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Abstract Safety requirements are among the main bar-

riers to the industrialization of machine learning based

on deep learning architectures. In this work, a new

metric of data coverage is presented by exploring the

algebraic topology theory and the abstract interpreta-

tion process. The algebraic topology connects the cloud

points of the dataset and the abstract interpretation

evaluates the robustness of the model. Thus, the cov-

erage metric evaluates simultaneously the dataset and

the robustness, and highlights safe and unsafe areas.

We also propose the first complete process to evaluate,

in terms of data completeness, the machine learning

models by providing a workflow based on the proposed

metric and a set of safety requirements applied on au-

tonomous driving. The obtained results provide an in-

terpretable coverage evaluation and a promising line of

research in the industrialization of artificial intelligence

models. It is important to mention that the proposed
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metric is not dependent on the specific data. In other

terms, it can be applied on 1 to n−dimensional data.
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1 Introduction

Over the last few decades, deep learning models have

been developed in several areas. However, their valida-

tion and certification remain very challenging for the

scientific community. Indeed, as illustrated by Goodfel-

low et al. [1], deep neural network models are vulnera-

ble to adversarial examples . The authors investigated

linear and non linear explanations of adversarial exam-
ples, which constitute an obstacle for the deployment of

artificial intelligence (AI) models based on deep neural

network architectures. Furthermore, the deep learning

models are also vulnerable to privacy attacks as sum-

marized by Liu et al. [2].

Arrieta et al. [3] draw the chronology of the develop-

ments of AI models understanding, by exploring several

notions such as explainability and interpretability. The

authors proposed the concept of responsible artificial

intelligence where a review of recent literature around

explainable AI models is presented. However, they only

targeted taxonomy/classification models.

Holzinger et al. [4] proposed the use of a new approach

by integrating network topology in the explainable AI

process. Authors focused their contribution on human

interactive explainability using graph neural networks.

Nowadays, according to our knowledge, there is no

common process which allows the industrialization of

AI models based on deep learning architectures. In the

current work, we propose a common methodology to
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understand, validate and contribute to the certification

of deep learning models. First of all, we define Deep

Learning Architectures (DLA), which include super-

vised, unsupervised and reinforcement learning under

deep learning architecture paradigms. Subsequently, we

explore a specific case of Deep Reinforcement Learning

(DRL) applied to autonomous driving.

The proposed approach aims to interpret, explain

and secure a decision-making DLA model. Three sci-

entific domains were used to implement the approach

- (i) topological data analysis (TDA) to analyze the

sparcity of the input data, i.e representativeness of ap-

plication space and completeness of scenarios, (ii) ab-

stract interpretation for artificial intelligence (AI2) to

estimate the maximum acceptable perturbation with

the required robustness (avoiding all adversarial exam-

ples) and, finally, (iii) driving rules in relation with the

SOTIF∗ approach to evaluate the safety of the model’s

decisions. The approach aims to encompass safety and

data-science skills.

The choice of techniques mentioned above to build

the process is based on the following reflections:

– The input data of AI models could be presented as a

set of n-dimensional cloud points connected by sig-

natures and features. The use of algebraic topology

to study this set of input data could be a power-

ful theory to extract the data features and estimate

data coverage. The novelty and the main contribu-

tion of this paper is the proposed new metric based

on the use of a topological data analysis approach.

– A DLA model is an algorithm and an automatic

program with inputs and outputs. Moreover, ab-

stract interpretation is widely used in computer sci-

ence for debugging, understanding and interpreting

computer programs. A recent adaptation of this for-

mal method to verify the robustness of AI models,

named AI2, is used to evaluate robustness in the

current work.

– A DLA model is also an autonomous decision sys-

tem which requires the verification and validation of

a set of requirements and specifications. Therefore,

driving rules in relation with Safety in a SOTIF per-

spective are integrated in the proposed approach.

– The application environment, which could be real

world or simulated, hosts and encompasses the input

data, the model and the safety. The highway-env†

simulator is chosen for the current work.

The rest of the paper is organized according to the

next seven sections. Section 2 lays the definition of some

concepts used in the industrialization process and Sec-

∗See section 4.3
†See section 6.1

tion 3 draws up the state of the art. Section 4 details

the theoretical formulations of TDA, AI2 and SOTIF,

followed by a presentation of the proposed approach in

Section 5. The details of the implementation are given

in Section 6. The reporting of the results and the discus-

sion are detailed in Section 7, and finally the conclusion

is drawn in Section 8.

2 Terminology

One of the main issues causing the poor scalability of

learning techniques in the real world is the lack of un-

derstanding of safety concepts by the research commu-

nity, especially as regards machine learning. Therefore,

safety related terminology should first be defined and

clarified. In the current work, we focus on five con-

cepts, which are interpretability, explainability, verifi-

cation followed by validation and certification. In ba-

sic machine learning models (white box), the concept

of transparency is fully used to interpret and explain

the functionality of the model, which is opposite to

black-box models such as deep learning models [5]. The

two following subsections define the five concepts stated

above, starting with interpretability and explainability

followed by verification, validation and certification.

