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FULL DISCRETIZATION OF TIME DEPENDENT

CONVECTION-DIFFUSION-REACTION EQUATION COUPLED WITH THE

DARCY SYSTEM.

NANCY CHALHOUB†, PASCAL OMNES‡∗, TONI SAYAH†, AND REBECCA EL ZAHLANIYEH†∗

Abstract. In this article, we study the time dependent convection-diffusion-reaction equation coupled

with the Darcy equation. We propose and analyze two numerical schemes based on finite element meth-

ods for the discretization in space and the implicit Euler method for the discretization in time. An
optimal a priori error estimate is then derived for each numerical scheme. Finally, we present some

numerical experiments that confirm the theoretical accuracy of the discretization.

Keywords. Darcy’s equations; convection-diffusion-reaction equation; finite element method; a priori

error estimates.

1. Introduction.

Let Ω be a connected bounded open set in IRd, d = 2, 3, with a Lipschitz-continuous boundary Γ = ∂Ω,
and let [0, T ] be an interval of IR. In this work, we study the concentration distribution of a fluid in
a porous medium modelled by a time dependent convection-diffusion-reaction equation coupled with
Darcy’s law. The system of equations is

(P)



ν(C(x, t))u(x, t) +∇ p(x, t) = f(x, t, C(x, t)) in Ω×]0, T [,

(divu)(x, t) = 0 in Ω×]0, T [,

∂C

∂t
(x, t)− α∆C(x, t) + (u(x, t) · ∇C)(x, t) + r0C(x, t) = g(x, t) in Ω×]0, T [,

(u · n)(x, t) = 0 on Γ× [0, T ],

C(x, t) = 0 on Γ× [0, T ],

C(x, 0) = 0 in Ω,

where n is the unit outward normal vector on Γ. The unknowns are the velocity u, the pressure p and the
concentration C of the fluid. The function f represents a force density that depends on the concentra-
tion C and the function g represents an external concentration source. The viscosity ν also depends on
the concentration C but the diffusion coefficient α and the parameter r0 are positive constants. To sim-
plify, a homogeneous Dirichlet boundary condition is prescribed on the concentration C, but the present
analysis easily extends to a non homogeneous boundary condition.

The existence of a weak solution of (P) is established in [12, 8]. As far as its numerical approximation
is concerned, problem (P) was treated for example in [16, 17]. In these works, the authors used the
semi-implicit Euler method for the time discretization and the Raviart-Thomas H(div,Ω) finite element
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method for the space discretization of the velocity/pressure unknowns. They established an a priori
error estimate that is valid in 2-dimensions and place themselves in a somewhat restrictive framework,
where Ω is a square, discretized by square cells. Moreover, in order to derive the estimate, the authors
imposed multiple conditions on the space and time steps, which lead to a time step ∆t = o(h) for the
lowest-order Raviart-Thomas scheme. The heat equation coupled with the Navier-Stokes system has been
treated by many works (see for instance Bernardi, Métivet and Pernaud-Thomas [4], Deteix, Jendoubi
and Yakoubi [11], or Gaultier and Lezaun [13]). The stationary coupling of Darcy’s system with the heat
equation where the viscosity is constant but the exterior force depends on the temperature (like in the
model proposed by Boussinesq [7]) was analyzed by Bernardi, Yacoubi and Maarouf [6] and discretized
with a spectral method. The same stationary system but coupled by a nonlinear viscosity depending
on the temperature is studied by Bernadi et al. in [5], where they propose and analyze two numerical
schemes based on finite element methods. In [20, 19], the authors discretize a problem similar to (P)
using Raviart-Thomas elements methods for the discretization in space. For the discretization in time,
Rivière and Walkington in [20] used the Discontinuous Galerkin (DG) method and Li et al. in [19] used
the Interior Penalty Discontinuous Galerkin (IPDG) method. These two works do not establish a priori
error estimates but rather prove the convergence of the schemes using compactness results for functions
that may be discontinuous in time. Vassilev and Yotov coupled in [23] the non-stationary Stokes-Darcy
equation with the time dependent Transport equation, and established an a priori error estimate.

In this work, we study two types of discrete schemes for the full discretization of Problem (P) in time
and space and for both, we prove existence and uniqueness and derive optimal a priori error estimates
for the solutions. The first scheme is the lowest order Raviart-Thomas scheme for the velocity/pressure
unknowns, for which we extend and improve the results of [16, 17], first by considering general domains
covered by simplicial meshes, then by extending the proof to the three-dimensional case.

The second scheme uses the P1-bubble / P1 scheme for the velocity/pressure unknowns, which is known
as the “mini-element” in the Stokes context [2]. Both schemes use the P1 scheme for the concentration
unknown. Finally, we perform several numerical tests to validate the theoretical results. They show that,
in certain circumstances, the second scheme, although of higher numerical complexity, may have a better
accuracy/complexity ratio.

The outline of the paper is as follows:

• In Section 2, we introduce some notations and functional spaces that are useful for the study of
the problem.

• In section 3, we introduce two variational formulations.
• Section 4 is devoted to the study of two numerical schemes and the establishment of an a priori

error estimation under regularity assumptions of the exact solutions.
• Some numerical experiments are presented in Section 5.

2. Preliminaries

In this section, we recall the main notations and results which we use later on. We introduce the Sobolev
space

Wm,r(Ω)d =
{
v ∈ Lr(Ω)d; ∂kv ∈ Lr(Ω)d, ∀|k| ≤ m

}
,

where k = {k1, ..., kd} is a vector of non negative integers, such that |k| = k1 + ...+ kd and

∂kv =
∂|k|v

∂k1x1...∂kdxd
.

This space is equipped with the semi-norm

|v|Wm,r(Ω)d =

 ∑
|k|=m

∫
Ω

|∂kv|rdx

 1
r

,
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and is a Banach space for the norm

‖ v ‖Wm,r(Ω)d=

(
m∑
l=0

∫
Ω

|v|rW l,r(Ω)ddx

) 1
r

.

When r = 2, this space is the Hilbert space Hm(Ω)d. In particular, we consider the following spaces

H1
0 (Ω)d =

{
v ∈ H1(Ω)d; v|∂Ω = 0

}
,

and its dual H−1(Ω)d.
We shall also introduce

L2
0(Ω) =

{
q ∈ L2(Ω);

∫
Ω

q(x)dx = 0

}
.

We define the following scalar product in L2(Ω):

(v, w) =

∫
Ω

v(x)w(x)dx, ∀v, w ∈ L2(Ω).

We recall the following Poincaré and Sobolev inequalities:

Lemma 2.1. For any p ≥ 1 when d = 1 or 2, or 1 ≤ p ≤ 2d

d− 2
when d ≥ 3, there exist two positive

constants Sp and S0
p such that

∀v ∈ H1
0 (Ω)d, ‖ v ‖Lp(Ω)d≤ S0

p |v|H1
0 (Ω)d ,

and

∀v ∈ H1(Ω)d , ‖ v ‖Lp(Ω)d≤ Sp ‖ v ‖H1(Ω)d .

