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A POSTERIORI ERROR ESTIMATES FOR THE TIME DEPENDENT
CONVECTION-DIFFUSION-REACTION EQUATION COUPLED WITH THE
DARCY SYSTEM

NANCY CHALHOUB!, PASCAL OMNES?2:3, TONI SAYAH!, AND REBECCA EL ZAHLANIYEH!:2

ABSTRACT. In this article, we consider the time dependent convection—diffusion—reaction equation cou-
pled with the Darcy equation. We propose a numerical scheme based on finite element methods for the
discretization in space and the implicit Euler method for the discretization in time. We establish optimal
a posteriori error estimates with two types of computable error indicators, the first one linked to the
time discretization and the second one to the space discretization. Finally, numerical investigations are
performed and presented.

KEYWORDS. Darcy’s equations; convection-diffusion-reaction equation; finite element method; a poste-
riori error estimates; adaptive methods.

1. INTRODUCTION

The main objective of the a posteriori error analysis is to give tools that allow the control of the overall
discretization error of a problem by providing error indicators that are easy to compute. Once the error
indicators are constructed, their efficiency can be proven by bounding each indicator by the local error.
The a posteriori error analysis was first introduced by Babuska and Rheinboldt [5]. Later developments
are presented, among other references, in Verfirth [29] and Ainsworth and Oden [1]. Error estimators
for the Darcy equation discretized by mixed finite element methods have been studied in many works,
see for instance [2], [10] and [28]. In [14], Chen and Wang establish optimal a posteriori error estimates
for the H(div,2)-conforming mixed finite element method applied to the coupled Darcy-Stokes system
in two dimensions. For the Darcy equations with pressure dependent viscosity, we refer to [25] and the
references therein. In [31], Vohralik establishes a residual a posteriori error estimate for lowest-order
Raviart-Thomas mixed finite element discretizations of the convection—diffusion—reaction equation on
simplicial meshes in two and three space dimensions, while in [32], general locally conservative meth-
ods on general meshes are also studied. In [22], Ern et al. proposed and studied a posteriori error
estimates for the convection—diffusion-reaction problem with non-homogeneous and anisotropic diffusion
approximated by weighted interior-penalty discontinuous Galerkin methods. For the time-dependent
convection—diffusion—reaction equation, Chalhoub et al. [11] established an a posteriori error estimate for
the cell-centered finite volume scheme in space and backward Euler scheme in time. In [33], the authors
propose a simple a posteriori error estimator for porous media problems discretized by lowest-order lo-
cally conservative methods on meshes consisting of general polytopal elements, ranging from the steady
linear Darcy equation to unsteady nonlinear systems describing multiphase Darcy flows.

For the coupled problem of Darcy’s law with the heat equation, we can refer to Bernardi, Maarouf and
Yakoubi [7] where the coupled problem is treated using the spectral method. Bernardi et al. [6] and
Dib et al. [18] considered the same stationary system but coupled with a nonlinear viscosity that de-
pends on the temperature. In [19], Dib et al. derived an optimal a posteriori error estimate for each of
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the numerical schemes proposed in [6]. We can also refer to Amaziane et al. in [3] where the authors
used a vertex-centred finite volume method to discretize the coupled system. In [12], we studied the
time-dependent convection—diffusion-reaction equation coupled with Darcy’s equation, then we proposed
and analysed two numerical schemes based on finite element methods for the discretization in space and
the implicit Euler method for the discretization in time. One of these schemes will be considered in the
present work for the a posteriori error studies.

Let Q be a connected bounded open set in R, d = 2,3, with a Lipschitz-continuous boundary I' = 99,
and let [0,7] be an interval of R. We consider the following system

v(C(x,t))u(x,t) + Vp(x,t) = f(x,t,C(x,t)) inQx[0,T],
(divu)(x,t) =0 inQ x [0,7],
P) %—f(x, t) — aAC(x,t) + (u(x,t) - VCO)(x,t) + roC(x,t) = g(x,t) inQx]0, T,
(u-n)(x,t) =0 onl x [0,T],
C(x,1) =0 onT x [0,T],
C(x,0) =0 inQ,

where n is the unit outward normal vector on I'. The unknowns are the fluid velocity u, the pressure p
and the concentration C in the fluid. The function f represents an external force that depends on
the concentration C and the function g represents an external concentration source. The viscosity v
also depends on the concentration C' but the diffusion coefficient o and the parameter ry are positive
constants. To simplify, a homogeneous Dirichlet boundary condition is prescribed on the concentration C,
but the present analysis can be easily extended to a non-homogeneous boundary condition.

The outline of the paper is as follows:

e In Section 2, we introduce some notations and functional spaces that are useful for the study of
the problem.

In section 3, we introduce the variational formulation.

In section 4, we introduce the discrete problem and we recall its main properties.

In section 5, we study the a posteriori errors.

Some numerical experiments are presented in section 6.

2. PRELIMINARIES

In this section, we recall the main notations and results which we use later on. We introduce the Sobolev
space

wmr( )4 ={v e L"(Q)% 9"v e L' ()%, V|k| <m},
where k = {ky,--- ,kq} is a vector of non negative integers, such that |k| = k1 + --- + k4 and
olkly
ohv= —— .
M x1...0kdiz,

This space is equipped with the semi-norm

r

VIprm.r ) = Z/ﬂmkvrdx ,

|k|=m

and is a Banach space for the norm

| v lwm.r@)e= (Z/ﬂ V|§Vln-(fz)ddx>
=0

When 7 = 2, this space is the Hilbert space H™(£2)4.
In particular, we consider the following spaces

Hy ()" = {v e H'(D)% vjoq = 0},

e
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1/2
Vmi @) = [vlLe = (/ Vv2dx) )
Q

The dual of H}(2)? is denoted by H~(Q)%.
We also introduce

equipped with the norm

3@ = {a e 220 [ atwax=o}.
We define the following scalar product in L?(Q): !
(v,w) = / v(x)w(x)dx, Yo,w e L*(Q).
We recall the following Poincaré and Sobglev inequalities:

2d
Lemma 2.1. Foranyp > 1 whend =1 o0r2, orl1 <p < 15 when d > 3, there exist two positive
constants S, and S) such that
Voe Hy(Q)%, || vllzro< SS\’U|H[}(Q)d,
and

voe H Q|| v l|Lr@e< Sp | v @ -

Finally, we recall the inf-sup condition between H!(2) N L2(Q2) and L2(Q2)?, (see [6]),

/ v.V qdx
0

sup
g€ HH()NLZ(Q) ver2)d [VIr2)eldlm o)

> 1. (2.1)
As usual, for handling time-dependent problems, it is convenient to consider functions defined on a time

interval a, b[ with values in a separable functional space W equipped with a norm | - ||y . For all r > 1,
we introduce the space

b
L" (a,b; W) = {f measurable on ]a, b[; / I £(8) Iy dt < oo} ;

I fllzr(apw)= </ I £(2) ||Wdt>

L% (a,b; W) = {f measurable on |a,b; sup || f(¢) ||lw < oo} .
t€la,b]

equipped with the norm

If r = oo, then

In the next lemma we recall the Gronwall-Bellman inequality shown in [30, p. 292] and [17, p. 252].
Lemma 2.2. Let

(1) f,ga nd k, be integrable functions defined from RT to IR,
(2) g=0, k>

3 4 e L@

(4) g x k is an integrable function on R™

Ify : RT = R satisfies

then
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To end this section, we recall a useful bound which will be used in all the article:
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Remark 2.3. Let a and b be two real numbers. For any positive real number &, we have

1 1
ab < 2?@2 + 5gb? (2.4)

3. WEAK FORMULATION

In this section, we introduce the weak corresponding to Problem (P).
We assume that the data of the problem verify the following conditions:

Assumption 3.1. We assume that the data £, g and v verify:
(1) £ can be written as follows:
Vx € Q,Vt €[0,T],VC € R, f(x,t,C) =1fH(x,t) + f1(x,C), (3.1)

where £g € C°(0,T; L*(Q)?) and £y is (uniformly in x) cf -Lipschitz with respect to its second
variable with values in RY. In addition, we suppose that

Vx € Q, V€ e R, |fi(x,8)||lre < e, €], (3.2)

where cg, 15 a positive constant.

(2) g€ C(0,T,L*(%)).

(3) v is A\-Lipschitz for a certain number A € R and there exist two strictly positive constants vy and
vy such that, for any 0 € R,

v <v(f) <. (3.3)
The choice of space for Darcy’s velocity and pressure (u, p) is L>(0,T; L%(Q)?) x L*(0,T; H*(Q)NL3(12))
and for the concentration C' is in L2(0,T; H}(Q2)). The works of Feng [24], Chen and Ewing [13] and
Fabrie and Gallouet [23], Cheng et al. [15], Droniou et al. [20] study the existence of a weak solution
associated to problems very closely related to Problem (P); moreover Feng [24] states uniqueness of

sufficiently regular solutions. Following [24] and [26], we consider the following weak formulation: Find
(u,p,C) in L>=(0,T; L2(Q)?) x L>(0,T; HY(Q) N L3(Q)) x L2(0,T; HL(Q)) such that

Vv e D(Qx]0,T[), /T/I/(C)u'vdxdt +/T/QVp~vdxdt :/OT/Qf(C)-vdx dt,

Vg e 0®(Qx]0,T]), / /Vq udxdt =0,

VS eD(Qx[0,T]) / /C—dxdt—i—a/ /VC Vv Sdxdt

/ / -V Q) dedt—i-?"o/ /Cdedt / / Sdxdt.