It is important to highlight that the understanding

of model decisions might need to use other approaches

such as causality and causability [4] to fully interface

with humans.

2.1 Interpretability & Explainability

As reported by Arrieta et al. [3], there are notable differ-

ences between interpretability and explainability in the

context of machine learning decisions. The authors ex-

plained that interpretability refers to the passive char-

acteristics of the model, which allow humans to make

sense of the decision. On the other hand, explainability

refers to the active characteristics detailing the proce-

dure and the functionality of each step (internal func-

tion). In other words, we can see interpretability as the

intuitive explanation, and explainability as the math-

ematical and rigorous explanation. The explainability

contributes also to the transparency and the traceabil-

ity. As mentioned in [4], the quality of the explana-

tion can be measured by causability. Both concepts are

applied adaptively according to the complexity of the

studied learning model.

https://orcid.org/0000-0002-0100-9352
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2.2 Verification, Validation & Certification

Verification involves examining a set of requirements.

It ensures compliance with the specifications which al-

low the validation, in terms of safety, of a product. It

is important to highlight that the validation presented

in this paragraph is different from the statistical vali-

dation commonly used in the machine learning during

model training stage. Certification could be referred to

as a standard process recognized by the community (na-

tionally or internationally). This process could include

the different steps related to the state of the art such

as transparency, causality and confidence levels.

3 Related Work

Several approaches have been developed in the litera-

ture to evaluate the robustness of DRL summarized by

Urban and Miné [6]. Some research studies have demon-

strated the sensitivity of Neural Networks against at-

tacks and proposed neural networks verifiers using for-

mal methods. Verifiers can be classified into two cate-

gories: complete or incomplete verifiers. Complete meth-

ods are exact. They do not generate false positives,

but they often have scalability issues like SMT based

methods [7,8]. Incomplete verifiers produce false posi-

tives but can solve scalability problems using the Ab-

stract interpretation theory [9,10,11]. The three main

challenges of this class of methods are finding abstract

transformers which are scalable, sound and precise for

the different existing activation functions such as Tanh,

sigmoid, Relu, etc.

In order to certify or provide evidence of software

quality assurance for AI-based systems, for instance the

certification of critical software, it will be necessary to

increase test scenarios. The proof for ML techniques

differs from the approaches proposed in conventional

methods. Indeed, for ML-based techniques, there are

two kinds of methods used to evaluate the possible cases

of coverage:

1. Structural evaluation (in the model itself)

2. Assessment focused on the input domain, i.e the di-

versity and multiplicity of the input data.

To analyze the coverage in the model, Pei et al.[12] in-

troduced the notion of neuron coverage (i.e., the num-

ber of neurons activated by a set of test inputs) to

systematically trigger inconsistencies between multiple

Deep neural networks (DNNs). Tian et al. [13] used the

same neuron coverage metric for guided test generation

to identify erroneous behaviors without requiring mul-

tiple DNNs. Yu et al. [14] suggested to use coverage

metric to improve the accuracy of DNNs by activat-

ing more inactivated neurons. Coverage metrics serve

as an indicator of the relevance of the decision systems

evaluation, which strongly depend on the quality and

diversity of the scenarios constituting the training and

validation dataset. In the literature, the existing criteria

to assess the level of coverage can generally be classi-

fied into two types, qualitative and quantitative criteria.

The first class of criteria seems to be very dependent

on the nature of the scenarios and field of application,

and frequently requires expertise and knowledge of the

physics quantities and all parameters defining each sce-

nario. The second class is less dependent on the struc-

ture of the scenarios. In other words, quantitative met-

rics are able to estimate the level of coverage regardless

of the nature and size of the scenarios. This work takes

place within this context.

4 Theoretical Background

We propose a quantitative evaluation of the complete-

ness of a dataset compared to the possible real cases by

combining the following tools:

1. Abstract interpretation for artificial intelligence

2. Topological data analysis

3. Driving rules in relation with SOTIF approach

The first two tools are independent from the dimen-

sion of the input data which make the coverage metric

generic for any DLA model. The focus of this paper is

to propose a new metric to measure the completeness

of a data set and its representativeness regarding its

learned model. The main objective of the approach is

to ensure the effectiveness of an AI-based model facing

a new situation and its capacity of generalization. The

following three subsections provide a brief theoretical

state of the art of abstract interpretation, topological

data analysis, SOTIF process and its application, and

finally an overview of deep reinforcement learning.

4.1 Abstract interpretation

Abstract interpretation, introduced by Cousot and Cousot

[15], is a theory which consists in determining, from

computer programs, the semantics related to abstract

relations in order to demonstrate their stability [16]. It

is used for automatic debugging, compiler optimizing,

code execution and certification of programs against

certain bug classes. Recently, abstract interpretation

has been adapted to verify the robustness property of

neural network models [17,18,19,20] under the name of
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AI2. To sum up how the robustness problem is formu-

lated and adapted, using the theory of abstract inter-

pretation in the context of deep learning, we introduce

and define the overall idea in the next paragraph.

