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In this paper, we present an approach which relies on the use of random noises to

generate adversarial examples of deep neural network classifiers. We argue that existing
deterministic attacks, which perform by sequentially applying maximal perturbations

on selected components of the input, fail at reaching accurate adversarial examples on

real-world large scale datasets. By exploiting a simple Taylor expansion of the expected
output probability under the noise perturbation, we introduce noise-based sparse (or L0)

targeted and untargeted attacks. Our proposed method, called Voting Folded Gaussian

Attack (VFGA), achieves significantly better L0 scores than state-of-the-art L0 attacks
(such as SparseFool and Sparse-RS) while being faster on both CIFAR-10 and ImageNet.

Moreover, we show that VFGA is also applicable as an L∞ attack and outperforms the

state-of-the-art projected gradient attack (PGD) method.

Keywords: deep neural network classifiers, adversarial attacks, adversarial examples.

1. Introduction

The study of adversarial examples in machine learning has been pushed by the

desire to boost the performance of deep neural networks and their use in critical

applications. Most of the works related to adversarial examples have been around

three categories of attacks according to the minimised distance between original

and adversarial samples: L2 (squared error) 28,21,4, L∞ (max-norm) 11,19,15 and L0

(or sparse) 22,4 attacks (minimising the number of modified components).

Given a neural network classifier (NNC) F : Rn → Rp, the predicted label for an

input x is label(x) = argmaxkFk(x), where F1, · · · , Fp are the class probabilities of

F . We recall that an adversarial example to x is an item x∗ such that label(x∗) ̸=
label(x) (untargeted attack), or such that label(x∗) = c, with c ̸= label(x) a specific

class (targeted attack). In this paper, we mostly discuss L0 (or sparse) attacks and

L∞ ones.

Sparse perturbations can be encountered in many situations and have been mo-

tivated in many works 4,22,20,2,1,5,8,7,10. For instance, they could correspond to some

1
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raindrops on traffic signs that are sufficient to fool an autonomous driver 20. Un-

derstanding these special alterations is important to mitigate their effects and take

a step forward trusting neural networks in real-life.

In this work, we aim at presenting a general probabilistic approach to gener-

ate L0 attacks that rely on random noises; called throughout the paper stochastic

sparse adversarial attacks (SSAA). We argue that existing deterministic attacks

named XSMA (JSMA 22, WJSMA, TJSMA 5), which perform by sequentially ap-

plying maximal perturbations on selected components of the input, fail at reaching

accurate adversarial examples on real-world large scale datasets.
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Fig. 1: Plots of the initial and targeted class probabilities for a one pixel version

of XSMA on the left failing to converge along more than 3,000 iterations and our

VFGA10 method converging efficiently in less than 400 iterations on the right.

Figure 1 (left) illustrates this failure on the ImageNet dataset 25 for a one-

component version of the targeted XSMA which does not succeed to affect the initial

probability of the input on the Inception-v3 network 27. On the other hand, working

with more than one component at a time, while more accurate, does not scale at

all on datasets as ImageNet 4. An alternative would be to repeatedly apply very

small perturbations on components, but this would be at the cost of efficiency. These

issues, well-known for the XSMA, are completely solved by SSAA through sampling

from noise near the most salient component while keeping the same general iterative

process followed by the XSMA. Experimental results on large scale datasets, as

depicted on the same example as the failure case of XSMA in Figure 1 (on the

right), show that our SSAA approaches (denoted VFGA10) succeed at efficiently

producing accurate attacks in most cases.

The rest of the paper is organised as follows:

In Section 2, we introduce our best methods of SSAA called scalable SSAA.

These attacks are gradient-based and scale efficiently to large datasets.

In Sections 3 and 4, we experiment scalable SSAA on deep NNC on CIFAR-

10 14 and ImageNet 25 and compare their performances with the-state-of-the-art

methods SparseFool 20, GreedyFool 10, Brendel & Bethge L0 attack (B&B) 3 and
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Sparse-RS 7. Experimental results show that our method called VFGA outperforms

SparseFool while being faster. Furthermore, VFGA achieves better L0 scores than

Sparse-RS in most cases and in all cases on ImageNet; when both attacks are fully

successful. Moreover, VFGA is significantly less complex than B&B and GreedyFool

and achieves competitive results in many cases.

In Section 5, we introduce more examples of SSAA. These attacks are Hessian-

based and so not scalable to ImageNet. However, they can be used as efficient

methods on small datasets. We illustrate their usefulness through some experiments

on MNIST 17.

In Section 6, we give two theoretical results on the expected logits of a ReLU-

NNC under a one component perturbation by a Gaussian or Folded Gaussian noise.

These results shed some light on the interpretation of the effect of a single pixel

perturbation by Gaussian or folded Gaussian noise on the decision of the neural

network.

In Section 7, we introduce L∞ versions of SSAA and compare the L∞ version

of VFGA with the well-known projected gradient descent attack (PGD) baseline 19

on CIFAR-10. Results show the superiority of VFGA over PGD.

Finally, a nice property of SSAA is that they can be combined together in a

single attack. While this combination is done only through VFGA (which combines

two noises) in the present paper, we expect that the combination of more noises can

significantly boost the performance of SSAA in both the L0 and L∞ version. This

point will be discussed in the last Section 8.

2. Scalable stochastic sparse adversarial attacks (SSSAA)

In what follows, we introduce SSSAA by sampling from particular random noises on

selected components of the input. To simplify, we mainly discuss targeted attacks

and then deduce untargeted ones by applying slight modifications. The aim herein

is to iteratively identify the best component to perturb and the best move for this

component until the target label becomes the most probable for the NNC.