A straightforward argument shows that any triple of functions (u,p,C) solution of (W) is solution
of (P) in the sense of distributions. Conversely, any solution (u,p,C) of problem (P) verifying (u,p,C)
in L°°(0,T; L2(Q)?) x L*°(0, T; HY(Q)N L3(2)) x L?(0,T; HE (£2)) solves problem (W) in the above sense.

In the sequel of the present article, we shall assume existence and uniqueness of a regular solution
to Problem (P). The objective of this work is to establish an a posteriori error estimate under such
assumptions. In particular we assume that the concentration is in C°(0,T; L*(Q)).

Remark 3.2. Under assumption 3.1 and if C € C°(0,T; L*(Q)), then the solution (u,p) are also con-
tinuous in time.
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Remark 3.3. Under assumption 3.1 and if the concentration is continuous at t = 0, the first two
equations of (V) (which are the Darcy system) determine uniquely the velocity u(0) and the pressure
p(0). Since we have C(0) = 0, the corresponding system will be written as:

Find (u(0),p(0)) € L2(Q)4 x (H*(Q) N L2(2)) such that
Vv e L?(Q)4, /V(O) (0) - vdx —|—/Vp - vdx —/f(.,0,0)-vdx,
Q
Vqe HY(Q)NLE(Q /un 0)dx =0,
which is a classical well-posed problem.

Under the above assumptions, Problem (P) can be written for 0 < ¢ < T under the following form:

Find (u(t),p(t), C(t)) € L2(Q)4 x (HY(Q) N L3(2)) x H}(Q) such that C(0) = 0 and
Vv e L?(Q)4, / v(C(t))u(t) - vdx + /QVp(t) -vdx = /Qf(.,t,C(t)) -vdx,
Vqe HY(Q)NL3(Q /Vq u(t)dx =0,

VS € Hi(Q) N L= (Q /c de+a/VC() Vde+/( (1) -V C(1)S dx
Q

—|—7’0/C’ de-/g(t)de.
Q

4. THE DISCRETE PROBLEM

In this section, we consider the discrete problem associated to (P) which was introduced in our previous
work [12], where we used the semi-implicit Euler method for the time discretization and the ”mini-
element” introduced by Arnold et al. in [4] for the space discretization of the velocity and pressure
unknowns, and the standard first-order Lagrange finite element space for the concentration.

In order to describe the time discretization with an adaptive choice of local time steps, we introduce a
partition of the interval [0, 7] into subintervals [t,—1,t,], 1 <n < N, with 0=ty <t; <--- <ty =T.
For all n € [1, N], we denote by 7, the length of [t,_1,t,], by 7 the maximum of the 7, and finally by

o, the regularity parameter
Tn

0r = max
2<n<N Tp_1

We introduce the following operator m,:

Let X be a Banach space and g a continuous function from ]0, 7] into X. We denote by 7. g the piecewise
constant function which is equal to g(t,) on each interval ]¢,_1,t,], for all [1, NJ.

Similarly, for any sequence (¢, )o<n<n in X, we associate the piecewise constant function 7, ¢, which is
equal to ¢, on each interval Jt,,_1,%,], 1 <n < N.

Now, we describe the space discretization. For each step n with 0 < n < N, let (T.n)n be a regular
family of triangulations of €2 by closed triangles (in dimension d = 2) or tetrahedra (in dimension d = 3),
in the usual sense that:

o for each n,  is the union of all elements of T,;

e the intersection of two different elements of Ty, if not empty, is a vertex or a whole edge or a
whole face (in dimension d = 3) of both of them;

e the ratio of the diameter of an element K, in 7,; to the diameter of its inscribed sphere is
bounded by a constant independent of n and h.

For each n € [1, N], h,, denotes the maximal diameter of the elements of T, and h denotes the maximal
diameter of the elements of all 7,;,. For each K, in 7,; and each nonnegative integer k, we denote by
P (K,,) the space of restrictions to K, of polynomials with d variables and total degree at most k.

In what follows, ¢, ¢, C1, ... stand for generic constants which may vary from line to line but are always
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independent of h, 7 and n.

We introduce the following inverse inequalities, (see [21], page 75): For any number p > 2, for any
dimension d, and for any non negative integer r, there exist constants c?(p) such that for any polynomial
function vy of degree r on an element K, of T,

d_d
lvnllLex,) < @RE  lvallL2 k- (4.1)

From now on, we call finite element space associated with 7., a space of functions such that their
restrictions to any element K, of T,; belong to a space of polynomials of fixed degree.

For each n and h, we associate with 7, three finite element spaces X, M, and Y,,;, which are contained
in L2(Q)4, L3(2) N HY(Q) and H{ (), respectively.

The velocity is discretized using the “Mini-Element” finite element method. The space associated to this
discretisation is

Xoh = {Vh S (CO(Q))d7VKn S 7;L}L7vh|Kn S Pb(Kn)d}a

where the space Py(K,,) is spanned by functions in P;(K,) and the bubble function on K, (for each
element K,,, the bubble function is equal to the product of the barycentric coordinates associated with
the vertices of K,,).

The pressure is discretized with classical continuous finite elements of order one

Myun = {an € L2(Q)NC%Q); VK, € Ton, anlx, € P1(K,)}.

The spaces X, and M, verify the following discrete inf-sup condition for a certain constant g > 0,
which is independent of n and h, (see [6]),

/th~vhdx
Van € Myp, sup “E———

> Blanl1,0- (4.2)
VEXnn ||Vh||L2(Q)d

Finally, the concentration is discretized with classical continuous finite elements of order one
Yon = {Sh € Hy () NC°(Q); VK, € Tun, Shlk, € P1(Kn)}.

As usual, we denote by V,,; the kernel of the divergence
Von = {Vh € Xun; Van € Mnhv/ Vi - Vapdx = 0}’
Q

We approximate problem (V) by the following discrete scheme: CP =0, forn=1,...,N,

Having C}:*l € Y,_1n,Find (u},pp) € Xnn X My such as

v X, [ g v dx [ Vividx = [ £0r v i,
Q Q Q

Yqn € My, /Vq;fu’,;bdx =0,
Q

(Va)
Having C’;Z_l € Y, 15, Find C}} € Y, such that
con — Cn—l
VS, € Yo, / hTihShdx +a/ VCP -V Sy dx +/(uZ‘VC,’f)Shdx
Q n Q Q
1
—|—f/ div (up) Cp Spdx +r0/ Cp Spdx = / g" Sy dx,
2 Ja Q Q
1 tn
where g" = — g(t)dt and £7(C; 1) = £ + £,(Cp 1), with £ = fo(tn).
Tn tn—l

The second nonlinear term in the last equation is added to compensate the fact that divuj # 0. It is
well-known that Green’s formula implies that

1 1
/(uz.VCﬁ)Shdx—l—5/(divuﬁ)C,{fShdx: 5(/
Q

(UZ'VC;?)Sth—/(uZ-VSh)C’,?dX>7 (4.3)
Q Q

Q
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hence the nonlinear term is antisymmetric.

Remark 4.1. Problem (V) computes u}, pit and C}* for each n € {1,...,N} starting from C} = 0.
To complete this algorithm, we can calculate the initial values of the velocity uf) and the pressure p).
These values can be determined as follows:

Find (1), p9) € Xopn x Moy, such as

Vv € Xon, /V(O)u2~vhdx —|—/Vp2'vhdx :/fO(O)-vhdx7
Q Q Q

Vqn € Mo, /th ~u2dx =0.
Q

These values could be used to write algorithm (V3,) in a different way, in which C' would be computed
from C~1 and u}™', and then (u},p}) from CJ'. Since the numerical scheme is based on the Euler
scheme and on explicit first-order linearizations of the non-linear terms, this alternative algorithm would
have the same overall first-order accuracy as well as the same algorithmic complexity.