Abstract interpretation is based on a solid and com-

plete approximation of each operation in a given pro-

gram [21]. The theory of abstract interpretation uses

Galois connections between two ordered sets, the ap-

proximation set (abstraction function) and the original

set (concretization function). As mentioned above, this

approach has been adapted for models based on arti-

ficial intelligence by designing specific abstract trans-

formers.

The adaption of the approach is applied to a set of

perturbations around the original input as introduced

by Singh et al. [17]. Indeed, let X̄ be a given set. X̄

may undergo a deformation or even an attack. To over-

come this issue, it is necessary to verify and validate

the perturbed input. In such a case, we denote RX̄,ε

the set of perturbed inputs around x̄ ∈ X̄, with a small

constant ε > 0, and we denote CL the output sets with

the same label L representing the robustness given by

the following equation.

CL = {ȳ ∈ Ȳ | argmax ȳi = L}

Therefore, using the appropriate abstract transform-

ers, if the set of outputs resulting from the perturbed

set RX̄,ε are included in CL, the robustness property

is validated. In other terms, the robustness property is

not validated if at least one perturbed input in RX̄,ε

has an output oε′ different from label L (oε′ /∈ CL).

In the state of the art, Singh et al. [17] proposed an

approach, called DeepZ analyzer, to deal with the scal-

ability problem of AI2. DeepZ makes it also possible to

certify the robustness of a neural network using precise

transformers for different activation functions. It should

be mentioned that DeepZ is based on abstract domains

and more particularly on zonotopes [22]. To improve

the performances of the approach, Gehr et al. [18] in-

troduced another analyzer, called DeepPoly. The latter

is based on a novel abstract domain that merges poly-

hedron with floating points and intervals. This analyzer

can automatically prove the robustness of different neu-

ral networks architectures, including convolutional neu-

ral networks. It is characterized by its high arithmetic

precision in floating points and manages several acti-

vation functions. This method has been used to verify

complex perturbations, including 2D rotation [20,23]

and filtering [24,25].

4.2 Topological Data Analysis

TDA is a recently emerged field which aims to under-

stand and exploit the structure of data by extracting

topological and geometric characteristics from the man-

ifold to which the discrete data belongs. Holzinger [26]

summarizes the theoretical concepts of TDA, and de-

tails the state of the art of techniques and domains of

TDA implementation, such as text mining and medical

domain.

4.2.1 Simplicial Homology

TDA combines algebraic topology and other tools of

pure mathematics to enable a rigorous mathematical

study of ”form”. The main tool is called persistent ho-

mology [26], an adaptation of homology to point cloud

data. Persistent homology has been applied to many

types of data in various fields. In addition, its math-

ematical basis also has theoretical importance and is

based on the notion of simplicial complexes. A sim-

plicial complex is a set made up of points, line seg-

ments, triangles and their n−dimensional equivalents

[27]. Simplicial complexes should not be confused with

the more abstract notion of a simplicial set appearing

in modern theory of simplistic homotopy. We can gen-

erate a simplicial complex by connecting the nearest

points according to a metric, called an abstract simpli-

cial complex (see Fig. 1). This is a way of representing

data in the form of a graph, in order to facilitate the

processing of large data. The transition from a point

cloud to a simplicial complex is called filtration. This

corresponds to the first stage of the TDA pipeline. Per-

sistent homology enables us to deduce signatures and
features capable of describing the manifold.

Fig. 1: The ε parameter defines the radius of the ball

around each point

4.2.2 Filtration and feature extraction

The objective of TDA is to extract invariant and rel-

evant characteristics capable of characterizing and un-

derstanding information included in data. Topological

primitivities are invariant with respect to the origin of

https://orcid.org/0000-0002-0100-9352
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the coordinate system, and with respect to plane simi-

larity deformations and compression. These three crite-

ria make the topological primitives very important. Sev-

eral types of diagrams have been proposed to represent

these features: persistence diagram, barcode diagram

and Betti numbers. The persistent diagram is capable

of coding the evolution of data topology through differ-

ent scale factors and is based on another diagram called

”bar code” as illustrated in Fig 2. The Betti numbers

refer to the number of holes in the topology.

Fig. 2: ”Pipeline” for the study of simplicial complexes

There are several ways to build simplicial complexes

such as witness filtration or Rips Filtration. The Ge-

ometry score [28] is a metric that uses the results of

persistent homology and more specifically persistence

barcodes. By looking at the statistics on its compo-

nents, we can determine for how long each lived during

the period of the topological study: by this we mean

that each number of holes is weighted by the maximum

value of ε, which gives the relative value lifetime of this

number of holes. This is a confidence measure since a

number of holes that lasts for a while (in terms of ε evo-

lution) indicates that this number reflects the shape of

the data variety. Its computation requires repeating the

experiment several times, and the values obtained for

each relative lifetime are averaged, giving what we call

their Mean Relative Living T ime, or MRLT . For two

datasetsX and Z, the geometry score is then calculated

using the quadratic error between the two MRLTs of

each distribution. Then, the lower the geometry score,

the more it reflects the proximity of the manifold. In-

deed, this would mean that the number of holes does

not decrease. In short, this metric and the TDA make

it possible to evaluate deep learning models in terms of

coverage and model collapse, regardless of the size and

dimension of the data used.

