Ω = Ω |∇v| 2 dx 1/2
.

The dual of H 1 0 (Ω) d is denoted by H -1 (Ω) d . We also introduce

L 2 0 (Ω) = {q ∈ L 2 (Ω); Ω q(x)dx = 0}
and we define the following scalar product in L 2 (Ω)

d (v, w) = Ω v(x) • w(x)dx, ∀v, w ∈ L 2 (Ω) d .
Moreover, we shall use the same notation as soon as the integral on the right-hand side has a meaning, even if v and w are not in L 2 (Ω) d . Similar notations are also used for scalar functions instead of vector valued functions.

Lemma 2.1. For any p ≥ 1, when d = 1 or 2, or 1 ≤ p ≤ 2d d -2 when d ≥ 3, there exist two positive constants S p and S 0 p such that ∀v ∈

H 1 0 (Ω) d , ∥ v ∥ L p (Ω) d ≤ S 0 p |v| 1,Ω , (2.1 
)

and ∀v ∈ H 1 (Ω) d , ∥ v ∥ L p (Ω) d ≤ S p ∥ v ∥ 1,Ω . (2.2) Lemma 2.2. When d = 2, for all v ∈ H 1 0 (Ω) d , we have ∥ v ∥ L 4 (Ω) 2 ≤ 2 1 4 ∥ v ∥ 1/2 L 2 (Ω) 2 |v| 1/2 1,Ω .
(2.3)

As usual, for handling time-dependent problems, it is convenient to consider functions defined on a time interval [a, b] with values in a separable functional space W equipped with a norm ∥ . ∥ W . For all r ≥ 1 we introduce the space ∥ f (t) ∥ W .

Remark 2.3. L r (a, b; W ) is Banach space if W is a Banach space.

In addition, we define C j (0, T ; W ) as the space of functions C j in time with values in W .

We consider the following spaces:

X = H 1 0 (Ω) d , M = L 2 0
(Ω) and Y = H 1 0 (Ω), and V = {v ∈ X; div v = 0 in Ω}.

Henceforth, we suppose the following hypothesis:

Assumption 2.4. We assume that the data f , g and ν verify:

i) f can be written as follows

f (x, t, C(x, t)) = f 0 (x, t) + f 1 (x, C(x, t)),
where f 0 ∈ C 0 (0, T ; L 2 (Ω) d ) and f 1 is c * f1 -lipschitz with respect to its second argument from IR with value in IR d . In addition, we suppose that ∀x ∈ Ω, ∀ξ ∈ IR, |f 1 (x, ξ)| ≤ c f1 |ξ|, (2.4) where c f1 is a positive constant. ii) g ∈ C 0 (0, T ; L 2 (Ω)), iii) ν = ν 0 + ν C where ν 0 > 0 is a given constant and 0 ≤ ν C ∈ L ∞ (IR) and is Lipschitz-continuous, with Lipschitz constant c ν . The upper bound of ν C is denoted by ν2 : for any θ ∈ IR we have

0 ≤ ν C (θ) ≤ ν2 . (2.5) iv) u 0 ∈ L 2 (Ω) d , div u 0 = 0, u 0 • n ∂Ω = 0 and C 0 ∈ L 2 (Ω).
As a consequence of this assumption, since ν 0 is a constant, and D(u) is symmetrical, for any functions

(u, v) ∈ [H 1 0 (Ω) d ] 2 with div u = 0, there holds (2νD(u), ∇v) = ν 0 (∇u, ∇v) + (2ν C D(u), D(v)).

Moreover, for any function

u ∈ [H 1 0 (Ω) d ] there holds ν 0 |u| 2 H 1 0 (Ω) d ≤ ν 0 (∇u, ∇u) + (2ν C D(u), D(u)) ≤ (ν 0 + 2ν 2 )|u| 2 H 1 0 (Ω) d .
(2.6)

In the next lemma we recall the Gronwall-Bellman inequality shown in [33, p. 292] and in [18, p. 252]. We will use this Lemma in different proofs as in Theorem 5.10, Theorem 5.15 and Theorem 5.19.

Lemma 2.5. (Gronwall lemma) Let

(1) f , g and k, be integrable functions defined 

IR + → IR, (2) g ≥ 0, k ≥ 0, (3) g ∈ L ∞ (IR + ), (4 
y n ≤ fn + n-1 k=0 gk y k , ∀n ≥ 0.
Then we have:

y n ≤ fn + n-1 k=0 fk gk n-1 j=k+1
(1 + gj ), ∀n ≥ 0, and

y n ≤ fn + n-1 k=0 fk gk exp n-1 j=k gj , ∀n ≥ 0.
For the sake of simplicity in notations, we set u(t) = u(., t), C(t) = C(., t) and p(t) = p(., t).

Variational formulation

The variational formulation corresponding to problem (1.1) in the sense of distributions on [0, T ] is the following:

(E)                          Find t → (u(t), p(t), C(t)) ∈ X × M × Y such that d dt (u(t), v) + ν 0 (∇u(t), ∇v) + (2ν C (C(t))D(u(t)), D(v)) -(p(t), div v) + c u (u(t), u(t), v) = (f (t, C(t)), v) ∀v ∈ X, d dt (C(t), r) + c C (u(t), C(t), r) + α(∇C(t), ∇r) + r 0 (C(t), r) = (g(t), r) ∀r ∈ Y, (div u(t), q) = 0 ∀q ∈ M, u(0) = u 0 in Ω, C(0) = C 0 in Ω. (3.1) with c u (u(t), u(t), v) = ((u(t) • ∇)u(t), v) and c C (u(t), C(t), r) = ((u(t) • ∇)C(t), r).
The existence and conditional uniqueness of the solution of (E) are treated and studied in [START_REF] Agroum | Spectral discretization of the time-dependent Navier-Stokes problem coupled with the heat equation[END_REF][START_REF] Aldbaissy | A full discretisation of the time-dependent Boussinesq (buoyancy) model with nonlinear viscosity[END_REF] for a slightly different problem and we list here the corresponding theorems:

The existence and conditional uniqueness of the solution of (E) are treated for a slightly different problem in [START_REF] Agroum | Spectral discretization of the time-dependent Navier-Stokes problem coupled with the heat equation[END_REF][START_REF] Aldbaissy | A full discretisation of the time-dependent Boussinesq (buoyancy) model with nonlinear viscosity[END_REF] where the Navier-Stokes equation is coupled with the heat equation without the reaction term r 0 (C(t), r) and in which the diffusion term is (ν(C(t))∇u(t), ∇v). The reaction term adds coercivity in the concentration equation since r 0 ≥ 0, and thus does not affect the energy estimates which are at the basis of the results below. The difference in the diffusion term does not affect the results either, because we still have the key condition (2.6). We list here the corresponding theorems that are still valid in our case: (Theorem 2.3 in [START_REF] Agroum | Spectral discretization of the time-dependent Navier-Stokes problem coupled with the heat equation[END_REF] and Theorems 3.1 and 3.2 in [START_REF] Aldbaissy | A full discretisation of the time-dependent Boussinesq (buoyancy) model with nonlinear viscosity[END_REF]).

Theorem 3.1. Under Assumption 2.4, Problem (E) admits at least one solution

(u, p, C) ∈ L 2 (0, T ; H 1 0 (Ω) d ) ∩ L ∞ (0, T ; L 2 (Ω) d ) × L 2 (0, T ; L 2 (Ω)) × L 2 (0, T ; H 1 0 (Ω)) ∩ L ∞ (0, T ; L 2 (Ω)).
Theorem 3.2. Under Assumption 2.4, every solution of (E) satisfies the bound

∥ u ∥ L ∞ (0,T ;L 2 (Ω) d ) + ∥ u ∥ L 2 (0,T ;H 1 0 (Ω) d ) + ∥ C ∥ L ∞ (0,T ;L 2 (Ω)) + ∥ C ∥ L 2 (0,T ;H 1 0 (Ω)) ≤ Ĉ ∥ g ∥ L 2 (0,T ;L 2 (Ω)) + ∥ f 0 ∥ L 2 (0,T ;L 2 (Ω) d ) + ∥ u 0 ∥ L 2 (Ω) d + ∥ C 0 ∥ L 2 (Ω) (3.2)
where Ĉ is a positive constant which depends of S 0 2 , ν 0 , α, r 0 and c f1 . Theorem 3.3. Let d = 2 and assume that ν C is Lipschitz-continuous, with Lipschitz constant c ν . If Problem (E) admits a solution (u, p, C) which verifies u ∈ L p (0, T ; W 1,r (Ω) d ), where p ≥ 4 and r ≥ 4, then this solution is unique.

Discrete problem

In this section, we use the semi-implicit Euler method (cf. [START_REF] He | The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or nonsmooth initial data[END_REF]) for the time discretization and the finite element method for the space discretization. In order to describe the time discretization with an adaptive choice of local time steps, we introduce a partition of the interval

[0, T ] into sub-intervals [t n-1 , t n ], 1 ≤ n ≤ N , with 0 = t 0 < t 1 < t 2 < • • • < t N = T . For all n ∈ [1, N ],
we denote by τ n the length of the interval [t n-1 , t n ]. For later use, we set for convenience τ 0 = τ 1 . And finally we denote by σ τ the regularity parameter

σ τ = max 1≤n≤N max τ n τ n-1 , τ n-1 τ n .
We introduce the following operator π τ (resp. π l,τ ): let Y be a Banach space and g a continuous function from ]0, T ]

(resp. [0, T [) into Y , π τ g (resp. π l,τ g) denotes the piecewise constant function which is equal to g(t n ) (resp. g(t n-1 )) on each interval ]t n-1 , t n ], 1 ≤ n ≤ N.
In the same way, for 

(ϕ n ) 0≤n≤N in Y N +1 we associate the piecewise constant function π τ ϕ τ (resp. π l,τ ϕ τ ) which is equal to ϕ n (resp. ϕ n-1 ) on each interval ]t n-1 , t n ], 1 ≤ n ≤ N . Furthermore, for any (C n ) 0≤n≤N in Y N +1 ,
C τ = t -t n-1 τ n (C n -C n-1 ) + C n-1 = t -t n τ n (C n -C n-1 ) + C n . (4.1)
Moreover, the same type of definition will be used component by component for any family

(v n ) 0≤n≤N in (Y d ) N +1
and the corresponding piecewise affine function is denoted by v τ .

We assume that Ω is a polygon (d = 2) or a polyhedron (d = 3), so it can be completely meshed. Now, we describe the space discretization. For each step n such that 1 ≤ n ≤ N , let (T nh ) be a regular family of triangles (d = 2) or tetrahedra (d = 3) of Ω. The intersection of two different elements of (T nh ), if not empty, is a vertex or a whole edge or a whole face (d = 3) of both of them. We also have:

Ω = κ∈T nh κ.
For each element κ of T nh , let h κ be its diameter. For each n ∈ {1, • • • , N }, h n denotes the maximum diameter of T nh and h denotes the maximum of

h n , for n ∈ {1, • • • , N }. Let X nh , M nh and Y nh such that X nh ⊂ X, M nh ⊂ M and Y nh ⊂ Y , and for each n ∈ {1, • • • , N }, Z nh = {q h ∈ C 0 ( Ω) ∀κ ∈ T nh , q h|κ ∈ P 1 }, X nh = v h ∈ C 0 ( Ω) d ; ∀κ ∈ T nh , v h|κ ∈ P 1b , v h|∂Ω=0 , Y nh = r h ∈ Z nh ; r h|∂Ω=0 , M nh = q h ∈ Z nh ; Ω q h dx = 0 . (4.2)
Here P 1 (κ) is the space of restrictions to κ of affine functions, P 1b (κ) the sum of a polynomial of P 1 (κ) and a "bubble" function ψ κ , P 1b (κ) = P 1 (κ) + vect(ψ κ ). Denoting by a i , 1 ≤ i ≤ d + 1, the vertices of κ and by λ i its barycentric coordinates, the basic bubble function ψ κ is the polynomial of degree d + 1 defined by

ψ κ (x) = λ 1 (x) • • • λ d+1 (x).
We observe that ψ κ (x) = 0 on ∂κ and that ψ κ (x) > 0 on κ. The graph of ψ κ looks like a bubble attached to the boundary of κ, hence its name.

We introduce the discrete space:

V nh = v h ∈ X nh ; ∀q h ∈ M nh , Ω q h (x)div v h (x) = 0 . (4.3) Remark 4.1. (cf. [5])
The spaces X nh and M nh satisfy the following discrete inf-sup condition:

inf p h ∈M nh sup v h ∈X nh Ω div v h (x)p h (x) dx |v h | H 1 0 ∥ p h ∥ L 2 (Ω) ≥ β, (4.4) 
where β is positive constant independent of h.

In order to introduce the discrete scheme, we define the following forms: for all u n h , v h ∈ X nh , and for all

C n h , r h ∈ Y nh , d u (u n-1 h , u n h , v h ) = ((u n-1 h • ∇)u n h , v h ) + 1 2 (div(u n-1 h )u n h , v h ) and d C (u n h , C n h , r h ) = ((u n h • ∇)C n h , r h ) + 1 2 (div(u n h )C n h , r h ). Proposition 4.2. For all u h , v h ∈ X nh and r h ∈ Y nh , we have d u (u h , v h , v h ) = 0 and d C (u h , r h , r h ) = 0.
Moreover, the definitions of d u and d C can be extended to u, v ∈ X and r ∈ Y and we also have

d u (u, v, v) = 0 and d C (u, r, r) = 0.
Let us now introduce the fully discrete scheme associated to Problem (P ):

For every n ∈ {1, • • • , N }, having u n-1 h ∈ X (n-1)h and C n-1 h ∈ Y (n-1)h , Find (u n h , p n h ) ∈ X nh × M nh , C n h ∈ Y nh such that, (Eds1) 
             1 τ n (u n h -u n-1 h , v h ) + ν 0 (∇u n h , ∇v h ) + (2ν C (C n-1 h )D(u n h ), D(v h )) +d u (u n-1 h , u n h , v h ) -(p n h , div v h ) = (f n (C n-1 h ), v h ) ∀v h ∈ X nh , 1 τ n (C n h -C n-1 h , r h ) + d C (u n h , C n h , r h ) + α(∇C n h , ∇r h ) + r 0 (C n h , r h ) = (g n , r h ) ∀r h ∈ Y nh , (q h , div u n h ) = 0 ∀q h ∈ M nh ,
where u 0 h and C 0 h are given approximations of u 0 and C 0 , and g n and f n are defined as follows:

g n = g(t n ) and f n (C n-1 h ) = f n 0 + f 1 (C n-1 h ) with f n 0 = f 0 (t n ).
The following theorem states existence and uniqueness of the solution to Problem (Eds1); the proof is similar to that given in [START_REF] Aldbaissy | A full discretisation of the time-dependent Boussinesq (buoyancy) model with nonlinear viscosity[END_REF], taking into account that ν

C (C n-1 h )D(u n h ), D(u n h ) ≥ 0: Theorem 4.3. At each time step n, for a given u n-1 h ∈ X (n-1)h , C n-1 h ∈ Y (n-1)h and under Assump- tion 2.4, problem (Eds1) admits a unique solution (u n h , p n h , C n h ) ∈ X nh × M nh × Y nh . Furthermore we have, for m = 1, • • • , N , the following bounds 1 2 ∥ u m h ∥ 2 L 2 (Ω) d + ν 0 2 m n=0 τ n |u n h | 2 H 1 0 (Ω) d ≤ Cd m n=0 τ n ∥ g n ∥ 2 L 2 (Ω) + m n=0 τ n ∥ f n 0 ∥ 2 L 2 (Ω) + ∥ C 0 h ∥ 2 L 2 (Ω) + ∥ u 0 h ∥ 2 L 2 (Ω) d , (4.5 
)

1 2 ∥ C m h ∥ 2 L 2 (Ω) + α 2 m n=0 τ n |C n h | 2 H 1 0 (Ω) + r 0 m n=0 τ n ∥ C n h ∥ 2 L 2 (Ω) ≤ C′ d m n=0 τ n ∥ g n ∥ 2 L 2 (Ω) + ∥ C 0 h ∥ 2 L 2 (Ω) . (4.6)
where Cd et C′ d are positive constants independent of h and m.

A posterior error analysis

In this section, we shall prove a posteriori error estimates between the exact solution of problem (1.1) and the numerical solution of Problem (Eds1) for d = 2. We assume that the solution of Problem (E) is unique and sufficiently regular, in particular u ∈ C 0 (0, T ; L 2 (Ω) 2 ) and C ∈ C 0 (0, T ; L 2 (Ω)). We begin by constructing the indicators, then we derive the a posteriori error estimates and finally establish their quasi-optimality, in the sense that we need to require higher regularity of the exact solution to be able to bound the indicators by the local errors.

5.1. Construction of the error indicators. We first introduce the space

Z l nh = {g h ∈ L 2 (Ω); ∀κ n ∈ T nh , g h | κn ∈ P l (κ n )}
, where l ≤ 1. For 1 ≤ n ≤ N , we fix an approximation f n h of the data f n in Z nh × Z nh and g n h of the data g n in Z nh , we fixe l = 1. we denote by

• Γ i
h the set of edges of the mesh that are not contained in ∂Ω, • Γ b h the set of edges of the mesh which are contained in ∂Ω. Next, for all κ n ∈ T nh , we denote by: • ξ κn the set of edges of κ n that are not contained in ∂Ω, • ∆ κn the union of elements of T nh that share at least one common vertex with κ n , • h κn the diameter of κ n and h en the diameter of e n , • [.] en the jump through the edge e n in ξ κn ,

• n κn stands for the unit outward normal vector to κ n on ∂κ n .

In order to establish the a posteriori error estimates, we shall use for each element κ n of T nh the bubble function ψ κn defined below (4.2) and for each edge e n ∈ κ n the function ψ en which is equal to the product of the d barycentric coordinates associated with the vertices of e n . We also consider a lifting operator L en defined on polynomials on e n vanishing on ∂e n into polynomials on at most the two elements κ n and κ ′ n containing e n and vanishing on ∂(κ n ∪ κ ′ n )\e n , which is constructed by affine transformation from a fixed operator on the reference element into κ n . For the details of the construction of the lifting operator, we refer to [START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement techniques[END_REF]Page 65].