First, consider a Gaussian noise Xθ ∼ N (0, θ) and denote by (e1, · · · , en) the

basis of Rn. Any c-targeted probability expectation of the perturbed input x+Xθei
can be expanded as follows:

E[Fc(x+Xθei)] = Fc(x) + θ(GiFc)(x) + ... (1)

where GiFc =
1

2

∂2Fc

∂x2
i

is the infinitesimal generator of Xθ seen as a diffusion.

When taking the folded Gaussian noise Xθ ∼ |N (0, θ)|, this expansion becomes:

E[Fc(x+Xθei)] = Fc(x) +

√
2θ

π

∂Fc

∂xi
(x) + θ(GiFc)(x) + ... (2)

For any given noise Yθ, we build our reasoning upon a heuristic which is to look

for the input feature i that maximises E[Fc(x+Yθei)]. The assumption behind this
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heuristic is that searching for the best expectation will allow to discover the best

moves according to the distribution of the noise Yθ.

As a first remark, notice that the Gaussian noise Xθ ∼ N (0, θ) is not a good

candidate since it requires computing second derivatives of the NNC and moreover

the approximations E[Fc(x+Xθei)] ≈ Fc(x)+ θ(GiFc)(x) and V ar[Fc(x+Xθei)] ≈

θ

(
∂Fc

∂xi

)2

(x) are of the same order as θ, indicating that variance should be taken

into account in selecting the best components to perturb. For these reasons, we do

not discuss the Gaussian noise in this section and postpone its study to Section 5.

On the other hand, considering the folded Gaussian noise, the approximation

E[Fc(x + Xθei)] ≈ Fc(x) +

√
2θ

π

∂Fc

∂xi
(x) induces a negligible variance (only terms

of θp with p ≥ 1) in front of the expectation, at least when |θ| < 1 and allows us

to only focus on the expected probability of the perturbed input. Note also that

the approximation of the expected probability only contains first derivatives w.r.t.

to the input component which is a practical advantage of the folded over the pure

Gaussian noise.

Taking a folded noise has another important advantage for bounded inputs.

Please note that, without loss of generality, we consider inputs bounded in [0, 1] in

this paper, as well as the adversarial samples which share the same support domain.

In the following, we propose to automatically tune the variance parameter θ of Xθ

according to the distance of the input xi to these bounds. Please note that, for a

given component i, xi ̸= 0.5, the possible amplitude of move is not the same in both

directions. Considering a Gaussian noise, since symmetric, would be problematic for

this θ tuning. Rather, considering two folded Gaussian noises for each component,

one positive (only for component increase) and one negative (only for component

decrease) allows better fitted selections.

Next, we present a one-sided, only increasing perturbations, stochastic attack

based on the folded Gaussian noise called FGA. Then, we introduce, in the same

way another attack that relies on the uniform noise called UA. Finally, we deduce a

simple both-sides attack, that considers the best choice between the increasing and

decreasing FGA at each selected component, called Voting Folded Gaussian Attack

(VFGA).

2.1. Folded Gaussian Attack (FGA)

For our one-side targeted attack FGA, the most relevant input feature to perturb is

thus selected by the rule i = argmax
j

√
θj

∂Fc

∂xj
, considering a folded Gaussian noise

|N (0, θi)|.

Choosing the variance θi. Since FGA only considers positive perturbations of the

input, fixing the variance θi must consider the upper-bound of the input domain. A

quite natural choice could be either θi = 1− xi (variance = 1− xi) or
√
θi = 1− xi
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(standard deviation = 1− xi). We choose
√
θi = 1− xi to ensure that a generated

perturbation xi+Ni to xi has probability 2/3 to be inside the interval [xi, 1] (before

clipping to [0, 1]) which is a more motivated choice. Our experimental results (not

reported in this paper) show that this choice gives slightly more effective attacks

than the second one.

After selecting the input feature i, our proposal is to simulate NS samples from

|N (0, θi)| to find an accurate move towards a close adversarial sample. The com-

plete process is depicted in Algorithm 1 introducing the increasing FGA (and the

decreasing FGA by analogy).

Algorithm 1 (Increasing) Folded Gaussian Attack (FGA)

Inputs: x: input to the NNC of label l, c ̸= l: targeted class, NS : number of samples

to generate at each iteration, maxIter: maximum number of iterations.

Output: x̃: adversarial sample to x.

1 Initilialise x̃← x, Γ← {1, · · · ,dim(x)} \ {i : x̃i = 1}, iter← 0.

2 while Γ ̸= ∅, label(x̃) ̸= c and iter < maxIter do

3 i0 = argmax
i∈Γ

(1− x̃i)
∂Fc

∂xi
(x̃).

4 Generate samples
(
Sh

)
1≤h≤NS

from |N (0, θi0)| where
√
θi0 := 1− x̃i0 .

5 for h ∈ [[1, NS ]] do

6 Define the input ỹ h by{
ỹ h
j ← Clip[0,1]

(
x̃j + Sh

)
if j = i0

ỹ h
j = x̃j otherwise.

7 Batch compute Fc

(
ỹ h ; h ∈ [[1, NS ]]

)
.

8 x̃← argmax
ỹ h

Fc

(
ỹ h

)
, Γ← Γ \ {i0}

iter← iter+ 1.

9 return x̃

Choosing NS. The main hyperparameter in Algorithm 1 is the number NS . Given

the way it is defined, one can expect that increasing NS will increase, up to satu-

ration, the effectiveness of the attacks. This may, however, slow down their speeds.

Thanks to batch computing, with sufficient memory, Step 8 can be performed at the

cost of NS = 1 and (reasonably) augmenting NS can make Algorithm 1 converge

faster as less iterations would be needed. In most of our experiments, we fix this

number to NS = 10 but also address some comparisons with NS = 20, 100. We refer

to the analysis of the experimental results for more discussions related to this point.

