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In this paper, we study in two and three space dimensions, the a posteriori error estimates for the Large Eddy Simulation applied to the Navier-Stokes system. We begin by introducing the Navier-Stokes and the corresponding Large Eddy Simulation (LES) equations. Then we introduce the corresponding discrete problem based on the finite element method. We establish an a posteriori error estimation with three types of error indicators related to the filter of the LES method, to the discretization and to the linearization. Finally, numerical investigations are shown and discussed.

Introduction.

Let Ω ⊂ IR d , d = 2, 3, be a bounded connected open domain, with a Lipschitz-continuous connected boundary Γ = ∂Ω. We consider for a positive constant viscosity ν, the following incompressible Navier-Stokes system:

(P)      -ν∆u + u • ∇u + ∇p = f in Ω, div u = 0 in Ω, u = 0 on Γ,
where f represents a density of body forces and belongs to X = H -1 (Ω) d , the dual of the Sobolev space X = H 1 0 (Ω) d . The unknowns are the velocity u and the pressure p of the fluid.

In this paper, we establish an a posteriori error estimate corresponding to the Large Eddy Simulation (LES) applied to the Navier-Stokes problem (P). It is known that for small values of the viscosity coefficient, the flow may become turbulent and may thus develop short length scale details that would be computationally expensive to resolve. To reduce the cost of the computation, the LES method consists in focusing on the description of the largest length scales of the flow, while modeling the effect of the shortest length scales with a supplementary non-linear diffusion term in the Navier-Stokes momentum equation. The idea of this method is based on filtering the Navier-Stokes system to obtain the corresponding large scale behavior. But filtering the non-linear convective term leads to a tensor, called the Reynolds stress tensor, in which the entries are not related to the large scale components of the velocity and pressure, and which thus have to be modeled. There is a variety of ways in the literature to model the Reynolds stress tensor. Based on mathematical considerations, Leonard [START_REF] Leonard | Energy cascade in large eddy simulation of turbulent fluid flows[END_REF] and Clark et al. [START_REF] Clark | Evaluation of subgrid scale models using an accurately simulated turbulent flow[END_REF] transform the Reynolds stress tensor to the Fourier space where the Fourier transform of the filter function is approximated by a second order Taylor polynomial approximation. Another kind of transform is used by Galdi and Layton [START_REF] Galdi | Approximation of the larger eddies in fluid motion II: A model for space filtered flow[END_REF], where the Fourier transform of the filter function is approximated by a second-order rational Padé development. In addition, the Smagorinsky model [START_REF] Smagorinsky | General circulation experiments with the primitive equations. I. The basic experiment[END_REF] is used to describe the sub-grid scale effects on the resolved scales, where a non-linear eddy viscosity is added. Besides the Smagorinsky model, other models are proposed by Iliescu and Layton [START_REF] Iliescu | Approximating the larger eddies in fluid motion III: the Boussinesq model for turbulent fluctuations[END_REF] to describe the sub-grid scale tensor. In the present article, we consider the Smagorinsky model which, due to its simplicity, remains widely used in industrial LES. The existence of the weak solution of the filtered problem is proved in [START_REF] Ladyzhenskaya | New equations for the description of the viscous incompressible fluids and solvability in the large of boundary value problems for them[END_REF][START_REF] Ladyzhenskaya | Modification of the Navier-Stokes equations for large velocity gradients[END_REF] and more general existence and uniqueness results are given in [START_REF] Du | Analysis of a Ladyzhenskaya model for incompressible viscous flow[END_REF]. One can find in [START_REF] Sagaut | Large-eddy simulation for incompressible flows -An introduction[END_REF] a thorough introduction to LES, while in [START_REF] John | Large Eddy Simulation of turbulent Incompressible Flows[END_REF], mathematical aspects of LES of turbulent incompressible flows are gathered.

On the other hand, a posteriori error estimation consists in bounding the error between the exact solution of (P) and a numerical approximation of the filtered problem with a sum of local indicators, depending only on the computed approximate solution. Each local indicator is related to a given cell of the mesh and, in order to obtain a more accurate solution with a low additional CPU cost, the goal is to adapt the mesh by refining or coarsening it, according to the local values of the indicators. The a posteriori error estimate is optimal if each indicator can be bounded by the local error in the solution around the corresponding element. This kind of analysis was first introduced by Babuška and Rheinboldt [START_REF] Babuška | Error estimates for adaptive finite element computations[END_REF] and then further developed, among others, by Verfürth [START_REF] Verfürth | A Review of A posteriori Error Estimation and Adaptive Mesh-Refinement Techniques[END_REF] or Ainsworth and Oden [START_REF] Ainsworth | A posteriori error estimation in finite element analysis[END_REF]. In [START_REF] Akkad | An a posteriori estimate for mixed finite element approximations of the Navier-Stokes equations[END_REF], El Akkad, El Khalifi and Guessous proposed a discretization of the incompressible Navier-Stokes equations by mixed finite elements with a posteriori error estimation of the computed solutions. Other works on a posteriori estimations for the stationary Navier-Stokes system are proposed in [START_REF] Jin | A posteriori error estimation in finite element analysis[END_REF][START_REF] John | Residual a posteriori error estimates for two-level finite element methods for the Navier-Stokes equations[END_REF] and for the nonstationary Navier-Stokes system in [START_REF] Bernardi | A posteriori error analysis of the time dependent Navier-Stokes equations with mixed boundary conditions[END_REF][START_REF] Nassreddine | New results for the a posteriori estimates of the two dimensional time dependent Navier -Stokes equation[END_REF]. In [START_REF] Bernardi | A finite element discretization of the three-dimensional Navier-Stokes equations with mixed boundary conditions[END_REF], Bernardi, Hecht and Verfürth considered a variational formulation of the three-dimensional Navier-Stokes equations with mixed boundary conditions for which they proved a priori and a posteriori error estimates. In [START_REF] Bernardi | A posteriori analysis of iterative algorithms for Navier-Stokes Problem[END_REF], the authors discretized and linearized the Navier-Stokes problem by using an iterative fixed-point algorithm, established corresponding a posteriori error estimates and showed numerical investigations for academic applications and the Lid-Driven cavity test. Furthermore, a posteriori analysis of the Newton method applied to the Navier-Stokes problem were treated is [START_REF] Dakroub | A posteriori analysis of the newton method applied to the Navier-Stokes problem[END_REF].

In the present paper, we discretize the LES formulation of the Navier-Stokes system by finite elements and use a fixed-point linearization algorithm to approximate the solution of the resulting non-linear algebraic system. We establish the corresponding a posteriori error estimates based on three types of computable error indicators, the first one being linked to the discretization, the second one to the filter of the LES method and the last one to the linearization. The outline of the paper is as follows:

• In Section 2, we present the variational formulation of Navier-Stokes problem (P ).

• Section 3 is devoted to the application of the LES method to the Navier-Stokes equation.

• In Section 4, we introduce the discrete filtered problem and we recall its main properties.

• In Section 5, we study the a posteriori errors and derive quasi-optimal estimates.

• Section 6 is devoted to the numerical results.

• We conclude in Section 7.

Preliminaries

In this section, we introduce the variational problem corresponding to Problem (P ). We begin by introducing some notations, definitions and properties which will be used later on.

Let α = (α 1 , • • • , α d ) be non negative integers and |α| = α 1 + • • • + α d . We define the partial derivative ∂ α by ∂ α = ∂ |α| ∂x α1 1 • • • ∂x α d d .
Then, for any positive integer m and real number p ≥ 1, we recall the classical Sobolev space

W m,p (Ω) = {v ∈ L p (Ω), ∂ α v ∈ L p (Ω), ∀ | α |≤ m}
equipped with the following semi-norm and norm: We denote by H m (Ω) = W m,2 (Ω) and the corresponding semi-norm and norm by

|v| m,p,Ω = |α|=m Ω |∂ α v(x)| p dx
|v| H m (Ω) = |v| m,2,Ω and ||v|| H m (Ω) = ||v|| m,2,Ω .
As usual, we shall omit p when p = 2 and denote by (•, •) the scalar product in L 2 (Ω). Let v be a vector valued function, we set

||v|| L p (Ω) d = Ω |v(x)| p dx 1 p .
In view of the boundary conditions in system (P ), we thus consider the space

H 1 0 (Ω) = {v ∈ H 1 (Ω), v = 0 on Γ}.
We denote by X = H 1 0 (Ω) d and by M = L 2 0 (Ω) the space of functions in L 2 (Ω) with a zero mean-value on Ω. We notice that the dual space of M is itself.

