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ABSTRACT

We study the use of PN method in angle and Discontinuous Galerkin in space to solve 3D neutron
transport problem. PN method consists in developing the angular flux on truncated spherical harmonics
basis. In this paper, we couple this method with the discontinuous finite elements in space to obtain a
complete discretisation of the multigroup neutron transport equation. To investigate its precision, the
method was applied to Takeda and C5G7 benchmark problems. These calculations point out that the
proposed PN-DG method is capable of producing accurate solutions in small computational time, and
that it is able to handle complex 3D geometries.

Keywords PN method · DG FEM · Discontinuous finite element method · neutron transport equation

1 Introduction

Based on the variational formulation proposed in [1], a new approximation method for the Boltzmann transport equation
is presented in [2]. The objective of this study is to present the results obtained with this approach applied to nuclear
reactor core calculations in three-dimensional geometries.

The first step of approximation consists in expanding the angular flux on spherical harmonics basis and in truncating the
development to the order N : that is the PN method. In the literature we find transport solvers based on this method,
for example EVENT [3] and VARIANT [4]. This method is associated with discontinuous finite element method in
space to provide a complete discretisation of the Boltzmann transport equation. The proposed numerical method can
treat 2D unstructured, non-conforming and curved meshes, and 3D prismatic meshes. Hence heterogeneous pin-cell
geometries with concentric annular regions can be modeled without any approximation. Time-consuming operations
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like matrix-vector multiplications are parallelized using OpenMP. All the developments are made in the transport solver
NYMO [2] in the scope of CEA platform APOLLO3 ® [5].

In the next section, we describe the numerical approximation. Then, we present solutions to Takeda [6] and 3-D C5G7
MOx fuel assembly [7] benchmark problems.

2 PN-DG angular-space discretisation

We describe the approximation proposed to the monoenergetic transport source problem. Generalization to the
multigroup problem is straightforward. The details of the discretization is given in [2].

2.1 Continuous Problem

Let D, the reactor domain, be an open bounded domain in R3, of boundary ∂D and outward normal n. S2 the unit
sphere of R3. We consider the within group transport source equation:{

ω · ∇u+ σu = q in X = D × S2

u = f on Γ−
(1)

with f the incoming flux, q the source term, σ the total cross section assumed to be a positive non-vanishing function
and Γ± = {(x, ω) ∈ ∂D × S2, ±ω · n(x) > 0}. Let v be a smooth test function, we multiply (1) by (v + 1

σω · ∇v)

and integrating over the phase space X = D × S2,∫
X

(
1

σ
(ω · ∇u)(ω · ∇v) + σuv

)
+

∫
X

(
u(ω · ∇v) + (ω · ∇u)v

)
=

∫
X

q

(
v +

1

σ
(ω · ∇v)

)
.

After using Green’s formula, we obtain the variational problem,

find u ∈ W such that a(u, v) = L(v), ∀v ∈ W (2)

with

W =
{
v ∈ L2(X) / ω · ∇v ∈ L2(X), v|Γ+∈ L2(Γ+, |ω · n|dsdω)

}
,

a(u, v) =

∫
X

(
1

σ
(ω · ∇u)(ω · ∇v) + σuv

)
+

∫
Γ+

uv(ω · n),

L(v) =

∫
X

q

(
v +

1

σ
(ω · ∇v)

)
−

∫
Γ−

fv(ω · n).

Under reasonable assumptions about data, it has been established in [1] that the variational formulation (2) is equivalent
to the original transport problem (1).

2.2 Angular Flux Approximation

The PN method consists in truncating the expansion of the flux u(x, ω) on the real-valued spherical harmonics ymn (ω)
(see [8]) to the order N , that is:

u(x, ω) =

N∑
n=0

n∑
m=−n

um
n (x)ymn (ω),

the components um
n (x) of the flux are called angular flux moments, with the scalar flux and current given by u0

0(x) and
um
1 (x) respectively.

Next, let Dh be a subdivision of D into distinct regions Dr, such that,

D =
⋃

Dr∈Dh

Dr.

On each region Dr, we assume the flux moment is a polynomial, that is um
n ∈ Qk. Where Qk is the space of d-variate

polynomials of degree k:

Qk = span

{
xα1yα2zα3 / 0 ≤

3∑
i=1

αi ≤ k

}
.