We shall also use the following continuous embedding:

∀q > d, W 1,q(Ω) ↪→ L∞(Ω). (2.1)

We recall the standard spaces for Darcy’s equations

H(div,Ω) = {v ∈ L2(Ω)d; divv ∈ L2(Ω)}, (2.2)

H0(div,Ω) = {v ∈ H(div,Ω); (v · n)|Γ = 0}, (2.3)

and

V = {v ∈ H0(div,Ω); divv = 0}, (2.4)

equipped with the norm

‖v‖2H(div,Ω) = ‖v‖2L2(Ω)d + ‖divv‖2L2(Ω). (2.5)

Finally, we recall the inf-sup condition between L2
0(Ω) and H0(div,Ω),

inf
q∈L2

0(Ω)
sup

v∈H0(div,Ω)

∫
Ω

(divv)q dx

‖v‖H(div,Ω)‖q‖L2(Ω)
≥ β, (2.6)

with a constant β > 0, and the inf-sup condition between H1(Ω) ∩ L2
0(Ω) and L2(Ω)d,

inf
q∈H1(Ω)∩L2

0(Ω)
sup

v∈L2(Ω)d

∫
Ω

v.∇ q dx

‖v‖L2(Ω)d |q|H1(Ω)
≥ 1. (2.7)

Condition (2.6) follows immediately by solving a Laplace equation in Ω with a Neumann boundary
condition on Γ, and condition (2.7) by choosing v = ∇ q. As usual, for handling time-dependent problems,
it is convenient to consider functions defined on a time interval ]a, b[ with values in a separable functional
space W equipped with a norm ‖ . ‖W . Then, for any r ≥ 1, we introduce the space

Lr (a, b;W ) =

{
f mesurable on ]a, b[;

∫ b

a

‖ f(t) ‖rW dt <∞

}
;
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equipped with the norm

‖ f ‖Lr(a,b;W )=

(∫ b

a

‖ f(t) ‖rW dt

) 1
r

.

If r =∞, then

L∞ (a, b;W ) =

{
f mesurable on ]a, b[; sup

t∈[a,b]

‖ f(t) ‖W <∞

}
.

Remark 2.2. Lr (0, T ;W ) is a Banach space if W is a Banach space.

In addition, we define Cj (0, T ;W ) as the space of functions Cj in time with values in W .

Remark 2.3. Let a and b be two real numbers.

(1) For any positive real number ε, we have

ab ≤ 1

2ε
a2 +

1

2
εb2. (2.8)

(2) We also have

a(a− b) =
1

2
a2 − 1

2
b2 +

1

2
(a− b)2. (2.9)

3. Variational formulations

In this section, we start by writing a variational formulation of problem (P). Next, we prove the exis-
tence and the uniqueness of the solution. We assume that the data of the problem verify the following
assumptions:

Assumption 3.1. We assume that the data f , g and ν verify:

(1) f can be written as follows:

f(x, t, C) = f0(x, t) + f1(x, C), (3.1)

where f0 ∈ L∞(0, T ;L2(Ω)d) and f1(C) is (uniformly in x) c∗f1-Lipschitz with respect to its second

variable with values in IRd. In addition, we suppose that

∀x ∈ Ω,∀ξ ∈ IR, |f1(x, ξ)| ≤ cf1 |ξ|, (3.2)

where cf1 is a positive constant.
(2) g ∈ L2

(
0, T, L2(Ω)

)
.

(3) ν is λ-Lipschitz on IR and there exist two strictly positive constants ν1 and ν2 such that, for any
θ ∈ IR

ν1 ≤ ν(θ) ≤ ν2. (3.3)

There are two possible choices of spaces for Darcy’s velocity and pressure (u, p). The first choice is
L∞(0, T ;H0(div,Ω)) × L∞(0, T ;L2

0(Ω)); it corresponds to a mixed formulation and is analyzed in this
section. The second choice is L∞(0, T ;L2(Ω)d) × L∞(0, T ; (H1(Ω)) ∩ L2

0(Ω)); it leads to an alternative
formulation equivalent to the first. In both cases, the concentration C is in L2(0, T ;H1

0 (Ω)). Then,
whereas there is no difficulty in setting Darcy’s system in variational form, a variational formulation of
the concentration equation is not that obvious. Indeed, the convection term u · ∇C cannot be tested by
an H1(Ω) function, since it is only in L1(Ω). Therefore, we choose the test functions in H1

0 (Ω)∩L∞(Ω).
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Thus, we propose the following variational problem: for all t ∈ [0, T ],

(V )



Find (u(t), p(t), C(t)) ∈ H0(div,Ω)× L2
0(Ω)×H1

0 (Ω) such that, C(0) = 0 and

∀v ∈ H0(div,Ω),

∫
Ω

ν(C(t))u(t) · v dx −
∫

Ω

p(t)(divv) dx =

∫
Ω

f(., t, C(t)) · v dx ,

∀ q ∈ L2
0(Ω),

∫
Ω

q(divu(t)) dx = 0,

∀S ∈ H1
0 (Ω) ∩ L∞(Ω),

∫
Ω

∂C

∂t
(t)Sdx + α

∫
Ω

∇C(t) · ∇S dx +

∫
Ω

(u(t) · ∇C(t))S dx

+r0

∫
Ω

C(t)S dx =

∫
Ω

g(t)S dx .

A straightforward argument shows that any triplet of functions (u(t), p(t), C(t)) in H0(div,Ω)×L2
0(Ω)×

H1
0 (Ω) that solves the first three lines of problem (P) in the sense of distributions in Ω, and the last two

lines in the sense of traces in H−1/2(Γ) and H1/2(Γ) respectively, is a solution of (V). Conversely, any
solution (u(t), p(t), C(t)) of problem (V) solves problem (P) in the above sense.

For the a priori bound on the concentration C, we have the following theorem:

Theorem 3.2. Every solution of (V) such that C ∈ L∞([0, T ]× Ω) verifies the bounds:

‖C‖2L∞(0,T ;L2(Ω)) + α‖C‖2L2(0,T ;H1
0 (Ω)) + 2r0‖C‖2L2(0,T ;L2(Ω)) ≤ 2

(S0
2)2

α
‖g‖2L2(0,T ;L2(Ω)) (3.4)

and

‖u(t)‖L2(Ω)d ≤
1

ν1

(
‖f0(t)‖L2(Ω)d + cf1‖C‖L∞(0,T ;L2(Ω))

)
. (3.5)

Proof. By testing the last line of (V) with S = C(t), and by noticing that

∫
Ω

(u · ∇C)C = 0, we use the

Cauchy-Schwarz inequality and get:

1

2

d

dt
‖C(t)‖2L2(Ω) + α‖∇C(t)‖2L2(Ω) + r0‖C(t)‖2L2(Ω) ≤ ‖g(t)‖L2(Ω)‖C(t)‖L2(Ω).

We use Relation (2.8) with ε =
α

(S0
2)2

and Lemma 2.1 and we integrate between 0 and t to obtain

‖C(t)‖2L2(Ω) + α‖C‖2L2(0,t;H1
0 (Ω)) + 2r0‖C‖2L2(0,t;L2(Ω)) ≤

(S0
2)2

α
‖g‖2L2(0,t;L2(Ω)).

The last relation leads to the following one:

‖C‖2L∞(0,T ;L2(Ω)) + α‖C‖2
L2(0,T ;H1

0 (Ω))
+ 2r0‖C‖2L2(0,T ;L2(Ω)) ≤ 2

(S0
2)2

α
‖g‖2L2(0,T ;L2(Ω)).

Next, by testing the first line of (V) with v = u(t) and using the second line, we immediately derive from
(3.1), (3.2) and (3.3) the following a priori bound:

‖u(t)‖L2(Ω)d ≤
1

ν1

(
‖f0(t)‖L2(Ω)d + cf1‖C‖L∞(0,T ;L2(Ω))

)
. (3.6)

Alternative variational formulation. The variational problem (V ) is well adapted to locally conser-
vative discrete schemes. However, the numerical implementation of such schemes is not straightforward
and can be simplified by eliminating the divergence term from the first two equations of (V ) by means of
Green’s formula, thus reducing the regularity of u. This leads to the following alternative formulation:
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for all t ∈ [0, T ],

(Va)



Find (u(t), p(t), C(t)) ∈ L2(Ω)d × (H1(Ω) ∩ L2
0(Ω))×H1

0 (Ω) such that

∀v ∈ L2(Ω)d,

∫
Ω

ν(C(t))u(t) · v dx +

∫
Ω

∇ p(t) · v dx =

∫
Ω

f(., t, C(t)) · v dx ,

∀ q ∈ H1(Ω) ∩ L2
0(Ω),

∫
Ω

∇ q · u(t) dx = 0,

∀S ∈ H1
0 (Ω) ∩ L∞(Ω),

∫
Ω

∂C

∂t
(t)Sdx + α

∫
Ω

∇C(t) · ∇S dx +

∫
Ω

(u(t) · ∇C(t))S dx

+r0

∫
Ω

C(t)S dx =

∫
Ω

g(t)S dx .