We recall the following results from ( [START_REF] Verfürth | A review of a posteriori error estimation and adaptive mesh-refinement techniques[END_REF], Lemma 3.3): Property 5.1. Denoting by P r (κ n ) the space of polynomials of degree smaller than r on κ n , we have

∀v ∈ P r (κ n ), ∥ v ∥ 0,κn ≤ ∥ vψ 1/2 κn ∥ 0,κn ≤ c ′ ∥ v ∥ 0,κn , |v| 1,κn ≤ ch -1 κn ∥ v ∥ 0,κn , (5.1) 
where c and c ′ are constants independent of mesh steps and of v.

Property 5.2. Denoting by P r (e n ) the space of polynomials of degree smaller than r on e n , we have

∀v ∈ P r (e n ), c ∥ v ∥ 0,en ≤ ∥ vψ 1/2 en ∥ 0,en ≤ c ′ ∥ v ∥ 0,en , (5.2) 
and for all polynomials v in P r (e n ) vanishing on ∂(e n ), if κ n is an element which contains e n ,

∥ L en v ∥ 0,κn +h en |L en v| 1,κn ≤ ch 1/2 en ∥ v ∥ 0,en , (5.3) 
where c and c ′ are constants independent of mesh steps and of v.

We also introduce a Clément type regularization operator C hn [START_REF] Clement | Approximation by finite element functions using local regularisation[END_REF] which has the following properties, see [9, section IX.3]: for all w in H 1 0 (Ω) 2 , C nh w belongs to the continuous affine finite element space, preserves homogeneous Dirichlet boundary conditions and satisfies for any κ n in T nh and e n in ξ κn :

∥ w -C nh w ∥ 0,κn ≤ ch κn |w| 1,∆κ n and ∥ w -C nh w ∥ 0,en ≤ ch 1/2 en |w| 1,∆κ n , (5.4) 
where c and c ′ are constants independent of the mesh steps and of w.

Of course, the same type of properties remain true when applying this regularization operator to a scalar field C in H 1 0 (Ω). For the a posteriori error studies, we consider the piecewise affine functions u h and C h which take in the interval [t n-1 , t n ], the values

u h (t) = t -t n-1 τ n (u n h -u n-1 h ) + u n-1 h = t -t n τ n (u n h -u n-1 h ) + u n h (5.5)
and

C h (t) = t -t n-1 τ n (C n h -C n-1 h ) + C n-1 h = t -t n τ n (C n h -C n-1 h ) + C n h . (5.6) 
The piecewise constant function p h is equal to p n h on the interval ]t n-1 , t n ]. We prove quasi-optimal a posteriori error estimates by using the norms

[[u -u h ]](t m ) = ∥ u(t m ) -u h (t m ) ∥ 2 L 2 (Ω) 2 +ν 0 max tm 0 ∥ u(t) -u h (t) ∥ 2 X dt, m n=1 tn tn-1 ∥ u(t) -π τ u h (t) ∥ 2 X dt 1/2
(5.7)

and

[[C -C h ]](t m ) = ∥ C(t m ) -C h (t m ) ∥ 2 L 2 (Ω) 2 +α max tm 0 ∥ C(t) -C h (t) ∥ 2 Y dt, m n=1 tn tn-1 ∥ C(t) -π τ C h (t) ∥ 2 Y dt 1/2 .
(5.8)

Remark 5.3. In definitions 5.7 and 5.8, the quantities

tm 0 ∥ u(t)-u h (t) ∥ 2 X dt and tm 0 ∥ C(t)-C h (t) ∥ 2 Y dt are closely related to m n=1 tn tn-1 ∥ u(t) -π τ u h (t) ∥ 2 X dt and m n=1 tn tn-1 ∥ C(t) -π τ C h (t) ∥ 2
Y dt, respectively. This distinction would not be necessary to derive upper bounds of the errors (Subsection 5.2); however it is useful as far as the lower bounds are concerned (Subsection 5.3).

In the following lemma we calculate the residuals which will allow us to define the error indicators. Lemma 5.4. A standard calculation shows that the solution (u, p, C) of problem (1.1) verifies the following equalities for all (v, q, r) ∈ (X, Y, M ) and all (u h , p h , r h ), for

1 ≤ n ≤ N and t in ]t n-1 , t n ]                                          ( ∂ ∂t (u -u h )(t), v) + ν 0 (∇(u(t) -π τ u h (t)), ∇v) + (2ν C (C(t))D(u(t)) -2ν C (π l,τ C h )D(π τ u h (t)), D(v)) +(u(t) • ∇u(t) - 1 2 (div (π l,τ u h (t))π τ u h (t), v) -(π l,τ u h (t) • ∇π τ u h (t), v) -(div v(t), p(t) -p h (t)) = (f (t, C(t)) -f n (C n-1 h ), v) + ⟨R h u (t), v⟩, ( ∂ ∂t (C -C h )(t), r) + α(∇(C -C h )(t), ∇r) + (u(t) • ∇C(t) -π τ u h (t) • ∇π τ C h (t), r) +r 0 (C(t) -C h (t), r) - 1 2 (div (π τ u h (t))π τ C h (t), r) = (g(t) -g n , r) + ⟨R c (t), r⟩, Ω q(t, x)div(u(t, x) -u h (t, x)) = - Ω q(t, x)div(u h (t, x)), (5.9) 
with

⟨R h u (t), v⟩ = κn∈T nh κn (f n (C n-1 h ) - 1 τ n (u n h -u n-1 h ) + ν 0 ∆u n h + 2∇ • (ν C (C n-1 h )D(u n h )) -u n-1 h • ∇u n h - 1 2 div (u n-1 h )u n h -∇p n h )(x) • v(x) dx - 1 2 en∈εκn en [(ν 0 ∇u n h + 2ν C (C n-1 h )D(u n h ) -p n h I)(σ)] en n • v(σ)dσ , (5.10) and ⟨R c , r⟩ = ⟨R τ c , r⟩ + ⟨R h c , r⟩ (5.11) 
where

⟨R τ c (t), r⟩ = t n -t τ n κn∈T nh α κn ∇(C n h -C n-1 h )(x) • ∇r(x) dx +r 0 κn (C n h -C n-1 h )(x)r(x) dx
(5.12)

and

⟨R h c (t), r⟩ = κn∈T nh κn (g n - 1 τ n (C n h -C n-1 h ) - 1 2 div (u n h ) C n h +α∆C n h -u n h • ∇C n h -r 0 C n h )r(x) dx - 1 2 en∈εκn α en [∇C n h (σ)] en • n r(σ)dσ .
(5.13)

Moreover, if (u h , p h , C h ) is solution of problem (Eds1), then it holds that ⟨R h u , v⟩ = ⟨R h u , v -v h ⟩ for all v h ∈ X nh (5.14) 
and ⟨R h c , r⟩ = ⟨R h c , r -r h ⟩ for all r h ∈ Y nh .

(5.15) Definition 5.5. For each κ n ∈ T nh , we introduce the following indicators:

(η τ u,n,κn ) 2 = τ n ∥ u n h -u n-1 h ∥ 2 H 1 (κn) , (5.16 
)

(η τ c,n,κn ) 2 = τ n ∥ C n h -C n-1 h ∥ 2 H 1 (κn) , (5.17) 
(η h u,n,κn ) 2 = h 2 κn ∥ f n (C n-1 h ) - 1 τ n (u n h -u n-1 h ) + ν 0 ∆u n h + ∇ • (2ν C (C n-1 h )D(u n h )) -u n-1 h • ∇u n h - 1 2 div (u n-1 h )u n h -∇p n h )(x) ∥ 2 0,κn + 1 2 en∈εκn h en ∥ [(ν 0 ∇u n h + 2ν C (C n-1 h )D(u n h ) -p n h I)(σ)] en n ∥ 2 0,en + ∥ div u n h ∥ 2 0,κn , (5.18) 
(η h c,n,κn ) 2 = h 2 κn ∥ g n - 1 τ n (C n h -C n-1 h ) + α∆C n h -u n h • ∇C n h - 1 2 div (u n h )C n h -r 0 C n h ∥ 2 0,κn + 1 2 en∈εκn h en ∥ [α∇C n h (σ)] en • n ∥ 2 0,en .
(5.19) These indicators are easy to compute since they only depend on the discrete solution and they involve polynomials.

Lemma 5.6. There exist constants c ru and c rc independent of the discretization parameters such that the following estimates hold for

1 ≤ n ≤ N , (1) For all v ∈ X, let v h = C nh v, we have |⟨R h u , v -v h ⟩| ≤ c ru κn∈T nh (η h u,n,κn ) 2 1/2 ∥ v ∥ 1,Ω .
(5.20)

(2) For all r ∈ Y, let r h = C nh r, we have

|⟨R h c , r -r h ⟩| ≤ c rc κn∈T nh (η h c,n,κn ) 2 1/2 ∥ r ∥ 1,Ω . (5.21) 
In Table 2, we can also see the value of the efficiency index for different values of space-time unknowns STU but for the uniform mesh. We can notice that the efficiency index varies around 5.

Proof. To derive inequality (5.20), we use Formula (5.10) applied to (v-C nh v) with the Cauchy-Schwarz inequality on each κ n and each e n , then relations (5.4) and the discrete Cauchy-Schwarz inequality, together with definition (5.18). In order to prove inequality (5.21), we follow the same steps using (5.13) applied to (r -C nh r) and definition (5.19). □

5.2.

Upper bounds of the error. In this section, we establish the a posteriori error estimates where we bound the error between the exact solution (u, p, C) of problem (1.1) and the numerical solution (u h , p h , C h ) of problem (Eds1) using the indicators given in Definition 5.5. For this, several steps are needed. First, Theorem 5.7 establishes an upper bound of the concentration error in the energy norm. Then, in order to obtain an upper bound of the velocity error in the energy norm, we need to introduce an auxiliary time semi-discrete problem and we perform intermediary estimations given by Theorems 5.10 and Corollary 5.17. The resulting upper bound for the velocity error is given in Corollary 5.18. Next, combining the results on the concentration and velocity errors lead to Theorem 5.19, which provides a reliable a posteriori error estimate for the total error; this requires mainly the application of Gronwall's Lemma 2.5. Moreover, additional bounds are dealt with respectively in Theorem 5.20 and Theorem 5.21; they are needed to obtain the efficiency of the estimates which is proven in Subsection 5.3.

First, we establish the upper bound on the concentration error, that depends on the velocity error.

Theorem 5.7. Let u and C be the velocity and concentration solutions of problem (1.1). Supposing that

u ∈ L ∞ (0, T ; L 3 (Ω) 2 ), C ∈ L ∞ (0, T ; L 3 (Ω)) and ∇C ∈ L ∞ (0, T ; L 2 (Ω) 2
), the following a posteriori error estimate holds between C and the solution C h associated to

(C n h ) 0≤n≤N , solution of problem (Eds1): for 1 ≤ m ≤ N , ∥ C(t m ) -C h (t m ) ∥ 2 L 2 (Ω) +α tm 0 ∥ C(s) -C h (s) ∥ 2 Y ds + 2r 0 tm 0 ∥ C(s) -C h (s) ∥ 2 L 2 (Ω) ds ≤ c m n=1 ∥ g -g n ∥ 2 L 2 (tn-1,tn;Y ′ ) + ∥ C 0 -C 0 h ∥ 2 L 2 (Ω) + ∥ u -u h ∥ 2 L 2 (0,tm;X) + m n=1 κn∈τ nh (η τ c,n,κn ) 2 + (η τ u,n,κn ) 2 + τ n (η h c,n,κn ) 2 , (5.22)
where c is a constant independent of the time and mesh steps.

Proof. Let t ∈]t n-1 , t n ]. We first insert (u(t) • ∇C n h , r
) in the second equality of (5.9), take r = C -C h , use (5.11) and (5.15) and use the incompressibility relation div u = 0 to get the equality, valid for any r h ∈ Y nh :

1 2 d dt ∥ r(t) ∥ 2 L 2 (Ω) +α ∥ r(t) ∥ 2 Y +r 0 ∥ r(t) ∥ 2 L 2 (Ω) = (g(t) -g n , r(t)) + ⟨R τ c (t), r(t)⟩ + ⟨R h c (t), r(t) -r h (t)⟩ -(u(t) • ∇(C(t) -C n h ), r(t)) + ((u n h -u(t)) • ∇C n h ), r(t)) + 1 2 (div (u n h -u(t))C n h , r(t)).
(5.23)

We start by bounding the term (g(t) -g n , r(t)), by using the relation ab ≤ 1 α a 2 + α 4 b 2 ; this leads to:

(g(t) -g n , r(t)) ≤ ∥ g(t) -g n ∥ Y ′ ∥ r(t) ∥ Y ≤ 1 α ∥ g(t) -g n ∥ 2 Y ′ + α 4 ∥ r(t) ∥ 2 Y .
Let us now bound the last three terms in (5.23). We first insert C h (t) and C(t), use Proposition 4.2 and get

T a := ((u n h -u(t)) • ∇C n h , r(t)) -(u(t) • ∇(C(t) -C n h ), r(t)) + 1 2 (div (u n h -u(t))C n h , r(t)) = ((u n h -u(t)) • ∇(C n h -C h (t)), r(t)) + (u(t) • ∇(C n h -C(t)), r(t)) + 1 2 (div (u n h -u(t))(C n h -C h (t)), r(t)) +((u n h -u(t)) • ∇C(t), r(t)) + 1 2 (div (u n h -u(t)) C(t), r(t))
. By integrating by parts the third and fifth terms in the right-hand side of the previous equality, we get

T a = (u(t) • ∇(C n h -C(t)), r) + 1 2 ((u n h -u(t)) • ∇(C n h -C h (t)), r(t)) + 1 2 ((u n h -u(t)) • ∇C(t), r(t)) - 1 2 ((u n h -u(t)) • ∇r(t), (C n h -C h (t))) - 1 2 ((u n h -u(t)) • ∇r(t), C(t)) =: T 1 + T 2 + T 3 + T 4 + T 5 .

Now we will bound the terms

T i , i = 1, . . . , 5. We insert C h (t), recall that r = (C -C h ) and use the relation (u(t) • ∇r, r) = 0 to obtain T 1 = (u(t) • ∇(C n h -C(t)), r(t)) = (u(t) • ∇(C n h -C h (t)), r(t)). Let u ∈ L ∞ (0, T, L 3 (Ω) 2 ). Using (5.6) with |t -t n | ≤ τ n , the L 2 -L 3 -L 6 generalized Cauchy-Schwarz inequality, Lemma 2.1 and the inequality ab ≤ ε 2 a 2 + 1 2ε b 2 we get for any ε 1 > 0 |T 1 | ≤ ∥ u ∥ L 3 (Ω) 2 ∥ C n h -C n-1 h ∥ Y ∥ r(t) ∥ L 6 (Ω) ≤ c 1 ∥ u ∥ 2 L ∞ (0,T ;L 3 (Ω) 2 ) ε 1 2 ∥ C n h -C n-1 h ∥ 2 Y + 1 2ε 1 ∥ r(t) ∥ 2 Y .
We consider the term T 2 , insert u h (t), use (5.6), the L 2 -L 4 -L 4 generalized Cauchy-Schwarz inequality

and ab ≤ 2a 2 + 1 8 b 2 with b = √ 2 ∥ C n h -C n-1 h ∥ Y to get |T 2 | = 1 2 ((u n h -u h (t)) • ∇(C n h -C h (t)), r(t)) + ((u h (t) -u(t)) • ∇(C n h -C h ), r(t)) ≤ 1 2 ∥ r(t) ∥ L 4 (Ω) ∥ C n h -C n-1 h ∥ Y ∥ u n h -u h (t) ∥ L 4 (Ω) 2 + ∥ u h (t) -u(t) ∥ L 4 (Ω) 2 ≤ 1 2 ∥ r(t) ∥ 2 L 4 (Ω) ∥ u n h -u h (t) ∥ 2 L 4 (Ω) 2 + ∥ r(t) ∥ 2 L 4 (Ω) ∥ u h (t) -u(t) ∥ 2 L 4 (Ω) 2 + 1 4 ∥ C n h -C n-1 h ∥ 2 Y .
By using Lemma 2.2, the fact that the exact and numerical velocities and concentrations are bounded in L ∞ (0, T ; L 2 (Ω)) (cf. Theorem 3.2 and Theorem 4.3), and relation (5.5), we get for any ε 2 > 0 and ε 3 > 0

|T 2 | ≤ c 2 ∥ r(t) ∥ Y ∥ u n h -u h (t) ∥ X + ∥ r(t) ∥ Y ∥ u h (t) -u(t) ∥ X + 1 4 ∥ C n h -C n-1 h ∥ 2 Y ≤ 1 2ε 2 + 1 2ε 3 ∥ r(t) ∥ 2 Y +c 2 2 ε 2 2 ∥ u n h -u n-1 h ∥ 2 Y + ε 3 2 ∥ u h (t) -u(t) ∥ 2 Y + 1 4 ∥ C n h -C n-1 h ∥ 2 Y .
In order to bound T 3 , we insert u h (t) use relation (5.5) and the fact that ∇C ∈ L ∞ (0, T ; L 2 (Ω) 2 ). We also use Lemma 2.1 and we get for any ε 4 > 0 and ε 5 > 0

|T 3 | = 1 2 (u n h -u h (t)) • ∇C(t), r + (u h (t) -u(t)) • ∇C(t), r(t) ≤ 1 2 ∥ u n h -u n-1 h ∥ L 6 (Ω) 2 + ∥ u h (t) -u(t) ∥ L 6 (Ω) 2 ∥ ∇C(t) ∥ L 2 (Ω) ∥ r(t) ∥ L 3 (Ω) ≤ c 3 ε 4 2 ∥ u n h -u n-1 h ∥ 2 X + ε 5 2 ∥ u(t) -u h (t) ∥ 2 X + 1 2ε 4 + 1 2ε 5 ∥ r(t) ∥ 2 Y .
The term T 4 is treated by following the same steps as in the bound for T 2 and we get for any ε 6 > 0 and ε 7 > 0

|T 4 | = 1 2 ((u n h -u(t)) • ∇r(t), (C n h -C h (t)) ≤ 1 2ε 6 + 1 2ε 7 ∥ r(t) ∥ 2 Y +c 4 ε 6 2 ∥ u n h -u n-1 h ∥ 2 X + ε 7 2 ∥ u h (t) -u(t) ∥ 2 X + 1 4 ∥ C n h -C n-1 h ∥ 2 Y .
The term T 5 can be treated like T 3 and we get for any ε 8 > 0 and ε 9 > 0 by using the fact that C ∈ L ∞ (0, T ; L 3 (Ω))

|T 5 | ≤ c 5 ε 8 2 ∥ u n h -u n-1 h ∥ 2 X + ε 9 2 ∥ u(t) -u h (t) ∥ 2 X + 1 2ε 8 + 1 2ε 9 ∥ r(t) ∥ 2 Y .
To end the proof, we need to bound the third and fourth terms of (5.23). According to (5.12), we have