2
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In 3D, dimQk =
(
k+3
3

)
= (k+3)!

3!k! , in particular dimQ0 = 1, dimQ1 = 4 and dimQ2 = 10. Once the basis of Qk is
fixed, the coefficients um

n,j fully determine the approximated flux:

u(x, ω) =

N∑
n=0

n∑
m=−n

J∑
j=1

um
n,jφj(x)y

m
n (ω), (3)

where (φj(x))j=1,··· ,J is a basis of Qk. We approximate the incoming flux f and the source term q in the same way. In
each region Dr the number of degrees of freedom is N⋆ =

(
k+3
3

)
(N + 1)2.

The discrete problem consists in solving in each region Dr the following problem:

find u ∈ Wh such that a(u, v) = L(v), ∀v ∈ Wh (4)

where

a(u, v) =

∫
Xr

(
1

σ
(ω · ∇u)(ω · ∇v) + σuv

)
+

∑
F∈∂Dr

∫
F×S2

+

uv(ω · n),

L(v) =

∫
Xr

q

(
v +

1

σ
(ω · ∇v)

)
−

∑
F∈∂Dr

∫
F×S2

−

f̃v(ω · n),

Wh = span(φjy
m
n ) is the local approximation space, Xr = Dr × S2, and f̃ = f if we are on the domain boundary

∂D else f̃ is the flux in the adjacent region if the face F is an interface (upwind).

By replacing u with (3) and v with φj′(x)y
m′

n′ (ω) in (4), we obtain a matrix system of unknowns um
n,j . The determination

of these matrices therefore involves the calculation of volume integrals and surface integrals. In three dimensions, each
region is given as a base face S extruded along the z direction:

Dr = S × [z0, z1].

Each face F of ∂Dr is either a horizontal face or a lateral face. The vertical faces are obtained by extruding a line
segment, circle or a circular arc in the horizontal plane along the z axis:

F = s× [z0, z1].

Thus, any 3D calculation comes down to a 2D calculation, which is described in [2].

3 Applications

The numerical method described in section 2 was applied to two 3D core calculation problems available in the literature.
The first one is Takeda benchmark [6] and the second is the C5G7 benchmark [7]. These problems provide different
configurations (10+3 in total), which offer a wide variety of geometries (cartesian, hexagonal, unstructured) with
different optical properties, representative of FBR and PWR reactors. All calculations are performed on a 24 core (48
thread) Intel® Xeon® Silver 4214 CPU at 2.20GHz.

3.1 Takeda Benchmark

The Takeda benchmark [6] comprises four different reactor models with two or three distinct cases per model, this
amounts to 10 cases in total. All the calculations were performed using NYMO solver with P4 order in angle and linear
polynomial in space. In all calculated models, the relative errors compared to reference eigenvalue are below 40 pcm,
with in particular 1 pcm obtained for case 2 of model 2. We also changed the PN order to show the asymptotic behaviour
of keff with model refinement (Fig. 3). We present here the results obtained for problems 3 and 4, these being the most
heterogeneous and time-consuming. The reference solutions are taken from [6, p. 23].

3.1.1 Takeda model 3: cartesian geometry axially heterogeneous FBR

This model problem (Fig. 1) is a Fast Breeder Reactor (FBR) core that has reflector and internal blanket region. There
are three different cases depending on the material inserted in the control rod positions (rods or blanket cells). The core
has 1/4 radial and 1/2 axial symmetry and the mesh elements used are of size ∆x = ∆y = ∆z = 5 cm. We observe in
Table 1 that the error is quite small (less than 38 pcm) with less than 1 min calculation time.

3
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Figure 1: Takeda model 3.

3.1.2 Takeda model 4: hexagonal geometry small FBR

This model (Fig. 2) is a FBR core and has prismatic hexagonal geometry. Three cases with different control rod patterns
are studied: withdrawn (case 1), half inserted (case 2) and fully inserted rods (case 3). For the mesh, all hexagons are
divided into 24 (case 1) or 54 (case 2 and 3) equilateral triangles with ∆z = 5 cm. Indeed, the presence of the control
rods creates a discontinuity, and the mesh has been refined to take it into account. Table 1 shows that this allows us to
obtain excellent results (less than 22 pcm) for all cases. Fig. 3 shows the monotone convergence in angle, especially if
we isolate odd and even orders. We go further into the convergence study in section 3.2.
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Sodium/Steel zone

(b) X-Z

Figure 2: Takeda model 4.