This variational formulation is obviously equivalent to (V ). It leads to numerical schemes that are simpler
to implement.

4. Discretization

In this section, we propose a space-time discretization of the problem (P), derive and prove an a priori
error estimation. We use the semi-implicit Euler method for the time discretization and the finite element
method for the space discretization. For the time discretization, we introduce a partition of the interval
[0, T ] into N subintervals [tn−1, tn] of length τ (the time step). For the space discretization, we assume
that Ω is a polygon when d = 2 or polyhedron when d = 3, so it can be completely meshed. Now, we
describe the discretization space. A regular family of triangulations (see Ciarlet [9]) (Th)h of Ω, is a set
of closed non degenerate triangles or tetrahedra, called elements, satisfying,

• for each h, Ω̄ is the union of all elements of Th;
• the intersection of two distinct elements of Th is either empty, a common vertex, or an entire

common edge or face;
• the ratio of the diameter of an element K in Th to the diameter of its inscribed circle or ball is

bounded by a constant independent of h.

As usual, h denotes the maximal diameter of all elements of Th. For each K in Th, we denote by P1(K)
the space of restrictions to K of polynomials in d variables and total degree at most one.
In what follows, c, c′, C, C ′, c1, . . . stand for generic constants which may vary from line to line but are
always independent of h. For a given triangulation Th, we define the following finite dimensional spaces:

Zh = {Sh ∈ C0(Ω̄); ∀K ∈ Th, Sh|K ∈ P1(K)} and Xh = Zh ∩H1
0 (Ω). (4.1)

We shall use the following result: There exists an approximation operator (when d = 2, see Bernardi and
Girault [3] or Clément [10]; when d = 2 or d = 3, see Scott and Zhang [22]), Rh in L(W 1,p(Ω);Zh) and
in L(W 1,p(Ω) ∩H1

0 (Ω);Xh) such that for all K in Th, m = 0, 1, l = 0, 1, and all p ≥ 2,

∀S ∈W l+1,p(Ω), |S −Rh(S)|Wm,p(K) ≤ c(p,m, l)hl+1−m|S|W l+1,p(∆K), (4.2)

where ∆K is the macro element containing the values of S used in defining Rh(S).

Furthermore, we introduce the following inverse inequalities: for any number p ≥ 2, for any dimension d,
and for any non negative integer r, there exist constants c0I(p) such that for any polynomial function vh
of degree r on K,

‖vh‖Lp(K) ≤ c0I(p)h
d
p−

d
2

K ‖vh‖L2(K). (4.3)

4.1. First discrete scheme. The velocity and pressure are discretized in space by the Raviart-Thomas
RT0 elements. More precisely, the discrete spaces (Wh,1,Mh,1) are defined as follows:

Wh ={vh ∈ H(div,Ω); vh(x)|K = aKx + bK , aK ∈ IR,bK ∈ IRd, ∀K ∈ Th},
Wh,1 =Wh ∩H0(div,Ω),

(4.4)

Mh = {qh ∈ L2(Ω); ∀K ∈ Th, qh|K is constant} and Mh,1 = Mh ∩ L2
0(Ω). (4.5)
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The kernel of the divergence in Wh,1 is denoted by Vh,1,

Vh,1 = {vh ∈ Wh,1; divvh = 0 in Ω}. (4.6)

There exists an approximation operator ξ1
h belonging to L(H1(Ω);Wh) and to L(H1(Ω)∩H0(div,Ω);Wh,1)

such that for all K in Th (Roberts and Thomas [21]):

∀v ∈ H1(Ω)d, ‖v − ξ1
h(v)‖L2(K)d ≤ c1 h|v|H1(K)d , (4.7)

and
∀v ∈ H1(Ω)d s.t. divv ∈ H1(Ω), ‖div(v − ξ1

h(v))‖L2(K) ≤ c2 h|divv|H1(K). (4.8)

Furthermore, if divu = 0 then div(ξ1
h(u)) = 0. In addition, we shall use the operator ρh that belongs to

L(L2(Ω);Mh) ∩ L(L2
0(Ω);Mh,1), defined by

ρh(q)|K =
1

|K|

∫
K

q dx , ∀K ∈ Th. (4.9)

This operator satisfies the following result

∀q ∈ H1(Ω), ‖q − ρh(q)‖L2(K) ≤ c h |q|H1(K). (4.10)

The following discrete inf-sup condition holds (see Roberts and Thomas [21]):

∀ qh ∈Mh,1, sup
vh∈Wh,1

∫
Ω

qh(divvh) dx

‖vh‖H(div,Ω)
≥ β1‖qh‖L2(Ω), (4.11)

with a constant β1 > 0 independent of h.
We then consider the straightforward discretization of Problem (V ):

(Vh,1)



HavingCn−1
h ∈ Xh,Find (un

h, p
n
h) ∈ Wh,1 ×Mh,1 such that

∀vh ∈ Wh,1,

∫
Ω

ν(Cn−1
h )un

h · vh dx −
∫

Ω

pnh(divvh) dx =

∫
Ω

fn(Cn−1
h ) · vh dx ,

∀ qh ∈Mh,1,

∫
Ω

qh(divun
h) dx = 0,

Having Cn−1
h ∈ Xh,Find Cn

h ∈ Xh such that

∀Sh ∈ Xh,

∫
Ω

Cn
h − C

n−1
h

τ
Sh dx + α

∫
Ω

∇Cn
h · ∇Sh dx +

∫
Ω

(un
h · ∇Cn

h )Sh dx

+r0

∫
Ω

Cn
h Sh dx =

∫
Ω

gn Sh dx,

where C0
h = 0, gn and fn(Cn−1

h ) are given as

gn =
1

τ

∫ tn

tn−1

g(s)ds, (4.12)

fn(Cn−1
h ) = fn0 + f1(Cn−1

h ), where fn0 = f0(tn).

It is easy to see that the second equation of the above system implies that divun
h = 0 in Ω, since un

h ∈ Wh,1

implies that divun
h ∈ Mh,1. Hence this scheme preserves the zero divergence condition. This and the

conformity of Ch imply in turn that
∫

Ω
(un

h · ∇Ch)Ch = 0 for all Ch ∈ Xh.

For the existence and uniqueness of the solution of (Vh,1), we have the following theorem:

Theorem 4.1 (Existence and uniqueness of the solution of (Vh,1)). At each time step n and for a given

Cn−1
h ∈ Xh, Problem (Vh,1) has a unique solution (un

h, p
n
h, C

n
h ) ∈ Wh,1 ×Mh,1 × Xh which verifies, for

m = 1, · · · , N , the following bounds

‖um
h ‖L2(Ω)d ≤

1

ν1

(
‖f0‖L∞(0,T ;L2(Ω)d) + cf1‖Cm−1

h ‖L2(Ω)

)
(4.13)

and

‖Cm
h ‖2L2(Ω) + α

m∑
n=1

τ |Cn
h |2H1(Ω) + 2r0

m∑
n=1

τ‖Cn
h‖2L2(Ω) ≤

(S0
2)2

α
‖g‖2L2(0,T ;L2(Ω)), (4.14)
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where c is positive constant independent of h and m.

Proof. It is clear that the first equation of Problem (Vh,1) has a unique solution (un
h, p

n
h) as a consequence

of the coerciveness of the corresponding bilinear form on Wh,1 ×Wh,1 and the inf-sup condition (4.11).