4.2.3 Abstract simplicial complex

Depending on the value of the filtration function and

a set of vertices (point cloud), several abstract simpli-

cial complexes could be built. For example, the Čech

simplicial complex is built by the non-empty set of the

intersection of ε-balls around its vertices. Furthermore,

using the Nerve theorem, the Čech simplicial complex

provides a topologically correct reconstruction of the

topological space [29]. In other words, two connected

vertices in the Čech simplicial complex guarantees that

the whole topological range is covered between the two

vertices. This main property is explored in the current

work to build the covering metric of the datasets used

in DLA. It is important to mention that this property

is independent of the data and their dimension, i.e. the

theory could be applied on n-dimensional (n ∈ N) data.

4.3 Safety of the Intended Function process

The Safety of the Intended Functionality (SOTIF) is a

notion defined in a dedicated ISO Standard (ISO/DIS

21448). It offers a methodology to grant the absence

of unreasonable risk due to hazards resulting from the

functional insufficiency of the intended functionality or

its implementation for road vehicles. It is an additional

approach to classical functional safety approach which

considers the system safety without failures. The first

step of the SOTIF process consists in an analytic ap-

proach to identify functional insufficiency considered as

a triggering condition in accident scenarios. This first

step is not taken into account in the present paper. The

second step is an evaluation of known scenarios regard-

ing hazard. The third step of the SOTIF process con-

sists in evaluating unknown hazardous scenarios around

known ones in order to improve system robustness.

To illustrate the second and third step, we consider

that there are a known and an unknown area. The

known area includes scenarios where system behavior
is safe and the unknown area includes scenarios where

system behavior leads to potential harm (safe and un-

known scenarios are not useful for safety purposes) (see

Fig 3). In reality, as illustrated in Fig. 4, these areas

overlap.

The objective of automotive development is to re-

duce known and potentially dangerous (area 2) and

unknown (area 3) behaviors at an acceptable level of

residual risk such as illustrated in Fig. 5. The following

development objectives can be inferred from the given

scope:

– Scope 1: Maximize safe function/system conduct.

– Scope 2: Reduce the known risk behavior.

– Scope 3: Minimize the unknown area.

According to a set of specifications and requirements,

this article gives methodologies to improve system be-

havior and evaluate it in known scenarios and to evalu-

ate unknown scenarios around known ones. These method-
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Fig. 3: Venn’s Diagram and definition for Possible Func-

tion/System Behavior: separate areas view

Fig. 4: Venn’s Diagram and definition for Possible Func-

tion/System Behavior: overlapped areas view

Fig. 5: Venn’s Diagram and definition for Possible Func-

tion/System Behavior: overlapped areas view

ologies help improve systems robustness regarding SO-

TIF approach.

4.4 Operational Metrics

In order to evaluate the ability of the system to drive

safely in a SOTIF point of view, the three following op-

erational metrics have been taken into account; (i) Time

Inter Vehicles (TIV), (ii) Time To Collision (TTC) and

(iii) Braking Time. The following subsections further

detail these metrics.

Let C1 and C2 be two cars where C1 is behind C2 as

illustrated in Fig. 6. We define the three functions P (x),

V (x) and A(x), where x ∈ {C1, C2}, to describe the

position, the velocity and the acceleration/deceleration

of each car, respectively.

Fig. 6: Disposition of cars used to compute TIV, TTC

and Braking Time

4.4.1 Time Inter Vehicles (TIV)

When a human driver follows another car, they keep

a safe distance between their car and the car in front

of them. In the rules of the road, this distance allows

drivers to react in case of an emergency; this takes into

account the reaction time of the driver and the braking

distance of the car. Both of these notions depend on

the speed of the car. That is why the safe distance be-

tween the two cars C1 and C2 moving at close speeds,

is defined as a TIV by the following definition:

TIV =
|P (C2)− P (C1)|

V (C1)

=
Distance between cars

Speed of the following car

For human-driven cars, the rules of the road recom-

mend 2 seconds of TIV for safe driving.

4.4.2 Time To Collision (TTC)

When C1 is faster than C2, then the distance between

the two cars decreases. When the speed gap is impor-

tant, TIV is not sufficient to manage the safe distance.
In such a situation, the TTC is used to compute the

time to collision.

Therefore, TTC enables us to know how much time

car C1 has to react before the collision with C2 by brak-

ing or changing trajectories.

The TTC is defined by the following formula:

TTC =
|P (C2)− P (C1)|
V (C1)− V (C2)

=
Distance between cars

Speed difference between the two cars

4.4.3 Braking Time

In addition to the two previous notions and especially

with TTC, it is important to take into account braking

time. This is the time the car takes to reach the speed of

the slower car in front of it. Braking Time is defined by

the following formula (considering a constant average

deceleration value for C1):

https://orcid.org/0000-0002-0100-9352
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Braking Time =
V (C2)− V (C1)

A(C1)

=
Speed difference

Average braking deceleration

We can consider that when the Braking Time is

higher than the TTC, there is no more safety margin

to prevent a crash from occurring.