Finally, we notice that batch computing used here does not often require a parallel
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computing effort by the user as this option is available in standard libraries.

The previous attack only applies perturbations that increase the input. Lowering

the input features intensities can be as effective as increasing them. Following the

same analogy, we introduce the decreasing FGA attack by taking
√
θi = xi rather

than
√
θi = 1−xi and replacing |N (0, θi)| with−|N (0, θi)| in the previous algorithm.

Note that FGA and XSMA are one sided attacks but XSMA apply predefined

maximal perturbations and FGA explores in real time best perturbations to apply.

2.2. Uniform Attack (UA)

The UA can be introduced in the same way as FGA by sampling from the uniform

noise. It follows the lines of Algorithm 1 (in its untargeted form), but Step 3 is

replaced with i0 = argmin
i∈Γ

(1 − xi)
∂Fc

∂xi
(x) and sampling in Step 4 is done from

U([0, θi]), θi = 1− xi.

2.3. Voting attacks (VA)

In this section, we propose a two-sided attack, which both considers E[Fc(x +

|Xθ+
i
| ei)] and E[Fc(x−|Xθ−

i
| ei)] for each feature, with Xθ ∼ N (0, θ),

√
θ+i = 1−xi

and
√

θ−i = xi. This method applies increasing and decreasing FGA at each iter-

ation and chooses the most effective moves in both directions and is called voting

FGA (VFGA) and is presented in Algorithm 2. Note that, in the same way, by

considering the uniform noise it is possible to introduce more examples of voting

attacks.

2.4. Untargeted attacks

The main focus for these attacks is to decrease the class probability of the input

until a new class label is found. Only few modifications are required to deduce the

untargeted versions of the previous Algorithms: by assuming c is the true label of

x and replacing argmax with argmin in Steps 3 and 8 of Algorithm 1 and making

similar slight changes in Algorithm 2.

3. Experiments on untargeted SSSAA

In this section, we present experiments to highlight the benefits of our untargeted

SSSAA. First, we aim to showcase the relevance of FGA in comparison with UA.

Second, we aim to compare our methods and more specifically VFGA with relevant

state-of-the-art approaches. The codes of the present and next section are available

in PyTorch at https://github.com/hhajri/stochastic-sparse-adv-attacks.

https://github.com/hhajri/stochastic-sparse-adv-attacks
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Algorithm 2 Voting Folded Gaussian Attack (VFGA)

Inputs: as Algorithm 1.

Output: as Algorithm 1.

1 Initilialise x̃← x, Γ← {1, · · · ,dim(x)} \ {i : x̃i = 1}, iter← 0.

2 while Γ ̸= ∅, label(x̃) ̸= c and iter < maxIter do

3 i+ = argmax
i∈Γ

(1− x̃i)
∂Fc

∂xi
(x̃), i− = argmin

i∈Γ
x̃i

∂Fc

∂xi
(x̃).

4 Generate samples
(
S+, h

)
1≤h≤NS

from |N (0, θ+i )| where
√

θ+i := 1− x̃i+ .

5 Generate samples
(
S−, h

)
1≤h≤NS

from − |N (0, θ−i )| where
√
θ−i := x̃i− .

6 for h ∈ [[1, NS ]] do

7 Define the input ỹ h by ỹ±, h
j ← Clip[0,1]

(
x̃i± + S±, h

)
if j = i±

ỹ±, h
j = x̃j otherwise.

8 Batch compute Fc

(
ỹ±, h ; h ∈ [[1, NS ]]

)
(2NS propagations).

9 x̃← argmax
ỹ±, h

Fc

(
ỹ±, h

)
, Γ← Γ \ {i0} with i0 = i+ or i− according to the best

move; iter← iter+ 1.

10 return x̃

In the experiments, we consider two popular computer vision datasets illustrat-

ing small and high dimensional data: CIFAR-10 14 (32 × 32× 3 images divided into

10 classes) and ImageNet 25 (ILSVRC2012 dataset containing 299 × 299× 3 images

divided into 1,000 classes). The used neural network classifiers are described in the

upcoming paragraphs.

The state-of-the-art attacks considered for comparison in this section are:

SparseFool 20. This method is fast and scalable. At each iteration, it applies Deep-

Fool 21 to estimate the minimal adversarial perturbation thanks to a linearization

of a classifier. Then, it estimates the boundary point and the normal vector of the

decision boundary and finally updates the input features with a linear solver.

Brendel and Bethge L0 attack (B&B) 3. This adversarial attack is gradient-

based. It follows the boundary between the space of adversarial and non-adversarial

images to find the minimum distance to the clean image. It is powerful and more

efficient (but also slower and more complex) than many gradient-based approaches

such as SparseFool.
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GreedyFool 10. This attack is an improvement of SparseFool. It is however more

complex than the later as it needs to carefully train a distortion map which is a

generative adversarial network GAN 12. We remark (based on one experiment on

ImageNet) that it is less efficient (but also faster and less complex) than B&B.

Sparse-RS 7. This attack is fast and achieves high success rate on ImageNet out-

performing many white-box attacks such as PGD0
8. It requires fixing the maximum

number of pixels to modify which is then fully exploited. In order to generate ad-

versarial examples with minimal L0 perturbations by Sparse-RS, one needs to run

this method for several budgets before selecting an optimal budget.

A notable difference with Sparse-RS. It should be mentioned that our at-

tacks and Sparse-RS follow different strategies. Indeed, the budget k for Sparse-RS

is fixed in the pixel space. For instance, on CIFAR-10 this can go up to 32 × 32,

and once k is fixed the number of modified pixels in the input space, for Sparse-RS,

is near 3 × k. Our attacks compute perturbations directly in the input space. All

attacks are however L0 in the usual definition and they are compared according to

the most commonly used metric which is, up to our knowledge, the L0 distance in

the input space.