Existence and uniqueness of the solution of (V},) was proved in [12] with a constant time step. These
results can be easily extended to the case where the time step varies between the time iterations:

Theorem 4.2 (Existence and uniqueness of the solution of (V},)). At each time step n and for a given
C}?_l € Y, _1p, Problem (V3,) has a unique solution (u},pp,Cr) € Xpn X Mpy X Yo which verifies, for
m=1,...,N, the following bounds

m 1 —
up, HL2(Q)'1 < Z(HfOHLOO(O,T;LZ(Q)d) + Cf1||Ch 1HLZ(Q)) (4.4)
and
ICHF 20y + @ Z Tl CR1 () + 270 Z Tl Chll72() < ; 191172 0,72 () (4.5)

n=1 n=1

In the next theorem, we recall the a priori error estimates already proven in [12] for a constant time
step that can be easily extended to the case of variable time step as follows: we denote by u™ = u(t,),
p" = p(t,) and C™ = C(t,)

Theorem 4.3 (A priori estimates). Let (u,p,C) be the solution to Problem (V') and (uj,py,C}) the
solution to Problem (V3,). If u € L*(0,T; HY(Q)4) N L*°(0,T; L>=(Q)4), p € L*>=(0,T; H*(Q)), C €

L0, T; W24(Q)) and aa—f € L*(0,T; Wh*(Q)), we have,

sup [lu" = uillzzeye < (bt 7). sup |p" = pilme) < (b +7),
0<n<N i
N
sup [|Cy — CnH%Z(Q) +o Z Ta|Ch — C™[ g < ' (W +77),
0<n<N —

where ¢, and ¢’ are constants independent of h and T, but that depend on the exact solution and the
diffusion constant c.

Remark 4.4. [t is legitimate to consider values of the exact concentration of C in t, since, under the
hypothesis of Theorem 4.3, C is a continuous function of time with values in any functional space B such
that W24(Q) c B ¢ WH4(Q) with continuous embedding (|21, Lemma 6.2]). Continuity of C and of £
imply from the first equation of (V) that u and p are continuous in time in their respective appropriate
functional spaces, and it is thus also legitimate to consider the values of the exact velocity and pressure
n t,.
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5. A POSTERIORI ERROR ANALYSIS

In this section, we will prove a posteriori error estimates between the exact solution of problem (V') and
the numerical solution of problem (V},). We begin by constructing the indicators, then we prove the a
posteriori error estimates and finally we establish the corresponding optimality.

5.1. Construction of the error indicators. We denote by

e I'i the set of edges (when d = 2) or faces (when d = 3) of the mesh that are not contained in 952,
I'Y the set of edges (when d = 2) or faces (when d = 3) of the mesh which are contained in 9%,
[]e,, the jump through e, (edge when d = 2 or face when d = 3) in I'},

Ak, the union of elements of 7,5 that intersect K,

A., the union of elements of 7, that intersect the face e,

n stands for the unit outward normal vector to K,, on 0K,,.

In order to establish the a posteriori error estimates, we will need a supplementary condition of quasi-
uniformity of the mesh. We suppose that we have the following assumption:

Assumption 5.1. There exists a constant C' > 0, independent of h and T, such that
Vn € [1,N], VK, € Tun, hx, > Ch. (5.1)

For the proofs of the next theorems, we introduce for each element K, of Ty (resp. each face e, € K,,),
the bubble function ¥k, (resp. t.,) which is equal to the product of the d + 1 barycentric coordinates
associated with the vertices of K, (resp. of the d barycentric coordinates associated with the vertices
of e,). We also consider a lifting operator L., defined on polynomials on e, vanishing on de, into
polynomials on at most the two elements K, containing e,, and vanishing on 0K, \e,,, which is constructed
by affine transformation from a fixed operator on the reference element.

We recall the following results from [29, Lemma 3.3].

Property 5.2. Denoting by P.(K,) the space of polynomials of degree smaller than r on K,,, we have,
for allv € P.(K,,)

1/2
Cillvllz2(x.) §1||U1/’K/n lz2(x,) < Cillvllzz(x,)s (5.2)
vl x, <chpg vz (x,)-

Property 5.3. Denoting by P.(ey,) the space of polynomials of degree smaller than r on e, we have, for
allv € P.(ey)

Cullollz2en) < 0212, < Chllvllzz(en), (5.3)
and, for all polynomials v in P.(e,) vanishing on Oe,, if K, is an element which contains e,
I1£e, )22 (k) + Pen| Loy (0) 1,50, < cthel2 0]l 2 e, - (5.4)

We also introduce a Clément type regularization operator R, [16] which has the following properties:
(see [8, section IX.3]): For each function S in H}(Q) (resp. each function ¢ in H(f2)), R, S belongs to
the finite element space Yy, (resp. M,) and satisfies for each K, in 7,5, and e, in Fﬁl,

IS — RSl r2(k,y < chie, |S1ak, and [|S = RunSlz2(e,) < ch’?[S|1,ac, (5.5)
with identical relations for ¢ instead of S.
For the a posteriori error studies, we need to define time-dependent functions from the discrete solutions
(CR,uz, py)-
Definition 5.4. For each n € [1,N] we consider the time-piecewise affine function Cp, defined on the

time interval [t,—1,t,] by

t—1tn— t—1
(o e/ W 6/ L
Tn Tn

Vt S [tn—latnL Ch(t) =

(cp—crh+cor. (5.6)

Moreover, for each n € [1,N], we consider the piecewise constant function uy, equal to u} on the time
interval |t,,—1,t,] and the piecewise constant function py, equal to pj on the interval |t,_1,ty].
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Following the ideas of [9], we will prove optimal a posteriori error estimates using the norm:

[C = Cal(ta) = <||c<tn> Ot B
(5.7)

ramax ([ 100 - i [ 100 - w0 qdr) ).

Remark 5.5. In view of the efficiency bounds obtained in Section 5.3, it is important to keep in mind
that we could also have used in definition (5.7) the equivalent full H*(Q) norm instead of the Hg(£2)
semi-norm since both C' and Cy, belongs to H} ().

We introduce, for each edge e, of the mesh, the function

0 ife, € FZ,
tn_1,tn] —

vne[LN], ¢l u?’-n ife, €Y.

(5.8)

A standard calculation shows that the solutions of problems (V) and (V3) verify for all (v,q,5) €
L2(Q)% x (HY(Q)N L3(Q)) x (HI(Q)NL>®(Q)) and g, € My, for each t €]t,,_1,t,]:

/QV(C(t))u(t)~vdx + [
=/Q(f(t,0(t))—f”(cg—1))-vdx+/ (v(Ch) = v(Cr(t)))up - vdx (5.9)

Q

Vop(t) -vdx — / v(Cr(t))uy, - vdx — [ Vpy - vdx
Q Q

+ /Q (E7(CPY) — p(Cp—yud — V) - v,

/qu. (u(t) —up)dx = Z

Kn€Tnn en €K, ﬂFb €n

/ (¢ — qn)div updx — Z / uy, -n)(q — qn)ds ] . (5.10)

and

(€ = Cn(@).5) +a(T(C = CO.T5) + (u(t) VCW) — wlt) - TC4(0.5)

+70((C = G, 8) - 3(div wCh(0),5)

—(00).5) ~ (00,8 = (W (0 TCL(0,8) - LA w0, 5)

—1ro(Ch(t),S) — a(VCy(t),VS).

(5.11)

We introduce the residual R(C,) € L*(0,T; H=1(2)) given by: for each n € [1, N], for each t €]t,,_1,t,]
and for all S € H}(Q)

(R(CH)(®).5) = (9(2), 8) ~ —(CF ~ C1™,8) =~ (wn(t) - VCu(0), 5) -
" 5.
— S (@Y W (T, S) ~ ro(C (1), 5) — a(VCi (1), VS).

The residual R(Cy) is now decomposed into a space residual R" € L2(0,T; H1(2)) as well as a time
residual R™ € L2(0,T; H1(Q)) defined in the following way: For n € [1, N], for t €]t,_1,t,], for all
S € H} ()

1 — n n 1 : n n n

(Rh(Ch)(t)7S> = E {/K (9” - 7(02 - Cy 1) —uy, - VCy — §d1V u, Cp —roCy
Kn€T, n "

Sl (5.13)

+anc)) () x S(x )dx—% 3 / VP ). (o) - S(a)da},

en COKy, ﬁI”
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and
(B (@0, 8) = ! Py G/ (G~ G S
+ 70 /K (Ch = O H(x)S(x)dx + /K aV(Cp — Cr ) (x) - VS(x)dx (5.14)

- 1/ uy - VS(x)(Cp — C}?l)(x)dx}.
2 Jk,
Using (V4), we remark that
(RM(C)(t),Sh) =0, VSh € Y. (5.15)
This leads to
(R(Ch)(1),S) = (g — g™, S) + (R"(Ch)(t), S = Sp) + (R (Ch)(1), S). (5.16)
We define now the error indicators:

Definition 5.6. For each K, € T,n, Vn € [1, N],

(U c,1)® = I (CR ) =v(CR g =V o o HhE IV W Ty + Y e,
enCaKn,GnEFZ

oy ||%2(en)7

1 2

+ Z he, |[[@VCy - 1], H%2(en)’

en COK,, s€n EOF;;L

n

— n n 1 : nn n mn
(nZ,Kn,,Q)Q :hi(n g (Cp —Cy 1) —uy, - VCy — §d1V u, Cy — roCy + aACY

L2(K,)

and
() = mllCh = C M1 i, -

These indicators are easy to compute since they only depend on the discrete solution and they involve
polynomials.

We shall need the following Lemma to bound the residuals involving Cj,.