Thus, knowing un
h ∈ Wh,1 and Cn−1

h ∈ Xh, the third equation of Problem (Vh,1) also admits a unique
solution Cn

h ∈ Xh. Therefore, by taking vh = un
h in the first equation we get (4.13), and Sh = Cn

h

in the third equation of Problem (Vh,1) we get, using the Cauchy-Schwarz inequality, Lemma 2.1 and
Remark 2.3

1

2
(‖Cn

h‖2L2(Ω) − ‖C
n−1
h ‖2L2(Ω)) +

α

2
τ |Cn

h |2H1(Ω) + τr0‖Cn
h‖2L2(Ω) ≤

(S0
2)2

2α
τ‖gn‖2L2(Ω). (4.15)

We sum over n = 1, · · · ,m and we obtain (4.14).

4.2. Second discrete scheme. Let K be an element of Th with vertices ai, 1 ≤ i ≤ d + 1, and
corresponding barycentric coordinates λi. We denote by bK ∈ Pd+1(K) the basic bubble function

bK(x) = λ1(x)...λd+1(x). (4.16)

We observe that bK(x) = 0 on ∂K and that bK(x) > 0 in the interior of K.
Let (Wh,2,Mh,2) be a pair of discrete spaces approximating L2(Ω)d ×

(
H1(Ω) ∩ L2

0(Ω)
)

defined by

Wh,2 = {vh ∈ (C0(Ω̄))d; ∀K ∈ Th, vh|K ∈ P(K)
d}, (4.17)

M̃h = {qh ∈ C0(Ω̄); ∀K ∈ Th, qh|K ∈ P1(K)} and Mh,2 = M̃h ∩ L2
0(Ω), (4.18)

where

P(K) = P1(K)⊕Vect{bK},
is the space associated to the discretisation in space by the “mini-élément” introduced by Arnold et al.
in [2].
Let Vh,2 be the kernel of the divergence in Wh,2,

Vh,2 = {vh ∈ Wh,2; ∀qh ∈Mh,2,

∫
Ω

vh · ∇qh dx = 0}. (4.19)

We shall use a variant of Rh denoted by Fh which is constructed in [5, p. 336] and has the following
properties:

∀v ∈ H1(Ω)d, ||v −Fh(v)||L2(K)d ≤ C h||v||H1(∆K)d , (4.20)

and Fh(v) ∈ Vh,2 when divv = 0.

Regarding the pressure, since Zh coincides with M̃h, an easy modification of Rh yields an operator
rh in L(H1(Ω); M̃h) and in L(H1(Ω) ∩ L2

0(Ω);Mh,2) (see for instance Abboud, Girault and Sayah [1]),
satisfying (4.2). We approximate problem (Va) by the following discrete scheme:

(Vh,2)



HavingCn−1
h ∈ Xh,Find (un

h, p
n
h) ∈ Wh,2 ×Mh,2 such as

∀vh ∈ Wh,2,

∫
Ω

ν(Cn−1
h )un

h · vh dx +

∫
Ω

∇ pnh · vh dx =

∫
Ω

fn(Cn−1
h ) · vh dx ,

∀ qh ∈Mh,2,

∫
Ω

∇ qh · un
h dx = 0,

Having Cn−1
h ∈ Xh,Find Cn

h ∈ Xh such that

∀Sh ∈ Xh,

∫
Ω

Cn
h − C

n−1
h

τ
Sh dx + α

∫
Ω

∇Cn
h · ∇Sh dx +

∫
Ω

(un
h · ∇Cn

h )Sh dx

+
1

2

∫
Ω

div (un
h)Cn

h Sh dx + r0

∫
Ω

Cn
h Sh dx =

∫
Ω

gn Sh dx .

where as usual, the second nonlinear term in the last equation is added to compensate the fact that
divun

h 6= 0. It is well-known that Green’s formula and the functions regularity imply that∫
Ω

(un
h · ∇Cn

h )Sh dx +
1

2

∫
Ω

(divun
h)Cn

h Sh dx =
1

2

(∫
Ω

(un
h · ∇Cn

h )Sh dx−
∫

Ω

(un
h · ∇Sh)Cn

h dx
)
, (4.21)
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so that the nonlinear term is antisymmetric. One of the key points for studying (Vh,2) is the discrete
inf-sup condition satisfied by the pair of spaces (Wh,2,Mh,2) (see for instance [5]):

∀ qh ∈Mh,2, sup
vh∈Wh,2

∫
Ω

∇ qh · vh dx

‖vh‖L2(Ω)d
≥ β2 |qh|H1(Ω), (4.22)

with a constant β2 > 0 independent of h.

By following the same steps of the proof of Theorem (4.1), we deduce the following theorem:

Theorem 4.2 (Existence and uniqueness of the solution of (Vh,2)). At each time step n and for a given

Cn−1
h ∈ Xh, Problem (Vh,2) has a unique solution (un

h, p
n
h, C

n
h ) ∈ Wh,2 ×Mh,2 × Xh which verifies, for

m = 1, · · · , N , the following bounds

‖um
h ‖L2(Ω)d ≤

1

ν1

(
‖f0‖L∞(0,T ;L2(Ω)d) + cf1‖Cm−1

h ‖L2(Ω)

)
(4.23)

and

‖Cm
h ‖2L2(Ω) + α

m∑
n=1

τ |Cn
h |2H1(Ω) + 2r0

m∑
n=1

τ‖Cn
h‖2L2(Ω) ≤

(S0
2)2

α
‖g‖2L2(0,T ;L2(Ω)), (4.24)

where c is positive constant independent of h and m.

5. A priori error estimate

In this section, we establish the a priori estimates corresponding to the proposed numerical schemes. We
begin by establishing the error estimates corresponding to the velocity and the pressure, and then we will
establish those corresponding to the concentration for both schemes (Vh,1) and (Vh,2).
In all the rest of the paper, we denote by un = u(tn), pn = p(tn) and Cn = C(tn).

Theorem 5.1. Let (u, p, C) be the solution of Problem (V ) and (un
h, p

n
h, C

n
h ) be the solution of Problem

(Vh,1). If u ∈ L∞(0, T ;H1(Ω)d) ∩ L∞(0, T ;L∞(Ω)d),
∂u

∂t
∈ L2(0, T ;L4(Ω)d), p ∈ L∞(0, T ;H1(Ω)),

C ∈ L∞(0, T ;W 2,4(Ω)) and
∂C

∂t
∈ L2(0, T ;W 1,4(Ω)) and under Assumption 3.1, there exist positive

constants c, c1, c′, c′′ depending on u and α such that,

‖un − un
h‖L2(Ω)d ≤

1

ν1

(
ch+ (c∗f1 + λ‖u‖L∞(0,T ;L∞(Ω)d))||Cn − Cn−1

h ||L2(Ω)

)
, (5.1)

‖pn − pnh‖L2(Ω) ≤ c′h+
ν2

β1
‖un − un

h‖L2(Ω)d +
1

β1
(c∗f1 + λ‖u‖L∞(0,T ;L∞(Ω)d))||Cn − Cn−1

h ||L2(Ω), (5.2)

and

sup
0≤n≤N

‖Cn
h − Cn‖2L2(Ω) + α

N∑
n=1

τ |Cn
h − Cn|21,Ω +

N∑
n=1

‖(Cn
h − Cn)− (Cn−1

h − Cn−1)‖2L2(Ω)

+r0

N∑
n=1

τ‖Cn
h − Cn‖2L2(Ω) ≤ c

′′(h2 + τ2) + c1

N∑
n=1

τ‖un
h − un‖2L2(Ω)d .

(5.3)

Proof. Let (u, p, C) and (un
h, p

n
h, C

n
h ) solve respectively (V ) and (Vh,1). We shall prove first (5.1),

next (5.2), and finally (5.3).
We start by estimating the error on the velocity approximation. By taking the difference between the
first equations of (V ) for t = tn and (Vh,1) and testing with v = vh ∈ Vh,1, we obtain∫

Ω

ν(Cn−1
h (x))(un − un

h)(x) · vh(x)dx =

∫
Ω

(f1(Cn(x))− f1(Cn−1
h (x))) · vh(x)dx

+

∫
Ω

(ν(Cn−1
h (x))− ν(Cn(x)))un(x) · vh(x)dx.