4.5 Deep Reinforcement Learning

Reinforcement Learning (RL) consists in an agent which

learns to perform a task by maximizing cumulative dis-

counted rewards [30]. The agent acts by sequentially

choosing actions from observations over a sequence of

time steps. The problem is modeled as a Markov De-

cision Process (MDP) [31] expressed by (S,A, P,R),

where S is the observation space, A is the action space,

P : S ×A× S → [0; 1] (P (st+1|st, at)) is the transition

probability and R : S × A× S → IR (R(st, at, st+1)) is

the reward function.

RL algorithms attempt to learn a policy πθ : S ×
A → [0; 1] which calculates the probability πθ(at|st) of
selecting the action at given the observation st, where

θ denotes the parameters for the policy π. The goal is

to maximize the expected cumulative discounted return

Eτ∼πθ

∑∞
t=1 γ

trt with rt the reward obtained at step t

in episode τ and γ ∈]0, 1[ being the discount factor.

The policy πθ is learned from sequential experiences in

the form of transition tuples (st, at, rt+1, st+1). Deep

Reinforcement Learning (DRL) uses Neural Networks

to learn πθ(st).

5 Proposed approach

The proposed approach in this work deals with the

explainability of machine learning model decisions. As

mentioned above, the explainability of black-box mod-

els using conventional approaches is intricate. In fact,

it is difficult to define a separate method dealing only

with transparency or causality for example. Therefore,

we propose a new approach from a different angle where

the black-box-ness of the model will not be an issue for

its interpretability and explainability. This approach

uses the three domains presented in the last section,

which are (i) AI2, (ii) TDA and (iii) the SOTIF pro-

cess. On the basis of these techniques, we developed a

new metric called ”Covering metric” where for a given

model and dataset test, local and global covering eval-

uations are proposed.

5.1 Common Approach

The workflow of the approach is divided into 3 main

steps:

1. Estimating the minimum disturbance tolerated around

each sample using abstract interpretation AI2. This

ensures that all cases varying from the original to

the minimum disturbance do not contain any adver-

sarial examples.

2. Calculating the persistence diagram on the cloud

dataset using TDA. With this technique, we deduce

the minimum radius that guarantees coverage of the

cloud dataset and completely fills all Betti numbers.

3. Estimating the ratio between the overall volume and

the volume occupied by the radius balls generated

with the Abstract Interpretation. We define two ra-

tios: global for the ratio between AI2 and TDA ra-

dius, and local for the ratio between the number

of Betti numbers filled by AI2 and the total Betti

numbers detected by TDA.

The intuition behind the approach is to identify

when we can trust or doubt the decision of the model.

Fig. 7 illustrates the safe and the unsafe areas by red

and black circles, respectively. The ideal situation is the

case where the red and the black circles are covering the

same area, as illustrated by the two examples in Fig. 8.

Sub-figures (a) and (b) of Fig. 8 show the possible per-

spectives to improve the safe area of AI2 through model

precision improvement and/or database enrichment.

To quantify the safe area, a process building a cover-

ing metric is proposed. The workflow presented in Fig.

9 illustrates the three steps for a typical classification

model. From the figure, the right side (AI2) computes

the safe scenarios which represent the known-known‡

(real) and unknown-known§ (inside AI2 circle in Fig.

7) scenarios and the left side computes the spots and

holes in the dataset used for the evaluation. They are

represented by the unknown-unknown¶ (holes created

by AI2 covering) and known-unknown‖ (real scenarios

where the model failed) scenarios.

5.2 Metric evaluation

As presented in the last section, the coverage metric is

based on TDA and AI2. From the dataset, a simplicial

‡scenarios evaluated by the model and considered as safe
§Scenarios not evaluated by the model but considered as

safe by AI2 process
¶Scenarios not evaluated by the model and its decision

could be unsafe
‖Scenarios evaluated by the model and considered as un-

safe
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Fig. 7: Safe and unsafe areas illustrated by AI2 and

TDA techniques

(a) improvement of safe area
by model precision

(b) improvement of safe area
by data increase

Fig. 8: Illustration of the improvement of safe areas

exploring two aspects

Fig. 9: Workflow of coverage metric building: from the

test dataset, AI2 and TDA

complex using Čech filtration is built to extract the

minimum radius covering all Betti numbers. Using AI2,

we compute the maximum perturbation respecting the

safety requirements as follows.

Let E be the set of x ∈ RM and net define the

model to evaluate. We define K(f) the Čech simplicial

complex from the cloud points of E under the filtration

f , and {Bn : K → N} the function which computes the

sum of all Betti numbers.

– The topology of the data is given by the following

equation:

∃εmin,∀ ε > 0 where ,

{Bn(εmin) = 0 and Bn(εmin − ε) > 0}

We denote the obtained results (εmin) by εMTDA.

– Let R be the robustness function evaluating the

model net, and η the robustness required:

∃εmax,R(net(εmax)) < η

where εmax represents the perturbation applied on

the input data of the model net. We denote the ob-

tained results (εmax) by εMAI2.