Lemma 5.7. Under the assumptions of Theorem 4.8, the following estimates hold for each n € [1, N]
and t €)tn_1,tn],

(1) For all S € H}(Q) let Sy = RunS,

1/2
(RO @S —s<e 3 (nfz,Kn,ﬁ) Shio. (5.17)

K, €Tnn
(2) We suppose that 7 < ch. For all S € H}(Y), we have:
n—1

" 1/2
eSS (h)?) IS (5.15)

n Kn€Tnn

Proof. Let n € [1,N] and t €]t,,—1,t,]. To derive inequality (5.17), we use formula (5.13) with S, =
R, S, the Cauchy-Schwarz inequality, the properties of R, (see (5.5)), the discrete Cauchy-Schwarz
inequality and the fact that, for each K, it holds that

Z 1S} Ac, < ST Ak,
enCc')KnﬂFZ
and that, due to the regularity of 7,, we have

Z 113 Ak, < clSIiq-
Kne7—nh

with a constant ¢ that does not depend on h.

Let us now show inequality (5.18). The second and third terms of (5.14) can be bounded using the
Cauchy-Schwarz inequality on each K, and then the discrete Cauchy-Schwarz inequality. As far as the
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second term is concerned, the Poincaré inequality must also be used to bound the L?(2) norm of S by
its H} () semi-norm. We shall now treat the first and last terms in (5.14). Let us start by denoting by

b the first term of (5.14). Then, inserting / u” - V(Cp — C~1)Sdx, we obtain the following equality:

n

b

/ uy - V(Cp — Cp 1) Sdx
K,

Kn€Tnn

> (up —u") - V(Cp = Cph)Sdx + ) / v(Cy — Ccr)Sdx.

KnE€Thp ” Kn Kn€Tnn

We denote by by and by the terms in the right-hand side of (5.19) respectively.

(5.19)

Using the L2 — L3 — L5 generalized Cauchy-Schwarz inequality and the inverse inequality (4.1) in by, we
obtain:

bl <e D7 Ihaf — wpaac)alCh = O i, b IS e e, (5.20)
K.€Thn

We recall the a priori error estimate of u in Theorem 4.3
af — w2k, )a < llupy —u|[p2(q)a < c(h+7) (5.21)
Using the condition 7 < ch, we get the following bound:

bl < e Do e PICT -
Kneﬁz,h,

(5.22)

Using inequality (5.1), the discrete Cauchy-Schwarz inequality and the Poincaré inequality, we get:

1/2
|b1|§6< > Ick-cyt llK,L> 15]1,0- (5.23)

Kn€Tnn

We use the L>-L2-L? generalized Cauchy-Schwarz inequality, then the discrete Cauchy-Schwarz inequal-
ity and finally the Poincaré inequality in by to obtain:

|ba| < Z Il oo (0,725 ()1 [Ch = Cp M1k, 1S L2k
KnETnh

1/2
SCl( Z ICh — Cn 11K> 1S]1,0-

Kn€Tnn

(5.24)

Finally, gathering (5.19), (5.23) and (5.24), we deduce that

1/2
|b|<c2< > oqep-cpt im) 1S]1.0- (5.25)

K, E’Tnh

Now, let the last term of (5.14) be denoted by b. We insert / u” - VS(Cp — Cp1dx to get:
K,

b= Y /( u")-VS(Cp—Cphdx+ > / VSO — O hydx. (5.26)

Kn€Tpp  Kn Kn€Tnn

We denote by b1 and 52 the terms in the right-hand side of (5.26) respectively.
Using the L? — L? — L™ generalized Cauchy-Schwarz inequality, we obtain:
bal < D0l = e gaalSTu, IO — O (o).
Kn€Tnn

Using the inverse inequality for p = oo (cf. Ern and Guermond [21, Lemma 1.142]) and then the Poincaré
inequality, we get

|G — O M) < K(ha)|CF = C 10,
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where,
R T
The a priori error estimate (Theorem 4.3) and the condition 7 < ch, yield the following bound:
1/2
1] < e ( ook -k, ) hK (h)|S]1 0. (5.28)
Kn€Tnn

Condition (5.1) allows us to get

1/2
|’51|gc< > lcr-cpm 11K> IS0 (5.29)

Kn€Tnn

The term 32 can be bounded like the term by, the only difference being that the Poincaré inequality is
now used on (CF — Cp~'). This gives

1/2
|52|§C< > lcr-cp 11K> 1S|,0- (5.30)

Kn€Tnn

Equality (5.26) as well as inequalities (5.29) and (5.30) allow us to obtain the following bound:

1/2
b <ec ( Z ICh — Cﬁ_lﬁ,z{”) IS|1,0- (5.31)

Kn€Tnn
Finally, gathering all the inequalities and multiplying and dividing by T%/ 2, we obtain (5.18). |
5.2. Upper bound of the error. In this section, we establish the a posteriori error estimates where

we will bound the error between the exact solution (u,p,C) of Problem (V') and the numerical solution
(up, pr, Cr) of Problem (V) using the indicators given in Definition 5.6.

First, we establish the upper bound corresponding to the Darcy equation where we bound the errors of
the velocity and the pressure with respect to the error of the concentration.

Lemma 5.8. Let (u,p,C) be the solution of (V) and (up,pn,Ch) be the functions constructed by defini-
tion 5.4 from the solution of (Vi,). Under the assumptions of Theorem 4.3, the following error estimate
holds for allm=1,... N:

IIU—Uh||L2<o,t,L;L2<Q>d> sl 2 URICRSAE)

1/2
< ellC = Chll o poce + (Z S (0, 1>2+<n;,Kn>2))

P Ko T (5.32)
tm 1/2
(71000 - mleat)
0
where ¢ and ¢ are constants independent from h and T.
Proof. We start with the velocity error.
Let n € [1,N] and t €]t,—1,t,]. As usual, a bound for the error on the velocity is derived by eliminating

the pressure from (5.9). This is obtained from (5.10) in the following way: it follows from the inf-sup
condition (2.1) that there exists a velocity z in L?(2)? that solves for all g, € M,

Vg € HY(Q)NL3(Q), /QVq-zdx: > [/ (q—gqn) divapdx— /euh (q— qn)ds

Kn€Tnn en €0K,NIY
(5.33)
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and satisfies

leop s sw S [ (g g dvuide— Y /n<uz~n><qqh>ds]

1 2
gEHL(Q)NLE(Q) |q L\ e, en €K, NIt 7

By taking ¢, = R,nq and using the Cauchy-Schwarz inequality and the properties (5.5) of the Clément
operator R, we infer that

1/2
2] 2 ()a < C( > [h%(aniV Wi, + D hen||¢;;"||%2(en)]>

Kn€Tnn eneaKnﬂ:‘:Z}L

1/2
SC< Z (77271(,“1)2) .

Kn€Tnn

(5.34)

To simplify the notations, we set zg = u — uj, — z. Equations (5.10) and (5.33) give for ¢ = p — p}}

/ V(p —p}) - z2odx = 0.
Q

Now, we take v = z¢ in (5.9), we get

/QI/(C(t))u - ZodX — / v(Ch(t))uy, - zodx

Q
= / (£(t, C()) — £(CP1)) - Zodx + / ((CPY) = v(Cu (1))} - zodx (5.35)
Q Q

—|—/ (F*(CY) — v(Cp~Mup — Vpj) - zodx.
Q

We simplify by [, v(Cy(t))u} - zodx and insert / v(Cp~Mu - zodx in (5.35) and we get
Q

/ v(C(t)) — V(C;‘_l))u - Zodx + / V(C}Z‘l)(u(t) —uy) - Zodx
@ @ (5.36)

= / (f(t,C()) — £"(C™")) - zodx + / (f (Y — v(Cp~May — Vpj) - zodx.
Q Q

Since we have u — u}} = z¢ + z, we obtain

/ v(CpYzg - zodx = / (W(CR™) = v(C(t))u - Zgdx +/ (£(t,C(t) — f"(C}?_l)) - zodx
@ @ @ (5.37)

+/ (f(Cp~) —v(CrYup — Vpp) -zodx—/ v(Cp Yz - zgdx
Q Q

By inserting v(C(t)) in the first term and £(¢, Cj,(¢)) in the second one in the right-hand side of (5.37),
we get, using Assumption 3.1

V1||ZO||L2(Q)d <A[Cr(t) - C(t)HLz(Q)||uHL°°(O,T;L°°(Q)d)

+ )\t - tn—l

——C} = Ci M lz2@llall L .z (@9) + €, 1CE) = Cr(®) 2o
" (5.38)

t—tn—1 n n—
- ICh = Cl 2 (o) + [Ifo(t) — fo(tn) | 2()e

HIE(CL ) = v(Ch g = Vil + vellz] 2 o).
We gather (5.34) and (5.38) and use the fact that u — u}} = z¢ + z to obtain the following bound:

lu(t) — un(®)[72 (00 Scl(HC(t) ~CuOlfe@ + Y (k1)
Kn€Tnn

(t—tn,1>2 n—
—— Iy = C} 1”%2(9))'

*
+ Cfl

(5.39)
+1fo(t) — fo(tn) 1720y +

n
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Finally, we integrate inequality (5.39) between t¢,,_; and t¢,, and we sum over n € {1,...,m}, we get

[u— uh||%2 iL2(Q)d) =C2 (C Ch||L2(0 tm;L2(Q)) T Z Z () k1) + (1 k,)7)
n=1K,E€Tnn (5.40)

t”YL
LR 7Trf0||2Lz(n)ddt)~
0

For the pressure error, we consider equation (5.9). We insert / v(Cp~Mu(t) - vdx and we get
Q

[ 9= piyvix= [ (#.c0) - £(Ci) vax+ [ (€~ vC@)u) - vax
@ @ @ (5.41)

+/§1V(C,’L‘_l)(u27u(t))ovdx+/(f"(C’,’LL Y —v(Cp Yy — Vp) - vdx.