Lemma 2.1. For any p ≤ 6, there exists a positive constant S p only depending on Ω such that

∀v ∈ X, ||v|| L p (Ω) d ≤ S p ||v|| X . (1) 
We introduce the kernel

V = v ∈ X; ∀q ∈ M, Ω q(x) div v(x) dx = 0 ,
which is a closed subspace of X and coincides with

V = v ∈ X; div v = 0 in Ω .
Definition 2.2. We introduce the trilinear form c defined by:

c(u, v, w) = Ω (u • ∇v) • w dx.
Lemma 2.3. For every u, v, w ∈ X we have

|c(u, v, w)| ≤ ||u|| L 4 (Ω) d ||v|| X ||w|| L 4 (Ω) d ≤ S 2 4 ||u|| X ||v|| X ||w|| X . Lemma 2.4. For u, v ∈ X and div u = 0, we have c(u, v, v) = 0.
Remark 2.5. The spaces M and X satisfy a uniform inf-sup condition (see [START_REF] Girault | Finite Element Methods for the Navier-Stockes Equations[END_REF]): There exists a constant

β * > 0 such that ∀q ∈ M, sup v∈X Ω q(x) div v(x)dx ||v|| X ≥ β * ||q|| L 2 (Ω) .
System (P ) is equivalent to the following variational problem:

(F V )        find u ∈ X and p ∈ M such that: ∀v ∈ X, ν(∇u, ∇v) + c(u, u, v) + b(v, p) =< f , v >, ∀q ∈ M, b(u, q) = 0,
where the bilinear form is defined by:

b(v, q) = - Ω q div vdx.
The existence and the conditional uniqueness of the solution (u, p) of problem (F V ) is given in [18, Chapter IV, §2]. Furthermore, the solution verifies the bound (with a constant c > 0):

||u|| X ≤ c ν ||f || X . (2) 
For the development of the a posteriori error estimate, we introduce the Stokes problem defined as follows: For a given (f , g) ∈ X × M , look for (u, p) in X × M such that

(S)      -ν∆u(x) + ∇p(x) = f (x) in Ω, div u(x) = g in Ω, u(x) = 0 on Γ.
More precisely, Problem (S) is set under the following variational formulation:

(F V S)      Find u ∈ X and p ∈ M such that: ∀v ∈ X, ν(∇u, ∇v) -(div v, p) =< f , v >, ∀q ∈ M, (div u, q) = (g, q).
We refer to the general abstract framework given by [18, Chapter I, §4] for the existence and the uniqueness of the solution (u, p) ∈ X × M of Problem (F V S).

We introduce the following Stokes operator S:

S : X × M → X × M (f , g) → S(f , g) = (w, ξ)
where (w, ξ) is the solution of the Stokes problem (F V S). We have the following bound (see [18, Chapter

I, §4] ) ||S(f , g)|| X×M ≤ c ν ||(f , g)|| X ×M . (3) 
We define also the function G given by

G : X → X w → G(w) = (w • ∇)w + 1 2 (div w)w -f ,
and we introduce the map F on X × M such that for all V = (v, q) ∈ X × M , we have

F (V) = V + S(G(v), 0).
Then, Problem (F V ) can be equivalently written as

F (U) = 0, (4) 
where U = (u, p).

Definition 2.6. We define a non singular solution U of Problem (F V ) in the following way:

(1)

F (U) = 0. (2) DF (U) is an isomorphism of X × M ,
where DF (U) is the Fréchet-differential of F in U.

Proposition 2.7. There exists L > 0 such that the application DF (U) = Id + S(DG(u), 0) is L-Lipschitz-continuous: For all U = (u, p) and V = (v, q) in X × M , we have

||DF (U) -DF (V)|| L(X×M ) ≤ L||U -V|| X×M . (5) 
Proof. For all U = (u, p) and V = (v, q) in X × M , we have:

||DF (U) -DF (V)|| L(X×M ) = ||S(DG(u), 0) -S(DG(v), 0)|| L(X×M ) .
To obtain the desired result, we have by using [START_REF] Babuška | Error estimates for adaptive finite element computations[END_REF] and for all

Z = (z, ξ) ∈ X × M , ||S((DG(u), 0) • Z) -S((DG(v), 0) • Z)|| X×M ≤ c ν ||DG(u) • z -DG(v) • z|| X .
By using the definition of G, we get the following equality:

DG(u) • z -DG(v) • z = z • ∇(u -v) + (u -v) • ∇z + 1 2 div(u -v) z + 1 2 (div z) (u -v)
and then

||DG(u) • z -DG(v) • z|| X ≤ 4S 2 4 ||u -v|| X ||z|| X .
Thus, combining the previous inequalities, we obtain (5) with L = 4S 2 4 .

Large eddy simulation

In fluid mechanics, one would ideally use a direct numerical simulation (DNS) of the flow at all significant length scales since it is necessary to capture the dynamics of the fields having an impact on the solution. But DNS is computationally very expensive, and a cheaper method is to use the LES method, which consists in solving the large scales and modelling the influence of small scales by adding a supplementary non-linear diffusion term in the momentum equation. In LES, the large scales are defined by a spatial average of the velocity, the pressure and the external force. A common method is to define this spatial average by convolution of these quantities with an appropriate filter function of width denoted by δ. The velocity field will be decomposed as:

u(x) = ū(x) + u (x),
where ū(x) is the filtered part of the velocity field and u (x) = u(x) -ū(x) is the residue intended to be modeled. Since the convolution of the non-linear term u • ∇u is not equal to the non-linear term applied to the convolution ū • ∇ū, the difference between these two terms, called the Reynolds stress tensor S(u, p), needs to be modeled. The Smagorinksy model is the simplest model of LES that uses the assumption of local balance between the production and the dissipation of turbulent kinetic energy to express the turbulent viscosity according to the large scales (see [START_REF] John | Large Eddy Simulation of turbulent Incompressible Flows[END_REF]). Moreover, we consider the variant of this model in which the additional diffusion term is expressed in terms of ∇ū instead of the more traditional 1 2 (∇ū + ∇ū T ), as discussed in [START_REF] John | Large Eddy Simulation of turbulent Incompressible Flows[END_REF], and as considered in [START_REF] Du | Finite-Element approximations of a Ladyzhenskaya model for stationary incompressible viscous flow[END_REF][START_REF] Du | Analysis of a Ladyzhenskaya model for incompressible viscous flow[END_REF][START_REF] Ladyzhenskaya | New equations for the description of the viscous incompressible fluids and solvability in the large of boundary value problems for them[END_REF][START_REF] Ladyzhenskaya | Modification of the Navier-Stokes equations for large velocity gradients[END_REF]. We consider the filtered problem:

(P L)      -div (ν + ν t (ū))∇ū(x) + ū(x) • ∇ū(x) + ∇p(x) = f (x) in Ω, div ū(x) = 0 in Ω, ū(x) = 0 on Γ, where ν t (ū) = c s δ 2 ||∇ū|| F and ||∇ū|| F = d i,j=1
(∂ i ūj ) 2 1/2 . We suppose that f ∈ X and we note

Z = W 1,3 0 (Ω) d and W = {v ∈ Z/ div v = 0}.
The variational formulation associated to the problem (P L) is given by:

(F V L)        Find ū ∈ Z and p ∈ M such that: ∀v ∈ Z, (ν + ν t (ū))∇ū, ∇v + c(ū, ū, v) + b(v, p) =< f , v >, ∀q ∈ M, b(ū, q) = 0.
For the existence of the solution of Problem (F V L), we refer to [START_REF] Ladyzhenskaya | New equations for the description of the viscous incompressible fluids and solvability in the large of boundary value problems for them[END_REF] and [START_REF] Ladyzhenskaya | Modification of the Navier-Stokes equations for large velocity gradients[END_REF]. Its uniqueness was established in [START_REF] Du | Finite-Element approximations of a Ladyzhenskaya model for stationary incompressible viscous flow[END_REF][START_REF] Du | Analysis of a Ladyzhenskaya model for incompressible viscous flow[END_REF] under the following condition (notations are identical to those of [START_REF] Du | Analysis of a Ladyzhenskaya model for incompressible viscous flow[END_REF]):

N Ψ 3 (C f ) ≤ ν,
where Ψ 3 is defined as the inverse function of Φ 3 given by

Φ 3 : [0, ∞[ → IR x → Φ 3 (x) = νx + c s δ 2 γ -3 3 x 2 , (6) 
and

N := sup ū,v∈V |c(ū, ū, v)| ||ū|| 2 X ||v|| X , C f = sup v∈V | f , v | ||v|| X and γ 3 = sup v∈W ||v|| X ||v|| 1,3,Ω .
Furthermore, the solution ū of Problem (F V L) verifies the following bound:

||ū|| X ≤ Ψ 3 (C f ). (7) 
Remark 3.1. In the sequel, we denote by c, C,C 1 , C 2 • • • constants independent of all discretization parameters.