– The coverage metric then is given by:

ρ =
α+ β

2

where,

α =
εMAI2

εMTDA

,

β =
Bn(0)−Bn(εAI2) + 1

Bn(0) + 1

The metric ρ is divided into two parts α and β pre-

senting local and global coverage, respectively. In fact,

α represents the sparsity of the data, and β represents

the filled and unfilled areas (holes) in the data. It is

important to mention that the dimension of the hole is

not considered in the current metric.

5.3 DRL adaption

The workflow presented in Fig. 9 illustrates a classi-

fication model that contains a labeled test dataset as

ground truth. However, for deep reinforcement learning

where there is no ground truth, an adaption of the work-

flow is required. In fact, in deep reinforcement learning,

the agent learns from its environment without ground

truth to verify the model decision compared to the clas-

sification task.

To ensure the verification of DRL models, we ana-

lyzed its three outputs which are actions, rewards and

policies. By introducing some safety requirements, model

actions are the most relevant for the verification of the

decision [32]. In fact, only the actions output are linked

to each scenario which could be independent from other

scenarios.

In DRL, for a given scenario, the action taken is

not binary, i.e. two or more actions could be relevant

for the same scenario. However, only binary verification

could be established: critical and non-critical actions in

terms of safety. Therefore, two classes are performed as

follows:

https://orcid.org/0000-0002-0100-9352
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– Critical Actions class defines the set of actions that

puts the agent in a dangerous situation. For exam-

ple, for the autonomous car, the action ”accelerate”

where the car in front is breaking is considered as

dangerous, then critical.

– Tolerated actions class defines a set of considered

safe actions for the agent. We consider that the op-

timal action (with highest reward) belongs to the

tolerated actions class.

The implementation and the application of these

classes are handled for an autonomous car in High-

way environment (see section 6.1). The workflow de-

picted in Fig. 10 illustrates the adaptation of the com-

mon workflow for DRL models. The AI2, implemented

by ERAN∗∗ and ELINA†† libraries, is also adapted for

DRL architecture. Gudhi‡‡ library is used for TDA com-

putation. The next section (Section 6) details the dif-

ferent steps of the implementation.

Fig. 10: Workflow of coverage metric building adapted

for DRL

6 Implementation

6.1 Simulator environment

Highway-v0 [33] is a 2D open-source autonomous car

driving simulation environment. In this environment,

the agent drives a car on an infinite four lanes unidirec-

tional highway. The vehicle, piloted by the agent (the

ego-vehicle), is inserted in the traffic flow of other ve-

hicles (the exo-vehicles). All exo-vehicles follow a basic

driving algorithm. The goal of the agent is to drive as

fast as possible without having an accident.

The configuration implemented in the environment

to acquire the states of the model represented by the tu-

ple (S, A, P, R) is illustrated by Fig. 11 and formulated

∗∗https://github.com/eth-sri/eran
††https://github.com/eth-sri/ELINA
‡‡https://gudhi.inria.fr/

by the vector s given below:

s = [ yego, vego,

xbl, vbl, xfl, vfl,

xb, vb, xf , vf ,

xbr, vbr, xfr, vfr ]

(1)

Where yego is the transverse position of the agent in the

width of the road, vego is the velocity of the agent, the

xs are the positions of the exo-vehicles relative to the

agent in the longitudinal direction of the road. vs are

the velocities of the exo-vehicles relatively to the agent

velocity. bl, fl, b, f , br, and fr represent the closest exo-

vehicles to the agents, in the back-left, front-left, back,

front, back-right, and front-right positions, respectively.

At each time step the agent observes only three lanes,

its lane and the two adjacent lanes, left and right, and

observes two exo-vehicles on each lane.

Fig. 11: State representation (without velocities) in

Highway-v0

The action of the agent {at ∈ A} is a discrete choice

between five possibilities:

0: Turn Left : change lane to the left

1: Nothing: stay on the same lane, at the same velocity

2: Turn Right: change lane to the right

3: Accelerate (+5m · s−1)

4: Decelerate (−5m · s−1)

The episode ends when the agent has a collision with

another vehicle. The goal of the agent is to drive as long

as possible without having a collision, and as fast as

possible to get the maximum reward at each time step.

6.2 Operational reward function

The basic reward function implemented in Highway-

env rewards the agent when it reaches a high speed

by avoiding collisions. The equation (2) illustrates the

behavior agent reward.

Rv = max

(
−1,

Vego −
∑n

i=0 Vexoi

n

Vmax −
∑n

i=0 Vexoi

n

)
(2)

https://github.com/eth-sri/eran
https://github.com/eth-sri/ELINA
https://gudhi.inria.fr/
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However, with only the speed-based reward func-

tion, the agent decreases its performances, in terms

of the number of collisions and episodes duration, by

increasing traffic density in the environment. Further-

more, the driving behavior of the agent does not re-

spect the operational metrics presented in Section 5.2,

that could be considered as dangerous and risky. Thus,

to improve the performances of the agent, the opera-

tional metrics are integrated in the reward function as

presented in equation (3), where the agent takes into

account, at the same time, the high speed and the op-

erational metrics.