All the previous attacks are experimented using the original implementations by

the authors and following the recommended hyperparameters.

To compare between the different methods, we rely on the following scores: suc-

cess rate (SR), Mean and Median number of changed pixels, complexity based on

the number of model propagation 9 (MP). We prefer MP over the running time per

image since it is not dependent on the software used when executing the codes.

More approaches. In this paper, we propose fast methods, and thus we only focus

on comparisons with similar fast approaches like SparseFool and Sparse-RS. The

B&B, although not fast, has been selected as a highly efficient benchmark attack.

We omit comparison with Carlini&Wagner L0
4 and we believe the results would be

similar to our comparison with B&B. Also, we omit comparison with CornerSearch
8 because it is less effective than Sparse-RS based on the work 7 and also needs a

large computational cost on ImageNet (see results in 8).

3.1. On CIFAR-10.

On this dataset, we use the ResNet18 13 and VGG-19 26 models. After training

with PyTorch, these networks reached 95.55% and 93.87% accuracies respectively.

For our attacks UA, FGA and VFGA, the hyperparameter NS is fixed to NS = 10
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(the obtained attacks are denoted UA10, FGA10 and VFGA10). The effect of aug-

menting NS is analysed later on in this section. We notice that, otherwise stated,

maxIter is put to its maximal value. The state-of-the-art approaches outlined be-

fore, except GreedyFool, are tested and compared with our methods on the correctly

predicted samples among the 10, 000 CIFAR-10 test images. We refrained from com-

paring with GreedyFool because of the need to train the distortion map network on

CIFAR-10 not provided in the code of 10 (this network has been made available for

the ImageNet dataset and comparison on this dataset is considered in the next sec-

tion). For Sparse-RS, several budgets of pixels k (the number of pixels to modify)

have been experimented and the smallest budget giving 100% has been selected.

On CIFAR-10, we choose the optimal k, i.e k′ = k − 1 does not give full success of

the attack. Our intention is to show that under the condition of full success for all

attacks (when possible) our VFGA method is overall more advantageous.

Attacks SR Mean Median MP

ResNet18

B&B 100 8.33 8.0 1927

SparseFool 99.31 36.48 9.0 520

Sparse-RS

(k = 10)
100 29.79 30 GS + 49

UA10 100 30.94 20.0 363

FGA10 100 29.70 20.0 134

VFGA10 100 17.03 11.0 99

VGG-19

B&B 100 5.30 6.0 1483

SparseFool 97.98 67.71 8.0 686

Sparse-RS

(k = 7)
100 20.82 21 GS + 55

UA10 100 22.16 11.0 281

FGA10 100 19.67 11.0 103

VFGA10 100 11.40 7.0 80

Table 1: Results on the correctly predicted samples among the 10, 000 test images

of CIFAR-10. SR is the success rate of the attack, Mean, Median are the average

and median number of modified pixels on successful samples and MP is the number

of model propagations. GS is a greed-search to find optimal values of k giving

full success that took several hours. The highlighted results of our VFGA in

comparison with the fast methods SparseFool and Sparse-RS are in bold.

Comments. The previous results show that the folded Gaussian noise is more
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advantageous in attacking than the uniform noise and that combining two folded

distributions is useful not only for the SR, Mean and Median but also for the model

propagation score. Concerning the comparison with the state-of-the-art methods:

VFGA has less advantageous Mean and Median than B&B (near 2 times greater for

Mean and the gap is reduced for Median). Nevertheless, it is up to 1
20 less complex

based on the MP score. Second, all of our methods and more particularly VFGA

significantly outperform SparseFool. Regarding the comparison with Sparse-RS, we

remark that VFGA has notable Mean and Median advantages (up to 3 times fewer)

and is also less complex given the number of experiments carried for Sparse-RS to

achieve full success (with minimal Mean and Median). Notice also the difficulty to

find a good k with full success for Sparse-RS as the optimal value depends on each

sample and high values impact the overall performance of this attack. An advantage

for us is that this parameter is set automatically and is optimal for each sample.

A comparison between Sparse-RS and VFGA for different distortions.

As stressed before, we only focus on performances under the condition of full suc-

cess which is usually reported to summarise the contribution of new methods. If

we relax this condition, we remark that for small budgets k when both VFGA and

Sparse-RS are not fully successful, Sparse-RS outperforms VFGA in SR but VFGA

obtains better Mean and Median which are always near k for Sparse-RS. Starting

from a k which approaches full success, VFGA becomes more advantageous in SR,

Mean and Median.
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Fig. 2: Results over the number of perturbed pixels for untargeted attacks

(VFGA10 and Sparse-RS) on CIFAR-10 for the ResNet-18 model. On the left,

the success rate SR and on the right, the Mean and Median L0 scores.

We draw in Figure 2 the SR (on the left), and Mean and Median L0 scores

(on the right) versus the number of perturbed pixels for VFGA10 and Sparse-RS.

When only few pixels are perturbed, Sparse-RS performs better than VFGA10 in

SR. Once the number of perturbed pixels exceeds 105, the two SR become very

competitive (near and then equal to 100%). The Mean and Median L0 scores for

VFGA10 are, however, always better than those by Sparse-RS regardless the num-
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ber of pixels which have been modified.

For Sparse-RS, Median is a linear function of the number of perturbed pixels.

For the budget of 285 modified pixels, Mean is 282.78. For VFGA10, this budget

is the worst L0 score for the 10,000 test images of CIFAR-10 and with this value,

Mean is 17.03 which is about 16 times fewer than Sparse-RS. In short, even if for

a small number of disturbed pixels, VFGA10 is not able to reach 100% in SR, its

Mean and Median are still better than those of Sparse-RS.