⟨R τ c (t), r⟩ = t n -t τ n α Ω ∇(C n h -C n-1 h )(x) • ∇r(x) dx + r 0 Ω (C n h -C n-1 h )(x)r(x) dx . (5.24)
Then we easily obtain for any ε 10 > 0

|⟨R τ c (t), r(t)⟩| ≤ c 6 ε 10 2 ∥ C n h -C n-1 h ∥ 2 Y + 1 2ε 10 ∥ r(t) ∥ 2 Y .
The final term that we need to bound is ⟨R h c , r -r h ⟩. Choosing r h = C nh r, and applying (5.21) we get for any ε 11 > 0:

|⟨R h c , r -r h ⟩| ≤ c 7 ε 11 2 κn∈T nh (η h c,n,κn ) 2 + 1 2ε 11 ∥ r(t) ∥ 2 Y . (5.25) 
Finally, by regrouping all the above bounds, plugging them into (5.23) and choosing

ε i , i = {1, • • • , 11} such that 1 2 11 i=1 1 ε i equals to α 4 , we get d dt ∥ r(t) ∥ 2 L 2 (Ω) +α ∥ r(t) ∥ 2 Y +2r 0 ∥ r(t) ∥ 2 L 2 (Ω) ≤ c ∥ g(t) -g n ∥ 2 Y ′ + ∥ u(t) -u h (t) ∥ 2 X + ∥ C n h -C n-1 h ∥ 2 Y + ∥ u n h -u n-1 h ∥ 2 X + κn∈T nh (η h c,n,κn ) 2 .
(5.26)

We integrate (5.26) between t n-1 and t n , use Definition 5.5 and then we sum over n = 1, . . . m to obtain

∥ r(t m ) ∥ 2 L 2 (Ω) +α tm 0 ∥ r(s) ∥ 2 Y ds + 2r 0 tm 0 ∥ r(s) ∥ 2 L 2 (Ω) ds ≤ c ∥ g -g n ∥ 2 L 2 (0,tm;Y ′ ) + ∥ C 0 -C 0 h ∥ 2 L 2 (Ω) + ∥ u -u h ∥ 2 L 2 (0,tm;X) + m n=1 κn∈τ nh (η τ c,n,κn ) 2 + (η τ u,n,κn ) 2 + τ n (η h c,n,κn ) 2 .
(5.27)

Hence we get the desired result. □

To prove the upper bound of the velocity error, we refer to the idea of Bernardi and Verfürth in [START_REF] Bernardi | A poesteriori error analysis of the fully discretized time dependent Stokes equations[END_REF] or Bernardi and Sayah in [START_REF] Bernardi | A posteriori error analysis of the time dependent Stokes equations with mixed boundary conditions[END_REF] in order to uncouple time and space errors. In order to achieve our objective, we introduce an auxiliary problem denoted by (P aux ) and we first compute an upper bound of the error between the time-affine function u τ constructed from its solution by a formula like (4.1) and the exact solution u of Problem (1.1) and then an upper bound of the error between u τ and the discrete solution u h . Finally, we combine these two error bounds to obtain the desired a posteriori error estimation.

We introduce the following time semi-discrete problem and prove an energy estimate on its solution.

(P aux )                Let C n-1 h
be the concentration component of the finite element solution of (Eds1), then knowing

u n-1 , find(u n , p n ) ∈ X × M such that 1 τ n (u n -u n-1 , v) + ν 0 (∇u n , ∇v) + (2ν C (C n-1 h )D(u n ), D(v)) +(u n-1 • ∇u n , v) -(div v, p n ) = (f n (C n-1 h ), v) ∀v ∈ X, (div u n , q) = 0 ∀q ∈ M, with u 0 = u 0 and f n (C n-1 h ) = f n 0 + f 1 (C n-1 h ) with f n 0 = f 0 (t n ).
Proposition 5.8. Under assumption 2.4, for each iteration n, the solution

(u n , p n ) ∈ X × M of problem (P aux ) satisfies for any m = 1, • • • , N : 1 2 ∥ u m ∥ 2 L 2 (Ω) d + ν 0 2 m n=0 τ n |u n | 2 H 1 0 (Ω) d ≤ Cd m n=0 τ n ∥ g n ∥ 2 L 2 (Ω) + m n=0 τ n ∥ f n 0 ∥ 2 L 2 (Ω) + ∥ C 0 h ∥ 2 L 2 (Ω) + ∥ u 0 ∥ 2 L 2 (Ω) d , (5.28) 
where Cd is a positive constant independent of m.

Proof. The proof is obtained by energy estimates and by the concentration bound of Theorem 4.3. □

In order to derive an estimate between the solution of this auxiliary problem and the exact solution, we first define the corresponding residual.

Lemma 5.9. By combining (1.1) and (P aux ), we get

(u -u τ )(0) = 0
and, for 1 ≤ n ≤ N , for t in ]t n-1 , t n ], for any v in X and q in M we have

             ( ∂ ∂t (u -u τ )(t), v) + ν 0 (∇(u(t) -u τ (t)), ∇v) + (2ν C (C(t))D(u(t)) -2ν C (π l,τ C h )D(u τ (t)), D(v)) +(u(t) • ∇u(t) -u τ (t) • ∇u τ (t), v) -(div v(t), p(t) -π τ p τ (t)) = (f (t, C(t)) -f n (C n-1 h ), v) + ⟨R τ,2 u (t), v⟩, (div (u -u τ ), q) = 0, (5.29) where R τ,2
u is defined by

⟨R τ,2 u (t), v⟩ = t n -t τ n Ω ν 0 ∇(u n -u n-1 )(x) : ∇v(x) + 2ν C (C n-1 h )D(u n -u n-1 )(x) : D(v(x)) dx + t n -t τ n Ω (u n-1 • ∇(u n -u n-1 ))(x) • v(x) dx - t -t n-1 τ n Ω ((u n -u n-1 ) • ∇u τ (t))(x) • v(x) dx.
(5.30)

Theorem 5.10. Let u be the velocity of problem (1.1) and u τ the velocity associated to (u n ) 0≤n≤N solution of the auxiliary problem (P aux ). Suppose that ∇u ∈ L ∞ (0, T ; L 4 (Ω) 2×2 ) and u ∈ L ∞ (0, T ; L 3 (Ω) 2 ).

Then, the following a posteriori error estimate holds

∥ u(t) -u τ (t) ∥ 2 L 2 (Ω) 2 +ν 0 t 0 ∥ u(τ ) -u τ (τ ) ∥ 2 X dτ ≤ c ∥ f 0 -π τ f 0 ∥ 2 L 2 (0,t;L 2 (Ω) 2 ) + ∥ C -π l,τ C h ∥ 2 L 2 (0,t;L 4 (Ω)) + ∥ π τ u -π l,τ u ∥ 2 L 2 (0,t;X) . (5.31)
where c is a positive constant independent of the time and mesh steps.

Proof. We first insert (ν C (C n-1 h )D(u(t)), D(v)) and (u τ (t) • ∇u(t), v)
in the first equality of (5.29) where t ∈]t n-1 , t n ], we get

( ∂ ∂t (u(t) -u τ (t)), v) + (2(ν C (C(t)) -ν C (C n-1 h ))D(u(t)), D(v)) + 2(ν C (C n-1 h )D(u(t) -u τ (t)), D(v)) +(ν 0 ∇(u(t) -u τ (t)), ∇v) + ((u(t) -u τ (t)) • ∇u(t), v) -(u τ (t) • ∇(u τ (t) -u(t)), v) -(div v(t), p(t) -π τ p τ (t)) = (f (t, C(t)) -f n (C n-1 h ), v) + ⟨R τ,2 u (t), v⟩. Let v = u -u τ . By using that div u τ = 0 and (u τ (t) • ∇v(t), v(t)) = 0, we get 1 2 d dt ∥ v(t) ∥ 2 L 2 (Ω) +ν 0 ∥ v ∥ 2 X +2(ν C (C n-1 h )D(v(t)), D(v(t))) = (f (t, C(t)) -f n (C n-1 h ), v(t)) + ⟨R τ,2 u (t), v(t)⟩ -(v(t) • ∇u(t), v(t)) + (2(ν C (C n-1 h ) -ν C (C(t)))D(u(t)), D(v(t))).
(5.32)

We need to bound the terms in the right-hand side of (5.32). Let us start with the third one. Using the L 2 -L 4 -L 4 generalized Cauchy-Schwarz inequality as well as (2.3) we obtain

|(v(t) • ∇u(t), v(t))| ≤ ∥ u(t) ∥ X ∥ v(t) ∥ 2 L 4 (Ω) 2 ≤ √ 2 ∥ u(t) ∥ X ∥ v(t) ∥ L 2 (Ω) 2 ∥ v(t) ∥ X ≤ ε 1 ∥ u(t) ∥ 2 X ∥ v(t) ∥ 2 L 2 (Ω) 2 + 1 2ε 1 ∥ v(t) ∥ 2 X .
(5.33)

In the same way, we bound the first term in the right-hand side of (5.32) as follows:

|(f (t, C(t)) -f n (C n-1 h ), v(t))| ≤ ∥ f (t, C(t)) -f n (C n-1 h ) ∥ L 2 (Ω) 2 ∥ v(t) ∥ L 2 (Ω) 2 ≤ (S 2 0 ) 2 ε 2 2 ∥ f (t, C(t)) -f n (C n-1 h ) ∥ 2 L 2 (Ω) 2 + 1 2ε 2 ∥ v(t) ∥ 2 X .
Using the definition of the function f and the fact that f 1 is c * f1 -lipschitz, we get

|(f (t, C(t)) -f n (C n-1 h ), v)| ≤ (S 2 0 ) 2 ε 2 ∥ f 0 (t) -f n 0 ∥ 2 L 2 (Ω) 2 +c * f1 ∥ C(t) -C n-1 h ∥ 2 L 2 (Ω) + 1 2ε 2 ∥ v(t) ∥ 2 X .
(5.34) For the fourth term in the right-hand side of (5.32), we use Assumption 2.4 and the assumption ∇u ∈ L ∞ (0, T ; L 4 (Ω) 2×2 ) to get

2(ν C (C n-1 h ) -ν C (C(t))D(u(t)), D(v)) ≤ 2 ∥ ν C (C n-1 h ) -ν C (C(t)) ∥ L 4 (Ω) ∥ D(u(t)) ∥ L 4 (Ω) 2×2 ∥ D(v(t)) ∥ L 2 (Ω) 2×2 ≤ c 0 ε 3 2 ∥ C n-1 h -C(t) ∥ 2 L 4 (Ω) + 1 2ε 3 ∥ v(t) ∥ 2 X .
(5.35) The second term in the right-hand side of (5.32) is given by (5.30) and denoted by T a =: T 1 + T 2 + T 3 . We will bound separately T 1 , T 2 and T 3 . T 1 can be bounded as

|T 1 | = t n -t τ n Ω ν 0 ∇(u n -u n-1 )(x) : ∇v(x) + 2ν C (C n-1 h )D(u n -u n-1 )(x) : D(v(x)) dx ≤ (ν 0 + 2ν 2 ) ∥ u n -u n-1 ∥ X ∥ v(t) ∥ X ≤ (ν 0 + 2ν 2 ) 2 ε 4 2 ∥ u n -u n-1 ∥ 2 X + 1 2ε 4 ∥ v(t) ∥ 2 X .
T 2 can be treated by inserting u(t) as follow:

|T 2 | = t n -t τ n Ω (u n-1 • ∇(u n -u n-1 ))(x) • v(x) dx ≤ ∥ u n-1 -u(t) ∥ L 4 (Ω) 2 ∥ v(t) ∥ L 4 (Ω) 2 ∥ u n -u n-1 ∥ X + ∥ u(t) ∥ L 3 (Ω) 2 ∥ v(t) ∥ L 6 (Ω) 2 ∥ u n -u n-1 ∥ X .
Using the fact that u ∈ L ∞ (0, T ; L 3 (Ω) 2 ) we have the relation

∥ u(t) ∥ L 3 (Ω) 2 ∥ v(t) ∥ L 6 (Ω) 2 ∥ u n -u n-1 ∥ X ≤ c 1 ε 5 2 ∥ u n -u n-1 ∥ 2 X + 1 2ε 5 ∥ v(t) ∥ 2 X .
We insert u τ and use its definition given by a formula similar to (4.1); using the fact that v = uu τ , we get

∥ u n-1 -u(t) ∥ L 4 (Ω) 2 ∥ v ∥ L 4 (Ω) 2 ∥ u n -u n-1 ∥ X ≤ c ′ 2 (∥ u n-1 -u n ∥ L 4 (Ω) 2 ∥ v ∥ L 4 (Ω) 2 ∥ u n -u n-1 ∥ X )+ ∥ v ∥ 2 L 4 (Ω) 2 ∥ u n -u n-1 ∥ X ≤ c 2 ∥ u n-1 -u n ∥ 2 L 4 (Ω) 2 ∥ v ∥ 2 L 4 (Ω) 2 + ∥ u n -u n-1 ∥ 2 X + ∥ v ∥ 2 L 4 (Ω) 2 ∥ u n -u n-1 ∥ X ,
and by using relation (2.3) both on v and on (u nu n-1 ) and the fact that the exact and semi-discrete velocities are bounded in L 2 (Ω) 2 (see Theorem 3.2 and Proposition 5.8), we get

∥ u n-1 -u(t) ∥ L 4 (Ω) 2 ∥ v ∥ L 4 (Ω) 2 ∥ u n -u n-1 ∥ X ≤ c 3 (1 + ε 6 2 ) ∥ u n -u n-1 ∥ 2 X + 1 2ε 6 ∥ v ∥ 2 X .
Thus, T 2 is bounded as follows:

|T 2 | ≤ c 4 (1 + ε 5 2 + ε 6 2 ) ∥ u n -u n-1 ∥ 2 X +( 1 2ε 5 + 1 2ε 6 ) ∥ v ∥ 2 X .
Let us now bound the term T 3 . By using u τ = uv and remarking that ((u nu n-1 ) • ∇v, v) = 0 we get by remarking that ∇u ∈ L ∞ (0, T ; L 4 (Ω) 2×2 ):

|T 3 | = t -t n-1 τ n Ω (u n -u n-1 ) • ∇u τ • v (x) dx = t -t n-1 τ n Ω (u n -u n-1 ) • ∇u • v (x) dx ≤ ∥ ∇u ∥ L 4 (Ω) 2×2 ∥ v ∥ L 2 (Ω) ∥ u n -u n-1 ∥ L 4 (Ω) 2 ≤ c 5 ε 7 2 ∥ u n -u n-1 ∥ 2 X + 1 2ε 7 ∥ v ∥ 2 X .
Thereby, we get 

|⟨R τ,2 u (t), v(t)⟩| ≤ c 6 (1 + ε 4 2 + ε 5 2 + ε 6 2 + ε 7 2 ) ∥ u n -u n-1 ∥ 2 X +( 1 2ε 4 + 1 2ε 5 + 1 2ε 6 + 1 2ε 7 ) ∥ v ∥ 2 X . (5.
1 2ε i ∥ v ∥ 2 X is smaller than ν 0 2 ∥ v ∥ 2
X and we integrate between 0 and t to obtain:

∥ v(t) ∥ 2 L 2 (Ω) 2 +ν 0 t 0 ∥ v(s) ∥ 2 X ds ≤ c 7 ∥ f 0 -π τ f 0 ∥ 2 L 2 (0,t;L 2 (Ω) 2 ) + ∥ C -π l,τ C h ∥ 2 L 2 (0,t;L 4 (Ω)) + ∥ π τ u -π l,τ u ∥ 2 L 2 (0,t;X) +c ′ 7 t 0 ∥ u(τ ) ∥ 2 X ∥ v(τ ) ∥ 2 L 2 (Ω) 2 dτ.
We apply the Gronwall Lemma 2.5 with the following functions:

y(t) =∥ v(t) ∥ 2 L 2 (Ω) 2 +ν 0 t 0 ∥ v(s) ∥ 2 X ds, f (t) = c 7 ∥ f 0 -π τ f 0 ∥ 2 L 2 (0,t;L 2 (Ω) 2 ) + ∥ C -π l,τ C h ∥ 2 L 2 (0,t;L 4 (Ω)) + ∥ π τ u -π l,τ u ∥ 2 L 2 (0,t;X) , g(t) = 1, k(t) = c ′ 7 ∥ u(t) ∥ 2
X , and we get

∥ u(t) -u τ (t) ∥ 2 L 2 (Ω) 2 +ν 0 t 0 ∥ u(s) -u τ (s) ∥ 2 X ds ≤ c 7 ∥ f 0 -π τ f 0 ∥ 2 L 2 (0,t;L 2 (Ω) 2 ) + ∥ C -π l,τ C h ∥ 2 L 2 (0,t;L 4 (Ω)) + ∥ π τ u -π l,τ u ∥ 2 L 2 (0,t;X) +c ′ 7 t 0 f (τ ) ∥ u(τ ) ∥ 2 X × exp c ′ 7 t 0 ∥ u(s) ∥ 2 X ds dτ. Since τ ≤ t, we have f (τ ) ≤ f (t), so ∥ u(t) -u τ (t) ∥ 2 L 2 (Ω) 2 +ν 0 t 0 ∥ u(s) -u τ (s) ∥ 2 X ds ≤ c 8 ∥ f 0 -π τ f 0 ∥ 2 L 2 (0,t;L 2 (Ω) 2 ) + ∥ C -π l,τ C h ∥ 2 L 2 (0,t;L 4 (Ω)) + ∥ π τ u -π l,τ u ∥ 2 L 2 (0,t;X) +c 9 f (t) t 0 ∥ u(τ ) ∥ 2 X × exp t 0 ∥ u(s) ∥ 2 X ds dτ.
Based on (3.2), integrals of the type t 0 ∥ u(s) ∥ 2 X ds are bounded by constants and we get (5.31). □

After obtaining an a posteriori estimate between the exact solution u and the solution u τ of problem (P aux ), we establish an estimate between u τ and the discrete solution u h . For this, we shall prove the intermediary Lemmas 5.11, 5.13 and 5.14. They lead to Theorem 5.15 which, with Lemma 5.16, prove Corollary 5.17, the final estimate between u τ and u h .