(5.4)
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By inserting ξ1
hu

n, taking vh = ξ1
hu

n − un
h, using the triangle inequality and the properties of ξ1

h, and
using the properties of f1 and ν, we obtain

ν1‖un − un
h‖L2(Ω)d ≤ ch+ c∗f1 ||C

n − Cn−1
h ||L2(Ω) + λ‖u‖L∞(0,T ;L∞(Ω)d)||Cn − Cn−1

h ||L2(Ω).

Hence, we deduce (5.1).
To prove the error estimate on the pressure, we take the difference between the first equations of (V ) (for
t = tn) and (Vh,1), insert ρh(pn), test with vh in Wh,1, and obtain∫

Ω

(ρh(pn)− pnh)(x)div vh(x)dx =

∫
Ω

(ρh(pn)− pn)(x)div vh(x)dx +

∫
Ω

ν(Cn−1
h )(un − un

h)(x) · vh(x)dx

+

∫
Ω

(ν(Cn(x))− ν(Cn−1
h (x)))un(x) · vh(x)dx

−
∫

Ω

(f1(Cn(x))− f1(Cn−1
h (x))) · vh(x)dx.

(5.5)
It follows from the inf-sup condition (4.11) that there exists vh in Wh,1 such that

div vh = ρh(pn)− pnh and ‖vh‖H(div,Ω) ≤
1

β1
‖ρh(pn)− pnh‖L2(Ω).

With this vh, (5.5) implies (5.2) by using the properties of ρh.
Let us now focus on (5.3). We choose the test function Sh = rnh = Cn

h − RhC
n in the third equation

of (Vh,1) and multiply it by the time step τ . Then, we subtract the third equation of (V ) integrated over
[tn−1; tn]. We obtain, using the definition of gn by (4.12):(

(Cn
h − Cn−1

h )− (Cn − Cn−1), rnh

)
+ α

(
τ∇Cn

h −
∫ tn

tn−1

∇C(t)dt,∇rnh
)

+

(
τun

h · ∇Cn
h −

∫ tn

tn−1

u(t) · ∇C(t)dt, rnh

)
+ r0

(
τCn

h −
∫ tn

tn−1

C(t)dt, rnh

)
= 0.

(5.6)

The first term in the left-hand side of (5.6) can be bounded, by inserting RhC
n and RhC

n−1 and
using (2.9). We obtain:(

(Cn
h − Cn−1

h )− (Cn − Cn−1), rnh

)
=

1

2
‖rnh‖2L2(Ω) −

1

2
‖rn−1

h ‖2L2(Ω) +
1

2
‖rnh − rn−1

h ‖2L2(Ω)

+

(
(Cn−1 −RhC

n−1)− (Cn −RhC
n), rnh

)
.

(5.7)

The last term of the previous equality can be bounded as follows, for any ξ1 > 0, thanks to (2.8)∣∣∣∣((Cn−1 −RhC
n−1)− (Cn −RhC

n), rnh

)∣∣∣∣ =

∣∣∣∣− (∫ tn

tn−1

(RhC
′ − C ′)(t)dt, rnh

)∣∣∣∣
≤ c2h2

2ξ1

∫ tn

tn−1

‖C ′(t)‖2H1(Ω)dt+
τξ1
2
‖rnh‖2L2(Ω)

≤ c2h2

2ξ1
‖∂C
∂t
‖2L2(tn−1,tn;H1(Ω)) + (S0

2)2 τξ1
2
|rnh |21,Ω.

(5.8)

By choosing ξ1 =
α

25(S0
2)2

, we obtain∣∣∣∣((Cn−1 −RhC
n−1)− (Cn −RhC

n), rnh

)∣∣∣∣ ≤ c1h2‖∂C
∂t
‖2L2(tn−1,tn;H1(Ω)) +

α

50
τ |rnh |21,Ω, (5.9)

where c1 is positive constant independent of h and τ .

The second term of the left-hand side of (5.6) can be bounded, by inserting τ(∇RhC
n,∇rnh) and
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tn−1

(∇RhC(t),∇rnh)dt. We have:

α

(
τ∇Cn

h −
∫ tn

tn−1

∇C(t)dt,∇rnh
)

=ατ |rnh |21,Ω + α

∫ tn

tn−1

(∇(RhC
n −RhC(t)),∇rnh)dt

+ α

∫ tn

tn−1

(∇(RhC(t)− C(t)),∇rnh)dt.

(5.10)

Since Cn − C(t) =

∫ tn

t

C ′(s)ds, then we have by using the stability of the operator Rh in H1
0 (Ω), the

Fubini theorem, the Cauchy-Schwarz inequality and (2.8) for any ξ2 > 0:∣∣∣∣α ∫ tn

tn−1

(∇(RhC
n −RhC(t)),∇rnh)dt

∣∣∣∣ ≤ α ∫ tn

tn−1

∫ tn

t

|RhC
′(s)|1,Ω|rnh |1,Ωdsdt

≤ αc|rnh |1,Ω
∫ tn

tn−1

|C ′(s)|1,Ω(s− tn−1)ds

≤ αc2τ2ξ2

2
√

3
‖∂C
∂t
‖2L2(tn−1,tn;H1(Ω)) +

τα

2
√

3ξ2
|rnh |21,Ω.

(5.11)

In addition, we apply the Cauchy-Schwarz inequality, (2.8) and (4.2) to obtain for any ξ3 > 0:∣∣∣∣α ∫ tn

tn−1

(∇(RhC(t)− C(t)),∇rnh)dt

∣∣∣∣ ≤ αξ3
2

∫ tn

tn−1

|(RhC − C)(t)|21,Ωdt+
τα

2ξ3
|rnh |21,Ω

≤ αc2h2ξ3
2

‖C‖2L2(tn−1,tn;H2(Ω)) +
τα

2ξ3
|rnh |21,Ω.

(5.12)

By choosing ξ2 = 25/
√

3 and ξ3 = 25, we obtain, using the properties of the operator Rh and (5.10),
(5.11) and (5.12)∣∣∣∣α(τ∇Cn

h −
∫ tn

tn−1

∇C(t)dt,∇rnh
)
− ατ |rnh |21,Ω

∣∣∣∣ ≤ c1h2‖C‖2L2(tn−1,tn;H2(Ω))

+ c2τ
2‖∂C
∂t
‖2L2(tn−1,tn;H1(Ω)) +

α

25
τ |rnh |21,Ω,

(5.13)

where c1 and c2 are positive constants independent of h and τ .
Let the third term in the left-hand side of (5.6) be denoted by

b =

(
τun

h · ∇Cn
h −

∫ tn

tn−1

u(t) · ∇C(t)dt, rnh

)
. (5.14)

We insert

(∫ tn

tn−1

un
h · ∇C(t)dt, rnh

)
and τ(un

h · ∇RhC
n, rnh) to get by noticing that (un

h · ∇rnh , rnh) = 0 :

b = b1 + b2 =

(∫ tn

tn−1

un
h · ∇(RhC

n − C(t))dt, rnh

)
+

(∫ tn

tn−1

(un
h − u(t)) · ∇C(t)dt, rnh

)
. (5.15)

We insert ±τ(un
h · ∇Cn, rnh) in b1 and we get:

b1 =

(∫ tn

tn−1

un
h · ∇(RhC

n − Cn)dt, rnh

)
+

(∫ tn

tn−1

un
h · ∇(Cn − C(t))dt, rnh

)
. (5.16)

Using the L2-L4-L4 generalized Cauchy-Schwarz inequality, (4.2) and Lemma 2.1, we obtain, for any
ξ4 > 0:∣∣∣∣( ∫ tn

tn−1

un
h · ∇(RhC

n − Cn)dt, rnh

)∣∣∣∣ ≤ τ‖un
h‖L2(Ω)d‖RhC

n − Cn‖W 1,4(Ω)‖rnh‖L4(Ω)

≤ cτh‖un
h‖L2(Ω)d‖C‖L∞(0,T ;W 2,4(Ω))‖rnh‖L4(Ω)

≤ c2ξ4h
2τ

2
‖un

h‖2L2(Ω)d‖C‖
2
L∞(0,T ;W 2,4(Ω)) +

τ(S0
4)2

2ξ4
|rnh |21,Ω.