Augmenting NS. In what follows, we investigate the impact of augmenting NS

on the performances of our attacks by testing UA20, FGA20 and VFGA20, which

correspond to NS = 20, on the same data as Table 1.

Attacks SR Mean Median MP

ResNet18

UA20 100 30.93 20.0 684

FGA20 100 30.23 19.0 193

VFGA20 100 16.76 11.0 131

VGG-19

UA20 100 20.60 10.0 457

FGA20 100 19.71 10.0 134

VFGA20 100 11.22 7.0 113

Table 2: Comparison between our attacks for NS = 20.

We remark that SR, Mean and Median are slightly improved but based on the

MP score, the attacks become more complex. This illustrates the fact that increasing

so much NS may not significantly improve the attacks but on the other hand it may

slow down them. Also, we observe that despite augmenting NS from 10 to 20, the

uniform attack cannot beat FGA10. This is quite remarkable since for the uniform

distribution the NS generated samples are different and fall inside the domain of the

input features while for the folded Gaussian distribution, due to clipping, several

samples are likely to be clipped at the minimal and maximal bounds. Augmenting

NS also increases more quickly MP for the uniform noise.

3.2. On ImageNet.

In this section, we test the ability of the previously tested attacks and additionally

GreedyFool to generate adversarial examples at large scale by considering models

on ImageNet. Two pre-trained networks provided by PyTorch are considered for

testing: Inception-v3 27 and VGG-16 26 whose accuracies are respectively 77.45%
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and 71.59%. Inputs are of size 299×299×3 and 224×224×3 for the first and second

model respectively.

Again, we consider B&B as a benchmark of a highly successful attack. Greedy-

Fool requires training a GAN network on ImageNet but once carefully done it is

highly successful. We recover the GAN model from the available code of 10 which

we complement by adding the computation of the MP score for this attack. For

Sparse-RS, we again fix our objective to compare with this attack when 100% SR is

achieved. This requires launching several experiments for different values of k on the

whole considered set of images in order to obtain a near-optimal budget value. By

this, we mean a value k giving 100% SR ; there exists k′ < k and the performances

of VFGA in Mean and Median are better than those obtained by Sparse-RS with

budget k′. This implies in particular that VFGA gives better results than Sparse-RS

when tested with the optimal value of k. To get an idea of the difference between

our results and those by Sparse-RS, we always report the results for k′ and k by

Sparse-RS (in this section and next one).

The obtained results for the different attacks are reported in Table 3 and com-

mented after.

Comments. First, B&B achieves the best SR, Mean and Median scores. Greedy-

Fool comes after but with the cost of training a GAN model on ImageNet. The

complexity comparison between these two attacks is difficult to address and we

only claim that both methods are significantly more complex than our approach

(GreedyFool is complex to reproduce on new datasets). Despite this fact, we ob-

serve that on VGG-16 VFGA has a gap of Mean and Median of less than 12 pixels

which is relatively small. Among the methods shown in the previous table, our

attacks and SparseFool are the fastest under the full success condition and when

minimising at the same time Mean and Median. Our attacks, obtain, however,

overall better performances than SparseFool according to all metrics. Specifically,

VFGA always significantly outperforms SparseFool. Moreover, despite the fact that

we select near-optimal values of k for Sparse-RS, VFGA is still more advantageous

regarding Mean and Median and also faster if the complexity of finding k is added.

Finally, we notice that after finding a good k giving full success for Sparse-RS, this

attack can not generate relevant adversarial examples with minimal L0 distance 1,

while due to the flexibility of our attack, several such examples can be generated.

This is a further advantage of our attack.

4. Experiments on targeted SSSAA

Targeted attacks are more challenging than untargeted ones. The objective of

this section is to compare (targeted) VFGA, our selected method, with (targeted)

Sparse-RS as a fast attack outperforming several state-of-the-art methods 7. We
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Attacks SR Mean Median MP

Inception-v3

B&B 100 43.96 37.0 5602

GreedyFool 100 86.09 79.0 GAN + 617

SparseFool 100 348.16 167.5 2531

Sparse-RS

(k′ = 90)
99.62 267.13 270.0 GS + 341

Sparse-RS

(k = 100)
100 297.12 300.0 GS + 358

UA10 100 335.19 101.0 3042

FGA10 100 323.27 102.0 744

VFGA10 100 198.25 64.0 1133

VGG-16

B&B 100 39.24 25.0 3416

GreedyFool 100 66.18 31.0 GAN + 589

SparseFool 100 216.21 164.0 1460

Sparse-RS

(k′ = 60)
99.78 179.01 180.0 GS + 240

Sparse-RS

(k = 70)
100 204.59 210.0 GS + 246

UA10 100 150.04 85.0 2122

FGA10 100 140.15 82.0 986

VFGA10 100 77.85 43.0 709

Table 3: Results on the firstly 6, 000 correctly predicted validation images of Ima-

geNet.GS is a greed-search to find near-optimal values of k that took several days.

GAN is a generative network trained on ImageNet. Our results in comparison with

the fast methods SparseFool and Sparse-RS when fully successful are highlighted in

bold.

recall that SparseFool is not efficient as a targeted attack. We do not report re-

sults by FGA and UA but claim that FGA is still more relevant than UA and only

omit to address a similar comparison as before. We do not report results by B&B

and GreedyFool as targeted attacks because of the need of the distortion map on

CIFAR-10 for GreedyFool, the non ability to reproduce B&B in the targeted mode

and moreover since, we consider that these approaches are complex to reproduce on

new datasets. Thus, we only focus on the comparison with Sparse-RS and defend

our approach as an efficient fast method. Our main conclusion in this paragraph

is that, for ImageNet which is more challenging, VFGA is still more relevant than

Sparse-RS regarding the same previous metrics when both attacks are fully success-

ful and despite the fact that a near-optimal value of k is selected for Sparse-RS.