Lemma 5.11. For all n ∈ {1, . . . , N }, the solutions of Problem (P aux ) and (Eds1) verify for all v ∈ X and v h ∈ X nh :

1 τ n ((u n -u n-1 ) -(u n h -u n-1 h )), v) + ν 0 (∇(u n -u n h ), ∇v) + 2(ν C (C n-1 h )D(u n -u n h ), Dv) +(u n-1 • ∇u n -u n-1 h • ∇u n h , v) - 1 2 (div (u n-1 h )u n h , v) -(div v, p n -p n h ) = (R h u , v -v h ), (q, div(u n -u n h )) = -(q, div(u n h )), (5.37) 
where R h u defined in (5.10) also verifies the following equality

⟨R h u (t), v -v h ⟩ = (f n (C n-1 h ) - 1 τ n (u n h -u n-1 h ), v -v h ) -(ν 0 ∇u n h , ∇(v -v h )) -2(ν C (C n-1 h )D(u n h ), D(v -v h )) -(u n-1 h • ∇u n h , v -v h ) - 1 2 (div (u n-1 h ) u n h , v -v h ) + (div(v -v h ), p n h ).
(5.38)

Proof. We start by subtracting the first equation of problem (Eds1) from the first equation of problem (P aux ) and we obtain

⟨f n (C n-1 h ), v⟩ -⟨f n (C n-1 h ), v h ⟩ = ⟨f n (C n-1 h ), v⟩ -⟨f n (C n-1 h ), v h -v + v⟩ = 1 τ n ((u n -u n-1 ) -(u n h -u n-1 h )), v) -(div v, p n -p n h ) + (ν 0 ∇(u n -u n h ), ∇v) +2(ν C (C n-1 h )D(u n -u n h ), Dv) + (u n-1 • ∇u n -u n-1 h • ∇u n h , v) - 1 2 (div (u n-1 h )u n h , v) + ( 1 τ n (u n h -u n-1 h , v -v h ) + (ν 0 ∇u n h , ∇(v -v h )) +2(ν C (C n-1 h )D(u n h ), D(v -v h )) + (u n-1 h • ∇u n h , v -v h ) + 1 2 (div (u n-1 h )u n h , v -v h ) -(div(v -v h ), p n h ).
(5.39) Using (5.38) and (5.39), we get the first equality in (5.37). For the second equality of (5.37), we just need to insert u n h in the last equation of (P aux ). □

Before introducing the second lemma, we will introduce the Stokes operator Π defined from X into itself as follows: For each v in X, Πv denote the velocity w of the unique solution (w, r) in X × M of the following Stokes problem: ∀ t ∈ X, (∇w, ∇t) -(div t, r) = 0, ∀ q ∈ M, (div w, q) = (div v, q).

(5.40)

The next lemma states some properties of the operator Π ( [START_REF] Bernardi | A posteriori error analysis of the time dependent Stokes equations with mixed boundary conditions[END_REF], [START_REF] Bernardi | A poesteriori error analysis of the fully discretized time dependent Stokes equations[END_REF] or [START_REF] Nassreddine | A posteriori error estimates for the Large Eddy Simulation applied to stationary Navier-Stokes equations[END_REF]).

Lemma 5.12. The operator Π has the following properties:

(1) ∀ v ∈ V, Πv = 0.

(2) ∀ v ∈ X, we have the following estimates:

∥ v -Πv ∥ H 1 0 (Ω) 2 ≤∥ v ∥ X and ∥ Πv ∥ X ≤ 1 β * ∥ div v ∥ L 2 (Ω) .
(3) ∀ v h ∈ V nh and 1 ≤ n ≤ N :

∥ Πv h ∥ L 2 (Ω) 2 ≤ ch 1/2 n ∥ div v h ∥ L 2 (Ω) .
Now, we state the second and third lemmas that help us prove an a posteriori error estimate between the solution u τ of problem (P aux ) and the solution u h of problem (Eds1).

Lemma 5.13. Let u m and u m h be respectively the solutions of (P aux ) and (Eds1). We denote by e n = u nu n h and v = e n -Πe n . We have the following equality:

1 2 ∥ e n ∥ 2 L 2 (Ω) 2 - 1 2 ∥ e n-1 ∥ 2 L 2 (Ω) 2 + 1 2 ∥ e n -e n-1 ∥ 2 L 2 (Ω) 2 +ν 0 τ n ∥ e n ∥ 2 X +2τ n (ν C (π l,τ C h )D(e n ), D(e n )) = (e n -e n-1 , Πe n ) + ν 0 τ n (∇e n , ∇(Πe n )) + 2τ n (ν C (π l,τ C h )D(e n ), D(Πe n )) + τ n ⟨R h u , v -v h ⟩ - τ n 2 (e n-1 • ∇u n , v) + τ n 2 (e n-1 • ∇v, u n ) -τ n (u n-1 h • ∇Πe n , e n ) - τ n 2 (div (u n-1 h )Πe n , e n ).
(5.41)

Proof. First of all, we denote for all n ∈ {1, . . . , N }, e n = u nu n h . We have

1 2 ∥ e n ∥ 2 L 2 (Ω) 2 - 1 2 ∥ e n-1 ∥ 2 L 2 (Ω) 2 + 1 2 ∥ e n -e n-1 ∥ 2 L 2 (Ω) 2 +ν 0 τ n ∥ e n ∥ 2 X +2τ n (ν C (π l,τ C h )D(e n ), D(e n )) = (e n -e n-1 , e n ) + ν 0 τ n (∇e n , ∇e n ) + 2τ n (ν C (π l,τ C h )D(e n ), D(e n )).
(5.42) Let v = e n -Πe n in the first equality in Lemma 5.11. Thereby, knowing that div (e n -Πe n ) = 0, the pressure term vanishes (this is the reason for the introduction of Πe n ) and we get for all v h ∈ X nh

(e n -e n-1 , e n ) + ν 0 τ n (∇e n , ∇e n ) + 2τ n (ν C (π l,τ C h )D(e n ), D(e n )) = (e n -e n-1 , Πe n ) + ν 0 τ n (∇e n , ∇(Πe n )) + 2τ n (ν C (π l,τ C h )D(e n ), D(Πe n )) +τ n ⟨R h u , v -v h ⟩ -τ n (u n-1 • ∇u n -u n-1 h • ∇u n h , v) + 1 2 τ n (div (u n-1 h )u n h , v).
(5.43)

In the last two terms of (5.43), we insert

τ n (u n-1 h • ∇u n , v), 1 2 τ n (div (u n-1 h
)u n , v) and we add the vanishing term -1 2 τ n (div (u n-1 )u n , v), to obtain :

-τ n (u n-1 • ∇u n -u n-1 h • ∇u n h , v) + τ n 2 (div (u n-1 h )u n h , v) = -τ n (e n-1 • ∇u n , v) -τ n (u n-1 h • ∇e n , v) - τ n 2 (div (u n-1 h )e n , v) - τ n 2 (div (e n-1 )u n , v). We insert τ n (u n-1 h • ∇Πe n , v) and τ n 2 (div (u n-1 h
)Πe n , v), then use that v = e n -Πe n and apply Proposition 4.2; we get

-τ n (u n-1 • ∇u n -u n-1 h • ∇u n h , v) + τ n 2 (div (u n-1 h )u n h , v) = -τ n (e n-1 • ∇u n , v) - τ n 2 (div (e n-1 )u n , v) -τ n (u n-1 h • ∇Πe n , e n ) - τ n 2 (div (u n-1 h )Πe n , e n ).
(5.44) By integrating by parts the second term in the right-hand side of (5.44), plugging it into the right-hand side of (5.43) and using (5.42), we get the desired result. □

Now we bound the very last line of (5.41).

Lemma 5.14. Let us suppose that h n ≤ c s τ n , ∀n ∈ {1, . . . , N }, where c s is a positive constant independent of n. Let also u m and u m h be respectively the solutions of (P aux ) and (Eds1). We denote by e n = u nu n h and v = e n -Πe n . We have the following bound:

| τ n 2 (e n-1 • ∇u n , v) + τ n 2 (e n-1 • ∇v, u n ) + τ n (u n-1 h • ∇Πe n , e n ) + τ n 2 (div (u n-1 h )Πe n , e n )| ≤ cτ n ∥ div u n h ∥ 2 L 2 (Ω) + ∥ div u n-1 h ∥ 2 L 2 (Ω) + ∥ u n-1 h ∥ 2 X + ∥ u n h ∥ 2 X + ∥ u n ∥ 2 X ∥ e n-1 ∥ 2 L 2 (Ω) 2 + ν 0 20 τ n ∥ e n ∥ 2 X + ν 0 25 τ n-1 ∥ e n-1 ∥ 2 X + 3 100 ∥ e n -e n-1 ∥ 2 L 2 (Ω) 2 ,
(5.45) where c is a positive constant independent of the time and mesh steps.

Proof. Let us denote:

A := τ n 2 (e n-1 • ∇u n , v) + τ n 2 (e n-1 • ∇v, u n ) =: A 1 + A 2 , B := τ n (u n-1 h • ∇Πe n , e n ) + τ n 2 (div (u n-1 h )Πe n , e n ) =: B 1 + B 2 .
By using the L 2 -L 4 -L 4 generalized Cauchy-Schwarz inequality, then inequality (2.3) on e n-1 , e n and Πe n , Lemma 5.12 and the fact that Πe n = -Πu n h , we have:

|A 1 | ≤ τ n 2 ∥ e n-1 ∥ L 4 (Ω) 2 ∥ u n ∥ X ∥ v ∥ L 4 (Ω) 2 ≤ c 5 τ n ∥ e n-1 ∥ 1/2 L 2 (Ω) 2 ∥ e n-1 ∥ 1/2 X ∥ u n ∥ X ∥ e n ∥ 1/2 L 2 (Ω) 2 ∥ e n ∥ 1/2 X + ∥ Πe n ∥ 1/2 L 2 (Ω) 2 ∥ Πe n ∥ 1/2 X ≤ c 5 τ n ∥ e n-1 ∥ 1/2 L 2 (Ω) 2 ∥ e n-1 ∥ 1/2 X ∥ u n ∥ X ∥ e n ∥ 1/2 L 2 (Ω) 2 ∥ e n ∥ 1/2 X + ∥ e n-1 ∥ 1/2 L 2 (Ω) 2 ∥ e n-1 ∥ 1/2 X ∥ u n ∥ X (h 1/2 n ∥ div u n h ∥ L 2 (Ω) ) 1/2 ∥ e n ∥ 1/2 X .
(5.46) We denote by A 1,1 and A 1,2 the terms in the right-hand side of (5.46). Then we have by taking into consideration that h n ≤ c s τ n :

A 1,1 ≤ c 5 τ n ∥ u n ∥ X ε 1 2 ∥ e n-1 ∥ L 2 (Ω) 2 ∥ e n-1 ∥ X + 1 2ε 1 ∥ e n ∥ L 2 (Ω) 2 ∥ e n ∥ X ≤ c 5 τ n ε 1 2 1 2ε 2 ∥ e n-1 ∥ 2 L 2 (Ω) 2 ∥ u n ∥ 2 X + ε 2 2 ∥ e n-1 ∥ 2 X +c 5 τ n 1 2ε 1 1 2ε 3 ∥ e n ∥ 2 L 2 (Ω) 2 ∥ u n ∥ 2 X + ε 3 2 ∥ e n ∥ 2 X .
and

A 1,2 ≤ c 5 τ n ε 4 2 h 1/2 n ∥ e n-1 ∥ L 2 (Ω) 2 ∥ e n-1 ∥ X ∥ u n ∥ 2 X + 1 2ε 4 ∥ div u n h ∥ L 2 (Ω) ∥ e n ∥ X ≤ c 5 τ n ε 4 2 ε 5 2 h n ∥ e n-1 ∥ 2 X ∥ u n ∥ 2 X + 1 2ε 5 ∥ e n-1 ∥ 2 L 2 (Ω) 2 ∥ u n ∥ 2 X +c 5 τ n 1 2ε 4 ∥ div u n h ∥ L 2 (Ω) ∥ e n ∥ X ≤ c 6 τ 2 n ε 4 ε 5 4 ∥ e n-1 ∥ 2 X ∥ u n ∥ 2 X +τ n ε 4 2ε 5 ∥ e n-1 ∥ 2 L 2 (Ω) 2 ∥ u n ∥ 2 X +c 6 τ n 1 2ε 4 1 2ε 6 ∥ div u n h ∥ 2 L 2 (Ω) + ε 6 2 ∥ e n ∥ 2 X .
Let us now bound

A 2 = τ n 2 (e n-1 • ∇e n , u n ) - τ n 2 (e n-1 • ∇Πe n , u n ) =: A 2,1 + A 2,2 .
We use the L 2 -L 4 -L 4 generalized Cauchy-Schwarz inequality, then (2.3) on u n and e n-1 to get

A 2,1 ≤ c 7 τ n ∥ e n-1 ∥ L 4 (Ω) 2 ∥ e n ∥ X ∥ u n ∥ L 4 (Ω) 2 ≤ c 8 τ n ε 7 ∥ e n ∥ 2 X +τ n ε 7 ∥ e n-1 ∥ L 2 (Ω) 2 ∥ e n-1 ∥ X ∥ u n ∥ L 2 (Ω) 2 ∥ u n ∥ X ≤ c 9 τ n ε 7 ∥ e n ∥ 2 X +τ n ε 7 ε 8 ∥ e n-1 ∥ 2 L 2 (Ω) 2 ∥ u n ∥ 2 X +τ n ε 7 ε 8 ∥ e n-1 ∥ 2 X ∥ u n ∥ 2 L 2 (Ω) 2 .
We use Lemma 5.12 then we follow the same steps as A 2,1 , to get

A 2,2 ≤ c 10 τ n ∥ e n-1 ∥ L 4 (Ω) 2 ∥ div u n h ∥ L 2 (Ω) ∥ u n ∥ L 4 (Ω) 2 ≤ c 11 τ n ε 9 ∥ div u n h ∥ 2 L 2 (Ω) +τ n ε 9 ∥ e n-1 ∥ L 2 (Ω) 2 ∥ e n-1 ∥ X ∥ u n ∥ L 2 (Ω) 2 ∥ u n ∥ X ≤ c 12 τ n ε 9 ∥ div u n h ∥ 2 L 2 (Ω) +τ n ε 9 ε 10 ∥ e n-1 ∥ 2 L 2 (Ω) 2 ∥ u n ∥ 2 X +τ n ε 9 ε 10 ∥ e n-1 ∥ 2 X ∥ u n ∥ 2 L 2 (Ω) 2 .
Finally, by gathering what precedes and using Proposition 5.8, we get:

|A| ≤ c 1 τ n ( 1 ε 4 ε 6 + 1 ε 9 ) ∥ div u n h ∥ 2 L 2 (Ω) +( ε 3 ε 1 + ε 6 ε 4 + 1 ε 7 ) ∥ e n ∥ 2 X + (ε 1 ε 2 + ε 4 ε 5 τ n ∥ u n ∥ 2 X +ε 7 ε 8 + ε 9 ε 10 ) ∥ e n-1 ∥ 2 X + 1 ε 1 ε 3 ∥ e n -e n-1 ∥ 2 L 2 (Ω) 2 ∥ u n ∥ 2 X + ( ε 1 ε 2 + 1 ε 1 ε 3 + ε 4 ε 5 + ε 7 ε 8 + ε 9 ε 10 ) ∥ u n ∥ 2 X ∥ e n-1 ∥ 2 L 2 (Ω) 2 .
(5.47) By using the relation

τ n ∥ u n ∥ 2 X ≤ N n=1 τ n ∥ u n ∥ 2
X and Proposition 5.8, we deduce that

τ n ∥ u n ∥ 2 X ≤ Ĉ, (5.48) 
where Ĉ is a given positive constant .

Thus, by choosing

ε 1 = 100c 1 Ĉ √ ν 0 , ε 2 = ν 0 100c 1 ε 1 σ τ , ε 3 = Ĉν 0 , ε 4 = 1, ε 5 = ν 0 100c 1 Ĉσ τ , ε 6 = ν 0 100c 1 , ε 7 = 100c 1 ν 0 , ε 8 = 1 ε 2 7
σ τ and ε 9 = ε 10 = ν 0 100c 1 σ τ , we obtain,

|A| ≤ 3ν 0 100 τ n ∥ e n ∥ 2 X + ν 0 25 τ n-1 ∥ e n-1 ∥ 2 X + 1 100 ∥ e n -e n-1 ∥ 2 L 2 (Ω) 2 + c 2 τ n ∥ div u n h ∥ 2 L 2 (Ω) + ∥ u n ∥ 2 X ∥ e n-1 ∥ 2 L 2 (Ω) 2 .
(5.49)

We will now bound the term B. We use the L 2 -L 4 -L 4 generalized Cauchy-Schwarz inequality, then Lemma 5.12, the incompressibility condition div u n = 0 and Lemma 2.2, we get

|B 1 | ≤ c 13 τ n ∥ u n-1 h ∥ L 4 (Ω) 2 ∥ div u n h ∥ L 2 (Ω) ∥ e n ∥ L 4 (Ω) 2 ≤ c 14 τ n 1 2ε 11 ∥ div u n h ∥ 2 L 2 (Ω) + ε 11 2 ∥ u n-1 h ∥ L 2 (Ω) 2 ∥ u n-1 h ∥ X ∥ e n ∥ L 2 (Ω) 2 ∥ e n ∥ X .
As ∥ u n h ∥ L 2 (Ω) 2 is bounded according to (4.5), we obtain

|B 1 | ≤ c 15 τ n 1 2ε 11 ∥ div u n h ∥ 2 L 2 (Ω) + ε 11 2 ( ε 12 2 ∥ e n ∥ 2 X + 1 2ε 12 ∥ u n-1 h ∥ 2 X ∥ e n ∥ 2 L 2 (Ω) 2 ) ≤ c 16 τ n 1 2ε 11 ∥ div u n h ∥ 2 L 2 (Ω) + ε 11 2 ( ε 12 2 ∥ e n ∥ 2 X + 1 2ε 12 ∥ u n-1 h ∥ 2 X ∥ e n-1 ∥ 2 L 2 (Ω) 2 ) + ε 11 4ε 12 ∥ u n-1 h ∥ 2 X ∥ e n -e n-1 ∥ 2 L 2 (Ω) 2
.