R = min (Rv, Ro) (3)

Rv being the velocity reward defined in the equation

(2) above and Ro being the operational reward given

by the following equation (4)

Ro =

{
min(rf , rft, rbt) if change lane

rfb else,
(4)

where rf , rft, rbt and rfb being functions of TTC and

TIV defining the risk from exo-cars in front same lane,

front target lane, before target lane and braking time

in same lane of ego-car, respectively.

The application of this new reward function induces

a significant improvement in the agent behavior, for

both the duration of scenarios without accident and

the visual behavior in a simulation environment. During

iterative engineering processes to specify reward func-

tion, an analytical approach gives more interpretability

to agent behavior. Using a simulation environment to

replay accidents, it was easier to understand which part

of the reward function contains a mistake or needs fur-
ther improvement.

6.3 Construction of critical and tolerated classes

In the simulator, as mentioned above, the agent could

choose one of the five actions for each scenario. To re-

duce the time computation of the TDA, the covering of

each action was evaluated separately, which drastically

reduces the dimension of the data. Indeed, for Turn

Right action, only the data (relative position and ve-

locity) of exo-vehicles in the right side of the agent and

its own velocity are considered, as illustrated in Fig. 12.

A scenario is considered as Turn Right critical class if

the requirement of TTC and TIV are not respected. All

other scenarios which are not critical are considered as

tolerated.

Separating actions allows a more accurate descrip-

tion of the learned agent behavior and focus on its fail-

ures. It permits to point out the spot where the model

is not sufficient and/or the sparsity of the evaluated

dataset.

Fig. 12: Data considered in Turn Right action

6.4 DRL Model & Dataset

For the experimentation, the Proximal Policy Optimiza-

tion (PPO) algorithm, which is a recent and simple pol-

icy gradient method, is used [34]. The agent is trained

in the highway-v0 environment. It is important to high-

light that any other RL approach could be considered.

The generation of the dataset used in the current

work is done by running the learned agent in the en-

vironment over 10, 000 time steps. At each time step,

we store the observation generated by the environment,

the action taken by the agent giving this observation,

and the result obtained after the execution of the action

in the environment (if the agent has a collision or not).

Table 1 summarizes the number of critical scenar-

ios for each class used to compute the covering metric.

Action 4 (Decelerate) is not evaluated in the current

work due to the lack of data in critical situations for

this action.

action 0 action 1 action 2 action 3 action 4

17,306 207 18466 207 0

Table 1: Critical set scenarios for each action

6.5 AI2 and TDA implementation

AI2 implementation follows two algorithms, perturba-

tion then robustness estimation. The perturbation of

the data follows the instruction given in Algorithm 1

(The organization of each data vector is detailed by

equation (1)). Then, the perturbed data is evaluated

following the steps of Algorithm 2.

https://orcid.org/0000-0002-0100-9352


Title Suppressed Due to Excessive Length 11

For each dataset action, TDA optimal radius is com-

puted. The optimal radius is the value of the filtration

which allows to connect all the cloud points from the

dataset.

Algorithm 1: Perturbation

Data: p (perturbation value), critical class.
Result: epsilon
if critical class == LANE LEFT then

epsilon = [ yego, vego,
xbl + p, vbl + p, xfl + p, vfl + p,
xb, vb, xf , vf ,
xbr, vbr, xfr, vfr ]

if critical class == IDLE then
epsilon = [ yego, vego,

xbl, vbl, xfl, vfl,
xb, vb, xf + p, vf + p,
xbr, vbr, xfr, vfr ]

if critical class == LANE RIGHT then
epsilon = [ yego, vego,

xbl, vbl, xfl, vfl,
xb, vb, xf , vf ,
xbr + p, vbr + p, xfr + p, vfr + p ]

if critical class == FASTER then
epsilon = [ yego, vego,

xbl, vbl, xfl, vfl,
xb, vb, xf + p, vf + p,
xbr, vbr, xfr, vfr ]

if critical class == SLOWER then
epsilon = [ yego, vego,

xbl, vbl, xfl, vfl,
xb + p, vb + p, xf , vf ,
xbr, vbr, xfr, vfr ]

7 Results and Discussion

To illustrate the link between actions, the interpreta-

tion of the results were focused on three actions that

could depend on the same set of data. In fact, in safe

driving the three actions accelerate, nothing and decel-

erate should only depend on ego-vehicle velocity and

the position and velocity of the vehicle in front. Fig-

ures 13 and 14 illustrate scenarios with accelerate, de-

celerate and accelerate, nothing, decelerate actions, re-

spectively. As we can see, there is a clear separation

between the two actions accelerate and decelerate, the

action nothing is located between accelerate and decel-

erate actions, which is easily interpretable for the con-

sidered variables. On the other hand, we can visualize

the tolerated action in Fig. 14 where the same scenario

(point cloud) could belong to nothing, accelerate and

decelerate at the same time. However, other scenarios

could be critical such as accelerate instead of decelerate.