On CIFAR-10, we conclude on the basis of our experiments that Sparse-RS is more
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advantageous in Mean and Median.

We consider the same network models as before. To simplify the experimenta-

tion, we do not consider all possible target labels but, for each test dataset, we

generate a list of random labels which were fixed once for all. Each input image

is then attacked to have one desired label. For Sparse-RS, we again select a near-

optimal k in all experiments. This task took several hours on CIFAR-10 and several

days on ImageNet. Tables 4 and 5 show the results obtained on CIFAR-10 and

ImageNet (in Table 4 VFGA100 is simply VFGA with NS = 100).

Attacks SR Mean Median MP

ResNet18

Sparse-RS

(k = 30)
100 89.43 90.0 GS + 1678

VFGA10 100 641.49 174.0 13427

VFGA100 100 154.43 105.0 20619

VGG-19

Sparse-RS

(k = 25)
100 73.17 75.0 GS + 1123

VFGA10 100 551.27 150.0 12213

VFGA100 100 174.93 97.0 21417

Table 4: Results on the correctly-predicted test images of CIFAR-10. GS is a greed-

search to find near-optimal values of k that took several hours. The results for k′

are not reported since Sparse-RS is here more advantageous in full success.

First, we notice that Sparse-RS obtains better Mean and Median than VFGA10.

Increasing NS from 10 to 100 improves considerably VFGA but our results are still

less better than Sparse-RS. Given the time needed to find the near-optimal values

k, we claim that our attacks are still overall much faster than Sparse-RS to obtain

full success with optimal Mean and Median.

Our interpretation of Table 5 is overall similar to that of Table 3. When attacking

the Inception-v3 model, which is more challenging, VFGA10 outperforms Sparse-

RS regarding all scores. When attacking VGG-16, Sparse-RS only takes a slight

advantage of Mean. As for untargeted attacks, a notable advantage of our methods is

the flexibility of the number of modifiable pixels allowing us to generate adversarial

examples with minimum L0 distance while being 100% successful on all samples.



December 20, 2022 14:32 WSPC/INSTRUCTION FILE

15

Attacks SR Mean Median MP

Inception-v3

Sparse-RS

(k′ = 950)
99.87 2671.19 2850.0 GS + 6591

Sparse-RS

(k = 1000)
100 2898.72 3000.0 GS + 6899

VFGA10 100 2148.53 1843.45 21616

VGG-16

Sparse-RS

(k′ = 450)
99.91 1278.45 1350.0 GS + 6963

Sparse-RS

(k = 500)
100 1398.56 1500.0 GS + 7003

VFGA10 100 1436.02 1057.38 14223

Table 5: Results obtained on the 5,000 firstly correctly-predicted validation images

of ImageNet.GS is a greed-search to find near-optimal values of k that took several

days.

5. Less scalable SSAA

In this section, we focus on sparse targeted and untargeted perturbations by a distri-

bution of the form N (aθ, b2θ) = aθ+bN (0, θ) where θ is a parameter to be tuned as

before using the bounds of the input domain and a, b are scaling parameters which

determine the contribution of the deterministic component θ and the pure Gaussian

one N (0, θ). The resulting attack is denoted GA(a,b). Note that the multidimen-

sional Gaussian noise has been used to generate effective adversarial L2 and L∞
attacks in 18. Our attack can be thought of as a sparse version of 18 since it follows

a similar methodology based on the minimisation of the expected probability.

If Xa,b
θ ∼ N (aθ, b2θ), then

E[Fc(x+Xa,b
θ ei)] = Fc(x) + θ(Aa,bFc)c,i(x) + o(θ) (3)

where (Aa,bFc)c,i(x) := a∂pc

∂xi
(x) + b2

2
∂2Fc

∂2xi
(x).

Before explaining the minor changes to introduce G(a,b), let us remark that our

GA requires computing the diagonal of the Hessian of Fc with respect to the input

coordinates which is costly on large datasets. For this reason, we make the following

assumption under which these calculations become more feasible (at least on small

datasets):

All hidden layers activation functions of the NNC are ReLU (4)

Note that state-of-the-art NNC make use of ReLU and so (4) is not a limitation as

such. Under (4), the Hessian diagonal of the NNC is a simple function of the NNC

Jacobian as shown here.
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Fast Hessians diagonals computations for ReLU activations. Call Li the

logits of the NNC. Since each Lt is the composition of affine and ReLU functions

which both have null second derivatives, by a simple recurrence argument
∂2Lt(x)

∂xi
=

0. Using this fact and deriving twice the identity Ft(x)×
∑K

j=1 e
Gj(x) = eGt(x), we

deduce the main relations:

• ∂Ft

∂xi
= Ft(

∂Gt

∂xi
−
∑

j Fj
∂Gj

∂xi
)

• ∂2Ft

∂2xi
= ∂Ft

∂xi
(∂Gt

∂xi
−
∑

j Fj
∂Gj

∂xi
)− Ft ×

∑
j

∂Fj

∂xi

∂Gj

∂xi

Experimentally, this implementation gives a very accurate approximation of the

Hessian diagonal calculated with PyTorch or Tensorflow.

The (targeted) attack G(a,b) follows Algorithm 1; where Step 3 should be re-

placed with i0 = argmax
i∈Γ

Aa,bFc(x̃). For Step 4, sampling is done from N (aθ, b2θi0)

where θi0 is to be set by the user. Next, we only experiment G(0,1) (the purely

Gaussian case) and G(1,1) (the mixed balanced deterministic-Gaussian case). The

parameter θi0 for these attacks is fixed as follows:

• θi0 = max(x̃i0 , 1− x̃i0) for G(0,1).