The discrete problem

In this section we introduce the discrete problem and some corresponding properties. We begin by collecting some notations concerning the discrete setting. We assume that Ω is a polygon when d = 2 or polyhedron when d = 3, so that it can be completely meshed with simplices. For the space discretization, we consider a regular family of triangulations (T h ) of Ω, each of which is a set of closed non degenerate triangles for d = 2 or tetrahedra for d = 3, called elements. As usual, h stands for the maximum of the diameters of elements κ ∈ T h . The triangulations are supposed to satisfy:

• for each T h , Ω is the union of all elements of T h ;

• The intersection of two distinct elements of T h is either empty, a common vertex, or an entire common edge (or face when d = 3); • the ratio of the diameter h κ of an element κ in T h to the diameter of its inscribed circle or ball is bounded by a constant independent of h.

Let (X h , M h ) be the pair of discrete spaces corresponding to (Z, M ) defined as follow

X h = v h ∈ C 0 ( Ω); ∀κ ∈ T h , v h | κ ∈ P b (κ) d ; v h | Γ = 0 , M h = q h ∈ M ∩ C 0 ( Ω); ∀κ ∈ T h , q h | κ ∈ P 1 (κ) , (8) 
where P 1 (κ) stands for the space of restrictions to κ of affine functions. Moreover, P b (κ) is the sum of a polynomial of P 1 (κ) and a "bubble" function b κ . Denoting the vertices of κ by a i , 1 ≤ i ≤ d + 1, and its corresponding barycentric coordinates by λ i , the basic bubble function b κ is the polynomial of degree

d + 1 which is defined by b κ (x) = λ 1 (x) • • • λ d (x).
We observe that b κ (x) = 0 on ∂κ and that b κ (x) > 0 on κ. The graph of b κ looks like a bubble attached to the boundary of κ, hence its name.

X h and M h are known [START_REF] Arnold | A stable finite element for the Stokes equations[END_REF] to satisfy the following uniform discrete inf-sup condition: ∃β > 0, independent of h such that:

∀q h ∈ M h , sup v h ∈X h Ω q h (x) div v h (x) dx v h H 1 0 (Ω) d ≥ β q h L 2 (Ω) . (9) 
We introduce the following discrete kernel:

V h = v h ∈ X h ; ∀q h ∈ M h , (div v h , q h ) = 0 .
Definition 4.1. We introduce the trilinear form:

d(u, v, w) = c(u, v, w) + 1 2 Ω (div u) v • w. Remark 4.2. the stabilisation term 1 2 Ω (div u)v • w vanishes when u ∈ V and doesn't vanish when u is replaced by u h ∈ X h . Moreover we have: d(u h , v h , v h ) = 0, ∀u h , v h ∈ X h . Remark 4.3. In fact, for the discrete problem, we consider δ = h κ in each element κ ∈ T h , which means that ν t (ū h ) |κ = c S h 2 κ ||∇ū h || F .
This choice is common in LES and may be interpreted as the fact that the filter of the LES method is locally adapted to the diameter of each element of the mesh.

Proposition 4.4. There exists an operator

P h in L(V, V h ) (see [19, page 35]), such that for each v ∈ H s (Ω) d , we have |v -P h v| H 1 (Ω) d ≤ C P h s-1 |v| H s (Ω) d
, where C P is a constant independent of h, and s is a real number such that s ∈ [START_REF] Ainsworth | A posteriori error estimation in finite element analysis[END_REF][START_REF] Arnold | A stable finite element for the Stokes equations[END_REF]. Proposition 4.5. We denote by F h the Scott-Zhang operator associated with T h and recall that for each h ≤ 1 and p ∈ H s (Ω), we have

||p -F h p|| H t (Ω) ≤ C z h s-t |p| H s (Ω) ,
where C z is a constant independent of h, and s and t are real numbers such that s ∈] 1 2 , 1[ and 0 ≤ t ≤ s (see [START_REF] Ciarlet | Analysis of the Scott-Zhang interpolation in the fractional order Sobolev space[END_REF]). However, F h p does not necessarily have a vanishing mean-value over Ω, but an easy modification of F h yields an operator (that we still denote by F h ) which is in L(H s (Ω) ∩ L 2 0 (Ω), M h ) and has the same approximation properties as the original one. Proposition 4.6. For any dimension d and for any non negative integer r, there exists a constant c such that for any polynomial function v h of degree r on κ

||v h || L ∞ (κ) ≤ ch -d/2 κ ||v h || L 2 (κ) . (10) 
We consider the following discrete problem associated to Problem (F V L) obtained by the Galerkin method:

(F V L h )              find (ū h , ph ) ∈ X h × M h solution of : ∀v h ∈ X h , ν(∇ū h , ∇v h ) + (ν t (ū h )∇ū h , ∇v h ) + d(ū h , ūh , v h ) +b(v h , ph ) = f , v h , ∀q h ∈ M h , b(ū h , q h ) = 0.
The existence of the solution of Problem (F V L h ) is given in [12, page 6]. Its uniqueness was also established in [START_REF] Du | Finite-Element approximations of a Ladyzhenskaya model for stationary incompressible viscous flow[END_REF] under the following condition:

N h Ψ 3 (C f h ) ≤ ν,
where Ψ 3 is defined in ( 6) and the following definitions hold:

N h := sup ū,v, w∈V h |d(ū, v, w)| ||ū|| X ||v|| X || w|| X and C f h = sup v∈V h | f , v | ||v|| X .
In order to compute the solution of the nonlinear problem (F V L h ), we introduce the following associated linear discrete problem: (ū 0 h is an arbitrary given value)

(F V L i,h )              For any i ≥ 1 with a known ūi-1 h in X h , find (ū i h , pi h ) ∈ X h × M h solution of : ∀v h ∈ X h , ν(∇ū i h , ∇v h ) + (ν t (ū i-1 h )∇ū i h , ∇v h ) + d(ū i-1 h , ūi h , v h ) + b(v h , pi h ) = f , v h , ∀q h ∈ M h , b(ū i h , q h ) = 0. Theorem 4.7. For an iteration i ≥ 1, with a known ūi-1 h ∈ X h , Problem (F V L i,h ) admits a unique solution (ū i h , pi h ) ∈ X h × M h verifying the following bound: ||ū i h || X ≤ 1 ν || f || X . (11) 
Proof. In finite dimension, in order to prove existence and uniqueness of the solution (ū i h , pi h ) of the linear problem (F V L i,h ), it suffices to prove the uniqueness. Thus, we consider System (F V L i,h ) with a vanishing right-hand side (i.e for f = 0) and we choose v h = ūi h . Using Remark 4.2, we obtain:

ν||∇ū i h ||| 2 L 2 (Ω) d + (ν t (ū i-1 h )∇ū i h , ∇ū i h ) = 0. As (ν t (ū i-1 h )∇ū i h , ∇ū i h ) ≥ 0, we deduce that ν||∇ū i h ||| 2 L 2 (Ω) d = 0
, then ūi h = 0 and finally we obtain the uniqueness of the solution. The uniqueness of the pressure can be deduced by using the inf-sup condition [START_REF] Clark | Evaluation of subgrid scale models using an accurately simulated turbulent flow[END_REF]. To prove [START_REF] Dakroub | A posteriori analysis of the newton method applied to the Navier-Stokes problem[END_REF], we choose vh = ūi h in (F V L i,h ) and we apply the Cauchy-Schwarz Inequality to obtain:

ν||ū i h || 2 X + (ν t (ū i-1 h )∇ū i h , ∇ū i h ) =< f , ūi h >≤ || f || X ||ū i h || X Remarking that (ν t (ū i-1 h )∇ū i h , ∇ū i h ) ≥ 0 we obtain (11).
4.1. Convergence to the continuous solution. In this section, we prove a convergence result for the solution ūi h of Problem (F V L i,h ) towards the solution u of the exact problem (F V ), provided that f is "small enough" or/and that ν is "large enough". We suppose that f tends to f when h and jointly δ tend to 0. Theorem 4.8. We suppose that the solution u of (F V ) is in H 1+ε * (Ω) d and the pressure p ∈ H 1/2+ε * (Ω) for a given positive ε * . We assume that f and f verify the following condition:

cS 2 4 ν ||f || X + (4 + √ d)S 2 4 2ν || f || X < ν, (12) 
where S 4 is the constant of (1) and c is the constant of (2). Then, the solution ūi h of Problem (F V L i,h ) converges to the solution u of Problem (F V ), in the following sense:

∀ε > 0, ∃h ε > 0 such that ∀(T h ) with h ≤ h ε , ∃ I T h ∈ N such that ∀ i ≥ I T h , we have ||u -ūi h || X ≤ ε.
Proof. We denote by

D = (ν - c S 2 4 ν ||f || X - (4 + √ d)S 2 4 2ν || f || X )
and

g(h) = 1 D C P h ε * 2ν + 2cS 2 4 ν ||f || X + (1 + √ d)S 2 4 ν || f || X ||u|| H 1+ε * (Ω) d +h 2-d/2 c s c ν 2 || f || 2 X + ||f -f || X + C z √ dh 1/2+ε * ||p|| H 1/2+ε * (Ω) ,
where S 4 is the constant in (1), c is the constant in (2), C p is the constant in Proposition 4.4, C z is the constant in Proposition 4.5, c is the constant in Proposition 4.6 and c s is the Smagorinsky constant.

Let ε > 0, then there exists a real h ε sufficiently small such that ∀h ≤ h ε , g(h) ≤ ε 2 . This can be obtained by using the fact that f tends to f when h and jointly δ (size of the filter) tend to 0.

Next, we consider a mesh T h such that h ≤ h ε , we take v = v h ∈ V h and we consider the difference between (F V ) and (F V L i,h ). Then we obtain:

ν(∇(u -ūi h ), ∇v h ) + (u • ∇u -ūi-1 h • ∇ū i h , v h ) -(ν t (ū i-1 h )∇ū i h , ∇v h ) - 1 2 (div ūi-1 h ūi h , v h ) -(p, div v h ) = f -f , v h . (13) 
We insert ∇P h u in the first term of (13), ūi-1 h

• ∇u in the second term and F h p in the fourth term, where P h is the operator defined in Proposition 4.4 and F h is the modified Scott-Zhang operator defined in Proposition 4.5. We obtain:

ν(∇(P h u -ūi h ), ∇v h ) -((ū i-1 h -u) • ∇u, v h ) -(ū i-1 h • ∇(ū i h -u), v h ) -(ν t (ū i-1 h )∇ū i h , ∇v h ) - 1 2 (div ūi-1 h ūi h , v h ) -(p -F h p, div v h ) = f -f , v h + ν(∇(P h u -u), ∇v h ). (14) 
Note that

(F h p, div v h ) vanishes since F h p is in M h and v h in the discrete kernel V h .
Next, we add and subtract P h u in the second and third terms of ( 14), add the vanishing term -1 2 (div u ūi h , v h ) and insert the term div P h u in the fifth term of ( 14) to obtain:

ν(∇(P h u -ūi h ), ∇v h ) -((ū i-1 h -P h u) • ∇u, v h ) -((P h u -u) • ∇u, v h ) -(ū i-1 h • ∇(ū i h -P h u), v h ) -(ū i-1 h • ∇(P h u -u), v h ) -(ν t (ū i-1 h )∇ū i h , ∇v h ) - 1 2 (div(ū i-1 h -P h u)ū i h , v h ) - 1 2 (div(P h u -u)ū i h , v h ) -(p -F h p, div v h ) = f -f , v h + ν(∇(P h u -u), ∇v h ). (15) 
Since both ūi h and P h u are in V h , we may choose v h = P h uūi h in (15); we get the following inequality:

ν||v h || 2 X ≤ ||P h u -ūi-1 h || L 4 (Ω) d ||u|| X ||v h || L 4 (Ω) d + ||P h u -u|| L 4 (Ω) d ||u|| X ||v h || L 4 (Ω) d +||ū i-1 h || L 4 (Ω) d ||ū i h -P h u|| X ||v h || L 4 (Ω) d +||ū i-1 h || L 4 (Ω) d ||P h u -u|| X ||v h || L 4 (Ω) d +||ν t (ū i-1 h )∇ū i h || L 2 (Ω) d×d ||v h || X + 1 2 || div(ū i-1 h -P h u)|| L 2 (Ω) ||ū i h || L 4 (Ω) ||v h || L 4 (Ω) d + 1 2 || div(P h u -u)|| L 2 (Ω) ||ū i h || L 4 (Ω) ||v h || L 4 (Ω) d + √ d||p -F h p|| L 2 (Ω) ||v h || X +||f -f || X ||v h || X + ν||P h u -u|| X ||v h || X .
(16) Moreover, taking into account the expression of ν t and applying the inverse inequality [START_REF] Clément | Approximation by finite element functions using local regularisation[END_REF] , we have:

||ν t (ū i-1 h )∇ū i h || L 2 (Ω) d×d ≤ c s κ∈T h h 2 κ ||∇ū i-1 h || L ∞ (κ) d ||∇ū i h || L 2 (κ) ≤ c s c κ∈T h h 2-d/2 κ ||∇ū i-1 h || L 2 (κ) ||∇ū i h || L 2 (κ) ≤ c s ch 2-d/2 ||ū i-1 h || X ||ū i h || X . (17) 
Then by using ( 1), ( 11) and ( 2), we obtain:

(ν - S 2 4 ν || f || X )||P h u -ūi h || X ≤ (ν + c S 2 4 ν ||f || X + (2 + √ d)S 2 4 2ν || f || X )||P h u -u|| X +( c S 2 4 ν ||f || X + (2 + √ d)S 2 4 2ν || f || X )||P h u -ūi-1 h || X + c s c ν 2 h 2-d/2 || f || 2 X + ||f -f || X + √ d||p -F h p|| L 2 (Ω) . (18) 
According to [START_REF] Du | Finite-Element approximations of a Ladyzhenskaya model for stationary incompressible viscous flow[END_REF], the term

C f = ν - S 2 4 ν
|| f || X is positive. Therefore, we have by using the triangle inequality:

C f ||u -ūi h || X ≤ (2ν + cS 2 4 ν ||f || X + √ dS 2 4 2ν || f || X )||P h u -u|| X +( c S 2 4 ν ||f || X + (2 + √ d)S 2 4 2ν || f || X )||P h u -ūi-1 h || X + c s c ν 2 h 2-d/2 || f || 2 X + ||f -f || X + √ d||p -F h p|| L 2 (Ω) . (19) 
Using now the triangle inequality on ||P h uūi-1 h || X , we get:

C f ||u -ūi h || X ≤ (2ν + 2cS 2 4 ν ||f || X + (1 + √ d)S 2 4 ν || f || X )||P h u -u|| X +( c S 2 4 ν ||f || X + (2 + √ d)S 2 4 2ν || f || X )||u -ūi-1 h || X + c s c ν 2 h 2-d/2 || f || 2 X + ||f -f || X + √ d||p -F h p|| L 2 (Ω) . (20) 
For the given mesh T h , we now consider two cases:

(1) There exists an index i 0 such that

||u -ūi0-1 h || X ≤ ||u -ūi0 h || X , then sup i≥i0 ||u -ūi-1 h || X = sup i≥i0+1 ||u -ūi-1 h || X = sup i≥i0 ||u -ūi h || X .
We consider now [START_REF] Hecht | New development in FreeFem++[END_REF] for i ≥ i 0 , take the sup over i ≥ i 0 in the right-hand side and we obtain that for all i ≥ i 0

C f ||u -ūi h || X ≤ (2ν + 2cS 2 4 ν ||f || X + (1 + √ d)S 2 4 ν || f || X )||P h u -u|| X +( c S 2 4 ν ||f || X + (2 + √ d)S 2 4 2ν || f || X )sup i≥i0 ||u -ūi h || X + c s c ν 2 h 2-d/2 || f || 2 X + ||f -f || X + √ d||p -F h p|| L 2 (Ω) . (21) 
Now the right-hand side of [START_REF] Iliescu | Approximating the larger eddies in fluid motion III: the Boussinesq model for turbulent fluctuations[END_REF] does not depend on i, and we may take the sup in its left-hand side for i ≥ i 0 ; we obtain:

(ν - c S 2 4 ν ||f || X - (4 + √ d)S 2 4 2ν || f || X )sup i≥i0 ||u -ūi h || X ≤ (2ν + 2cS 2 4 ν ||f || X + (1 + √ d)S 2 4 ν || f || X )||P h u -u|| X + c s c ν 2 h 2-d/2 || f || 2 X + ||f -f || X + √ d||p -F h p|| L 2 (Ω) . (22) 
Then, by applying the properties of the operator P h to the first term in the right-hand side of ( 22) and those of the Scott-Zhang operator to its last term, we have :

sup i≥i0 ||u -ūi h || X ≤ g(h).
Then, for all i ≥ i 0 we have :

||u -ūi h || X ≤ g(h) ≤ ε 2 ≤ ε,
which proves the result in the first case with

I T h = i 0 . (2) If such i 0 doesn't exist, then for all i, ||u -ūi-1 h || X > ||u -ūi h || X , In this case, (||u -ūi h || X ) i≥0
is a decreasing sequence bounded below by 0, so it is convergent and, from (20), its limit verifies:

(ν - c S 2 4 ν ||f || X - (4 + √ d)S 2 4 2ν || f || X ) lim i→+∞ ||u -ūi h || X ≤ (2ν + 2cS 2 4 ν ||f || X + (1 + √ d)S 2 4 ν || f || X )||P h u -u|| X + c s c ν 2 h 2-d/2 || f || 2 X + ||f -f || X + √ d||p -F h p|| L 2 (Ω) . (23) 
Just like in the first case, this leads to

lim i→∞ ||u -ūi h || X ≤ g(h) ≤ ε 2 .
Then, there exists an integer i 1 such that for all i ≥ i 1 we have

||u -ūi h || X -lim i→∞ ||u -ūi h || X ≤ ε 2 ,
and then ||u -ūi h || X ≤ lim i→∞ ||u -ūi h || X + ε 2 ≤ ε,
which proves the result in the second case with

I T h = i 1 .
The result is thus proved with I T h = i 0 in the first case or I T h = i 1 in the second case.

Theorem 4.9. Under the assumption of Theorem 4.8, we have the following bound between the numerical pressure pi h solution of Problem (F V L i,h ) and the exact pressure p solution of (F V ) :

||p i h -p|| L 2 (Ω) ≤ 2C z h 1/2+ε * ||p|| H 1/2+ε * (Ω) +C 1 (f , f )(||u-ū i h || X +||u-ū i-1 h || X )+C 2 h 2-d/2 || f || 2 X +C 3 ||f -f || X , (24) 
where C z is the constant of Proposition 4.5, C 1 is a positive constant depending on f and f , C 2 and C 3 are positive constants.

Proof. We consider the difference between (F V ) and (F V L i,h ), and we choose v = v h ∈ X h to get

(p i h -p, div v h ) = ν(∇(ū i h -u), ∇v h ) + (ū i-1 h • ∇ū i h -u • ∇u, v h ) + (ν t (ū i-1 h )∇ū i h , ∇v h ) + 1 2 (div ūi-1 h ūi h , v h ) + f -f , v h . (25) 
We add and subtract F h p in the left-hand side and ūi-1 h

• ∇u in the right-hand side, and we insert the term -

1 2 ((div u)ū i h , v h ) = 0 in (25) to obtain (p i h -F h p, div v h ) = (p -F h p, div v h ) + ν(∇(ū i h -u), ∇v h ) + (ū i-1 h • ∇(ū i h -u), v h ) +((ū i-1 h -u) • ∇u, v h ) + (ν t (ū i-1 h )∇ū i h , ∇v h ) + 1 2 (div(ū i-1 h -u)ū i h , v h ) + f -f , v h .
(26) It follows from the inf-sup condition [START_REF] Clark | Evaluation of subgrid scale models using an accurately simulated turbulent flow[END_REF] and by applying the Cauchy-Schwarz inequality to the right-hand side of ( 26) that

||p i h -F h p|| L 2 (Ω) ≤ ||p -F h p|| L 2 (Ω) + ν β ||ū i h -u|| X + S 2 4 β ||ū i-1 h || X ||ū i h -u|| X + S 2 4 β ||ū i-1 h -u|| X ||u|| X + 1 β ||ν t (ū i-1 h )∇ū i h || L 2 (Ω) d×d , + √ dS 2 4 2β ||ū i-1 h -u|| X ||ū i h || X + 1 β ||f -f || X .
Using ( 2), ( 11), [START_REF] Galdi | Approximation of the larger eddies in fluid motion II: A model for space filtered flow[END_REF], the triangular inequality ||p -pi

h || L 2 (Ω) ≤ ||p i h -F h p|| L 2 (Ω) + ||F h p -p|| L 2 (Ω)
and Proposition 4.5 we obtain the result.

Remark 4.10. Theorem 4.8 shows the convergence of the numerical velocity ūi h solution of Problem (F V L i,h ) to the exact velocity u solution of Problem (F V ) in the sense that it suffices to first let h be "small enough", and then the index i "large enough" to have ūi h arbitrarily close to u. Furthermore, Theorem 4.9 shows the convergence of the numerical pressure pi h , solution of Problem (F V L i,h ), to the exact pressure p, solution of Problem (F V ).

A posteriori error analysis

We start this section by introducing some additional notations and properties that will be useful in order to establish an a posteriori estimate.

For any element κ in T h , we denote by: • ε κ the set of edges (when d = 2) or faces (when d = 3) of κ that are not contained in Γ, • h κ the diameter of the element κ and h e the diameter of edge (or face) e, • [•] e the jump through e on each edge (or face) e on ε κ ,

• n κ stands for the unit outward normal vector to κ on ∂κ.

We now recall the following definitions and properties (see R. Verfürth, [32, Chapter 1]): for an element κ of T h , the bubble function ψ κ (resp. ψ e for the face e) is defined as the product of the d + 1 barycentric coordinates associated with the vertices of κ (resp. of the d barycentric coordinates associated with the vertices of e). We also consider a lifting operator L e defined on polynomials on e vanishing on ∂e into polynomials on the at most two elements κ containing e and vanishing on ∂κ \ e, which is constructed by affine transformation from a fixed operator on the reference element. As a result of the regularity of triangulation, The constants in the following properties are independent of κ. Property 5.1. Denoting by P r (κ) the space of polynomials of degree smaller than or equal to r on κ, the following properties hold:

∀v ∈ P r (κ), c||v|| L 2 (κ) ≤ ||vψ 1/2 κ || L 2 (κ) ≤ c ||v|| L 2 (κ) , |v| H 1 (κ) ≤ ch -1 κ ||v|| L 2 (κ) . (27) 
Property 5.2. Denoting by P r (e) the space of polynomials of degree smaller than or equal to r on e, we have

∀ v ∈ P r (e), c v L 2 (e) ≤ vψ 1/2 e L 2 (e) ≤ c v L 2 (e) ,
and, for all polynomials v in P r (e) vanishing on ∂e, if κ is an element which contains e,

L e v L 2 (κ) + h e | L e v | H 1 (κ) ≤ ch 1/2 e v L 2 (e) .
We also introduce the Clément type regularization operator C h which has the following properties, see [6, section IX.3] and [START_REF] Clément | Approximation by finite element functions using local regularisation[END_REF]: For any function w in H 1 (Ω) d , C h w belongs to the continuous affine finite element space and satisfies for any κ in T h and e in ε κ ,

||w -C h w|| L 2 (κ) d ≤ ch κ ||w|| H 1 (∆κ) d and ||w -C h w|| L 2 (e) d ≤ ch 1/2 e ||w|| H 1 (∆e) d , (28) 
where ∆ κ and ∆ e are the following sets:

∆ κ = κ ∈ T h ; κ ∩ κ = 0 and ∆ e = κ ∈ T h ; κ ∩ e = 0 .
Note that we use the variant of C h which ensures that C h w belongs to H 1 0 (Ω) d (see [START_REF] Clément | Approximation by finite element functions using local regularisation[END_REF]). We first introduce averaged values for the turbulent diffusion coefficient and for the data; these approximations will be useful to prove the optimally of the indicators.