By following the same steps, remarking that Πu n = 0 and using Lemma 5.12, we get

|B 2 | ≤ τ n 2 1 2ε 13 ∥ div u n-1 h ∥ 2 L 2 (Ω) + ε 13 2 ∥ Πu n h ∥ 2 L 4 (Ω) 2 ∥ e n ∥ 2 L 4 (Ω) 2 ≤ c 17 τ n 1 ε 13 ∥ div u n-1 h ∥ 2 L 2 (Ω) +h 1/2 n ε 13 ∥ div u n h ∥ L 2 (Ω) ∥ Πu n h ∥ X ∥ e n ∥ L 2 (Ω) 2 ∥ e n ∥ X ≤ c 18 τ n 1 ε 13 ∥ div u n-1 h ∥ 2 L 2 (Ω) +ε 13 ε 14 2 ∥ e n ∥ 2 X + h n 2ε 14 ∥ div u n h ∥ 2 L 2 (Ω) ∥ u n h ∥ 2 X ∥ e n ∥ 2 L 2 (Ω) 2 ≤ c 19 τ n 1 ε 13 ∥ div u n-1 h ∥ 2 L 2 (Ω) +ε 13 ε 14 2 ∥ e n ∥ 2 X + τ n 2ε 14 ∥ u n h ∥ 4 X ∥ e n-1 ∥ 2 L 2 (Ω) 2 + τ n ε 13 2ε 14 ∥ u n h ∥ 4 X ∥ e n -e n-1 ∥ 2 L 2 (Ω) 2 .
Thus, B will be bounded as follows:

|B| ≤ c 20 τ n 1 ε 11 ∥ div u n h ∥ 2 L 2 (Ω) + 1 ε 13 ∥ div u n-1 h ∥ 2 L 2 (Ω) + ε 11 ε 12 + ε 13 ε 14 ∥ e n ∥ 2 X + ε 11 ε 12 ∥ u n-1 h ∥ 2 X ∥ e n-1 ∥ 2 L 2 (Ω) 2 +τ n ε 13 ε 14 ∥ u n h ∥ 4 X ∥ e n-1 ∥ 2 L 2 (Ω) 2 + ε 11 ε 12 ∥ u n-1 h ∥ 2 X + ε 13 ε 14 τ n ∥ u n h ∥ 4 X ∥ e n -e n-1 ∥ 2 L 2 (Ω) 2
(5.50) By using the relation

τ n ∥ u n h ∥ 2 X ≤ N n=1 τ n ∥ u n h ∥ 2
X and Theorem 4.3, we deduce that

τ n ∥ u n h ∥ 2 X ≤ Ĉ, (5.51) 
where Ĉ is a given positive constant. We use this to obtain

|B| ≤ c 20 τ n 1 ε 11 ∥ div u n h ∥ 2 L 2 (Ω) + 1 ε 13 ∥ div u n-1 h ∥ 2 L 2 (Ω) + ε 11 ε 12 + ε 13 ε 14 ∥ e n ∥ 2 X + ε 11 ε 12 ∥ u n-1 h ∥ 2 X ∥ e n-1 ∥ 2 L 2 (Ω) 2 + Ĉ ε 13 ε 14 ∥ u n h ∥ 2 X ∥ e n-1 ∥ 2 L 2 (Ω) 2 +c 20 Ĉ ε 11 ε 12 + Ĉ2 ε 13 ε 14 ∥ e n -e n-1 ∥ 2 L 2 (Ω) 2 .
(5.52)

We choose

ε 11 = √ ν 0 100c 20 Ĉ , ε 12 = Ĉν 0 , ε 13 = √ ν 0 100c 20
Ĉ and ε 14 = Ĉ√ ν 0 , and we obtain 

|B| ≤ ν 0 50 τ n ∥ e n ∥ 2 X + 1 50 ∥ e n -e n-1 ∥ 2 L 2 (Ω) 2 +c 3 τ n ∥ div u n h ∥ 2 L 2 (Ω) + ∥ div u n-1 h ∥ 2 L 2 (Ω) + ∥ u n-1 h ∥ 2 X ∥ e n-1 ∥ 2 L 2 (Ω) 2 + ∥ u n h ∥ 2 X ∥ e n-1 ∥ 2 L 2 (Ω) 2 . ( 5 
∥ u m -u m h ∥ 2 L 2 (Ω) 2 + m n=1 τ n ∥ u n -u n h ∥ 2 X ≤ c ∥ u 0 -u 0 h ∥ 2 L 2 (Ω) 2 +τ 0 ∥ u 0 -u 0 h ∥ 2 X + m n=1 κn∈T nh τ n (η h u,n,κn ) 2 ,
(5.54) where C is a positive constant independent of the time and mesh steps.

Proof. First, we bound the right-hand side of (5.41); we shall make a frequent use of ab ≤ ε

2 a 2 + 1 2ε b 2
for all ε > 0, in particular for ε = 1 2 . Knowing that Πe n = -Πu n h (as Πu n = 0, see Lemma 5.12) and h n ≤ c s τ n , and using Lemma 5.12, the first and the second terms will be bounded as follows:

(e n -e n-1 , Πe n ) ≤ 1 4 ∥ e n -e n-1 ∥ 2 L 2 (Ω) 2 + ∥ Πe n ∥ 2 L 2 (Ω) 2 ≤ 1 4 ∥ e n -e n-1 ∥ 2 L 2 (Ω) 2 + c c s τ n ∥ div u n h ∥ 2 L 2 (Ω) 2 ,
(5.55) and

ν 0 τ n (∇e n , ∇(Πe n )) + 2τ n (ν C (π l,τ C h )D(e n ), D(Πe n )) ≤ ν 0 τ n 16 ∥ e n ∥ 2 X +4ν 0 τ n ∥ Πu n h ∥ 2 X + ν 0 τ n 16 ∥ e n ∥ 2 X + 2 2 × 4 × (ν 2 ) 2 ν 0 τ n ∥ Πu n h ∥ 2 X ≤ ν 0 τ n 8 ∥ e n ∥ 2 X +c 2 τ n ∥ div u n h ∥ 2 L 2 (Ω) 2 .
(5.56) To treat the third term in the right-hand side of (5.41), we set v h = C nh v and we use the definition R h u and Lemma 5.6. Then, since v = e n -Πe n and using lemma 5.12 we get:

τ n ⟨R h u , v -v h ⟩ ≤ c 3 τ n κn∈T nh (η h u,n,κn ) 2 1/2 ∥ v ∥ X ≤ c 4 ν 0 κn∈T nh τ n (η h u,n,κn ) 2 + ν 0 τ n 8 ∥ e n ∥ 2 X .
(5.57)

To bound the last terms of (5.41), we use Lemma 5.14. By Regrouping (5.45), (5.55), (5.56) and (5.57) summing over n from 1 to m and using τ n ≤ σ τ τ n-1 we get

∥ e m ∥ 2 L 2 (Ω) 2 + m n=1 τ n ∥ e n ∥ 2 X ≤ c 5 ∥ e 0 ∥ 2 L 2 (Ω) 2 +τ 0 ∥ e 0 ∥ 2 X + m n=1 κn∈T nh τ n (η h u,n,κn ) 2 + m-1 n=0 τ n ∥ u n+1 ∥ 2 X + ∥ u n h ∥ 2 X + ∥ u n+1 h ∥ 2 X ∥ e n ∥ 2 L 2 (Ω) 2
.

We apply Gronwall's lemma 2.6 with the following given functions:

y m =∥ e m ∥ 2 L 2 (Ω) 2 + m n=1 τ n ∥ e n ∥ 2 X , fm = c 5 ∥ e 0 ∥ 2 L 2 (Ω) 2 +τ 0 ∥ e 0 ∥ 2 X + m n=1 κn∈T nh τ n (η h u,n,κn ) 2 , and gn = c 5 τ n ∥ u n+1 ∥ 2 X + ∥ u n h ∥ 2 X + ∥ u n+1 h ∥ 2 X . We get ∥ e m ∥ 2 L 2 (Ω) 2 + m n=1 τ n ∥ e n ∥ 2 X ≤ c 6 ∥ e 0 ∥ 2 L 2 (Ω) 2 +τ 0 ∥ e 0 ∥ 2 X + m n=1 κn∈T nh τ n (η h u,n,κn ) 2 + m-1 n=0 τ n fn ∥ u n+1 ∥ 2 X + ∥ u n h ∥ 2 X + ∥ u n+1 h ∥ 2 X exp m-1 j=n τ j (∥ u j+1 ∥ 2 X + ∥ u j h ∥ 2 X + ∥ u j+1 h ∥ 2 X ) .
Knowing that for all n ≤ m, fn ≤ fm we obtain

∥ e m ∥ 2 L 2 (Ω) 2 + m n=1 τ n ∥ e n ∥ 2 X ≤ c 6 ∥ e 0 ∥ 2 L 2 (Ω) 2 +τ 0 ∥ e 0 ∥ 2 X + m n=1 κn∈T nh τ n (η h u,n,κn ) 2 + fm m-1 n=0 τ n ∥ u n+1 ∥ 2 X + ∥ u n h ∥ 2 X + ∥ u n+1 h ∥ 2 X exp m-1 j=n τ j (∥ u j+1 ∥ 2 X + ∥ u j h ∥ 2 X + ∥ u j+1 h ∥ 2 X ) .
Using Theorem 4.3, Proposition 5.8 and the definition of σ τ we obtain

∥ e m ∥ 2 L 2 (Ω) 2 + m n=1 τ n ∥ e n ∥ 2 X ≤ c ∥ e 0 ∥ 2 L 2 (Ω) 2 +τ 0 ∥ e 0 ∥ 2 X + m n=1 κn∈T nh τ n (η h u,n,κn ) 2 .
This ends the proof of Theorem 5.15, which establishes an a posteriori estimation between u m and u m h . □

In order to relate the left-hand side of (5.54) to the augmented error norm defined by (5.7), we prove the following two inequalities Lemma 5.16. Let u m and u m h be respectively the solutions of (P aux ) and (Eds1). It holds that 1 3

m n=1 τ n ∥ u n -u n h ∥ 2 X ≤ m n=1 tn tn-1 ∥ u τ (s) -u h (s) ∥ 2 X ds ≤ 1 + σ τ 2 m n=0 τ n ∥ u n -u n h ∥ 2 X .
(5.58)

Proof. Since u τ -u h is affine with respect to time on [t n-1 ; t n ], its square is a second order polynomial in time and the Simpson formula allows us to compute the following integral exactly

tn tn-1 ∥ u τ (s) -u h (s) ∥ 2 X ds = τ n 3 ∥ u τ (t n ) -u h (t n ) ∥ 2 X + ∥ u τ (t n-1 ) -u h (t n-1 ) ∥ 2 X + ∥ u τ (t n ) -u h (t n ) ∥ X ∥ u τ (t n-1 ) -u h (t n-1 ) ∥ X , (5.59) 
in which we used the fact that ∥ u τ -u h ∥ X is affine to replace its value in tn-1+tn 2 by the half sum of its values in t n-1 and in t n . Then we immediately get

τ n 3 ∥ u τ (t n ) -u h (t n ) ∥ 2 X ≤ tn tn-1 ∥ u τ (s) -u h (s) ∥ 2 X ds.
(5.60)

On the other hand, using ab ≤ 1 2 (a 2 + b 2 ) and τ n ≤ σ τ τ n-1 in the right-hand side of (5.59), we obtain

tn tn-1 ∥ u τ (s) -u h (s) ∥ 2 X ds ≤ τ n 2 ∥ u τ (t n ) -u h (t n ) ∥ 2 X + ∥ u τ (t n-1 ) -u h (t n-1 ) ∥ 2 X ≤ τ n 2 ∥ u τ (t n ) -u h (t n ) ∥ 2 X +σ τ τ n-1 2 ∥ u τ (t n-1 ) -u h (t n-1 ) ∥ 2 X .
(5.61) Summing (5.60) and (5.61) over n, we get the desired result (5.58). □ Corollary 5.17. Let t ∈]t m-1 , t m ]. Let h n ≤ c s τ n , ∀n ∈ {1, . . . , N }, where c s is a positive constant independent of n. The following a posteriori error holds between u τ (t) and u h (t):

∥ (u τ -u h )(t) ∥ 2 L 2 (Ω) 2 + t 0 ∥ u τ -u h ∥ 2 X (s)ds ≤ c ∥ u 0 -u 0 h ∥ 2 L 2 (Ω) 2 +τ 0 ∥ u 0 -u 0 h ∥ 2 X + m n=1 κn∈T nh τ n (η h u,n,κn ) 2 , (5.62)
where c is a positive constant independent of the time and mesh steps.

Proof. Let t ∈]t m-1 , t m ]. Since t →∥ (u τ -u h )(t) ∥ L 2 (Ω) 2 is an affine function of time on [t m-1 , t m ], then ∥ (u τ -u h )(t) ∥ 2 L 2 (Ω) 2 ≤ sup(∥ u m-1 -u m-1 h ∥ 2 L 2 (Ω) 2 , ∥ u m -u m h ∥ 2 L 2 (Ω) 2
). Now both terms in the right-hand side above are bounded by the right-hand side of (5.54) since it is a growing function of m. Thus

∥ (u τ -u h )(t) ∥ 2 L 2 (Ω) 2 ≤ c ∥ u 0 -u 0 h ∥ 2 L 2 (Ω) 2 +τ 0 ∥ u 0 -u 0 h ∥ 2 X + m n=1 κn∈T nh τ n (η h u,n,κn ) 2 .
(5.63)

Next, we get from(5.58) that

t 0 ∥ u τ -u h ∥ 2 X (s)ds ≤ tm 0 ∥ u τ -u h ∥ 2 X (s)ds ≤ 1 + σ τ 2 m n=0 τ n ∥ u n -u n h ∥ 2 X .
With (5.54) we obtain

t 0 ∥ u τ -u h ∥ 2 X (s)ds ≤ c ∥ u 0 -u 0 h ∥ 2 L 2 (Ω) 2 +τ 0 ∥ u 0 -u 0 h ∥ 2 X + m n=1 κn∈T nh τ n (η h u,n,κn ) 2 .
(5.64) From (5.63) and ( 5.64) we obtain (5.62). □

Having bounded the error between u and u τ in Theorem 5.10 and then the error between u τ and u h in Corollary 5.17, we can combine these two results to bound the error between u and u h .

Corollary 5.18. Let h n ≤ c s τ n , ∀n ∈ {1, . . . , N }, where c s is a positive constant independent of n. Under assumptions of Theorem 5.10, for t ∈]t m-1 , t m ], we have the following a posteriori estimation between the velocity u solution of problem (1.1) and u h corresponding to u n h of problem (Eds1):

∥ u(t) -u h (t) ∥ 2 L 2 (Ω) 2 +ν 0 t 0 ∥ u(s) -u h (s) ∥ 2 X ds ≤ c ∥ f 0 -π τ f 0 ∥ 2 L 2 (0,t;L 2 (Ω) 2 ) + ∥ u 0 -u 0 h ∥ 2 L 2 (Ω) 2 +τ 0 ∥ u 0 -u 0 h ∥ 2 X + ∥ C -π l,τ C h ∥ 2 L 2 (0,t,L 4 (Ω)) + ∥ π τ u -π l,τ u ∥ 2 L 2 (0,t;X) + m n=1 τ n κn∈T nh (η h u,n,κn ) 2 ,
(5.65) where c is a positive constant.

Proof. We start by applying the triangular inequality

∥ u(t) -u h ∥ 2 L 2 (Ω) 2 +ν 0 t 0 ∥ u(s) -u h (s) ∥ 2 X ds ≤ 2 ∥ u(t) -u τ (t) ∥ 2 L 2 (Ω) 2 +2ν 0 t 0 ∥ u(s) -u τ (s) ∥ 2 X ds +2 ∥ u τ (t) -u h (t) ∥ 2 L 2 (Ω) 2 +2ν 0 t 0 ∥ u τ (s) -u h (s) ∥ 2 X ds.
By using Theorem 5.10 and Corollary 5.17 we obtain (5.65). □ Till now, the upper bound (5.22) on the concentration error depends on the velocity error and, conversely, the upper bound (5.65) on the velocity error depends on the concentration error. Thus we have to combine these two inequalities to get the desired upper bound. This is done in the next Theorem, by using Corollary 5.18 and Theorem 5.7.

Theorem 5.19. Under assumptions of Theorem 5.7 and Corollary 5.18, we have the following bound for each m ∈ {1, . . . , N }:

∥ C(t m ) -C h (t m ) ∥ 2 L 2 (Ω) +α tm 0 ∥ C(s) -C h (s) ∥ 2 Y ds + r 0 tm 0 ∥ C(s) -C h (s) ∥ 2 L 2 (Ω) ds + ∥ u(t m ) -u h (t m ) ∥ 2 L 2 (Ω) 2 +ν 0 tm 0 ∥ u(s) -u h (s) ∥ 2 X ds ≤ c ∥ g -π τ g ∥ 2 L 2 (0,tm;Y ′ ) + ∥ C 0 -C 0 h ∥ 2 L 2 (Ω) + ∥ u 0 -u 0 h ∥ 2 L 2 (Ω) 2 +τ 0 ∥ u 0 -u 0 h ∥ 2 X + ∥ f 0 -π τ f 0 ∥ 2 L 2 (0,tm;L 2 (Ω) 2 ) + m n=1 κn∈τ nh (η τ c,n,κn ) 2 + (η τ u,n,κn ) 2 + τ n (η h c,n,κn ) 2 + τ n (η h u,n,κn ) 2 ,
where c is a positive constant.

Proof. We use Relation (2.3) and the inequality ab ≤ 1 2ε

a 2 + ε 2 b 2 to get ∥ C -π l,τ C h ∥ 2 L 2 (0,t;L 4 (Ω)) ≤ c 1 2ε ∥ C -π l,τ C h ∥ 2 L 2 (0,t;L 2 (Ω)) + ε 2 ∥ C -π l,τ C h ∥ 2 L 2 (0,t;Y ) .
(5.66)

On the one hand, for t ∈]t m-1 , t m ] we consider Inequalities (5.65) and (5.66) to get the following bound

∥ u(t) -u h (t) ∥ 2 L 2 (Ω) 2 +ν 0 t 0 ∥ u(s) -u h (s) ∥ 2 X ds ≤ c 1 m n=1 κn∈T nh τ n (η h u,n,κn ) 2 + ∥ π τ u -π l,τ u ∥ 2 L 2 (0,t;X) + ∥ u 0 -u 0 h ∥ 2 L 2 (Ω) 2 +τ 0 ∥ u 0 -u 0 h ∥ 2 X + ∥ f 0 -π τ f 0 ∥ 2 L 2 (0,t;L 2 (Ω) 2 ) + 1 2ε ∥ C -π l,τ C h ∥ 2 L 2 (0,t;L 2 (Ω)) + ε 2 ∥ C -π l,τ C h ∥ 2 L 2 (0,t;Y )
.