• θi0 =
1−x̃i0

2 for G(1,1).

As a complement, note that the choice (a, b) = (1, 0) is the one which has led to the

XSMA attacks.

In the rest of this section, we compare the untargeted GA(0,1) and GA(1,1)

with UA and FGA in attacking LeNet-5 model on MNIST 16. We use the same

model proposed in 5 which has 99.98% accuracy on the training dataset and 99.49%

accuracy on the test set. We report in Table 7 the results on 1, 000 images.

Attacks SR Mean Median

UA 100% 19.53 13.0

FGA 100% 17.69 13.0

GA(0,1) 100% 22.45 16.0

GA(1,1) 100% 17.68 12.0

Table 6: Results obtained on 1, 000 images of the MNIST test set.

The results of this table can be ranked as follows (a<b means b outperforms a)

GA(0,1)<UA<GA(1,1)<FGA. First, they confirm the overall superiority of FGA

over UA yet on the MNIST dataset. GA(0,1) has overall less better results than the

other attacks which is somewhat expected since it has been remarked in 22 that, on

MNIST, increasing the input features works better than decreasing them and GA

has less chance to increase the input features than the other attacks.
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While the previous results could be explained by the nature of the MNIST

dataset, since increasing the pixel values is known to give better results 22, we do

not expect similar behaviours on other datasets where there is no privileged direction

for the attacker. Our main claim is that, independently of each attack performance,

combining all of them (in the same way as VFGA) and possibly varying the intensity

θ can lead to more efficient L0 attacks. Indeed, experimentally, we observe many

successful adversarial examples which modify a single or very few pixels by each

method of Table 7 whereas, at the same time, the other methods fail in doing so.

Two illustrations are given through Figure 3.

Fig. 3: Top: left-right: an input of label 3 and its perturbation by GA(0,1) (inter-

preted as 5) by modifying one pixel. The L0 scores for FGA, GA(1,1) and UA are

respectively: 2, 5, 2. Down: left-right: an input of label 9 and its perturbation by

GA(1,1) (interpreted as 7) while modifying one pixel. The L0 scores for GA(0,1),

FGA and UA are respectively: 20, 6, 8.

6. A fine analysis of one-pixel perturbations by the Gaussian and

folded Gaussian noise for ReLU-networks

In this section, we want to interpret the behaviour of a ReLU NNC under one pixel

perturbation by a Gaussian or Folded Gaussian distribution. We focus on the output

logits (Gi)i as they fully determine the decision of the NNC.
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The main result is the next Theorem which gives a decomposition of the expected

logit E[Gc(x+Xθei)], where Xθ ∼ N (0, θ) or Xθ ∼ |N (0, θ)|.

Theorem 6.1. Denote by (Gi)1≤i≤p the output logits of a ReLU-neural network

classifier. Then for every c ∈ [1, p], we have

(i) E[Gc(x+N (0, θ)ei)] = Gc(x) +
1
2

∑
j∈D Γj

θ(Grj+ −Grj−)

(ii) E[Gc(x+ |N (0, θ)|ei)] = Gc(x) + Γθ
∂Gc

∂xi
(x+0+ei) +

1
2

∑
j∈D+ Γj,+

θ (Grj+ −
Grj−)

where Gru = ∂uGc(x+uei) and D is the set of discontinuities (or jumps) of Gr,

Γj
θ = E[|N (0, θ)− j|]− |j|; D+ is the set of jumps of Gru, u > 0 in [0, θ], Γθ =

√
2θ
π

and Γj,+
θ = E[||N (0, θ)| − |j||]− |j|, ∂Gc

∂xi
(x+ 0+ei) = limh→0+

∂Gc

∂xi
(x+ hei).

Proof. Let us give the main steps to prove (i). By applying Itô-Tanaka formula

(see 23) for the function g(u) = Gc(x+ uei) (which can be written as the difference

of two convex functions and so satisfies the assumption of the formula), we have

Gc(x+Wθei) = Gc(x) +Mθ +
1

2

∫
La
θT

′′

g (da)

where Mθ is a martingale; in particular E[Mθ] = 0; La
θ is the local time of W at

level a and time θ and T ′′
g is the second derivative in the sense of distributions of

g. Next, we use the decomposition of distributions:

(Tg)
′′ = Tg′′ +

∑
a∈D′

g

(g′(a+)− g′(a−))δa

where D′
g is the set of discontinuities of g′. Note that Tg′′ = 0 since g is a piecewise

constant function. Thus, with the notation of the theorem, we have

E[Gc(x+Wθei)] = Gc(x) +
1

2

∑
j∈D

Γj
θ(Grj+ −Grj−)

where Γj
θ = E[Lj

θ] which also coincides with the expression given in the theorem.

(ii) can be proved in a similar way.

Let us give some remarks regarding the previous theorem:

• In the particular case of one hidden layer, Theorem 6.1 (i) allows to retrieve

the expression found in Theorem 1 in 2. In this case, the set D is reduced

to one point and there is only one jump of Gr. The expression given here is

much more interpretable than 2 and general for any ReLu-based network.

Note also that the number of points contained in D is bounded by the

number of hidden layers.
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• The constants Γj
θ,Γθ,Γ

j,+
θ in Theorem 6.1 are easy and fast to approx-

imate with high precision. Thus the main complexity in the expansions

given above is the computation of the jumps of Gr. Once these jumps

are computed efficiently, they can be used once for all to approximate all

E[Gc(x + Xθei)], Xθ ∼ N (0, θ) or |N (0, θ)| for every possible θ. In short,

we claim that Theorem 1 reduces the computation of E[Gc(x +Xθei)] for

all θ to the computation of the jumps of the trajectory of the gradient of

Gc(x) with respect to the i-th coordinate.