We insert f(t,Cr(t)) in the first term and v(Cx(t)) in the second one of the previous equality and we
obtain the following bound using the inf-sup condition (2.1):

~ ~ t_tn— n— ~
Ip(t) — pr(t)|1,0 <&1l|C(t) — Ch(t)llL2(a) + &2 LCr = O M lnze) + Eslifo(t) — folta ) 22(aya
+ &l (Y —v(Cp Ty VthLZ(Q a + Calluy, —u(t)| 2@y
(5.42)

Finally, we integrate between t,_; and t,, and we sum over n € [1, N] to get

lp— PhHLZ(o tm; HE () <al|lc - Ch||L2 0,tmsL2()) T C2 Z Z (Tn Mn K,L,I)Q + (7777;,K,L)2)
n=1K,€Tmn (543)

tm
+ o = s+ [ 1000 = 7Bl

To get the final result, we gather (5.40) and (5.43).
|

Now, we derive and prove an upper bound on the error corresponding to the concentration that depends
on the velocity error.

Lemma 5.9. Let (u,p,C) be the solution of Problem (V') and (uyp, pr, Cr) be the solution of (V3,). Under
the assumptions of Theorem 4.3, the following error estimate holds between the exact and numerical
concentration: Vn € [1, N|, Vt €]t —_1,tx],

1d o
53 100 = CuD)llz20) + 51CH) = Ca(®)F 0 + 70| C(1) = Ca(B) 72

<elgt) =g " +es Y (i, 2)’

e (5.44)
(t’ﬂ B t)2 T 2 _ 2
+ a5 Z (Mn,x,,)” + csl[un(t) u(t)”L?(Q)d'
n Kneﬁlh
Proof. Let n € [1, N] and t €]t,—_1,t,]. Using (5.11) and (5.12), we get
P
(5(C=C0.5) +a(¥(C - . 95) + (€ - C(O.)
) (5.45)
= (RICH©).5) + (1) TCL(0) - u(t)- VC(0), 5) + 5(div wi(11Ch(0),5)
We take S = C — C}, in (5.45) then we get
14d
€ - Chll720) + lC = Cul} o + 1olIC = Chllf2) = (R(Ch(t)), S) + T. (5.46)
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where
T = (up(t) - VCL(t) —u(t) - VC(¢),S) + %(div uy,(t)Ch(t), S). (5.47)
We start by bounding the term 7.
Using the following antisymmetry property

(wn(t) - V(C1) ~ Cu(1)), 8) + 5 (div wn(1)(C1) — Cu(1)), 5) = (un(D) - VS, ) + L (div ua(1)$.5) = 0
and adding it to (5.47), we get
T = (wp(t) - VO(1), ) — (ut) - VO(t), S) + %(div w, (H)C(1), S). (5.48)
Integrating by parts the last term and one-half of the second term in (5.48) and using the incompressibility

condition divu = 0, we get:

T = 5 ((w —0)()- YO), 8) — 5((w, — w)(1) - VS,C(0)) (5.49)

Now, we use the L2 — L3 — L5 and L? — L? — L> Cauchy-Schwarz inequalities and the Poincaré inequality
to obtain the following inequality:

1 1
7] < 5861 (un = W)@ 2@« CE)lwra@SI10 + 5l (an = @) Bl 2@ ISl CE)llx @) (5.50)

Now, we treat the term (R(Cp)(t),S). Using (5.16), the Cauchy-Schwarz inequality and inequalities
(5.17) and (5.18), we get:

(R(CR) (1), S)| <llg — g™ l2@) IS 2 ()
1/2 1/2
tn —t T (5.51)
ro( X 0haeo?) Shate25 (X 0h)?) ISha
Kn67-nh Tn KWE/Y-,L},

We gather (5.46), (5.50) and (5.51), and, using the Poincaré inequality for the first term in the right-hand
side of (5.51) we obtain

1d 5
2dt |IC — Ch”Lz(Q) +a|C — C’h|iQ +7o]|C — CthLz(Q)

< Ng(t) = g*l22()|C — Chl1,0
1/2 PR 1/2
+ c( > (nZ,Kn,2)2> C = Chlia + c"g/2< 3 (n;an) C=Chla (559
Kn€Tnn Tn Kn€Tnn

1
+ 558\\(1% —u)(t)[| L2 ()¢ |C (D) w13 |C — Chl1a

1
+ 5 Iun = @)@l 22(@a|CO) | L= () |C — Crlra.

Finally, we get the result using inequality (2.4) for all the terms in the right-hand side of (5.52), where

we systematically use b = [C' — Cp|1 o and £ = §. |

To find the error bound of the concentration, we have to bound the last term of the concentration error

given by (5.7).

Lemma 5.10. The ezact concentration C solution of Problem (V') and the numerical concentration C},
solution of (V3,) verify the following inequality:

m tn tm m
3 / 1C(s) — G (32 s < ( / C6) = ) B gds + 5 Y <n;,Kn>2>,
n=1""'n-1

n=1K,€Tnn

where ¢ is a positive constant independent of h and 7.
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2
)2|C’ )C" 112 ) (5.53)
h 1,Q .

We obtain the desired result by integrating (5.53) between t,,_1 and t,, and then summing over n. W

Proof. For each n € [1, N] and for each t €]t,_1,t,], we have

(1) — 7 Ca(t) 2 (0<t>  ChB)la + [Calt) -

IN

t

< 2(|C<t> g+ (e

n

Lemmas 5.8, 5.9 and 5.10 allow us to show in the next theorem the total error bound corresponding to
our a posteriori error estimates.

Theorem 5.11. Let (u,p,C) be the solution of Problem (V) and (up,pn,Ch) be the solution of (V).
Under the assumptions of Theorem 4.3, the following error estimate holds for allm=1,... N:

lu=wnllr20t,:L2 @4 + 1P = Prll20.4,: 13 (2)) + [C = Crl(tm)
< Cillg = mrgll L2 (0,522 (2))

1/2
+C] ( Z Z T ( (n} K1) )? + (772,1(”,2)2) + (W;,KH)Q) (5.54)
n=1K,€Thn
1/2

tm
n ( Je —WTfOHQLQ(Q)ddt) ,
0

where Cy and Cy are constants independent of h and T.
Proof Let us consider each n € [1, N] and each t €]t,—1,t,]. We replace (5.39) in (5.44) then we obtain
a
e = Culagey + 21C — Gl + 7l — Culldsgay < FO+2ICEO) — Gy (5:55)

where we have defined the function f : R* — IR such that, for all n € [1, N I,

FOsin = llo) = "oy + (e + O, o)
Kn€Tnn
(t" _t)2 T (titnfl)z n n—
t Z (i) + T”Ch -Gy 1“%2(9) + [Ifo(t) — fO(tn)H%Z(Q)d)'
n Kn€Tnn n

We integrate inequality (5.55) between 0 and ¢ and we get

1 6% t t
S0 — OuDEaey + 5 / IC(r) = Co(r)[2 adr + 70 / IC(r) = Cu(r) By
/f d¢+c/ 1C(r) = Cu(r) 20y .
We designate by f the function
t
fw:/fmm
0
We apply Gronwall’s lemma 2.2 to
1
0= 3100 - Dl + 5 [ 1060~ Cunadr 470 [ 106) - Cur i, (5:56)

and

We get .
y(t) < F(t) + Gexp(eT) /O F(r)dr. (5.57)

Since f is an increasing function, we have for all 7 between 0 and t, f(7) < f(t).
Hence, (5.57) can be written

y(t) < f(t) + teexp(eT) f(t).
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For t = t,,, we get
Y(tm) < (1 + Teexp(el)) f(tm) < C1f(tm). (5.58)
The definition of f implies

Fltm) = [ F(r)dr.
-

Thus, we have

Fltm) = c(llg = 7rgl32(00,,:02(2))

m m
£ 5 (O + o) 33 5 k)
n=1 K, ETnn

n=1KnCTun (5.59)
1 —
T3 Z ™l|Cy = C}, 1||2L2(Q) + [Ifo — 7T‘Ff0H%?(O,tm;L?(Q)d)>'
n=1
Now, using (5.56), (5.58) and (5.59), we obtain the following bound:
”O(tm) - Oh(tm)”%’é’(ﬂ) + O‘”C - Oh”%?(O,tm;Hé(Q)) + 27'0”0 - Oh”%’b’(o,m,;ﬂ(ﬁ))
< c(llg — T gll7 20,012 ()) + Z Z (n.x.,)°
n=1K,E€Tnn (5.60)
+ Z Z Tn ((TIZ,K",l)Q + (nZ,KnQ)Q) + [Ifo — 7T‘Ff0||2L2(07tm;L2(Q)d)>'
n=1K,E€Tnn
Finally, we gather (5.32) and (5.60), and we use Lemma 5.10 to get the desired result. |

Theorem 5.11 gives us a bound of the error between the exact and approximate solutions, in terms of the
error estimators and oscillations of the data. In Lemma 5.12 below, we additionally bound the norm of
a residual that appears in the efficiency study which will be led in Section 5.3.