(5.67) On the other hand, for each n ∈ [1, N ], and for each s ∈]t n-1 , t n ], we have

∥ C(s) -π l,τ C h (s) ∥ 2 Y ≤ ∥ C(s) -C h (s) ∥ y + ∥ C h (s) -C n-1 h ∥ Y 2 ≤ ∥ C(s) -C h (s) ∥ Y + s -t n-1 τ n ∥ C n-1 h -C n h ∥ Y 2 ≤ 2 ∥ C(s) -C h (s) ∥ 2 Y + ∥ C n h -C n-1 h ∥ 2 Y . Let t ∈ [t m-1 , t m ]
; in order to integrate the above inequality from 0 to t, we first integrate it between t n-1 and t n , then sum over n from 1 to m -1 and we finally add the integration from t m-1 to t. We obtain

t 0 ∥ C(t) -π l,τ C h (t) ∥ 2 Y dt ≤ c ′ t 0 ∥ C(s) -C h (s) ∥ 2 Y ds + m n=1 κn∈T nh (η τ c,n,κn ) 2 , (5.68)
where c ′ is a positive constant independent of the time and mesh steps. We also have in the same way

∥ C -π l,τ C h ∥ 2 L 2 (0,t;L 2 (Ω)) ≤ c ′ ∥ C -C h ∥ 2 L 2 (0,t;L 2 (Ω)) + m n=1 κn∈T nh (η τ c,n,κn ) 2 .
(5.69)

Following the same reasoning we integrate (5.26) between 0 and t, we get

∥ C(t) -C h (t) ∥ 2 L 2 (Ω) +α t 0 ∥ C(s) -C h (s) ∥ 2 Y ds + 2r 0 t 0 ∥ C(s) -C h (s) ∥ 2 L 2 (Ω) ds ≤ c ∥ g -π τ g ∥ 2 L 2 (0,t;Y ′ ) + ∥ C 0 -C 0 h ∥ 2 L 2 (Ω) + ∥ u -u h ∥ 2 L 2 (0,t;X) + m n=1 κn∈τ nh (η τ c,n,κn ) 2 + (η τ u,n,κn ) 2 + τ n (η h c,n,κn ) 2 .
(5.70)

To treat the term ∥ π τ u -π l,τ u ∥ 2 X in (5.67) we use the triangle inequality for each n ≤ m, so we get

∥ u n -u n-1 ∥ 2 X ≤ 3(∥ u n -u n h ∥ 2 X + ∥ u n h -u n-1 h ∥ 2 X + ∥ u n-1 -u n-1 h ∥ 2 X ).
We multiply by τ n , we use the error indicator definition (5.16) and the property τ n ≤ σ τ τ n-1 , to get

τ n ∥ u n -u n-1 ∥ 2 X ≤ 3 τ n ∥ u n -u n h ∥ 2 X + κn∈τ nh (η τ u,n,κn ) 2 + σ τ τ n-1 ∥ u n-1 -u n-1 h ∥ 2 X . Since t ∈ [t m-1 , t m ], we get t 0 ∥ π τ u-π l,τ u ∥ 2 X ≤ m n=1 τ n ∥ u n -u n-1 ∥ 2 X ≤ c ′′ m n=0 τ n ∥ u n -u n h ∥ 2 X + m n=1 κn∈τ nh (η τ u,n,κn ) 2 .
(5.71) Summing (5.67) and (5.70) and using (5.68), (5.69), (5.71) and ( 5.54) we get

∥ C(t) -C h (t) ∥ 2 L 2 (Ω) +α t 0 ∥ C(s) -C h (s) ∥ 2 Y ds + 2r 0 t 0 ∥ C(s) -C h (s) ∥ 2 L 2 (Ω) ds + ∥ u(t) -u h (t) ∥ 2 L 2 (Ω) 2 +ν 0 t 0 ∥ u(s) -u h (s) ∥ 2 X ≤ c 2 ∥ g -π τ g ∥ 2 L 2 (0,t;Y ′ ) + ∥ C 0 -C 0 h ∥ 2 L 2 (Ω) + ∥ u 0 -u 0 h ∥ 2 L 2 (Ω) 2 +τ 0 ∥ u 0 -u 0 h ∥ 2 X + ∥ f 0 -π τ f 0 ∥ 2 L 2 (0,t;L 2 (Ω) 2 ) + 1 2ε ∥ C -C h ∥ 2 L 2 (0,t;L 2 (Ω)) + ε 2 ∥ C -C h ∥ 2 L 2 (0,t;Y ) + m n=1 κn∈τ nh (η τ c,n,κn ) 2 + (η τ u,n,κn ) 2 + τ n (η h c,n,κn ) 2 + τ n (η h u,n,κn ) 2 .
We consider

ε = α c 2 to get ∥ C(t) -C h (t) ∥ 2 L 2 (Ω) + α 2 t 0 ∥ C(s) -C h (s) ∥ 2 Y ds + 2r 0 t 0 ∥ C(s) -C h (s) ∥ 2 L 2 (Ω) ds + ∥ u(t) -u h (t) ∥ 2 L 2 (Ω) 2 +ν 0 t 0 ∥ u(s) -u h (s) ∥ 2 X ds ≤ c 3 ∥ g -π τ g ∥ 2 L 2 (0,t;Y ′ ) + ∥ C 0 -C 0 h ∥ 2 L 2 (Ω) + ∥ u 0 -u 0 h ∥ 2 L 2 (Ω) 2 +τ 0 ∥ u 0 -u 0 h ∥ 2 X + ∥ f 0 -π τ f 0 ∥ 2 L 2 (0,t;L 2 (Ω) 2 ) + ∥ C -C h ∥ 2 L 2 (0,t;L 2 (Ω)) + m n=1 κn∈τ nh (η τ c,n,κn ) 2 + (η τ u,n,κn ) 2 + τ n (η h c,n,κn ) 2 + τ n (η h u,n,κn ) 2 .
Then we apply Gronwall's Theorem 2.5 by considering:

f (t) =∥ g -π τ g ∥ 2 L 2 (0,t;Y ′ ) + ∥ C 0 -C 0 h ∥ 2 L 2 (Ω) + ∥ u 0 -u 0 h ∥ 2 L 2 (Ω) 2 +τ 0 ∥ u 0 -u 0 h ∥ 2 X + ∥ f 0 -π τ f 0 ∥ 2 L 2 (0,t;L 2 (Ω) 2 ) + m n=1 κn∈τ nh (η τ c,n,κn ) 2 + (η τ u,n,κn ) 2 + τ n (η h c,n,κn ) 2 + τ n (η h u,n,κn ) 2 , y(t) = ∥ C(t) -C h (t) ∥ 2 L 2 (Ω) +α t 0 ∥ C(s) -C h (s) ∥ 2 Y ds + r 0 t 0 ∥ C(s) -C h (s) ∥ 2 L 2 (Ω) ds + ∥ u(t) -u m h ∥ 2 L 2 (Ω) 2 +ν 0 t 0 ∥ u(s) -u h (s) ∥ 2 X ds, g(t) = 1 and k(τ ) = c 3 .
Since k and g are constants, we have

∥ C(t) -C h (t) ∥ 2 L 2 (Ω) +α t 0 ∥ C(s) -C h (s) ∥ 2 Y ds + r 0 t 0 ∥ C(s) -C h (s) ∥ 2 L 2 (Ω) ds + ∥ u(t) -u h (t) ∥ 2 L 2 (Ω) 2 +ν 0 t 0 ∥ u(s) -u h (s) ∥ 2 X ds ≤ c ∥ g -π τ g ∥ 2 L 2 (0,t;Y ′ ) + ∥ C 0 -C 0 h ∥ 2 L 2 (Ω) + ∥ u 0 -u 0 h ∥ 2 L 2 (Ω) 2 +τ 0 ∥ u 0 -u 0 h ∥ 2 X + ∥ f 0 -π τ f 0 ∥ 2 L 2 (0,t;L 2 (Ω) 2 ) + m n=1 κn∈τ nh (η τ c,n,κn ) 2 + (η τ u,n,κn ) 2 + τ n (η h c,n,κn ) 2 + τ n (η h u,n,κn ) 2 .
For t = t m we get the result of Theorem 5.19. □ Theorem 5.19 in itself provides a reliable a posteriori error estimator for the total error in the energy norm. However, as usual for time-dependent problems, we need to augment this norm by additional terms which are needed to obtain the efficiency of the error indicators. Additional norms related to the concentration and to the velocity are dealt with respectively in Theorem 5.20 and Theorem 5.21. 

∥ ∂ ∂t (C -C h ) + u • ∇C -π τ u h • ∇π τ C h - 1 2 div (π τ u h )π τ C h ∥ L 2 (0,tm;Y ′ ) ≤ c m n=1 κn∈T nh τ n (η h c,n,κn ) 2 + (η τ c,n,κn ) 2 + (η τ u,n,κn ) 2 + ∥ g -π τ g ∥ 2 L 2 (0,tm;Y ′ ) + ∥ C 0 -C 0 h ∥ 2 L 2 (Ω) + ∥ u -u h ∥ 2 L 2 (0,tm;X) 1/2 ,
(5.72) where c is a positive constant independent of the time and mesh steps.

Proof. We consider the second equality of system (5.9) of Lemma 5.4, with (5.11), (5.15): r) . All the terms in the right-hand side, except the third and the fourth ones, can be treated with the Cauchy-Schwarz inequality. For the third term, we take r h = C nh r and use (5.21) and we obtain

( ∂ ∂t (C -C h )(t), r) + (u(t) • ∇C(t) -π τ u h (t) • ∇π τ C h (t), r) - 1 2 (div (π τ u h (t))π τ C h (t), r) = -α(∇(C(t) -π τ C h ), ∇r) -r 0 (C(t) -π τ C h , r) + ⟨R h c (t), r -r h ⟩ +⟨R τ c (t), r⟩ + (g(t) -g(t n ), r). However, ∥ ∂ ∂t (C -C h )(t) + u(t) • ∇C(t) -π τ u h (t) • ∇π τ C h (t) - 1 2 div (π τ u h (t))π τ C h (t) ∥ Y ′ = sup r∈Y 1 ∥ r ∥ Y ( ∂ ∂t (C -C h )(t), r) + (u(t) • ∇C(t) -π τ u h (t) • ∇π τ C h (t), r) - 1 2 (div (π l,τ u h (t))π τ u h (t), r) = sup r∈Y 1 ∥ r ∥ Y -α(∇(C(t) -π τ C h ), ∇r) -r 0 (C(t) -π τ C h , r) + ⟨R h c (t), r -r h ⟩ +⟨R τ c (t), r⟩ + (g(t) -g(t n ),
|⟨R h c (t), r -r h ⟩| ≤ c 1 κn∈T nh (η h c,n,κn ) 2 1/2 ∥ r ∥ Y .
For the fourth term an easy calculation leads to

|⟨R τ c (t), r⟩| ≤ c 2 κn∈T nh ∥ C n h -C n-1 h ∥ 2 H 1 (κn) 1/2 ∥ r ∥ Y . Whence ∥ ∂ ∂t (C -C h )(t) + u(t) • ∇C(t) -π τ u h (t) • ∇π τ C h (t) - 1 2 div (π τ u h (t))π τ C h (t) ∥ Y ′ ≤ c 3 α ∥ C(t) -π τ C h (t) ∥ 2 Y +r 0 ∥ C(t) -π τ C h (t) ∥ 2 L 2 (Ω) + ∥ g(t) -g(t n ) ∥ 2 Y ′ + κn∈T nh ∥ C n h -C n-1 h ∥ 2 H 1 (κn) + κn∈T nh (η h c,n,κn ) 2 1/2
.

We obtain the desired result (5.72) by integrating over t between t n-1 and t n , summing over n from 0 to m and by using inequalities similar to (5.68) and (5.69) applied to (C -π τ C h ) and then (5.22). □

To get the final form of the a posteriori bound, we have to bound the following last term:

∂ ∂t (u -u h ) + u • ∇u -π l,τ u h • ∇π τ u h - 1 2 div (π l,τ u h )π τ u h + ∇(p -p h ).
Theorem 5.21. Let (u, p, C) be the solution of problem (1.1) and (u h , p h , C h ) the solution of problem (Eds1). For 1 ≤ n ≤ m with m ∈ {1, • • • , N }, we have the following inequality

∥ ∂ ∂t (u -u h ) + u • ∇u -π l,τ u h • ∇π τ u h - 1 2 div (π l,τ u h )π τ u h + ∇(p -p h ) ∥ L 2 (0,tm;X ′ ) ≤ c m n=1 κn∈T nh τ n (η h u,n,κn ) 2 + (η τ c,n,κn ) 2 + (η τ u,n,κn ) 2 + ∥ f 0 -π τ f 0 ∥ 2 L 2 (0,tm;L 2 (Ω) 2 ) + ∥ C -C h ∥ 2 L 2 (0,tm;Y ) +∥ u -u h ∥ 2 L 2 (0,tm;X) 1/2 .
(5.73)

Proof. The first equality of system (5.9) in Lemma 5.4 gives us:

( ∂ ∂t (u -u h )(t), v) + (u(t) • ∇u(t) -π l,τ u h (t) • ∇π τ u h (t), v) - 1 2 (div (π l,τ u h (t))π τ u h (t), v) -(div v, p(t) -p h (t)) = -ν 0 (∇u(t) -∇π τ u h (t), ∇v) -2(ν C (C(t))D(u(t)) -ν C (π l,τ C h )D(π τ u h (t)), D(v)) +⟨R h u (t), v⟩ + (f (t, C(t)) -f n (C n-1 h ), v).
However,

∥ ∂ ∂t (u -u h )(t) + u(t) • ∇u(t) -π l,τ u h (t) • ∇π τ u h (t) - 1 2 div (π l,τ u h (t))π τ u h (t) + ∇(p -p h )(t) ∥ X ′ = sup v∈X 1 ∥ v ∥ X ( ∂ ∂t (u -u h )(t), v) + (u(t) • ∇u(t) -π l,τ u h (t) • ∇π τ u h (t), v) - 1 2 (div (π l,τ u h (t))π τ u h (t), v) -(div v, p(t) -p h (t)) = sup v∈X 1 ∥ v ∥ X -ν 0 (∇u(t) -∇π τ u h (t), ∇v) -2(ν C (C(t))D(u(t)) -ν C (π l,τ C h )D(π τ u h (t)), D(v)) +⟨R h u (t), v⟩ + (f (t, C(t)) -f n (C n-1 h ), v) .
(5.74) We start by bounding the first two terms of (5.74). Foremost, we insert 2(ν C (π l,τ C h )D(u(t)), D(v)); we use (2.5) for the second term of (5.75) below. For the third one, we use that ν C is lipschitz, then the L 4 -L 4 -L 2 generalized Cauchy-Schwarz inequality, the fact that ∇(u) ∈ L ∞ (0, T ; L 4 (Ω) 2×2 ) and (2.2) with p = 4; we get

-ν 0 (∇u(t) -∇π τ u h (t), ∇v) -2(ν C (π l,τ C h )D(u(t) -π τ u h (t)), D(v)) -2((ν C (C(t)) -ν C (π l,τ C h ))D(u(t)), D(v)) ≤ (ν 0 + 2ν 2 ) ∥ u(t) -π τ u h (t) ∥ X ∥ v ∥ X +c 0 ∥ C(t) -C n-1 h ∥ Y ∥ v ∥ X .
(5.75) For the other terms of (5.74), by using (5.14) and (5.20) we obtain

|⟨f (t, C(t)) -f n (C n-1 h ) + R h u (t), v⟩| ≤ κn∈T nh c 1 ∥ f (t, C(t)) -f n (C n-1 h ) ∥ L 2 (κn) ∥ v ∥ H 1 (κn) +c 2 κn∈T nh (η h u,n,κn ) 2 1/2 ∥ v ∥ X .
Whence, by using the definition and the properties of f we have,

∥ ∂ ∂t (u -u h )(t) + u(t) • ∇u(t) -π l,τ u h (t) • ∇π τ u h (t) - 1 2 div (π l,τ u h (t))π τ u h (t) + ∇(p -p h )(t) ∥ X ′ ≤ c 3 ∥ u(t) -π τ u h (t) ∥ 2 X + κn∈T nh ∥ f 0 (t) -f n 0 ∥ 2 L 2 (κn) + κn∈T nh ∥ C(t) -C n-1 h ∥ 2 Y + κn∈T nh (η h u,n,κn ) 2 1/2 .
We insert C h (t) in the third term of the right-hand side of the above inequality, use (5.6) (the definition of C h (t)), integrate over t between t n-1 and t n , and sum over n from 0 to m to get:

∥ ∂ ∂t (u -u h ) + u • ∇u -π l,τ u h • ∇π τ u h - 1 2 div (π l,τ u h )π τ u h + ∇(p -p h ) ∥ L 2 (0,tm;X ′ ) ≤ c m n=1 κn∈T nh τ n (η h u,n,κn ) 2 + (η τ c,n,κn ) 2 + ∥ f 0 -π τ f 0 ∥ 2 L 2 (0,tm;L 2 (Ω) 2 ) + ∥ C -C h ∥ 2 L 2 (0,tm;Y ) + ∥ u -π τ u h ∥ 2 L 2 (0,tm;X) 1/2 .
(5.76)

In order to obtain the final result of this theorem, it remains to bound the last term in the right-hand side of equation ( 5.76). To do so, knowing that :

∥ u -π τ u h ∥ 2 L 2 (0,tm;X) = m n=1 tn tn-1 ∥ u(t) -π τ u h (t) ∥ 2 X dt,
we follow the same idea that led to (5.68) and we obtain

m n=1 tn tn-1 ∥ u(t) -π τ u h (t) ∥ 2 X dt ≤ c m n=1 tn tn-1 ∥ u(s) -u h (s) ∥ 2 X ds + m n=1 κn∈T nh (η τ u,n,κn ) 2 .
(5.77)

By combining (5.76) and (5.77) we get the desired result. □

Having all we need, we can now introduce the following corollary which establishes the upper bound.