In some situations, when simple Gaussian sparse attacks or also our attacks

such as GA(0,1) and FGA are successful in one iteration, the user or designer of

the NNC would be interested in understanding such a failure. The main tool given

in this section suggests to compare the quantities given in front of the expectations

in Theorem 6.1 for different c, which as seen before, depends on the jumps of the

gradient paths of the logits according to the chosen component.

7. L∞ bounded attacks

In this section, we focus on L∞ attacks. This category seems to be more studied

in the literature than L0 and L2 ones. One reason is that L∞ attacks have reached

the-state-of-the-art performances in Adversarial Training 19. Indeed, 19 introduced

a strong L∞ baseline, the PGD attack, to evaluate NNC and adversarially train

them. Several improvements of PGD have been proposed but they all either follow

the main idea of PGD or combine many PGD varieties at once (see 6).

Our attacks presented previously can be applied as L∞ ones by slight modifica-

tions. Algorithm 1 below introduces the L∞ ε-bounded version of VFGA where the

main idea is to sample perturbations from N (0, ε).

Notice thatNS is the only hyperparameter for the attack. Its interpretation is almost

the same as before. Our main claim is that, despite the iterative scheme of VFGA

which makes the attack slow in comparison with PGD, this attack can outperform

PGD. We propose an experiment to support this by attacking the previous CIFAR-

10 Resnet model on 1000 correctly predicted input test images. The applied attacks

to this model are VFGA, PGD and PGD with random restart denoted PGD-RR 19

for two values of ε = 4/255, 2/255. The results are given in Table 7.

We remark that for ε = 4/255, the performances are very competitive between

our attack and the two PGD varieties. However, for for ε = 4/255 the results are

significantly better for VFGA.

8. Conclusion

This paper introduced noise-based attacks to generate sparse adversarial samples

to inputs of deep neural network classifiers. A first advantage of our methods is

that they work as both untargeted and targeted attacks. Moreover, they are very

simple to put in place and require fixing only one parameter whose interpretation
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Algorithm 3 L∞ VFGA with intensity ε

Inputs: as Algorithm 1.

Output: as Algorithm 1.

1 Initilialise x̃← x, Γ← {1, · · · ,dim(x)} \ {i : x̃i = 1}, iter← 0.

2 while Γ ̸= ∅, label(x̃) ̸= c and iter < maxIter do

3 i+ = argmax
i∈Γ

∂Fc

∂xi
(x̃), i− = argmin

i∈Γ

∂Fc

∂xi
(x̃).

4 Generate samples
(
S+, h

)
1≤h≤NS

from Clip[0,ε](|N (0, ε)|);
5 Generate samples

(
S−, h

)
1≤h≤NS

from −Clip[0,ε](|N (0, ε)|);

6 for h ∈ [[1, NS ]] do

7 Define the input ỹ h by ỹ±, h
j ← Clip[0,1]

(
x̃i± + S±, h

)
if j = i±

ỹ±, h
j = x̃j otherwise.

8 Batch compute Fc

(
ỹ±, h ; h ∈ [[1, NS ]]

)
(2NS propagations).

9 x̃← argmax
ỹ±, h

Fc

(
ỹ±, h

)
, Γ← Γ \ {i0} with i0 = i+ or i− according to the best

move; iter← iter+ 1.

10 return x̃

Attacks ε SR

PGD 2/255 63.5%

PGD-RR 2/255 67.5%

VFGA 2/255 86.4%

PGD 4/255 97.6%

PGD-RR 4/255 98.4%

VFGA 4/255 97.9%

Table 7: Results obtained on the first 1000 correctly classified images of the CIFAR-

10 test set.

is intuitive (the bigger the best up to saturation in performance). Our attacks are

faster to apply on new models and datasets than existing approaches (SparseFool,

GreedyFool) while ensuring full success. They are much less complex than the-

state-of-the-art method B&B relying on the model propagation score (near 1
20 on

CIFAR-10 and 1
5 on ImageNet) and achieve competitive results in some cases. In

comparison with Sparse-RS, our attacks are flexible allowing to find an optimal

budget of pixels for each input image and achieve full success with minimal L0
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scores. They are applicable as L∞ attacks and can outperform the PGD baselines.

We believe that our results can be improved in a crucial way by combining different

kind of noises as explained in the paper.
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5. Théo Combey, António Loison, Maxime Faucher, and Hatem Hajri. Probabilistic
jacobian-based saliency maps attacks. Machine Learning and Knowledge Extraction,
2(4):558–578, 2020.

6. Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Nicolas Flammarion,
Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized ad-
versarial robustness benchmark. CoRR, abs/2010.09670, 2020.

7. Francesco Croce, Maksym Andriushchenko, Naman D. Singh, Nicolas Flammarion,
and Matthias Hein. Sparse-rs: a versatile framework for query-efficient sparse black-
box adversarial attacks. 2020.

8. Francesco Croce and Matthias Hein. Sparse and imperceivable adversarial attacks. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
October 2019.

9. Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with
an ensemble of diverse parameter-free attacks, 2020.

10. Xiaoyi Dong, Dongdong Chen, Jianmin Bao, Chuan Qin, Lu Yuan, Weiming Zhang,
Nenghai Yu, and Dong Chen. Greedyfool: Distortion-aware sparse adversarial attack,
2020.

11. I J Goodfellow, J Shlens, and C Szegedy. Explaining and harnessing adversarial ex-
amples. ICLR, 1412.6572v3, 2015.

12. Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks,
2014.

13. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for



December 20, 2022 14:32 WSPC/INSTRUCTION FILE

22

image recognition, 2015.
14. Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for

advanced research).
15. A Kurabin, I J Goodfellow, and S Bengio. Adversarial examples in the physical world.

ICLR, 1607.02533v4, 2017.
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