First, ν th (v) is the piecewise constant approximation of ν t (v) defined for each element κ ∈ T h as follows: for all v ∈ Z,

ν th (v)|κ = 1 |κ| κ ν t (v(x))dx. (29) 
Next, fh is the piecewise constant approximation of the data f :

fh |κ = 1 |κ| κ f (x)dx.
Next, we distinguish the discretization and linearization estimators; we also introduce an estimator related to the filtering process and thus to the turbulent viscosity term. For this, we first write the residual equation. The difference between (F V ) and (F V L i,h ) gives the following relations for all v ∈ X and all v h ∈ X h :

ν Ω ∇u : ∇vdx + Ω (u • ∇u) • vdx - Ω p div vdx -ν Ω ∇ū i h : ∇vdx - Ω (ū i-1 h • ∇ū i h ) • vdx - 1 2 Ω (div ūi-1 h )ū i h • vdx - Ω ν t (ū i-1 h )∇ū i h : ∇vdx + Ω pi h div vdx = f , v -f , v h -ν Ω ∇ū i h : ∇(v -v h )dx - Ω (ū i-1 h • ∇ū i h ) • (v -v h )dx + Ω pi h div(v -v h )dx - 1 2 Ω (div ūi-1 h )ū i h • (v -v h )dx - Ω ν t (ū i-1 h )∇ū i h : ∇(v -v h )dx (30) 
and

b(u -ūi h , q) = Ω q div ūi h dx. (31) 
Adding and subtracting [START_REF] Sagaut | Large-eddy simulation for incompressible flows -An introduction[END_REF] and using the Green formula on each κ ∈ T h , we obtain for all v ∈ X and all v h ∈ X h the following equality:

Ω (ū i h • ∇ū i h ) • vdx, 1 2 Ω (div ūi h )ū i h • vdx and ν th (ū i-1 h )∇ū i h in
ν Ω ∇u : ∇vdx + Ω (u • ∇u) • vdx - Ω p div vdx -ν Ω ∇ū i h : ∇vdx - Ω (ū i h • ∇ū i h ) • vdx - 1 2 Ω (div ūi h )ū i h • vdx + Ω pi h div vdx = κ∈T h κ (f -f ) • vdx + κ∈T h κ ( f -fh ) • (v -v h )dx + κ∈T h κ ( fh + div((ν + ν th (ū i-1 h ))∇ū i h ) -ū i-1 h • ∇ū i h - 1 2 (div ūi-1 h )ū i h -∇p i h ) • (v -v h )dx - 1 2 e∈εκ e [(ν∇ū i h + ν th (ū i-1 h )∇ū i h -pi h I)(σ) • n] • (v -v h ) dσ - κ∈T h κ (ν t (ū i-1 h ) -ν th (ū i-1 h )∇ū i h : ∇(v -v h )dx + Ω ((ū i-1 h -ūi h ) • ∇ū i h ) • vdx + 1 2 Ω (div(ū i-1 h -ūi h ))ū i h • vdx + κ∈T h κ ν t (ū i-1 h )∇ū i h : ∇vdx, (32) 
We define the local linearization indicator (η L i,κ ), the local discretization indicator (η D i,κ ) and the local filter indicator (η F i,κ ) corresponding to an element κ ∈ T h , by:

(η L i,κ ) = |ū i h -ūi-1 h | H 1 (κ) d , (33) 
(η D i,κ ) = h κ || fh + div((ν + ν th (ū i-1 h ))∇ū i h ) -ūi-1 h • ∇ū i h - 1 2 (div ūi-1 h )ū i h -∇p i h || L 2 (κ) d + 1 2 e∈εκ h 1/2 e ||[((ν + ν th (ū i-1 h ))∇ū i h -pi h I) • n]|| L 2 (e) d + || div ūi h || L 2 (κ) +||(ν t (ū i-1 h ) -ν th (ū i-1 h ))∇ū i h || L 2 (κ) d×d (34) 
and

(η F i,κ ) = ||ν t (ū i-1 h )∇ū i h || L 2 (κ) d×d . (35) 
We now prove that the error between the solution of step i of the fixed-point algorithm used to calculate an approximation of the solution of the full non-linear finite element approximation of the LES system may be bounded by a combination of the estimators, with some other terms related to the data.

Theorem 5.3. Let U = (u, p) be a non singular solution of Problem (F V ). Then, there exists a neighborhood Θ of U in X × M such that any solution Ūi

h = (ū i h , pi h ) ∈ X h × M h in Θ of Problem (F V L i,h ) satisfies the following a posteriori error estimate: ||u -ūi h || X + ||p -pi h || M ≤ C κ∈T h h 2 κ || f -fh || 2 L 2 (κ) d + ||f -f || 2 L 2 (κ) d 1/2 + C κ∈T h η D i,κ ) 2 + η F i,κ ) 2 + η L i,κ ) 2 1/2 ,
where C is a constant depending on U but independent of h.

Proof. Let U = (u, p) be a non singular solution of Problem (F V ) and Ūi h = (ū i h , pi h ) ∈ X h × M h be the solution of the iterative problem (F V L i,h ). Having proved Proposition 2.7, and owing to [START_REF] Pousin | Consistency, stability a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems[END_REF] and [START_REF] Verfürth | A Review of A posteriori Error Estimation and Adaptive Mesh-Refinement Techniques[END_REF]Prop. 2.2], there exists a neighborhood Θ of U in X × M such that if Ūi h is in Θ, we have the following bound:

||U -Ūi h || X×M ≤ c||F (U) -F ( Ūi h )|| X×M ≤ c|| Ūi h + S(G(ū i h ), 0) -U -S(G(u), 0)|| X×M ≤ c||S S -1 ( Ūi h ) + (G(ū i h ), 0) -S -1 (U) -(G(u), 0) || X×M .
Using (3), we have:

||U -Ūi h || X×M ≤ c ||S -1 ( Ūi h ) + (G(ū i h ), 0) -S -1 (U) -(G(u), 0)|| X ×M
Relations ( 32) and ( 31) allow us to get: for all v h ∈ X h ,

||U -Ūi h || X×M ≤ C 1 sup v∈X v =0 f -f , v + f -fh , v -v h + R 1 h , v -v h + R 2 h , v ||v|| X + sup v∈X v =0 Ω ((ū i-1 h -ūi h ) • ∇ū i h ) • vdx ||v|| X + sup q∈M q =0 Ω q div ūi h dx ||q|| L 2 (Ω) + sup v∈X v =0 1 2 Ω (div(ū i-1 h -ūi h ))ū i h • vdx ||v|| X , (36) 
where

R 1 h , v -v h = κ∈T h κ ( fh + div((ν + ν th (ū i h ))∇ū i h ) -ūi-1 h • ∇ū i h - 1 2 (div ūi-1 h )ū i h -∇p i h ) • (v -v h )dx - 1 2 e∈εκ e [(ν + ν th (ū i-1 h ))∇ū i h -pi h I)(σ) • n] • (v -v h ) dσ - κ (ν t (ū i-1 h ) -ν th (ū i-1 h ))∇ū i h : ∇(v -v h )dx , and R 2 h , v = κ∈T h κ ν t (ū i-1 h )∇ū i h : ∇vdx.
The second term in the right-hand side of (36) can be bounded as:

Ω ((ū i-1 h -ūi h ) • ∇ū i h ) • vdx ≤ ||ū i-1 h -ūi h || L 4 (Ω) d ||ū i h || X ||v|| L 4 (Ω) d ≤ S 2 4 ||ū i h || X κ∈T h |ū i-1 h -ūi h | 2 H 1 (κ) d 1/2 ||v|| X .
By using [START_REF] Dakroub | A posteriori analysis of the newton method applied to the Navier-Stokes problem[END_REF], we obtain

sup v∈X v =0 Ω ((ū i-1 h -ūi h ) • ∇ū i h ) • vdx ||v|| X ≤ c 1 κ∈T h (η L i,κ ) 2 1/2 .
In the same way, the last term in the right-hand side of (36) can be bounded as follows:

1 2 Ω (div(ū i-1 h -ūi h ))ū i h • vdx ≤ 1 2 || div(ū i-1 h -ūi h )|| L 2 (Ω) ||ū i h || L 4 (Ω) d ||v|| L 4 (Ω) d ≤ √ dS 2 4 2 ||ū i h || X κ∈T h |ū i-1 h -ūi h | 2 H 1 (κ) d 1/2 ||v|| X .
Hence, we obtain

sup v∈X v =0 1 2 Ω (div(ū i-1 h -ūi h ))ū i h • vdx ||v|| X ≤ c 2 κ∈T h (η L i,κ ) 2 1/2 .
We choose v h = C h v and we use [START_REF] Nassreddine | New results for the a posteriori estimates of the two dimensional time dependent Navier -Stokes equation[END_REF], to obtain the desired result. Now, we address the efficiency of the previous indicators. We begin by estimating (η F i,κ ), the filter indicator; this will also be useful to estimate the discretization indicator (η D i,κ ). Theorem 5.4. We assume that the solution u of Problem (F V ) is such that ∇u ∈ L ∞ (Ω) d×d . For each κ ∈ T h , the following estimates hold for the indicator (η F i,κ ) 2 defined in (35):

(η F i,κ ) 2 ≤ C h 4-d κ |ū i-1 h -u| 2 H 1 (κ) d + h 4 κ |ū i h -u| 2 H 1 (κ) d + ||ν t (u)∇u|| 2 L 2 (κ) d×d , ( 37 
)
where C is a positive constant independent of h.