Lemma 5.12. Under the assumptions of Theorem 4.3, the solutions (u,C) and (up, Ch) of problems (V)
and (Vi) respectively, verify the following inequality for allm =1,...,N:

0 1 .
H&(C —Ch)+ut)-VC —up - Vr,.C, — 5 divupm,Cp + ro(C — WTCh)HLQ(O’tm;H,l(Q))

m
=a ( Z Z [Tn(nz,sz)2 + (U;,Kn)z] +[lg — WTQH%Z(O,tm;L%Q))
n=1K,€Tnn
1/2

+ [T1e6 - a)

where ¢y is a constant independent of h and 7.

Proof. For each n € [1, N] and for each ¢ €]t,_1,t,], we consider the third equation of Problem (V):
0
(5C0.5) +alVCO.TS) + (o) VC@. ) +1o(C(0.8) = (4(0,8), (561
where S € H}(Q) N L>(Q). The assumption of Theorem 4.3 implies that this formula also makes sense
for all S € H3(Q).

We recall that 7 Cy(t) |1, _, +,] = Cj, and we insert C},(t) in the first term of (5.61), 7.Cy(t) in the second
term, up(t) - Vo Cp(t) in the third term and 7, Cj,(¢) in the fourth one, and we get, also adding the term
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%(div wn ()7 Ch(8), S):
(50~ C0.5) +a(¥(C - 7:C)D. 9) + (ut)- V(O - us(t)- V.o (0),5)
+r0((C = T Ca)(0),5) — 5 (div (B, Ca(r), )

= (g(t),S) — (gtch(t),s) — a(VrCh(t), VS) — (un(t) - Vr,Ch(t), S)

— ro(mrCh(t), S) — %(div wp (87O (t), S).

We use the definition of R"(C}) given by (5.13) to get the following equality:

(5:(C = C0.5) + ((0) - T s - T5,C(0,5) + (€ = 7630, 5)

— @iVt Ca(r), )
— —a(V(C — 7 C) (1), VS) + {g(t) — g" + RM(Ch)(1), S).

The equality above as well as (5.15) allow us to get the following inequality: for any Sj, € Yy,

Hgt(c — CR) () +u(t) - VO(t) — up(t) - Vi, Ch(t) + 10(C — w2 Ch)(t) — % div uh(t)ﬂ-TC'h(t)H
H-1(Q)
1 )
= serb@ Wl [(at(c = Cu)(1) + u(t) - V(1) = un(t) - VarCi(t) +ro(C = 7-Ch) (1)

- %div uh(t)mch(t),sﬂ
oy VO CO,TS) 4 (o~ 0" 5) + R, - S

T SeHL(Q) 151 222 0)

Using the Cauchy-Schwarz inequality, choosing S, = R,;S and using properties (5.5) and (5.17), we
obtain

0 1
‘ &(C —Ch)(t) +u(t) - VC(t) —up(t) - VrCr(t) + 7o(C — 7. Cp)(t) — 3 div uh(t)wTCh(t)H

H-1(Q)

1/2
<c(|c—mchig+|g<t>—g”22<m+ T <nf:,m>2) .

Kneﬁlh

Finally, we obtain the desired result by integrating over ¢ between t,_; and t,, and then by summing
over n € {0,...,m}. |

Remark 5.13. Theorem 5.11 and Lemma 5.12 summarize our a posteriori error estimate which give
our global upper bound using the indicators defined by Definition 5.6

Remark 5.14. The statement of the a priori error estimates given in Theorem 4.3 show an L°°-time
error bound for the velocity and the pressure, while the a posteriori error estimates given in Theorem 5.11
shows an L?-time error. In fact, to get the L>®-time estimate for the velocity and the pressure, we can
consider Inequality (5.39) for t =t, and get the following bound

lata) = wn(tn)3aae < e (ICE) = Calta)lFagey + D (g, )+ ICH = Ci M Ragey)  (5:62)
K.€Tnn

which can be combined with (5.60) to obtain the corresponding L>-time a posteriori error estimate. The
pressure estimate can then be obtained by using Relation (5.42).
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5.3. Upper bounds of the indicators. In this section, we show the efficiency of the established a
posteriori error estimates. This can be done by locally bounding each indicator with the error between
the exact and numerical solutions, these bounds are called lower bounds of the error.

To accomplish the desired efficiency proof, we introduce approximations f;' of £ and v}, of v as follows:
for any function & € L?(K,) and for each element K,, € T, we set

1
G, = e [ (e (5.63)
and
1
€, = 7 [ v(eG0 (5.64)
We also define g in a similar way
1
9nlK, = W/K g" (x)dx. (5.65)

A straightforward consequence of the properties of f* and v is that f;' and v, are Lipschitz with respect
to £.

Remark 5.15. It is important to note that £, v, and gj are in Py(K,) on each K,, and we shall be
able to use properties 5.2 and 5.3 which hold on polynomial functions.

We begin by bounding the indicator n;, x :
Theorem 5.16. For each n € {1,..., N}, we have the following estimate:

N
(k)" <EIC = CullTaqe, s inimcreny +11C =T CullTae, i (x0)) (5.66)

where ¢ is a constant independent of n, h and 7.

Proof. The definition of C}, given in (5.6) and that of m.C}, give for any n € {1,..., N},

t_tn

Vt € [tn1,tn], Chr(t) — 7 Cp(t) = (Cp—Cophy.

n

We insert C(t) and we get

2
t—t _
(55) 16k = G B, < 20100 = G, +11CC0) = 7 ChlDl,)-
n
We integrate between t,,_1 and t,, to obtain the result. [ |

We will now bound sequentially the indicators 772’ K, 1 and 772’ K, 2 We first start with 772’ K, 1- Note

that in Theorem 5.17 below the term 7,||C} — 0271”%2(1@) can itself be bounded by (n;’Kn)Q, which
was estimated in Theorem 5.16.

Theorem 5.17. We assume that u € L>(0,T; L=(Q)9). The following estimate holds

T (1 1,0)" S EIC = Cullage, ooty Tl = O i,

+ ||lu— Uh||i2(t71717tn,L2(Kn)d) + lv(C) - Vh(c)H%?(tn,l,tn,L?(Kn)) (5.67)
e =Pl e s iy T 10 = bl oo, e p2(nye) '
FIF(C) ~ E(O) a2 )

where € is a positive constant independent of h and 7.
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Proof. Let us start with the first term of (nﬁ Kn,1)2' We consider equation (5.9) and we insert the terms

/ v(C(t))up - vdx, / f1(Cy 1) - vdx and / v (Cp )yl - vdx, we get for all ¢ € [t,_1,t,],
) Q )

@€ = ey - v vax = |
Q

(E7(CoY) — £(t, C(1)) - vx + / V(p— pu)(t) - vix
Q

Q
+ /Q (Ep(CpY) — £7(CpY)) - vk + /Q (W(C(t)) — v(Ch(t))uf - vix

+ /Q v(C(t))(u—up)(t) - vdx + /Q(I/(C;ffl) — I/h(Cgfl))uZ - vdx

+ / (V(Ch(t)) — v(CNuf - vdx.
Q
(5.68)
We take v = v, in (5.68), where

_ [ ECT =G = Pk, in K,
VL= { 0 in Q\K,,. (5.69)

It is important to note that vg, is a polynomial function thanks to the definitions of f;* and vy, (see
Remark 5.15). We get

/ (£ (Ch ™) — (G~ Hugy = Vpi)* - e, dx =
K,

/K (E"(CP) — £(LC(0) vicdx + | V(o —pu)(t) - vic,dx

n

+ /K (Ep(CpY) — £7(Cp 1) viudx + | ((CW) — v(ChE)u} Vi, dx  (5.70)

n n

W(CR ™) —wn(CR )y v, dx

+/K v(C(t))(u—up)(t) vk, dx +

n n

+ [ @(Cn®) — (g v, dx.