3.2 Three-dimensional C5G7 Problem

The 3-D extended C5G7 MOx fuel assembly benchmark [7] is a problem designed to evaluate the ability of deterministic
transport codes to handle reactor problems without spatial homogenization. It should be noted that in this benchmark,

4
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Table 1: Relative error (in pcm) and computing time (s) obtained with P4 and linear polynomials for Takeda benchmark
models 3 and 4. For model 4, Case 1 comprises 24 equilateral triangles per hexagon while Cases 2 and 3 are refined to
54 triangles.

Reference NYMO error cpu time

Case 1 0.97090 0.97060 -30 49
Case 2 1.00050 1.00089 38 49
Case 3 1.02140 1.02147 6 51

(a) Model 3

Reference NYMO error cpu time

Case 1 1.09510 1.09521 10 474
Case 2 0.98330 0.98352 22 2636
Case 3 0.87990 0.87994 4 2349

(b) Model 4
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Figure 3: Evolution of the eigenvalue relative error (in absolute value) according to the angular discretization order.

the cladding surrounding the fuel rod is smeared with the fuel pellet. The objectives are to calculate the effective
multiplication factor and the normalized fission rate distributions (pin power) in three axial slices of the core.

3.2.1 Benchmark description and space-angular discretisation

Fig. 4a shows the radial configuration of this 128.52×128.52×128.52 cm3 small Pressurized Water Reactor (PWR)
core, made up of four by four fuel assemblies, modeled in 1/4 radial symmetry and surrounded by a water reflector.
Each assembly consists of a 17×17 lattice of square pin cells with the cell side equal to 1.26 cm. Fuel pins, control
rods, guide tubes, and fission chambers are of circular shape with a 0.54 cm radius. The reflection boundary condition
in zmin plane with inserted control rods makes the problem non-physical, which is explicitly stated in the problem
description. Three problems (Unrodded, Rodded A and Rodded B) are considered to correspond to various levels of
control rod insertion. The seven-group cross-sections with isotropic scattering for each material and detailed description
are provided in [7].

For all calculation, the radial mesh used is described in Fig. 4b. This radial mesh is the unique one applied to all
calculations. Axial mesh has been varied starting from the coarsest one (denoted as Z1) that has only one mesh interval
within each fuel slice and reflector, and refining it progressively by subdividing these slices into two (Z2), four (Z4) and
eight (Z8) intervals. For polynomial discretisation space, Qk refers to piecewise polynomial functions space of degree
at most k. That is, Q0 the space of piecewise constant polynomial, Q1 refers to space of piecewise linear polynomial
and Q2 refers to space of piecewise quadratic polynomial. The eigenvalue calculation is converged when for two
successive iterations, the relative variation is less than 10−6.

We performed a series of calculations by varying the PN order from 1 to 6, the polynomial basis used are constant,
linear and quadratic and the axial mesh refinement are 1, 2, 4 or 8. This involves 72 eigenvalue calculations for each test
case. As before, each case was run on 24-core computer with an approximate run time between 10s (P1, Q0 without
axial refinement) and 20h (P6, Q2, Z8) for the most refined case.

5
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Figure 4: C5G7 Reactor with UOx (brown), MOx (beige) and reflector (turquoise).

3.2.2 Results of calculation and discussion

The first results show that, for all PN orders, the error on the Q0 polynomial space is high, so we discard these
configurations from the further analysis. Moreover, the axial refinement does not seem to significantly improve the
results. The differences between Z4 and Z8 refinements being very small (between 0 and 4 pcm) we excluded Z8 from
the rest of the analysis. Thus, we may conclude that the flux does not vary much axially and that it is not necessary to
refine the mesh in this direction. This assumption is partially confirmed by [9], who studied the influence of the control
rods by analysing the scalar fluxes along control rods. The authors observe that the axial scalar fluxes decreases in the
vicinity of the reflector, but vary little in each slice in MOx and UOx outer assemblies. Moreover, the flux variation is
more pronounced in the UOx inner assembly when the control rods are inserted (Rodded A and B). In our case, for
Rodded A, the best results are still obtained without refinement, while Rodded B gives better results by subdividing each
z-slice in two. For the Unrodded and Rodded A cases, the best results are respectively 12 pcm and -29 pcm and obtained
with P5 Q2 Z1, while for Rodded B the best solution have 6 pcm error and obtained with P6 Q1 Z2. Considering only
the configurations running in less than 3 min (180s) the best result is -48 pcm (P1 Q2 Z1) for Unrodded, -80 pcm for
Rodded A and -162 pcm Rodded B (the two with P2 Q1 Z1).