(5.17)
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By choosing ξ4 = 25(S0
4)2/α, we obtain by using (4.13):∣∣∣∣( ∫ tn

tn−1

un
h · ∇(RhC

n − Cn)dt, rnh

)∣∣∣∣ ≤ c3h2τ‖C‖2L∞(0,T ;W 2,4(Ω)) +
α

50
τ |rnh |21,Ω. (5.18)

By treating as above, we have for any ξ5 > 0:∣∣∣∣( ∫ tn

tn−1

un
h · ∇(Cn − C(t))dt, rnh

)∣∣∣∣ =

∣∣∣∣( ∫ tn

tn−1

∫ tn

t

un
h · ∇C ′(s)dsdt, rnh

)∣∣∣∣
=

∣∣∣∣( ∫ tn

tn−1

∫ tn−1

s

un
h · ∇C ′(s)dtds, rnh

)∣∣∣∣
≤ ‖un

h‖L2(Ω)d‖rnh‖L4(Ω)

∫ tn

tn−1

‖∇C ′(s)‖L4(Ω)(s− tn−1)ds

≤ τ2ξ5
6
‖un

h‖2L2(Ω)d‖
∂C

∂t
‖2L2(tn−1,tn;W 1,4(Ω)) +

τ(S0
4)2

2ξ5
|rnh |21,Ω.

(5.19)

We deduce by regrouping (5.16), (5.18) and (5.19) (for ξ5 = 25(S0
4)2/α) that

|b1| ≤ c3τh2‖C‖2L∞(0,T ;W 2,4(Ω)) + c4τ
2‖∂C
∂t
‖2L2(tn−1,tn;W 1,4(Ω)) +

α

25
τ |rnh |21,Ω. (5.20)

We insert un in b2 and we get, using the L2-L4-L4 inequality

|b2| =
∣∣∣∣( ∫ tn

tn−1

(un
h − un) · ∇C(t)dt, rnh

)
+

(∫ tn

tn−1

∫ tn

t

u′(s) · ∇C(t)dsdt, rnh

)∣∣∣∣
≤ τ‖un

h − un‖L2(Ω)d‖C‖L∞(0,T ;W 1,4(Ω))‖rnh‖L4(Ω)

+ τ3/2||C||L∞(0,T ;H1(Ω))||
∂u

∂t
||L2(tn−1,tn;L4(Ω)d)‖rnh‖L4(Ω).

(5.21)

By using (2.8) and Lemma 2.1 and taking ξ = 25(S0
4)2/α, we obtain:

|b2| ≤ c51τ‖C‖2L∞(0,T ;W 1,4(Ω))‖u
n
h − un‖2L2(Ω)d

+ c52τ
2||C||2L∞(0,T ;H1(Ω))||

∂u

∂t
||2L2(tn−1,tn;L4(Ω)d) +

α

25
τ |rnh |21,Ω.

(5.22)

Finally, we combine (5.14), (5.20) and (5.22), and we deduce that∣∣∣∣(τuh · ∇Cn
h −

∫ tn

tn−1

u · ∇C(t)dt, rnh

)∣∣∣∣ ≤ c3τh2‖C‖2L∞(0,T ;W 2,4(Ω)) + c4τ
2‖∂C
∂t
‖2L2(tn−1,tn;W 1,4(Ω))

+ c51τ‖C‖2L∞(0,T ;W 1,4(Ω))‖u
n
h − un‖2L2(Ω)d

+ c52τ
2||C||2L∞(0,T ;H1(Ω))||

∂u

∂t
||2L2(tn−1,tn;L4(Ω)d)

+
2α

25
τ |rnh |21,Ω,

(5.23)

where c3, c4, c51 and c52 are positive constants independent of h and τ .

The last term in the left-hand side of (5.6) can be bounded, by inserting ±(τRhC
n, rnh) and ±τ(Cn, rnh)(

τCn
h −

∫ tn

tn−1

C(t)dt, rnh

)
= τ(Cn

h −RhC
n, rnh) + τ(RhC

n − Cn, rnh) +

(∫ tn

tn−1

(Cn − C(t))dt, rnh

)
so that∣∣∣∣(τCn

h −
∫ tn

tn−1

C(t)dt, rnh

)
− τ‖rnh‖2L2(Ω)

∣∣∣∣ ≤ τ ∣∣∣∣(RhC
n − Cn, rnh)

∣∣∣∣+

∣∣∣∣( ∫ tn

tn−1

(Cn − C(t))dt, rnh

)∣∣∣∣. (5.24)
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Moreover, using the approximation properties of Rh, we have:

τ

∣∣∣∣(RhC
n − Cn, rnh)

∣∣∣∣ ≤ τ‖RhC
n − Cn‖L2(Ω)‖rnh‖L2(Ω)

≤ cτh‖rnh‖L2(Ω)‖C‖L∞(0,T ;H1(Ω))

≤ c2h2τξ6
2

‖C‖2L∞(0,T ;H1(Ω)) +
τ(S0

2)2

2ξ6
|rnh |21,Ω.

(5.25)

Furthermore, ∣∣∣∣( ∫ tn

tn−1

(Cn − C(t))dt, rnh

)∣∣∣∣ =

∣∣∣∣( ∫ tn

tn−1

∫ tn

t

C ′(s)dsdt, rnh

)∣∣∣∣
≤ τ3/2

√
3
‖rnh‖L2(Ω)‖

∂C

∂t
‖L2(tn−1,tn;L2(Ω))

≤ ξ7τ
2

6
‖∂C
∂t
‖2L2(tn−1,tn;L2(Ω)) +

τ(S0
2)2

2ξ7
|rnh |21,Ω.

(5.26)

Next, we combine (5.24), (5.25) and (5.26), and we choose ξ6 = ξ7 =
25(S0

2)2

α
to obtain:∣∣∣∣(τCn

h−
∫ tn

tn−1

C(t)dt, rnh

)
−τ‖rnh‖2L2(Ω)

∣∣∣∣ ≤ c6τh2‖C‖2L∞(0,T ;H1(Ω))+c7τ
2‖∂C
∂t
‖2L2(tn−1,tn;L2(Ω))+

α

25
τ |rnh |21,Ω,

(5.27)
where c6 and c7 are positive constants independent of τ and h.
Now we use (5.6), (5.7), (5.9), (5.13), (5.23) and (5.27) and we sum over n from 1 to m ≤ N . This leads
to

1

2
‖rmh ‖2L2(Ω) +

1

2

m∑
n=1

‖rnh − rn−1
h ‖2L2(Ω) + α

m∑
n=1

τ |rnh |21,Ω+r0

m∑
n=1

τ‖rnh‖2L2(Ω) ≤

c(h2 + τ2) + c′
m∑

n=1

τ‖un
h − un‖2L2(Ω)d +

9α

50

m∑
n=1

τ |rnh |21,Ω.

Finally, we obtain

sup
0≤n≤N

‖Cn
h − Cn‖2L2(Ω) + α

N∑
n=1

τ |Cn
h − Cn|21,Ω +

N∑
n=1

‖(Cn
h − Cn)− (Cn−1

h − Cn−1)‖2L2(Ω)

+r0

N∑
n=1

τ‖Cn
h − Cn‖2L2(Ω) ≤ c(h

2 + τ2) + c′
N∑

n=1

τ‖un
h − un‖2L2(Ω)d ,

where c and c′ are positive constants independent of h and τ .