n

The second and fifth terms in the right-hand side of (5.70) can easily be bounded using the Cauchy-
Schwarz inequality. For the fourth and last terms, we insert u(t) then we apply the Cauchy-Schwarz
inequality. In order to bound the first and third terms of (5.70), we use the Cauchy-Schwarz inequality
and we set

ek, = [E"(Cp7Y) = £(t, CO)l 2 (acya +IEL(CLH) = £1(CR ™)l L2 (s, )0
Using the triangle inequality we get

Ex, <IE(CR™Y) = £(8, CO))l|2(e,a HIE (CF 1) — £ (CE)) |2k, )

n " " e (5.71)
+IF(C1) = £(CO) L2 (k,)a + [E(C (X)) = £ (CR™ ) L2, )0
We deduce from the properties of f, £ and f}} that
ek, < allCy ™ = C)le2 ) +lfo — mofoll L2 (i,e + IER(C (X)) — £ (CO)| L2k, ya- (5.72)

In the first term of the right-hand side of (5.72), we insert Cj(¢) and we obtain

(tn—l — t)2 n n—
G = G k)

n (5.73)
o — ool gy 4+ E(C()) — f"<c<t>>|i2(Kn>d)-

fr < c(nc(t) OO B +

We will now bound the final term of equality (5.70) as follows:

‘/K W(CR™) = (G )ug - v, dx| < [(W(CF ) = vn(CR gz, al Vi, 2
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We denote by
erc, = [(W(CR) = v (G INR T2 (¢, ya
and we use the triangle inequality to get
exc, < NW(CE™) = wn(Cy™ D)) — )72, ye + 1W(CETH) = wn(CRNUO T, - (5.74)

The first term of the right-hand side of (5.74) can be bounded by (v2 — v1)|lu}; — u(t)|[z2(x,,)e- For the
second, we insert v, (C)u and v(C)u. We have

I((CR™) = wn(CR ™ DU T2,y < (a(C(#) — vn(CR™ DB Z2 s, )
H@(C®) = va(CO)) )72, o (5.75)
+HW(CE™) = v(CONu®) 172k, -

Inserting v, (Ch(t)) in the first term and v(C},(¢)) in the last one in the right-hand side of (5.75), using
the fact that v and vy, are Lipschitz and since u € L>(0,T; L (2)9), we get

t—tn

2
- sa(nc(t) ) B, + ( ) 1C7 = Y ey + 0(8) — un ()2

(5.76)
+w(C(t) - Vh(C(t))|%2(Kn)>'

For the left-hand side of (5.70), we use Property 5.2 to obtain
n (o n— n— n n n (o n— n— n ny,1/2
15 (C, - vi(Cy, Duj — vph”%ﬁ([(n)d < || (£ (Cy, - vi(Cj, Duj — Vpi)vg / ||L2(K ye- (5.77)

Therefore, to get the bound of the first term of (172 Kn,1)27 we begin by applying the triangle inequality
to obtain

IE™(CR ™) = (G )y = Ve, e < N6 (CRTH) = v (CRT Dk = V[ L2, e
HIW(CE™) = (G Za (k) (5.78)
I (CR) = £2(Cy DT, e

then we use relations (5.70), (5.73), (5.76), (5.77) and (5.78) and we get the following bound of the first

term of (nZ,Kn,l)Q:

2
n— n— tnf —1 n n—
I6°(C) = (Gt = T e <EICE) = CuOl g+ () 1GE = G

n

+u(t) = un ()17 ()0 + I(CE) = v (CE)II ()

+1p(t) — (V)i ., +||f0() fo(tn) |72z,
+E(C®) = £ (CE)IZ2(e)-
(5.79)
Next, to bound the second term of (772)1(7“1)27 we take ¢ = gk, and gp = 0 in (5.10) where
divu¥ in K,
Gk, = { ( S)wKn in Q\K,. (5.80)

Using the fact that gk, has it support limited to K, and that it vanishes on all edges, applying the
Cauchy-Schwarz inequality and using relations (5.2) and the fact that ¢, < w}(/f since ¥k, <1, we get

Wi, | divug |z k) < cllult) = un(®)l|Z2 s, o (5.81)

We finish this proof by bounding the last term of (nﬁ K7“1)2. This term is not equal to zero if and only
if the edge (for d = 2) or face (for d = 3) e, of K,, belongs to I'Y. In this case, we define

— en,( ,(/Jen) in Kn
Gen = { 0 in Q\K,, (5.82)
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where ¢} is given by (5.8).
Using (5.10) with g, = 0 and ¢ = ¢.,, and using the fact that the definition of L., implies that the
support of ¢, is restricted to K, and that it vanishes on the other edges or faces of K,,, we obtain

/ Ve, - (u— uh)(t)dXZ/ qe,, div uhdx—/ " e, dx
K, K

n

Using inequality (5.4) and applying the Cauchy-Schwarz inequality we get

657 082 3,y < & [P div e,y + e 20() = 0 ()2 16576 ey (5:83)

We use the left inequality in (5.3) to get a lower bound for the left-hand side of (5.83). Using that

e, | <1 we can bound |¢5" e, [|L2(e,,) by ||¢6'L¢21<2HL2(5,L) and then use the right inequality in (5.3) to
get an upper bound for the right-hand side of (5.83). This allows us to get:

B0 e,y < € (B2 1 div et B, + a(t) = wa(8)]3 i, ) - (5:84)

We gather (5.79), (5.81) and (5.84), then we integrate between t,,_; and t,, to obtain:

(0 e 1) <c(|c oo s arigieny + 7llCF — O Yo

+[u— uh”%?(tn,l,tn,LQ(Kn)d) +[[v(C) - Vh(C)H%%tn,l,tmL?(Kn))

2 2 (585)
+1lp - thm(tn,l,tn,Hl(Kn)) + [Ifo - ero||L2(tn,1,tn,L2(Kn)d)
HIEC) = PO st )
Hence we deduce the desired result. [ |

Now, we complete the efficiency study by obtaining an upper bound for the estimator nf; K, .2
Theorem 5.18. For eachn € {1,...,N} and for each K, € Tpp , we have

Tn (nn K",2)2

(8

2

2O =G+ ult) - VOU) — - VCf — 3 divai Ty +ro(C() — CF)

L2(tn_1,tn;H Y (AK,))

0= el et any + b " — gﬁ||%2(AKn>),
(5.86)

tn
2 2
+ / C =7 Chl . + Ik,
tn—1

where ¢ is a constant independent of h and 7.

Proof. We take the third equation of problem (V). We insert a(VC},V.S) and (—¢g" + g5 — %(C}: -
1

Cpty—up-vep - 3 divuy,Cy —roC}, S), then we apply the Green formula on o(VC}, V.S) to obtain

/ gt(C’ Ch)(t)deJra/QV(C(t)fC’;’f)'VdeJr/Qu(t)VC(t)de

—/uﬁ-VC,’dex—l/ divuﬁCﬁde—l—ro/(C(t)—C,?)de
Q 2 Ja Q

= Y [/Kn(g(t) —g”)SdX—i—/K (9" — gr)Sdx (5.87)

Kn€Tnn "

1 1
+ / (g — —(Cjt = Cp™) = uj - VC}! = 5 divw Gyl —roC + aACH) Sdx

n n

_% Z / [VCp - ne,LSds}

en €OK,, ﬂI”
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In 5.87, for a fixed K, we choose S = Sk, where

1 o 1 . .
Sk = (95 — E(C’? —Cp Y~y -vep - 3 divuy, Cy—roCy + aAC} Yk, in K, (5.88)
0 in O\ K,

and we get the following equality

1 _ 1 M n n n n
/ (91 — T—(CZZ - Cy 1) —uy - VO — 3 divuy, Cp—roC} + aAC’h)QwKndx

n n

8 n
= /Kn &(C’ —Ch)(t) Sk, dx + a/K V(C(t) — C}) - VSk, dx + /Kn u(t) - VC(t)Sk, dx -

1
- / uy - VCJ' Sk, dx — f/ divup Cy Sk, dx + 7“0/ (C(t) — C}) Sk, dx
K., 2 Jk, K.