Fig. 5 shows the variation of eigenvalue relative error according to PN order for each of the polynomial spaces Q1 and
Q2. In all three cases, the results are presented for Z2 refinement. We make several observations here. First, for all
polynomial spaces, separating the even (green lines) and odd (red lines) PN orders, we observe a monotone convergence.
In the first two cases however, the even PN orders stagnate or increase slightly. This behaviour is for the moment
unexplained. Second, for even (resp. odd) PN the error obtained is smaller in polynomial space Q1 (resp. Q2). And
finally, we note that the even (resp. odd) PN converge to the reference solution by overestimating (resp. underestimating)
it. This oscillatory approach to the asymptotic regime, but monotonous if one takes separately odd and even orders, has
already been observed in previous works on the 2D solutions, in [2] on reactivity and in [10] on the flux shape. In the
latter, a different finite element approximation is used, which may suggest that this behavior is due to the properties of
spherical harmonic approximation itself, but for the moment it remains unexplained. All these observations deserve
further investigation.

We next proceed to the pin power calculations with the configurations that provide the best multiplication factor of
each case. Table 2 shows the error made on maximum pin power, the average (AVG), root mean square (RMS) and

6
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Figure 5: Evolution of eigenvalue relative error (in pcm) according to the angular-space discretization for C5G7. Even
(resp. odd) PN orders are connected by green (resp. red) dotted line.

mean relative (MRE) errors on the pin power distribution (defined in [7, p. 25]). For the first two cases, the calculations
exhibit errors less than 0.6% compared to the MCNP solution. We obtain a slightly bigger error (less than 1%) on the
last case because of strong discontinuities introduced by control rods insertion. In overall, these results comply well
with the reference values.

Table 2: Eigenvalue error and pin power distribution metrics for C5G7 benchmark problem. Calculations are done with
P5 Q2 Z1 for the first two cases and P6 Q1 Z2 for Rodded B.

Benchmark case Unrodded Rodded A Rodded B

Eigenvalue error (pcm) 12 -29 6

Pin power
error (%)

Max Rate -0.084 -0.398 -1.221
AVG 0.225 0.301 0.743
RMS 0.280 0.398 0.835
MRE 0.171 0.249 0.764

Assembly power
error (%)

UOx Inner 0.014 -0.178 -0.980
MOx -0.135 0.041 0.476
UOx Outer 0.365 0.662 0.866

Cpu time (s) 5191 5389 6084

7
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4 Conclusions

The implementation of the three-dimensional extension of the previously developed discontinuous Galerkin PN method
has been described and its capabilities illustrated on the examples of the well-known Takeda and C5G7 benchmarks.
The discretisation method is able to handle the mesh elements of different shape, in general arbitrary, but in practical
applications all geometries describing the fuel elements without any simplification nor homogenisation. The presented
results show that the method is able to attain the accuracy better than 100 pcm in reactivity for a computation time less
than 10 minutes on a desktop machine. The investigated cases show the error smaller than 30 pcm and in some of these
of order of one pcm.

The convergence behaviour of odd and even order expansions are different and need further theoretical analysis.
Nevertheless, the method seems to be consistent and stable showing competitive computational times, such that opens
the possibilities to consider the problems in high fidelity having a whole core size. Evidently, this approach needs the
implementation of a distributed memory parallel algorithm.

In this work, we presented the well-known few-group benchmarks that all defined with isotropic scattering, though the
solver takes in charge anisotropic scattering expansion to an arbitrary order. The tests that are out of scope of this paper
have been conducted on the examples of PWR assemblies in 281 energy groups with different scattering orders, and the
obtained results agreed well with other, characteristic-based transport solvers.

Future analysis will also comprise the comparison with other 3D transport solvers, mainly method of characteristics of
APOLLO3® [11].
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