Algorithm 2: Robustness estimation

Data: class list, domain, data.
Result: Robustness
foreach critical class ∈ class list do

dataset = extractCriticalData(data,
critical class);

foreach perturbation intensity ∈ [0, 0.5] do
foreach sample ∈ dataset do

epsilon =
perturbation(perturbation intensity,
critical class);

specLB = sample + epsilon;
specUB = sample - epsilon;
perturbed label = eranAnalyzer(specLB,
specUB, domain)

if perturbed label == critical class then
failed sample = failed sample + 1;

else
verified sample = verified sample + 1
;

robustness[critical class][perturbation intensity]
= verified sample/length(dataset);

Fig. 13: Results of data for the two actions : acceler-

ate and decelerate. VEGO defines Ego-vehicle Velocity,

VEXO AV and EXO AV define the velocity and the

position of the Exo-vehicle in front of the Ego-vehicle,

respectively

As mentioned above, the velocity of vehicles is not

continuous (±5m · s−1). Fig. 15 and 16 illustrate this

behavior where we can see that the velocity is like a

staircase. This discontinuity of the velocity will affect

the covering metric.

The AI2 results are presented in Table 2. We can

see from the results that the agent is less efficient for
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Fig. 14: Results of data for the three actions : acceler-

ate, nothing and decelerate. VEGO defines Ego-vehicle

Velocity, VEXO AV and EXO AV define the velocity

and the position of the Exo-vehicle in front of the Ego-

vehicle, respectively

Fig. 15: Results of data for the three actions: acceler-

ate, nothing and decelerate. VEGO defines Ego-vehicle

Velocity, VEXO AV and EXO AV define the velocity

and the position of the Exo-vehicle in front of the Ego-

vehicle, respectively

the action Nothing, which is interpretable, as the higher

the speed of the agent, the more it is rewarded. On the

other hand, we can see that the agent is more robust

for the two actions Turn right and Accelerate. However,

Fig. 16: A zoom of the velocity values obtained from

the simulator. An illustration of the non-continuity of

the speed of cars.

Decelerate action is not evaluated in the current dataset

due to its empty critical class.

ε action 0 action 1 action 2 action 3

0.005 97.3% 95.1% 99.1% 98%
0.01 94.8% 92.7% 98.2% 97.5%
0.015 92.5% 88.8% 97.3% 97.5%
0.02 90.6% 83.5% 96.9% 96.6%
0.025 89, 3% 83% 96.7% 95.5%

Table 2: AI2 results for the 4 actions which are: action

0 for Turn left, action 1 for Nothing, action 2 for Turn

right and action 3 for Accelerate

Covering metric for a robustness of 95%

action 0 2%
action 1 4%
action 2 29%
action 3 56%

Table 3: Results of covering metric for the four actions

by respecting 95% of robustness as a safety requirement

To evaluate the coverage of the dataset, for each ac-

tion we consider that the minimum robustness should

exceed 95%, then actions Turn left and Nothing could

accept only a disturbance of 0.005, which is equiva-

lent to 0.63m · s−1 for the velocity and 0.875m for the

position, and actions Turn right and Accelerate could

tolerate a disturbance of 0.025, which is equivalent to

3.15m ·s−1 for the velocity and 4.375m for the position.

Table 3 reports the covering metric for each action. As

we can see, the cover is higher for the actions Turn

right and Accelerate by 29% and 56% of data coverage

https://orcid.org/0000-0002-0100-9352
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Fig. 17: Example of the evolution of the covering met-

ric. The x axis presents the radius (filtration function),

the y axis presents the covering; the yellow vertical bar

presents the covering taking into account the require-

ment of 95% robustness

and only 2% and 4% of data coverage for Turn left and

Nothing actions.

Fig. 17 illustrates the covering metric evolution by

increasing the TDA radius. From the figure, it can been

seen that for a radius value greater than 0.03, the im-

provement of the local metric is very low, which presents

the heterogeneity of the dataset due to the velocity, i.e

there are holes (Betti numbers) needing a large radius

to be covered. These areas represent the discontinu-

ity of the velocity illustrated in Fig. 15. In terms of

safety, they are harmful zones and can be considered as

unknown-unknown scenarios.

As mentioned above concerning the resilient appli-

cation of the proposed approach, the equivalent work-

flow could be adapted for more data such as trajectory

evaluation [35]. Furthermore, the approach can be use-

ful for data privacy [2,36] to identify the safe and unsafe

regions.

8 Conclusion

This work proposes a covering metric for datasets used

in machine learning models. The metric is based on the

topology of the data and the robustness of the model.

In other terms, the proposed approach connects two

mathematical domains to evaluate simultaneously the

robustness of the model and the coverage of the dataset,

by using topological data analysis and Abstract Inter-

pretation methods. Additionally, a set of safety require-

ments and specifications are integrated to better in-

terpret the covered and uncovered situations. An im-

plementation of the metric, taking into account some

safety concepts, is also presented. The approach is ap-

plied on an autonomous driving simulator and deep re-

inforcement learning as decision-making model.

The obtained results highlighted a validation method-

ology by characterizing the safe and the unsafe decision

of machine learning models. As a perspective, an appli-

cation of the proposed metric on the latent space of the

data generated by GAN (Generative Adversarial Net-

works) models could achieve a connection between the

real and synthetic generated data [37], which facilitates

the establishment of sensitive data, such as medical or

defense data. Another application of the proposed work

could be used for recurrent networks [38].
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