- /K (g(t) — ™) S, dx — / (4" — g7)Sk, dx.

n

Since Sk, € H}(K,), we can apply the definition of the H~1(K,,) norm; moreover, we apply the usual
Cauchy-Schwarz inequality and we get

1 1 2
H (g;; - (G- Cphy —up Ve - 5 v ui Gl — oG+ aACh) L

L2(K,)

<c (H;(C —Ch)(t)+u(t)-VC(t) —uj - VCJ — %div u;Cl +ro(C(t) = CF)

IVSk, 22k,
H-1(Kp)

+alC(t) = Ol k., IVSk, L2 + l9(8) = 9" |22,

Swulle2) + 19" = gille2 e 1Sk, Ml 2k

(5.90)

In order to obtain a lower bound for the left-hand side of (5.90), we use the left inequality in the upper
row of (5.2). In order to find an upper bound for the right-hand side of (5.90), we use the second line
of (5.2) and then use the fact that ¢, < 1. Then we multiply both sides of the resulting inequality
by hk, and we get the following bound:

2

1 1
Wy |lgn — - —(Cp—=Cp Y =y -VOp - 5 AV Ui CR —roCf + aACH

L2 (K’VL)
2

(H (C = Cu)(t) +ut) - VO(t) —ul - VO — %div urCl +ro(C(t) — OT) (5.91)

g" - QZH%Q(K,L))'

Inserting +¢™ and using the triangular inequality, this yields a bound for the first term of (nﬁ Kn,2)2'
To obtain a bound for the second term of (772 K")2)2, we consider an element K,, € T,;, and e,, C 0K, NT%;
we denote by K, the other cell of the mesh that shares e, and we take S = S, in (5.87) where

H=1(Knp)

+a?|C(t) = Cp R k, + P, I9(t) = 9" |22, + M,

n . : /
S, — { Le, (a[VC} -1l 1e,) in K,, UK/, (5.92)

0 in O\K,, UK.
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Using the fact that the support of S, is limited to K,, U K/, we get
/ [aVC} - n]znd)en ds
en

1 1
= / (gﬁ - —(Cp—Cp Yy —up - VO — = divulClr—roCy + aAC’,’f) Se, dx
K UK/, Tn 2
0

1 1 n n n
- /K UK <6t(c = Cu)(t) +u(t) - VO(1) — ufl - VOF — 2 divufiCyt +70(C(1) - ch>> Se,dx (5.93)

+ / (9(t) — g")S.. dx + / (¢" — gF)S.. dx
KUK/, K, UK/,

o / V(C(t) = CF) - VS, dx.
KUK/,

Since S., € Hi(K, UK), we can apply the definition of the H~!(K,, U K/)) norm; we also apply the
Cauchy-Schwarz inequality, we use both inequalities of Property 5.3 and the fact that ¢., < 1 and we
multiply by h., and use (5.91) to obtain the following inequality:

he, |[VCE e, 172
P 1 ?
< [ H H(C = Cu)(t) +u(t) - V() — uf - VC}! = 5 divufCR +ro(C (1) = CF)

H-1(KnUK?) (5.94)

+h? llgt) — gn”%Z(KnUK;,) +h2 9" — gﬁllizmnux;) +a?C(t) - CI?%,KnUK;,} :

Finally, we gather (5.91) and (5.94), then we integrate on [t,—1,t,] to get the result of Theorem 5.18. W

6. NUMERICAL RESULTS

The results proved in this paper are validated using numerical simulations on Freefem++ (see [27]). We
consider a square domain §2 where each edge is divided into N segments of equal length. Hence 2 is
divided into 2N? triangles.

We define the following relative total error between the exact and numerical solutions:

N 1/2
Z Tn(”u(tn) - uh(tn)”%?(QV + |p(tn) _ph(tn)ﬁ,ﬂ +|C(tn) — Ch(tn)ﬁ,sz)

err — n=1 < s (61)
Y m(llua)lize @ + () 0 + 10 )
n=1

where (u,p,C) is a solution of the problem (V) and (up,pp, Ch) is a solution of the problem (V},).

The a posteriori error estimates between the exact and numerical solutions obtained in the previous
sections will be used in this part to show numerical results based on mesh adaptation. For this objective,
we introduce the relative time indicator E, defined by

b - (Batir) ™ o2

where

2 N
= Y n:;,Kn) and D—Zm(mh(tn)nizm)z+|ph<tn>|%,g+|ch<tn>|ig>, (6.3)

Kn 67—nh n=1
and the relative space indicators defined by

N h V2N 1/2 N ho\2\ 1/2
Eh1 _ <Zn—OD(n1n) > and Eh2 _ (Zn-O(ﬁQn) >
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h b and nh i b
where 77, and 75,, are given by

2 2
W= 3 Tn(nz,m,l) and ()= 3 (nK) (6.4)

Kn€Tnn K,.€Tnn

We introduce also the relative total error indicator given by

Eiotar = E- + Eh1 + Ehg- (65)

First test: We consider the case where the exact solution of problem (V) is given by (u,p,C) =
(curley, p, C) where

w(m, y) — 6*30[(I717t/2)2+(y—1)2],
p(z,y,t) = (1+1t)cos(mz/3)cos(my/3),
Clz,y,t) = te30@=-1-t/2*+u-1)°]

We can compare the exact and numerical solutions and we can compute the error between the exact and
numerical solutions.

We consider 2 =]0,3[%, T =2, a=1,79 =1, £;(C) = C+1 and v(C) = 1+0.2sin(C). First, we consider
the adaptive algorithm with an initial time step 7, = % and an initial mesh corresponding to N = 30.
Figures 1-4 show the evolution of the mesh during the time steps for ¢ = 0,0.141,1.027 and 2.
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FIGURE 1. Initial mesh FIGURE 2. Mesh at t = 0.141

Next, in the left part of Figure 5, we compare the relative total error with respect to the total number of
space-time unknowns in logarithmic scale, for both uniform and adaptive numerical algorithms. In the
right part of Figure 5, we show a comparison of the global error for the indicators Fiutq with respect
to the total number of unknowns in logarithmic scale for the adaptive and uniform refinement methods.
Both parts of Figure 5 show clearly the advantage of the adaptive method versus the uniform one since
the total errors are smaller.

We define the efficiency index by
1/2

N
Yo ) g, )+ (7))

El = - . (6.6)

N
> il = ultn)l72) + [Pk = p(t)[f.0 +1CF = Clta) 3 )
n=1
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In Table 1, we can see the value of the efficiency index for different values of space-time unknowns STU:

STU | 9694 | 12575 | 16685 | 25491 | 29281

38304

58668

88053

142265

309398

959966

EI | 6.78 | 6.55 | 6.43 | 6.28 | 6.20

6.04

5.92

5.95

5.88

5.60

5.15

TABLE 1. Repartition of EI with respect to the total number of space-time unknowns STU.

We can see that the coefficient EI decreases from 6.78 to 5.15 when the STU number increases from 9694
to 959966.

Second test: In this case, we consider the coupling problem without any external forces (f = 0 and
g=0). We take T = 3 and Q =]0, 4[2.

For the Darcy problem, we take the viscosity v = 1 (independent of the concentration). We assume that
the velocity of the fluid verifies the following boundary conditions:

©li0,41x 10y = (0,—0.4),  ©|ga1x[0,4) = (0.4,0)

)

©l[0,41x 143 = (0.4,0),

<P|{0}><[0,4] = (07 *0~4)-
For the concentration equation, we take o = 104, ry = 1075 and the following initial condition:

C(z,y,0) = e 50(E=D*+y=1)%)
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which is represented by a ball centered at the point (1,1).

In this case, it is easy to check that the indicators are as follows: for each K, € Tpp, Vn € [1, N],

he, 63" + @ nlZz ),

>

+
en €K, MY

L2 (Kn)

Idiv w7

| —uh = Vou 2ok, ya + ke,

(UZ,KHJ)Q

2
L2 (Kn)

’I"()C;TLL + OZAC;Z

1
—-Cp Y —up-vep - div uiCy =

n
h

(C

1
A7

h 2 _ 12
nn,Kn,Q) *hKn

(

‘1, ||%2(en)7

he, [|[aVCy

>

en €K, NI},

3

and

1,2
1.,

n—
h

C

n
h

Tn|C

)KTL )2
The algorithm is tested with an initial time step 7

(n

40.

and an initial mesh corresponding to N

N

4v2

In Figures 6, 7, 8 and 9, we show the evolution of the mesh during the time iterations.

JAVAYAY
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ayaAAY>
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gty

FIGURE 7. Mesh at ¢

0

FIGURE 6. Mesh at ¢t

WAV
Aﬂmﬁa

<

i
v

AW<V§AV
CNERRSRARPE
TR
SDOFOTRPDRR

ANAN
AN
SN
SHOREER

SO o

FIGURE 9. Mesh at t =3
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FIGURE 8. Mesh at

We notice from Figures 6-9 and Figures 10-13 that the ball of the concentration is moving across the

diagonal during the time steps.
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FIGURE 10. Concentration at ¢t =0 FIGURE 11. Concentration at ¢t = 0.128

IsoValue
IsoValue

EEEEEEEEEN
)

—SS0000000
©ORONINDOH

)

o

FIGURE 12. Concentration at ¢ = 1.767 FIGURE 13. Concentration at ¢ =3

Figure 14 shows comparisons of the global error indicator Fyu; with respect to the number of unknowns
in logarithmic scale for the adaptive and uniform refinement methods. We can clearly see the advantages
of the adaptive mesh refinement versus the uniform one since the error indicators are much smaller in
the case of the adaptive method.

7. CONCLUSION

In this work, we have derived a posteriori error estimates for a fully discrete scheme associated to the
time dependent convection-diffusion-reaction equation coupled with the Darcy system. The obtained
upper bound of the error is computable, up to data errors and based on two kinds of indicators: space
discretization and time discretization errors. Furthermore, numerical investigations show the advantages
of the adaptive mesh and time step method versus the uniform method.
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