Corollary 5.22. Let h n ≤ c s τ n , ∀n ∈ {1, . . . , N }, where c s is a positive constant independent of n. For each m ∈ {1, • • • , N }, the solutions (u, p, C) of (1.1) and (u h , p h , C h ) of (Eds1) satisfy the following a posteriori estimation:

[[u -u h ]] 2 (t m )+ ∥ ∂ ∂t (u -u h ) + u • ∇u -π l,τ u h • ∇π τ u h - 1 2 div (π l,τ u h )π τ u h + ∇(p -p h ) ∥ L 2 (0,tm;X ′ ) +[[C -C h ]] 2 (t m )+ ∥ ∂ ∂t (C -C h ) + u • ∇C -π τ u h • ∇π τ C h - 1 2 div (π τ u h )π τ C h ∥ L 2 (0,tm;Y ′ ) ≤ c ∥ g -π τ g ∥ 2 L 2 (0,tm;Y ′ ) + ∥ C 0 -C 0 h ∥ 2 L 2 (Ω) + ∥ u 0 -u 0 h ∥ 2 L 2 (Ω) +τ 0 ∥ u 0 -u 0 h ∥ 2 X + ∥ f 0 -π τ f 0 ∥ 2 L 2 (0,tm;L 2 (Ω) 2 ) + m n=1 κn∈τ nh (η τ c,n,κn ) 2 + (η τ u,n,κn ) 2 + τ n (η h c,n,κn ) 2 + τ n (η h u,n,κn ) 2 .
(5.78)

Proof. The result is a simple consequence of the definition of locally by the error between the exact and numerical solutions.

[[u -u h ]] 2 (t m ) and [[C -C h ]] 2 (t m ), Theorem 
To accomplish the desired efficiency proof, we introduce approximations f n h of f n , ν h of ν C and g n h of g n as follows: for any function ξ ∈ L p (κ n ) and for each element κ n ∈ T nh we set

f n h (ξ)| κn = 1 |κ n | κn f n (ξ(x)) dx, (5.79) 
ν h (ξ)| κn = 1 |κ n | κn ν C (ξ(x)) dx (5.80) 
and

g n h | κn = 1 |κ n | κn g n (x) dx.
(5.81)

A straightforward consequence of the properties of f n and ν C is that ν h is bounded and f n h and ν h are Lipschitz with respect to ξ. Remark 5.23. We introduce f n h , ν h and g n h , which are constant on each κ n , so we shall be able to apply Property 5.1 which holds for polynomials only.

Theorem 5.24. For all n ∈ {1, • • • , N }, we have the following estimation

(η τ c,n,κn ) 2 ≤ c ∥ C -C h ∥ 2 L 2 (tn-1,tn;H 1 (κn)) + ∥ C -π τ C h ∥ 2 L 2 (tn-1,tn;H 1 (κn))
, where c is a constant independent of the time and mesh steps.

Proof. Based on the definition of C h and C n h , we have for all n ∈ {1, • • • , N } and all t ∈ [t n-1 -t n ],

C h (t) -π τ C h (t) = t -t n τ n (C n h -C n-1 h ).
So, by inserting C(t) in the above equality, we get

t -t n τ n 2 ∥ C n h -C n-1 h ∥ 2 H 1 (κn) ≤ 2(∥ C(t) -C h (t) ∥ 2 H 1 (κn) + ∥ (C(t) -π τ C h (t) ∥ 2 H 1 (κn) ).
We integrate over t between t n-1 and t n to get the result. □

We will now bound the indicator η h c,n,κn . Theorem 5.25. For all n ∈ {1, • • • , N }, we have

τ n (η h c,n,κn ) 2 ≤ c ∥ ∂ ∂t (C -C h )(t) + u • ∇C -u n h • ∇C n h - 1 2 div (u n h )C n h + r 0 (C -C n h ) ∥ 2
L 2 (tn-1,tn;H -1 (∆κn))

+ ∥ C -π τ C h ∥ 2 L 2 (tn-1,tn;H 1 (∆κn)) +h 2 κn ∥ g -π τ g ∥ 2 L 2 (tn-1,tn;L 2 (∆κn)) +τ n h 2 κn ∥ g n -g n h ∥ 2 L 2 (∆κn)
,

(5.82) where c is a positive constant independent of the mesh and time steps.

Proof. We consider the second equality of system (5.9) in Lemma 5.4 in which we simplify the left and right hand side by ⟨R τ c (t), r⟩, so we have for t =]t n-1 , t n ]:

Ω ∂ ∂t (C -C h )(t) r dx + α Ω ∇(C(t) -C n h ) • ∇r dx + Ω u(t) • ∇C(t) r dx - Ω u n h • ∇C n h r dx + r 0 Ω (C(t) -C n h ) r dx - 1 2 Ω div (u n h )C n h r dx = κn∈T nh κn (g(t) -g n ) r dx + κn (g n -g n h ) r dx + κn (g n h - 1 τ n (C n h -C n-1 h ) + α∆C n h -u n h • ∇C n h - 1 2 div (u n h )C n h -r 0 C n h ) r dx - α 2 en∈εκ n en [∇C n h (σ) • n]r(σ)dσ .
(5.83)

We take r = r κn , where

r κn =    (g n h - 1 τ n (C n h -C n-1 h ) + α∆C n h -u n h • ∇C n h - 1 2 div (u n h )C n h -r 0 C n h )ψ κn on κ n , 0 on Ω\κ n .
We remember that ψ κn is the bubble function which is equal to the product of the barycentric coordinates associated with the vertices of κ n . So, we obtain

κn (g n h - 1 τ n (C n h -C n-1 h ) + α∆C n h -u n h • ∇C n h - 1 2 div (u n h )C n h -r 0 C n h ) 2 ψ κn dx = κn ∂ ∂t (C -C h )(t) r κn dx + α κn ∇(C(t) -C n h ) • ∇r κn dx + κn u(t) • ∇C(t) r κn dx - κn u n h • ∇C n h r κn dx + r 0 κn (C(t) -C n h ) r κn dx - 1 2 κn div (u n h )C n h r κn dx - κn (g(t) -g n ) r κn dx - κn (g n -g n h ) r κn dx.
Since r κn ∈ H 1 0 (κ n ), we can apply the definition of the H -1 (κ n ) norm. We apply the Cauchy-Schwarz inequality to get

∥ (g n h - 1 τ n (C n h -C n-1 h ) + α∆C n h -u n h • ∇C n h - 1 2 div (u n h )C n h -r 0 C n h ) ψ 1/2 κn ∥ 2 0,κn ≤ c 1 ∥ ∂ ∂t (C -C h )(t) + u • ∇C(t) -u n h • ∇C n h - 1 2 div (u n h )C n h +r 0 (C(t) -C n h ) ∥ H -1 (κn) ∥ r κn ∥ H 1 0 (κn) +α ∥ ∇(C(t) -C n h ) ∥ 0,κn ∥ r κn ∥ H 1 0 (κn) + ∥ g(t) -g n ∥ H -1 (κn) ∥ r κn ∥ 0,κn + ∥ g n -g n h ∥ 0,κn ∥ r κn ∥ 0,κn .
We multiply by h κn , use Property 5.1 and the fact that 0 ≤ ψ κn ≤ 1; then we simplify and we get

h κn ∥ (g n h - 1 τ n (C n h -C n-1 h ) + α∆C n h -u n h • ∇C n h - 1 2 div (u n h )C n h -r 0 C n h ) ∥ 0,κn ≤ c 2 ∥ ∂ ∂t (C -C h )(t) + u • ∇C(t) -u n h • ∇C n h - 1 2 div (u n h )C n h + r 0 (C(t) -C n h ) ∥ H -1 (κn)
+ ∥ ∇(C(t) -C n h ) ∥ 0,κn +h κn ∥ g(t) -g n ∥ 0,κn +h κn ∥ g n -g n h ∥ 0,κn .

(5.84) First, we insert g n and use the triangular inequality. Then by squaring the previous inequality and integrating over t between t n-1 and t n , we can bound the first term of the indicator η h c,n,κn as follows:

τ n h 2 κn ∥ g n - 1 τ n (C n h -C n-1 h ) + α∆C n h -u n h • ∇C n h - 1 2 div (u n h )C n h -r 0 C n h ∥ 2 0,κn ≤ c 3 ∥ ∂ ∂t (C -C h )(t) + u • ∇C -u n h • ∇C n h - 1 2 div (u n h )C n h + r 0 (C -C n h ) ∥ 2 L 2 (tn-1,tn;H -1 (κn)) + ∥ C -C n h ∥ 2 L 2 (tn-1,tn;H 1 (κn)) +h 2 κn ∥ g -g n ∥ 2 L 2 (tn-1,tn;L 2 (κn)) +τ n h 2 κn ∥ g n -g n h ∥ 2 0,κn .
(5.85) To obtain a bound for the second term of η h c,n,κn , we consider an element κ n ∈ T nh and e n ⊂ ∂κ n ∩ Γ i h ; we denote by κ ′ n the other cell of the mesh that shares e n and we consider Equation (5.83) with r = r en where:

r en = L en (α[∇C n h • n] en ψ en ) on κ n ∪ κ ′ n , 0 on Ω\(κ n ∪ κ ′ n ).
We get:

en [α∇C n h • n] 2 en ψ en ds = κn∪κ ′ n (g n - 1 τ n (C n h -C n-1 h ) + α∆C n h -u n h • ∇C n h - 1 2 div (u n h )C n h + r 0 C n h )r en dx - κn∪κ ′ n ( ∂ ∂t (C -C h )(t) + u(t) • ∇C(t) -u n h • ∇C n h - 1 2 div (u n h )C n h + r 0 (C(t) -C n h )) r en dx + κn∪κ ′ n (g(t) -g n ) r en dx + α κn∪κ ′ n ∇(C(t) -C n h ) ∇r en dx.
Since r en ∈ H 1 0 (K n ∪ K ′ n ), we can apply the definition of the H -1 (K n ∪ K ′ n ) norm; we apply the Cauchy-Schwarz inequality, we use the properties 5.1 and 5.2, we multiply by h 1/2 en and simplify by ∥ α[∇C n h • n] en ∥ 0,en to get

h 1/2 en ∥ α[∇C n h • n] en ∥ 0,en ≤ c 4 h en ∥ g n - 1 τ n (C n h -C n-1 h ) + α∆C n h -u n h • ∇C n h - 1 2 div (u n h )C n h + r 0 C n h ∥ 0,κn∪κ ′ n ∥ ∂ ∂t (C(t) -C h )(t) + u • ∇C -u n h • ∇C n h - 1 2 div (u n h )C n h + r 0 (C -C n h ) ∥ H -1 (κn∪κ ′ n ) + ∥ g(t) -g n ∥ L 2 (κn∪κ ′ n ) + ∥ C(t) -C n h ∥ H 1 (κn∪κ ′ n )
.

(5.86)

We can bound the first term of the right hand side of (5.86), using (5.84) and the fact that 

h en τ n ∥ α[∇C n h • n] en ∥ 2 0,en ≤ c 5 ∥ ∂ ∂t (C -C h )(t) + u • ∇C -u n h • ∇C n h - 1 2 div (u n h )C n h + r 0 (C -C n h ) ∥ 2 L 2 (tn-1,tn;H -1 (κn∪κ ′ n )) +h 2 en ∥ g -g n ∥ 2 L 2 (tn-1,tn;L 2 (κn∪κ ′ n )) +τ n h 2 en ∥ g n -g n h ∥ 2 0,κn∪κ ′ n + ∥ C -C n h ∥ 2 L 2 (tn-1,tn;H 1 (κn∪κ ′ n ))
.

(5.87) Regrouping (5.85) and (5.87), we get the desired result. □

We still have to bound the indicators of velocity η τ u,n,κn and η h u,n,κn .

Theorem 5.26. For all n ∈ {1, • • • , N }, we have the following estimation:

(η τ u,n,κn ) 2 ≤ c ∥ u -u h ∥ 2 L 2 (tn-1,tn;H 1 (κn) 2 ) + ∥ u -π τ u h ∥ 2 L 2 (tn-1,tn;H 1 (κn) 2 )
, where c is a positive constant independent of the time and space steps.

For the proof, we just have to follow the proof of theorem 5.24.

Theorem 5.27. Let ∇u ∈ L ∞ (0, T ; L ∞ (Ω) 2×2 ), we have for all n ∈ {1, • • • , N }:

τ n (η h u,n,κn ) 2 ≤ c ∥ ∂ ∂t (u -u h ) + u • ∇u -u n-1 h • ∇u n h - 1 2 div (u n-1 h )u n h + ∇(p -p h ) ∥ 2 L 2 (tn-1,tn;H -1 (∆κn) 2 ) + ∥ C -C h ∥ L 2 (tn-1,tn;H 1 (∆κn)) + τ n ∥ C n h -C n-1 h ∥ 2 H 1 (∆κn) + ∥ u -u h ∥ 2 L 2 (tn-1,tn;H 1 (∆κn)) + ∥ u n h -u ∥ 2 L 2 (tn-1,tn;H 1 (∆κn)) + ∥ ν h (C) -ν C (C) ∥ 2 L 2 (tn-1,tn;L 2 (∆κn)) +h 2 κn ∥ f 0 -π τ f 0 ∥ 2 L 2 (tn-1,tn;L 2 (∆κn)) +h 2 κn ∥ f n (C) -f n h (C) ∥ 2 L 2 (tn-1,tn;L 2 (∆κn)) 2 .
(5.88) where c is a positive constant independent of the time and mesh steps.

Proof. Based on the first equality of system (5.9) in Lemma 5.4, we use 5.10 and we insert the terms

(f n h (C n-1 h ), v), 2(ν h (C(t))D(u), D(v)), and 2(ν h (C n-1 h )D(u), D(v)) to get: Ω ∂ ∂t (u -u h )(t) + u(t) • ∇u(t) - 1 2 div (u n-1 h )u n h -u n-1 h • ∇u n h • v dx - Ω div v(t)(p(t) -p h (t)) dx + ν 0 Ω ∇(u(t) -u n h ) : ∇v dx + 2 Ω ν h (C n-1 h )D(u(t) -u n h ) : D(v) dx +2 Ω (ν C (C(t)) -ν h (C(t))D(u) : D(v) dx + 2 Ω (ν h (C(t)) -ν h (C n-1 h ))D(u) : D(v) dx - Ω (f (t, C(t)) -f n (C n-1 h )) • v dx - Ω (f n (C n-1 h ) -f n h (C n-1 h )) • v dx = κn∈T nh κn (f n h (C n-1 h ) - 1 τ n (u n h -u n-1 h ) + ν 0 ∆u n h + ∇ • (2ν h (C n-1 h )D(u n h )) -u n-1 h • ∇u n h - 1 2 div (u n-1 h )u n h -∇p n h )) • v dx - 1 2 en∈εκn en [(ν 0 ∇u n h + 2ν h (C n-1 h )D(u n h ) -p n h )(σ)n] • v(σ)dσ .
(5.89) We take v = v κn such that

v κn =          ((f n h (C n-1 h ) - 1 τ n (u n h -u n-1 h ) + ν 0 ∆u n h + ∇ • (2ν h (C n-1 h )D(u n h )) -u n-1 h • ∇u n h - 1 2 div (u n-1 h )u n h -∇p n h )(x))ψ κn on κ n , 0 on Ω\κ n .
Then we get:

κn f n h (C n-1 h ) - 1 τ n (u n h -u n-1 h ) + ν 0 ∆u n h + ∇ • (2ν h (C n-1 h )D(u n h )) -u n-1 h • ∇u n h - 1 2 div (u n-1 h )u n h -∇p n h 2 ψ κn dx = κn ∂ ∂t (u -u h )(t) + u(t) • ∇u(t) -u n-1 h .∇u n h - 1 2 div (u n-1 h )u n h + ∇(p(t) -p h (t)) • v κn dx +ν 0 κn ∇(u(t) -u n h ) : ∇v κn dx + κn 2ν h (C n-1 h )D(u(t) -u n h ) : D(v κn ) dx + κn 2(ν C (C(t)) -ν h (C(t)))D(u) : D(v κn ) dx + κn 2(ν h (C(t)) -ν h (C n-1 h ))D(u) : D(v κn ) dx - κn (f (t, C(t)) -f n (C n-1 h )) • v κn dx - κn (f n (C n-1 h ) -f n h (C n-1 h )) • v κn dx.
(5.90) Since v κn ∈ H 1 0 (K n ) 2 , we can apply the definition of the H -1 (κ n ) 2 norm. We denote by I i , i = 0, . . . , 6 the terms in the right-hand side of equality (5.90). The first three terms can easily be bounded by using the properties of ν h and the Cauchy-Schwarz inequality and we get

|I 0 + I 1 + I 2 | ≤ c 1 ∥ ∂ ∂t (u -u h )(t) + u(t) • ∇u(t) -u n-1 h • ∇u n h - 1 2 div (u n-1 h )u n h + ∇(p(t) -p h (t)) ∥ H -1 (κn) 2 + ∥ u -u n h ∥ H 1 (κn) 2 ∥ v κn ∥ H 1 (κn) 2
Let us now bound I 3 . We apply the Cauchy-Schwarz inequality by considering ∇u ∈ L ∞ (0, T ; L ∞ (Ω) 2×2 ). Thus we get:

|I 3 | ≤ 2 ∥ ν C (C(t)) -ν h (C(t)) ∥ L 2 (κn) ∥ D(u(t)) ∥ L ∞ (0,T ;L ∞ (Ω) 2×2 ) ∥ v κn ∥ H 1 (κn) 2 ≤ c 2 ∥ ν C (C(t)) -ν h (C(t)) ∥ L 2 (κn) ∥ v κn ∥ H 1 (κn) 2 .
As ν h is Lipschitz, and ∇u ∈ L ∞ (0, T ; L ∞ (Ω) 2×2 ), we apply the Cauchy-Schwarz inequality and we insert C h (t) to get :

|I 4 | ≤ c 5 ∥ C(t) -C n-1 h ∥ L 2 (κn) ∥ D(u) ∥ L ∞ (0,T ;L ∞ (Ω) 2×2 ) ∥ v κn ∥ H 1 (κn) 2 ≤ c 6 ∥ C(t) -C h (t) ∥ H 1 (κn) + ∥ C n h -C n-1 h ∥ H 1 (κn) ∥ v κn ∥ H 1 (κn) 2 .
For the Term I 5 , we insert f (C h (t)), use the definition and the properties of f (assumption 2.4) and apply the Cauchy-Schwarz inequality to obtain

|I 5 | ≤ c 7 ∥ f 0 (t) -f 0 (t n ) ∥ L 2 (κn) 2 + ∥ C(t) -C h (t) ∥ L 2 (κn) + ∥ C n h -C n-1 h ∥ L 2 (κn) ∥ v κn ∥ L 2 (κn) 2 .
We still have to bound the term I 6 . We insert f n (C(t)) and f n h (C(t)) and we use the Cauchy-Schwarz inequality to get:

|I 6 | ≤ c 8 ∥ f n h (C n-1 h ) -f n h (C(t)) ∥ L 2 (κn) 2 + ∥ f n h (C(t)) -f n (C(t)) ∥ L 2 (κn) 2 + ∥ f n (C(t)) -f n (C n-1 h ) ∥ L 2 (κn) 2 ∥ v κn ∥ L 2 (κn) 2 .
By using the properties of f n and f n h and then inserting C h (t) in the first and third term in the right-hand side of the above bound, we obtain:

|I 6 | ≤ c 9 ∥ C n h -C n-1 h ∥ L 2 (κn) 2 + ∥ f n h (C(t)) -f n (C(t)) ∥ L 2 (κn) 2 + ∥ C(t) -C h (t) ∥ L 2 (κn) 2 ∥ v κn ∥ L 2 (κn) 2 .
Thus, we consider Equation (5.90), gather the above bounds corresponding to I i , i = 0, . . . , 6, use the Cauchy-Schwarz inequality and properties 5.1 and 5.2, multiply by h 2 κn and integrate between t n-1 and t n to have the following inequality:

τ n h 2 κn ∥ f n (C n-1 h ) - 1 τ n (u n h -u n-1 h ) + ν 0 ∆u n h + ∇ • (2ν h (C n-1 h )D(u n h )) -u n-1 h • ∇u n h - 1 2 div (u n-1 h )u n h -∇p n h ∥ 2 0,κn ≤ c 10 ∥ ∂ ∂t (u -u h ) + (u • ∇u -u n-1 h • ∇u n h - 1 2 div (u n-1 h )u n h + ∇(p -p h ) ∥ 2 L 2 (tn-1,tn;H -1 (κn)) + ∥ C -C h ∥ 2 L 2 (tn-1,tn;H 1 (κn)) +τ n ∥ C n h -C n-1 h ∥ 2 H 1 (κn) + ∥ u n h -u ∥ 2 L 2 (tn-1,tn;H 1 (κn)) + ∥ ν h (C) -ν C (C) ∥ 2 L 2 (tn-1,tn;L 2 (κn)) +h 2 κn ∥ f 0 -π τ f 0 ∥ 2 L 2 (tn-1,tn;L 2 (κn)) +h 2 κn ∥ f n h (C) -f n (C) ∥ 2 L 2 (tn-1,tn;L 2 (κn))
,

(5.91) This last inequality constitutes the bound of the first term of the indicator η h u,n,κn . Let us now bound the second one. We consider an element κ n ∈ T nh and e n ⊂ ∂κ n ∩ Γ i h ; we denote by κ ′ n the other cell of the mesh that shares e n and we consider Equation (5.89) with v = v en such that

v en = L en ([(ν 0 ∇u n h + 2ν h (C n-1 h )D(u n h ) -p n h ) n] en ψ en ) on κ n ∪ κ ′ n , 0 on Ω\(κ n ∪ κ ′ n ).
We obtain, 

- en [(ν 0 ∇u n h + 2ν h (C n-1 h )D(u n h ) -p n h )n] 2 en ψ en ds = κn∪κ ′ n ∂ ∂t (u -u h )(t) + u(t) • ∇u(t) - 1 2 div (u n-1 h )u n h -u n-1 h • ∇u n h + ∇(p -p h )(t) • v en dx + κn∪κ ′ n ν 0 ∇(u(t) -u n h ) : ∇v en dx + κn∪κ ′ n 2(ν h (C n-1 h )D(u(t) -u n h )) : D(v en ) dx + κn∪κ ′ n 2(ν C (C(t)) -ν h (C(t)))D(u) : D(v en ) dx + κn∪κ ′ n 2(ν h (C h (t)) -ν h (C n-1 h ))D(u) : D(v en ) dx - κn∪κ ′ n (f (t, C(t)) -f n (C n-1 h )) • v en dx - κn∪κ ′ n (f n (C n-1 h ) -f n h (C n-1 h )) • v en dx - κn∪κ ′ n (f n h (C n-1 h ) - 1 τ n (u n h -u n-1 h ) + ν 0 ∆u n h +∇ • (2ν h (C n-1 h )D(u n h )) -u n-1 h • ∇u n h - 1 2 div (u n-1 h )u n h -∇p n h ) • v en dx. ( 5 
τ n h en ∥ [(ν 0 ∇u n h + 2ν h (C n-1 h )D(u n h ) -p n h )n] en ∥ 2 0,en ≤ c 11 ∥ ∂ ∂t (u -u h ) + u • ∇u -u n-1 h • ∇u n h - 1 2 div (u n-1 h )u n h + ∇(p -p h ) ∥ 2 L 2 (tn-1,tn;H -1 (κn∪κ ′ n )) + ∥ C -C h ∥ 2 L 2 (tn-1,tn;H 1 (κn∪κ ′ n )) +τ n ∥ C n h -C n-1 h ∥ 2 H 1 (κn∪κ ′ n ) + ∥ u n h -u ∥ 2 L 2 (tn-1,tn;H 1 (κn∪κ ′ n )) + ∥ ν h (C) -ν C (C) ∥ 2 L 2 (tn-1,tn;L 2 (κn∪κ ′ n )) + h 2 en ∥ f 0 -f 0 (t n ) ∥ 2 L 2 (tn-1,tn;L 2 (κn∪κ ′ n )) + h 2 en ∥ f n (C) -f n h (C) ∥ 2 L 2 (tn-1,tn;L 2 (κn∪κ ′ n ))
.

(5.93) We finish this proof by bounding the last term of (η h u,n,κn ) 2 . By using the impressibility condition div (u) = 0 we get

∥ div u h (t) ∥ L 2 (κn) ≤ ∥ div (u(t) -u h (t)) ∥ L 2 (κn) .
We integrate between t n-1 and t n , and we use Relation (5.60) with the term (div (u

h (t n ))) instead of the term (u τ (t n ) -u h (t n )) to get: τ n 3 ∥ div u n h ∥ 0,κn ≤ ∥ div u h ∥ L 2 (tn-1,tn;L 2 (κn)) ≤ ∥ div (u -u h ) ∥ L 2 (tn-1,tn;L 2 (κn)) ≤ ∥ u -u h ∥ L 2 (tn-1,tn;H 1 (κn)) .
(5.94) Gathering (5.91), (5.93) and (5.94), and the fact that h en ≤ h κn , we obtain the desired result. □

Each indicator is now bounded by the error between the exact and the numerical solutions; the lower bound of the error is thus obtained done. This establishes the complete equivalence between the a posteriori error estimators and the error.

Numerical Results

In this last section, to validate the results proved in this paper, we use numerical simulations performed with Freefem++ [START_REF] Hecht | New development in FreeFem++[END_REF]. We treat two different cases. We first study an academic case where the exact solution is known; in a second step, we move on to a more realistic case.

6.1. The Academic case. We consider a square domain Ω, where each edge is initially divided into N segments of equal length.

Firstly, we define the following relative total error between the exact and numerical solutions:

err = N n=1 τ n |u n h -u(t n )| 2 H 1 (Ω) 2 + N n=1 τ n ||p n h -p(t n )|| 2 L 2 (Ω) + N n=1 τ n |C n h -C(t n )| 2 H 1 (Ω) N n=1 τ n |u(t n )| 2 H 1 (Ω) 2 + ||p(t n )|| 2 L 2 (Ω) + |C(t n )| 2 H 1 (Ω) 1/2
, where (u, p, C) is the solution of Problem (1.1) and (u n h , p n h , C n h ) is the solution of Problem (Eds1). As far as the velocity and concentration variables are concerned, this is a (relative) discrete version of the L 2 (0, T, H 1 0 (Ω)) norms that are involved in definitions 5.7 and 5.8. As far as the pressure error is concerned, the discrete inf-sup condition 4.4 very classically allows to bound the L 2 pressure error by the velocity H 1 0 error. So, the denominator of this error is contained in the left-hand side of Corollary 5.22. We use the a posteriori error estimates given by this corollary to show numerical results based on mesh adaptation. For this objective, we introduce the relative time indicator, defined by

E τu = N n=0 (η τ u,n ) 2 D 1/2 and E τc = N n=0 (η τ c,n ) 2 D 1/2 , with (η τ u,n ) 2 = κn∈T nh η τ u,n,κn 2 , (η τ c,n ) 2 = κn∈T nh η τ c,n,κn 2 
, and

D = N n=1 τ n |u n h | 2 H 1 (Ω) 2 + ||p n h || 2 L 2 (Ω) + |C n h | 2 H 1 (Ω) .
We alse introduce the relative space indicators, defined by

E hu = N n=0 τ n (η h u,n ) 2 D 1/2 and E hc = N n=0 τ n (η h c,n ) 2 D 1/2 , with (η h u,n ) 2 = κn∈T nh η h u,n,κn 2 and (η h c,n ) 2 = κn∈T nh η h c,n,κn 2 
, and we denote E tot = E τu + E τc + E hu + E hc . We consider the case where the exact solution of (1.1) is given by (u ex , p ex , C ex ) = (rot ψ, p ex , C ex ), where ψ(x, y, t) = x 2 (x -1) 2 y 2 (y -1) 2 sin(t), p ex (x, y, t) = (t + 1) cos(πx) cos(πy), C ex (x, y, t) = -t e -100((x-0.3-0.3t) 2 +(y-0.3) 2 ) . Thereby, we can compare the exact and numerical solutions by computing the corresponding error. We consider Ω = [0, 1] 2 , T = 1, α = 1, r 0 = 1, ν 0 = 0.5 and ν C (C) = 0.2 sin(C) + 0.5. First, we consider the adaptive algorithm with an initial time step τ = 1 N and an initial mesh corresponding to N = 20.

Starting by u 0 h = u 0 = 0 and C 0 h = C 0 = 0, we used the algorithm below.

Algorithm:

( (2) If the error E tot is less than a fixed tolerance, we move on to the next time step (n → n + 1) and we go to step (1) with a larger time step when E tot is lower than 90% of the fixed tolerance.

Otherwise we need to adapt either the mesh or the time step and therefore we move to step (3).

(3) We are in one of these two situations:

(a) if the error in space E hu + E hc is less than the error in time E τu + E τc , we adapt the time step by replacing τ n by τ n 2 and start over from step (1) without moving to the next time step. (b) if the error in time is smaller than the error in space, we adapt the mesh according to the local error indicators and repeat from step (1) without moving to the next time step.

More precisely, concerning the mesh refinement, we use the "ReMeshIndicator" macro provided by FreeFem++ [24, Section 5.1.9]; this typically provides the meshing tool with an indication that, in the new adapted mesh, the mesh step of the current mesh should be locally (around a given cell κ) divided by the ratio

η h c,κ +η h u,κ ⟨η h ⟩
, where ⟨η h ⟩ is the mean value of the space error indicators over the mesh.

Moreover, when the mesh is modified, FreeFem++ interpolates the previous finite elements functions u n-1 h and C n-1 h on the quadrature points of the new mesh and use these values to evaluate integrals that are needed on the new mesh, both in the discrete system (Eds1) and in the evaluation of the error indicators (5.16)- (5.19). In practice, this results in the fact that in the time step that follows a mesh adaptation, the time estimators (5.16) and (5.17) are twice to three times larger than they usually are. According to our adaptation algorithm, this leads to a reduction of the time step after each mesh adaptation, by a factor 2 or 4. Note that solving (Eds1) with a small time step results in the definition of a new velocity field that is (up to terms of size τ n ) the L 2 projection on the new mesh of the previous velocity field, constrained by the weak divergence free condition on the new mesh. Figures 1 to 4, show the evolution of the mesh during the time steps. In figure 5 (respectively in figure 6), we compare the relative total error (respectively the global indicators E tot ) with respect to the total number of space-time unknowns in logarithmic scale, for both uniform and adaptive numerical algorithms. Both figures clearly show the advantage of the adaptive method versus the uniform method, since the errors corresponding to the adaptive method are several times smaller than those corresponding to the uniform method for a given number of space-time unknowns. We stress that these graphs can also be read horizontally rather than vertically: for example, in order to reach a total relative error of 10 -1 , the adaptive strategy requires around 10 4 space-time unknowns, while around 3 × 10 5 are needed on uniform meshes. This factor 30 in the number of unknowns results in a huge speed-up in the adaptive simulations for a given targeted accuracy. 

τ n |u n h -u(t n )| 2 H 1 (Ω) 2 + ||p n h -p(t n )|| 2 L 2 (Ω) + |C n h -C(t n )| 2 H 1 (Ω)       1/2 .
In Table 1, we can see the value of the efficiency index for different values of space-time unknowns (STU) for the adaptive mesh. We can notice that the efficiency index varies between 7.67 and 9.09. 1. Efficiency index with respect to the total number of space-time unknowns.

STU
In Table 2, we can also see the value of the efficiency index for different values of STU but for the uniform mesh. We can notice that the efficiency index varies around 5.

STU 16 000 54 000 128 000 250 000 EI 5.79 5.82 5.83 5.82

Table 2. Efficiency index with respect to the total number of space-time unknowns.

6.2.

A more realistic case. Let us introduce a more realistic test case. Here the unknown C(t) represents the variation of the temperature at a time t in the domain assumed to be here the L-shaped vertical section of a room with two different roof heights. We suppose that the initial temperature is uniformly equal to C 0 = 290K (around 16 • C). We also suppose that this room is heated by a heater (BDEF ) placed at the bottom of the domain as shown in Figure 7 where AB Furthermore, the heat source term is chosen low enough so that the flow remains below a turbulent regime; it is given by g = 10 -3 in the heater BDEF, 0 elsewhere. Finally, on the boundary ∂Ω, we use Robin boundary conditions with a Robin coefficient equal to 10 -6 , in order to modelize low heat losses.

We start the simulation with a uniform mesh. The adaptive process generates meshes that follow well the velocity and the temperature variation over time. Figures 8,9, 10 display the meshes, the velocity norms and the temperature variations at the different times t = 50, t = 150, t = 200; figures 11 and 12 for t = 600 and t = 1200 do not display the meshes because of the high density of cells.

In figure 13, we compare the global indicators E tot with respect to the total number of space-time unknowns in logarithmic scale, for both uniform and adaptive numerical algorithms. The figures show the advantage of the adaptive method versus the uniform method, since the errors corresponding to the adaptive method are smaller than those corresponding to the uniform method. The adaptive strategy requires around 2 to 3 times fewer space-time unknowns than the uniform strategy in order to reach a given error indicator, which results in a significant speed-up in the simulations. 

Conclusion

In this work, we have derived a posteriori error estimates for the time dependent Navier-Stokes system coupled with the convection-diffusion-reaction equation. We started by introducing a variational formulation that we discretized in time using the semi-implicit Euler method and in space using the "P1 bubble / P1 / P1" finite element method. Then we established an a posteriori error estimate between the exact solution of our problem and the numerical solution, where we introduced an auxiliary problem to establish the velocity error estimate. In order to show the equivalence between the error and the indicators, we first bounded the velocity and the concentration errors by a sum, over the mesh and over the time steps, of indicators that are local in time and in space; then we bounded each of these indicators using the local error. Finally, based on our theoretical results and using the FreeFem++ software, we developed an adaptive algorithm monitors the mesh and time step refinement and leads to more accurate results than an algorithm based on uniform mesh and time step refinement.

A further step in our work would be to establish the same kind of error estimate for this same problem when the diffusion coefficient α in the convection diffusion reaction equation also depends on the concentration.

L.

  r (a, b; W ) = f is measurable on ]a, b[ andba ∥ f (t) ∥ r W dt < ∞ , equipped with the norm ∥ f ∥ L r (a,b;W ) = If r = ∞, then L ∞ (a, b; W ) = f is measurable on ]a, b[ and sup t∈[a,b] ∥ f (t) ∥ W < ∞ , equipped with the norm ∥ f ∥ L ∞ (a,b;W ) = sup t∈[a,b]

Theorem 5 . 20 .

 520 Under assumption of Theorem 5.7, the exact solution C of Problem (1.1) and the solution C h of Problem (Eds1), for 1 ≤ n ≤ m with m ∈ {1, • • • , N }, satisfy the following estimation:

5 . 3 .

 53 5.19 and inequalities (5.72) and (5.73), in which the error terms ∥ C -C h ∥ 2 L 2 (0,tm;Y ) and ∥ uu h ∥ 2 L 2 (0,tm;X) are themselves bounded by Theorem 5.19. □ Thereby, we bounded the error between the exact solution (u, p, C) of problem (1.1) and the numerical solution (u h , p h , C h ) of problem (Eds1) using the indicators. Let us now move on to the last stage of the a posteriori error estimation, namely the lower bounds, which prove efficiency of the error indicators. Lower bounds of the error. To complete the a posteriori estimation, we establish the efficiency of the error indicators, which consists in bounding each indicator η τ u,n,κn , η h u,n,κn , η τ c,n,κn and η h c,n,κn
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 16 BD = 0.4, BF = 0.8, F G = 1.6, GH = 2.5, HI = 2, IJ = 1, JK = 2 and KA = 3.5.

Figure 7 .

 7 Figure 7. The domain

Figure 8 .

 8 Figure 8. Mesh (left), numerical temperature (centre) and numerical velocity (right) at t = 50.

Figure 9 .

 9 Figure 9. Mesh (left), numerical temperature (centre) and numerical velocity (right) at t = 150.

Figure 10 .

 10 Figure 10. Mesh (left), numerical temperature (centre) and numerical velocity (right) at t = 200.

Figure 11 .

 11 Figure 11. Numerical temperature (left) and numerical velocity (right) at t = 600.
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 12 Figure 12. Numerical temperature (left) and numerical velocity (right) at t = 1200.
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 13 Figure 13. Total indicators Etot.

  Now that we have established Lemmas 5.11, 5.13 and 5.14, we use them to get Theorem 5.15 which, with Lemma 5.16, prove Corollary 5.17, the final estimate between u τ and u h . Theorem 5.15. Let h n ≤ c s τ n , ∀n ∈ {1, . . . , N }, where c s is a positive constant independent of n. The following a posteriori error holds between u m and u m h :

		.53)
	Finally, relations (5.49) and (5.53) give the result.	□

  By squaring the previous inequality, integrating over t from between t n-1 and t n , we can bound the second term of the indicator η h c,n,κn as follows:

	he n hκ n	and	he n h κ ′

n are bounded by 1.

  .92) We follow the same steps as in the case of the first term of (η h u,n,κn ) 2 . Using (5.91) and the fact that

		he n
		hκ n
	and	he n h κ ′

n are bounded by 1, we get:
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