Remark 5.2. If the viscosity ν is constant independent of C, it suffices to take u ∈ L∞(0, T ;H1(Ω)d)
in Theorem 5.1, as in this case, Equation (5.4) becomes∫

Ω

ν(un − un
h)(x) · vh(x)dx =

∫
Ω

(f1(Cn(x))− f1(Cn−1
h (x))) · vh(x)dx. (5.28)

Corollary 5.3. Under the assumptions of Theorem 5.1, we have the a priori error estimates correspond-
ing to (Vh,1):

sup
0≤n≤N

‖un − un
h‖L2(Ω)d ≤ c(h+ τ),

sup
0≤n≤N

‖pn − pnh‖L2(Ω) ≤ c′(h+ τ),

sup
0≤n≤N

‖Cn
h − Cn‖2L2(Ω) + α

N∑
n=1

τ |Cn
h − Cn|21,Ω ≤ c′′(h2 + τ2),

(5.29)

where c, c′ and c′′ are independent of h and τ .
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Proof. We first consider relation (5.1). By inserting Cn−1 and using the triangle inequality, we have

N∑
n=1

τ‖un
h − un‖2L2(Ω)d ≤ c

( N∑
n=1

τ‖Cn−1
h − Cn−1‖2L2(Ω) +

N∑
n=1

τ

∫
Ω

∣∣ ∫ tn

tn−1

C ′(s)ds
∣∣2dx).

We then deduce from (5.3) the following relation

sup
0≤n≤N

‖Cn
h − Cn‖2L2(Ω) + α

N∑
n=1

τ |Cn
h − Cn|21,Ω ≤ c(h2 + τ2) + c′

N∑
n=1

τ‖Cn−1
h − Cn−1‖2L2(Ω). (5.30)

Finally, the following inequality follows from the discrete Grönwall Lemma

sup
0≤n≤N

‖Cn
h − Cn‖2L2(Ω) + α

N∑
n=1

τ |Cn
h − Cn|21,Ω ≤ c′′(h2 + τ2). (5.31)

It is crucial to note that in the right-hand side of (5.30),
∑N

n=1 τ is bounded by the final time T which is
a quantity that does not depend on N ; thus the constant c′′ that appears in (5.31) does not depend on τ .

Inequality (5.31) and Inequalities (5.1) and (5.2) yield the desired bounds in (5.29).

Theorem 5.4. Let (u, p, C) be the solution of Problem (Va) and (un
h, p

n
h, C

n
h ) be the solution of Problem

(Vh,2). If u ∈ L∞(0, T ;H1(Ω)d) ∩ L∞(0, T ;L∞(Ω)d), p ∈ L∞(0, T ;H2(Ω)), C ∈ L∞(0, T ;W 2,4(Ω)) and
∂C

∂t
∈ L2(0, T ;W 1,4(Ω)) and under Assumption 3.1, there exist positive constants c, c1, c′, c′′ depending

on u and α such that,

‖un − un
h‖L2(Ω)d ≤

1

ν1

(
ch+ (c∗f1 + λ‖u‖L∞(0,T :L∞(Ω)d))||Cn − Cn−1

h ||L2(Ω)

)
, (5.32)

|pn − pnh|1,Ω ≤ c′h+
ν2

β2
‖un − un

h‖L2(Ω)d +
1

β2
(c∗f1 + λ‖u‖L∞(0,T :L∞(Ω)d))||Cn − Cn−1

h ||L2(Ω), (5.33)

and

sup
0≤n≤N

‖Cn
h − Cn‖2L2(Ω) + α

N∑
n=1

τ |Cn
h − Cn|21,Ω +

N∑
n=1

‖(Cn
h − Cn)− (Cn−1

h − Cn−1)‖2L2(Ω)

+r0

N∑
n=1

τ‖Cn
h − Cn‖2L2(Ω) ≤ c′′(h2 + τ2) + c1

m∑
n=1

τ‖un
n − un‖2L2(Ω)d .

(5.34)

Proof. Let (u, p, C) and (un
h, p

n
h, C

n
h ) solve respectively (Va) and (Vh,2). We shall prove first (5.32),

next (5.33), and finally (5.34).
Let us estimate the velocity error. By taking the difference between the first equations of (Va) and (Vh,2)
and testing with v = vh ∈ Vh,2, we obtain∫

Ω

ν(Cn−1
h (x))(un − un

h)(x) · vh(x)dx =

∫
Ω

(f1(Cn(x))− f1(Cn−1
h (x))) · vh(x)dx

+

∫
Ω

(ν(Cn−1
h (x))− ν(Cn(x)))un(x) · vh(x)dx

−
∫

Ω

∇(pn − rh(pn)) · vhdx.

(5.35)

By inserting Fhu
n, choosing vh = (Fhu

n − un
h) which belongs to Vh,2 using the triangle inequality and

the approximation properties of Fh and rh and the bounds on ν, we obtain (5.32).
To prove the error estimate on the pressure, we take the difference between the first equations of (Va)
and (Vh,2), insert ∇rh(pn), test with vh in Wh,2, and we obtain
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∫
Ω

∇(pnh − rh(pn))(x) · vh(x)dx =

∫
Ω

∇(pn − rh(pn))(x) · vh(x)dx

+

∫
Ω

ν(Cn−1
h )(un − un

h)(x) · vh(x)dx

+

∫
Ω

(ν(Cn(x))− ν(Cn−1
h )(x))un(x) · vh(x)dx

−
∫

Ω

(f1(Cn(x))− f1(Cn−1
h (x))) · vh(x)dx.

(5.36)

It follows from the inf-sup condition (4.22) and by applying the Cauchy-Schwarz inequality to the right-
hand side of (5.36) and Assumption 3.1 that

|pnh−rh(pn)|1,Ω ≤
1

β2

[
|pn−rh(pn)|1,Ω+ν2‖un−un

h‖L2(Ω)d +(c∗f1 +λ‖u‖L∞(0,T :L∞(Ω)d))||Cn−Cn−1
h ||L2(Ω)

]
.

(5.37)
Inserting rh(pn) in |pn − pnh|1,Ω and using a triangular inequality and (5.37) implies (5.33) by using the
properties of rh.

Now we prove (5.34). We choose the test function Sh = rnh = Cn
h −RhC

n in the third equation of (Vh,2)
and multiply it by the time step τ . Then, we subtract the third equation of (Va) integrated over [tn−1; tn].
We obtain:(

(Cn
h − Cn−1

h )− (Cn − Cn−1), rnh

)
+ α

(
τ∇Cn

h −
∫ tn

tn−1

∇C(t)dt,∇rnh
)

+

(
τun

h · ∇Cn
h −

∫ tn

tn−1

u(t) · ∇C(t)dt, rnh

)
+
τ

2
(div un

hC
n
h , r

n
h) + r0

(
τCn

h −
∫ tn

tn−1

C(t)dt, rnh

)
= 0.

(5.38)

All the terms of (5.38) can be treated as the proof of Theorem 5.1 (see (5.9), (5.13), (5.27)) except the
non-linear one denoted by bn .

By inserting ±τ(un
h · ∇RhC

n, rnh), ±τ
2

(div un
hRhC

n, rnh), bn becomes:

bn = τ(un
h · ∇(Cn

h −RhC
n), rnh) + τ(un

h · ∇RhC
n, rnh)−

(∫ tn

tn−1

u(t) · ∇C(t)dt, rnh

)
+
τ

2
(div un

h(Cn
h −RhC

n), rnh) +
τ

2
(div un

h RhC
n, rnh).

Then, we insert ±τ(un
h ·∇Cn, rnh), ±

(∫ tn

tn−1

un
h · ∇C(t)dt, rnh

)
and ±τ

2
(div un

h C
n, rnh) to get by noticing

that τ(un
h · ∇(Cn

h −RhC
n), rnh) +

τ

2
(div un

h(Cn
h −RhC

n), rnh) = 0:

bn = τ(un
h · ∇(RhC

n − Cn), rnh) +

(∫ tn

tn−1

un
h · ∇(Cn − C(t))dt, rnh

)
+

∫ tn

tn−1

((un
h − u(t)) · ∇C(t)dt, rnh)

+
τ

2
(div un

h(RhC
n − Cn), rnh) +

τ

2
(div un

h C
n, rnh).

(5.39)

The sum of the first two terms in the right-hand side of (5.39) is exactly the expression of b1 in (5.16).
The third term in the right-hand side of (5.39) is exactly b2 as defined in (5.15). Therefore, these terms
can be treated exactly as in the proof of theorem 5.1. The last two terms, denoted below as bn,4 and bn,5



16 N. CHALHOUB, P. OMNES, T. SAYAH, AND R. EL ZAHLANIYEH

can be treated as follows:

bn,4 =
τ

2
(div un

h(RhC
n − Cn), rnh)

= −τ
2

(un
h · ∇(RhC

n − Cn), rnh)− τ

2
(un

h · ∇rnh , (RhC
n − Cn))

= b1n,4 + b2n,4,

where, using Lemma 2.1, (2.8) and (4.2), we have, for any ξ̄1 > 0

|b1n,4| ≤
τ

2
‖un

h‖L2(Ω)d‖∇(RhC
n − Cn)‖L4(Ω)‖rnh‖L4(Ω)

≤ ch2τ ξ̄1
8
‖un

h‖2L2(Ω)d‖C‖
2
L∞(0,T ;W 2,4(Ω)) +

τ(S0
4)2

2ξ̄1
|rnh |21,Ω

and where, using (4.2) and (4.3) with d ≤ 3 we have, for any ξ̄2 > 0

|b2n,4| ≤
τ

2
‖un

h‖L4(Ω)d‖∇rnh‖L2(Ω)‖RhC
n − Cn‖L4(Ω)

≤ ch2

2
τ‖un

h‖L2(Ω)d × h−
d
4 |rnh |1,Ω‖Cn‖W 2,4(Ω)

≤ cξ̄2
8
h

8−d
2 τ‖un

h‖2L2(Ω)d‖C‖
2
L∞(0,T ;W 1,4(Ω)) +

τ

2ξ̄2
|rnh |21,Ω.

Note that in the bounds of |b1n,4| and |b2n,4|, the L2(Ω) norm of un
h can be bounded by a constant depending

only on the data of the problem through Theorem 4.2 using both (4.23) and (4.24). Note also that 8−d
2 ≥ 2

for d ≤ 3, which is sufficient for our proof.

Moreover, bn,5 can be decomposed in the same way and treated as follows (where we use that div un = 0):

bn,5 =
τ

2
(div (un

h − un)Cn, rnh)

= −τ
2

((un
h − un) · ∇Cn, rnh)− τ

2
((un

h − un) · ∇rnh , Cn)

= b1n,5 + b2n,5.

Using Lemma 2.1 and (2.8) we have, for any ξ̄3 > 0

|b1n,5| = |
τ

2
((un

h − un) · ∇Cn, rnh)|

≤ τ

2
‖un

h − un‖L2(Ω)d‖C‖L∞(0,T ;W 1,4(Ω))‖rnh‖L4(Ω)

≤ τ ξ̄3
8
‖un

h − un‖2L2(Ω)d‖C‖
2
L∞(0,T ;W 1,4(Ω)) +

τ(S0
4)2

2ξ̄3
|rnh |21,Ω

and for any ξ̄4 > 0

|b2n,5| = |
τ

2
((un

h − un) · ∇rnh , Cn)|

≤ τ

2
‖un

h − un‖L2(Ω)d‖Cn‖L∞(Ω)|rnh |1,Ω

≤ τ ξ̄4
8
‖un

h − un‖2L2(Ω)d‖C‖
2
L∞([0,T ]×Ω) +

τ

2ξ̄4
|rnh |21,Ω.

By using the above bounds with a suitable choice of ξ̄i, i = 1, . . . , 4, and summing over n from 1 to
m ≤ N , we get

1

2
‖rmh ‖2L2(Ω)+

1

2

m∑
n=1

‖rnh−rn−1
h ‖2L2(Ω)+α

m∑
n=1

τ |rnh |21,Ω+r0

m∑
n=1

τ‖rnh‖2L2(Ω) ≤ c(h
2+τ2)+c

m∑
n=1

τ‖un
n−un‖2L2(Ω)d ,

and we deduce finally (5.34).
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Corollary 5.5. Under the assumption of Theorem 5.4, we have the a priori error estimates corresponding
to (Vh,2):

sup
0≤n≤N

‖un − un
h‖L2(Ω)d ≤ c(h+ τ),

sup
0≤n≤N

|pn − pnh|H1(Ω) ≤ c′(h+ τ),

sup
0≤n≤N

‖Cn
h − Cn‖2L2(Ω) + α

N∑
n=1

τ |Cn
h − Cn|21,Ω ≤ c′′(h2 + τ2),

(5.40)

where c, c′ and c′′ are independent of h and τ .

6. Numerical results

To validate the theoretical results, we perform several numerical simulations using Freefem++ (see [18]).
We consider a square domain Ω =]0, 1[2. Each edge is divided into N equal segments so that Ω is
divided into 2N2 triangles. For the numerical tests, we consider α = 1, r0 = 1, f1(C) = C + 1 and
ν(C) = sin(C) + 2. We choose the right-hand sides f0 and g so that the exact solution is given by
(u, p, C) = (e−t/4curlψ, p, C) where ψ, p and C are defined by

ψ(x, y) = e−100((x− 1
2 )2+(y− 1

2 )2),
p(x, y, t) = (t+ 1) cos (πx) cos (πy),
C(x, y, t) = sin t x2(x− 1)2y2(y − 1)2.

(6.1)

We define the following total relative error between the exact and numerical solutions :

err =


sup

1≤n≤N
|un

h − un|2L2(Ω)2 + sup
1≤n≤N

|pnh − pn|2L2(Ω) +

N∑
n=1

τ |Cn
h − Cn|2H1(Ω)

sup
1≤n≤N

|un|2L2(Ω)2 + sup
1≤n≤N

|pn|2L2(Ω) +

N∑
n=1

τ |Cn|2H1(Ω)


1/2

. (6.2)

We test the algorithms for N ranging from 60 to 120, by a step of 10 with T = 1, h =
1

N
and τ = h.

Moreover, in order to be able to compare the accuracy of the schemes on similar number of unknowns
and non-zero entries in the matrices associated to the linear systems, we also use N = 30 for the second
scheme and N = 240 for the first one.
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Figure 1. Pressure error with
respect to the mesh size.
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Figure 2. Velocity error with
respect to the mesh size.

Figures 1, 2, and 3 show, in logarithmic scale, the curves of the errors on the pressure, the velocity and
the concentration, respectively, according to the mesh step h for the first and second schemes (Vh,1) and
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Figure 3. Concentration error
with respect to the mesh size.
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Figure 4. Total relative error
with respect to the mesh size.

(Vh,2). Figure 4 represents, in logarithmic scale, the curve of the total relative error according to the
mesh step h for the first and second discrete schemes (Vh,1) and (Vh,2). Their respective slopes are 1.0013
and 1.0142 which is in conformity with the theoretical order of convergence of both schemes. We also
note that the second scheme, which uses higher order polynomials for the pressure than the first scheme,
yields a second order accuracy on this variable.
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Figure 5. Total relative error
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unknowns.
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Figure 6. Total relative error
with respect to the number of
non-zero coefficients in the ma-
trices.

In order to include a more complete comparison of the accuracy of the two schemes with respect to their
numerical complexity, we show on Figures 4, 5 and 6 their total relative errors, not only with respect to the
mesh size, but also with respect to the number of unknowns and with respect to the number of non-zero
coefficients in the associated matrices. In all three figures, the curve of the second scheme is below the one
of the first scheme, which means that, for a given complexity, the second scheme is more accurate than
the first one for this particular example. It is probable that this advantage is linked to the high stiffness
of the exact solution, which is better captured by the second scheme which uses higher-order polynomials.
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