Proof. We add and subtract ν t (u)∇u in (η F i,κ ) 2 and we use the inequality (a + b) 2 ≤ 2(a 2 + b 2 ). We obtain:

||ν t (ū i-1 h )∇ū i h || 2 L 2 (κ) d×d ≤ 2||ν t (ū i-1 h )∇ū i h -ν t (u)∇u|| 2 L 2 (κ) d×d + 2||ν t (u)∇u|| 2 L 2 (κ) d×d . ( 38 
)
Adding and subtracting ν t (u)∇ū i h in the first term in the right hand side of (38) gives:

||ν t (ū i-1 h )∇ū i h || 2 L 2 (κ) d×d ≤ 4||(ν t (ū i-1 h ) -ν t (u))∇ū i h || 2 L 2 (κ) d×d + 4||ν t (u)∇(ū i h -u)|| 2 L 2 (κ) d×d + 2||ν t (u)∇u|| 2 L 2 (κ) d×d .
We use the inverse inequality to get:

||(ν t (ū i-1 h ) -ν t (u))∇ū i h || 2 L 2 (κ) d×d ≤ κ c s h 2 κ ||∇(ū i-1 h -u)|| F |∇ū i h | 2 dx ≤ c 2 s h 4 κ ||∇ū i h || 2 L ∞ (κ) d×d κ ||∇(ū i-1 h -u)|| 2 F dx ≤ c 2 s ch 4-d κ ||∇ū i h || 2 L 2 (κ) d |ū i-1 h -u| 2 H 1 (κ) d . Moreover, using the fact that the solution u of Problem (F V ) is such that ∇u ∈ L ∞ (Ω), gives ||ν t (u)∇(ū i h -u)|| 2 L 2 (κ) d×d ≤ κ ch 2 κ ||∇u|| F |∇(ū i h -u)| 2 dx ≤ c 2 s h 4 κ ||∇u|| 2 L ∞ (κ) d×d κ |∇(ū i h -u)| 2 dx ≤ c 2 s h 4 κ ||∇u|| 2 L ∞ (κ) d×d |ū i h -u| 2 H 1 (κ) d .
By using [START_REF] Dakroub | A posteriori analysis of the newton method applied to the Navier-Stokes problem[END_REF] and the fact that ∇(u) ∈ L ∞ (Ω) d×d , we obtain (37).

Remark 5.5. The term ||ν t (u)∇u|| 2 L 2 (κ) d×d which appears in (37), can be bounded as follows:

||ν t (u)∇u|| 2 L 2 (κ) d×d ≤ 2||ν t (u)∇(u -ū)|| 2 L 2 (κ) d×d + 2||ν t (u)∇ū|| 2 L 2 (κ) d×d ≤ 2||ν t (u)∇(u -ū)|| 2 L 2 (κ) d×d + 4||ν t (u -ū)∇ū|| 2 L 2 (κ) d×d + 4||ν t (ū)∇ū|| 2 L 2 (κ) d×d ≤ 2c 2 S h 4 κ ||∇u|| 2 L ∞ (κ) d×d |u -ū| 2 H 1 (κ) d + 4c 2 S h 4 κ ||∇ū|| 2 L ∞ (κ) d×d |u -ū| 2 H 1 (κ) d +4||ν t (ū)∇ū|| 2 L 2 (κ) d×d . Supposing ∇u and ∇ū in L ∞ (Ω) d×d , the term ||ν t (u)∇u|| 2
L 2 (κ) d×d can be bounded by the error between u and ū and by the term ||ν t (ū)∇ū|| 2 L 2 (κ) d×d which comes from the filtering process.

Theorem 5.6. We assume that the solution u of Problem (F V ) is such that ∇u ∈ L ∞ (Ω) d×d . For each κ ∈ T h , we have the following estimations:

(η L i,κ ) 2 ≤ 2|u -ūi h | 2 H 1 (κ) d + 2|u -ūi-1 h | 2 H 1 (κ) d , (39) 
(η D i,κ ) 2 ≤ CL(w κ ), (40 
) where w κ denotes the set of elements of T h that share at least one edge (or face when d = 3) with κ and where, for any set W , we define

L(W ) = ||u -ūi h || 2 H 1 (W ) d + κ1∈W h 2 κ1 ||f -fh || 2 L 2 (κ1) d + ||p -pi h || 2 L 2 (W ) + ||u -ūi-1 h || 2 H 1 (W ) d +||(ν th (u) -ν t (u))∇u|| 2 L 2 (W ) d×d + ||ν t (u)∇u|| 2 L 2 (W ) d×d . (41) 
Proof. The estimation of the linearization indicator follows easily from the triangle inequality by introducing u in (η L i,κ ) 2 . Now, we aim to bound (η D i,κ ) 2 . We proceed in 4 steps:

(1) We add and subtract (ν th (ū i-1 h ) -ν t (ū i-1 h ))∇u in the last term of η D i,κ :

||(ν th (ū i-1 h ) -ν t (ū i-1 h ))∇ū i h || L 2 (κ) d×d ≤ ||(ν th (ū i-1 h ) -ν t (ū i-1 h ))∇(ū i h -u)|| L 2 (κ) d×d +||(ν th (ū i-1 h ) -ν t (ū i-1 h ))∇u|| L 2 (κ) d×d . (42) 
Adding and subtracting ν t (u)∇u and ν th (u)∇u in the second term in the right-hand side of (42), gives:

||(ν th (ū i-1 h ) -ν t (ū i-1 h ))∇ū i h || L 2 (κ) d×d ≤ ||(ν th (ū i-1 h ) -ν t (ū i-1 h ))∇(ū i h -u)|| L 2 (κ) d×d +||(ν th (ū i-1 h ) -ν th (u))∇u|| L 2 (κ) d×d +||(ν t (u) -ν t (ū i-1 h ))∇u|| L 2 (κ) d×d +||(ν th (u) -ν t (u))∇u|| L 2 (κ) d×d . (43) 
We bound the first term in the right-hand side of (43) as follows:

||(ν th (ū i-1 h ) -ν t (ū i-1 h ))∇(ū i h -u)|| L 2 (κ) d×d = κ 1 |κ| κ c s h 2 κ ||∇ū i-1 h || F dx -c s h 2 κ ||∇ū i-1 h || F ∇(ū i h -u) 2 dx 1/2 ≤ 2c s h 2 κ ||∇(ū i-1 h )|| L ∞ (κ) d×d |ū i h -u| H 1 (κ) d .
By using the inverse inequality, we have:

||(ν th (ū i-1 h ) -ν t (ū i-1 h ))∇(ū i h -u)|| L 2 (κ) d×d ≤ 2c s c h 2-d/2 κ |ū i-1 h | H 1 (κ) d |ū i h -u| H 1 (κ) d .
Using the fact that ||∇u|| L ∞ (Ω) d×d is bounded, we treat the second term in the right-hand side of (43) as:

||(ν th (ū i-1 h ) -ν th (u))∇u|| L 2 (κ) d×d ≤ c h 2 κ ||∇u|| L ∞ (Ω) d×d |ū i-1 h -u| H 1 (κ) d .
Similarly,

||(ν t (u) -ν t (ū i-1 h ))∇u|| L 2 (κ) d×d ≤ c h 2 κ ||∇u|| L ∞ (Ω) d×d |ū i-1 h -u| H 1 (κ) d .
By regrouping all the previous inequalities, using [START_REF] Dakroub | A posteriori analysis of the newton method applied to the Navier-Stokes problem[END_REF] and the fact that ||∇u|| L ∞ (Ω) d×d is bounded, we obtain:

||(ν th (ū i-1 h ) -ν t (ū i-1 h ))∇ū i h || L 2 (κ) d×d ≤ C 2 h 2-d/2 κ |ū i h -u| H 1 (κ) d + h 2 κ |ū i-1 h -u| H 1 (κ) d +||(ν th (u) -ν t (u))∇u|| L 2 (κ) d×d . (44) 
(2) We take v h = 0, add and subtract

Ω (u•∇ū i h )
•vdx and add the vanishing term [START_REF] Verfürth | A posteriori Error Estimation Techniques for finite Element Methods[END_REF], we obtain:

1 2 Ω (div u)ū i h •vdx in
κ1∈T h κ1 fh + div((ν + ν th (ū i-1 h ))∇ū i h ) -ūi-1 h • ∇ū i h - 1 2 (div ūi-1 h )ū i h -∇p i h • vdx = ν Ω ∇(u -ūi h ) : ∇vdx + Ω (u • ∇(u -ūi h )) • vdx - Ω (p -pi h ) div vdx + Ω ((u -ūi-1 h ) • ∇ū i h ) • vdx + 1 2 Ω (div(u -ūi-1 h ))ū i h • vdx - κ1∈T h κ1 (f -fh ) • vdx + 1 2 κ1∈T h e∈εκ 1 e [(ν + ν th (ū i-1 h ))∇ū i h -pi h I)(σ) • n] • v dσ - Ω ν th (ū i-1 h )∇ū i h : ∇vdx. (45) 
We add and subtract Ω ((u -ūi-1 h ) • ∇u) • vdx in the fourth term in the right-hand side of (45)

κ1∈T h κ1 fh + div((ν + ν th (ū i-1 h ))∇ū i h ) -ūi-1 h • ∇ū i h - 1 2 (div ūi-1 h )ū i h -∇p i h • vdx = ν Ω ∇(u -ūi h ) : ∇vdx + Ω (u • ∇(u -ūi h )) • vdx - Ω (p -pi h ) div vdx + Ω ((u -ūi-1 h ) • ∇(ū i h -u)) • vdx + Ω ((u -ūi-1 h ) • ∇u) • vdx + 1 2 Ω (div(u -ūi-1 h ))ū i h • vdx - κ1∈T h κ1 (f -fh ) • vdx + 1 2 κ1∈T h e∈εκ 1 e [(ν + ν th (ū i-1 h ))∇ū i h -pi h I)(σ) • n] • v dσ - Ω ν th (ū i-1 h )∇ū i h : ∇vdx. ( 46 
) For a given κ ∈ T h , we choose v as follows:

v = v κ = fh -∇p i h + div((ν + ν th (ū i-1 h ))∇ū i h ) -ūi-1 h • ∇ū i h - 1 2 (div ūi-1 h )ū i h ψ κ on κ, 0 on Ω\κ,
where ψ κ is the bubble function of the element κ. Since this function vanishes outside κ as well as on its boundaries, all volume integrals in (46) reduce to integrals on κ, and the edge (or face) integrals vanish. By using the Cauchy-Schwarz inequality and the fact that ∇u ∈ L ∞ (Ω) d×d , we obtain:

||( fh -∇p i h + div((ν + ν th (ū i-1 h ))∇ū i h ) -ūi-1 h • ∇ū i h - 1 2 (div ūi-1 h )ū i h )ψ 1/2 κ || 2 L 2 (κ) d ≤ C 3 ν|u -ūi h | H 1 (κ) d |v κ | H 1 (κ) d + ||u|| L 4 (κ) d |u -ūi h | H 1 (κ) d ||v κ || L 4 (κ) d + ||p -pi h || L 2 (κ) |v κ | H 1 (κ) d +||u -ūi-1 h || L 4 (κ) d |ū i h -u| H 1 (κ) d ||v κ || L 4 (κ) d + ||∇u|| L ∞ (Ω) d×d ||u -ūi-1 h || L 2 (κ) d ||v κ || L 2 (κ) d + 1 2 |u -ūi-1 h | H 1 (κ) d ||ū i h || L 4 (κ) d ||v κ || L 4 (κ) d + ||f -fh || L 2 (κ) d ||v κ || L 2 (κ) d +||ν th (ū i-1 h )∇ū i h || L 2 (κ) d×d |v κ | H 1 (κ) d . (47) 
We add and subtract ν t (ū i-1 h )∇ū i h in the last term in the right-hand side of (47) to obtain:

||ν th (ū i-1 h )∇ū i h || L 2 (κ) d×d ≤ ||ν th (ū i-1 h )∇ū i h -ν t (ū i-1 h )∇ū i h || L 2 (κ) d×d + ||ν t (ū i-1 h )∇ū i h || L 2 (κ) d×d .
We use (44) for the first term in the right-hand side of the above inequality, as well as definition (35) and estimation (37) for the second term, and finally the fact that h κ is bounded by the diameter of Ω; we obtain:

||ν th (ū i-1 h )∇ū i h || L 2 (κ) d×d ≤ C 4 |ū i h -u| H 1 (κ) d + |ū i-1 h -u| H 1 (κ) d +||(ν th (u) -ν t (u))∇u|| L 2 (κ) d×d + ||ν t (u)∇u|| L 2 (κ) d×d . (48) 
Inequality (47) can then be bounded as follows:

||( fh -∇p i h + div((ν + ν th (ū i-1 h ))∇ū i h ) -ūi-1 h • ∇ū i h - 1 2 (div ūi-1 h )ū i h )ψ 1/2 κ || 2 L 2 (κ) d ≤ C 5 ν|u -ūi h | H 1 (κ) d |v κ | H 1 (κ) d + ||u|| L 4 (κ) d |u -ūi h | H 1 (κ) d ||v κ || L 4 (κ) d +||p -pi h || L 2 (κ) |v κ | H 1 (κ) d + ||u -ūi-1 h || L 4 (κ) d |ū i h -u| H 1 (κ) d ||v κ || L 4 (κ) + ||u -ūi-1 h || L 2 (κ) d ||v κ || L 2 (κ) d + 1 2 |u -ūi-1 h | H 1 (κ) d ||ū i h || L 4 (κ) d ||v κ || L 4 (κ) d + ||f -fh || L 2 (κ) d ||v κ || L 2 (κ) d +C 4 |ū i h -u| H 1 (κ) d + |ū i-1 h -u| H 1 (κ) d + ||(ν th (u) -ν t (u))∇u|| L 2 (κ) d×d +||ν t (u)∇u|| L 2 (κ) d×d |v κ | H 1 (κ) d .
(49) We multiply this inequality by h 2 κ ; we then use the second inequality in [START_REF] Leonard | Energy cascade in large eddy simulation of turbulent fluid flows[END_REF] to bound h κ |v κ | H 1 (κ) d . Moreover, we use the fact that v κ is in H 1 0 (Ω) and that its support is κ to show that

||v κ || L 4 (κ) d = ||v κ || L 4 (Ω) d ≤ S 4 |v κ | H 1 (Ω) d = S 4 |v κ | H 1 (κ) d .
We then use (1), ( 2) and Theorem 4.7 to obtain:

h 2 κ ||( fh -∇p i h + div((ν + ν th (ū i-1 h ))∇ū i h ) -ūi-1 h • ∇ū i h - 1 2 (div ūi-1 h )ū i h )ψ 1/2 κ || 2 L 2 (κ) d ≤ C 6 ||u -ūi h || H 1 (κ) d h κ ||v κ || L 2 (κ) d + h κ ||f -fh || L 2 (κ) d h κ ||v κ || L 2 (κ) d +||p -pi h || L 2 (κ) h κ ||v κ || L 2 (κ) d + ||ū i-1 h -u|| H 1 (κ) d h κ ||v κ || L 2 (κ) d +||(ν th (u) -ν(u)∇u|| L 2 (κ) d×d h κ ||v κ || L 2 (κ) d + ||ν t (u)∇u|| L 2 (κ) d×d h κ ||v κ || L 2 (κ) d .
We replace v κ by its value, simplify by h κ ||v κ || L 2 (κ) d , square the resulting inequality and use Property 5.1 to get:

h 2 κ ||( fh -∇p i h + div((ν + ν th (ū i-1 h ))∇ū i h ) -ūi-1 h • ∇ū i h - 1 2 (div ūi-1 h )ū i h )|| 2 L 2 (κ) d ≤ CL(κ), ( 50 
)
where L is given by (41).

(3) Now we estimate the second term in (η D i,κ ) 2 . Rewriting (46), we infer:

1 2 κ1∈T h e∈εκ 1 e [(ν + ν th (ū i-1 h ))∇ū i h -pi h I)(σ)n] • v dσ = κ1∈T h κ1 ( fh + div((ν + ν th (ū i-1 h ))∇ū i h ) -ūi-1 h • ∇ū i h - 1 2 div(ū i-1 h )ū i h -∇p i h ) • vdx +ν Ω ∇(ū i h -u) : ∇vdx + Ω (u • ∇(ū i h -u)) • vdx + Ω (p -pi h ) div vdx + Ω ((ū i-1 h -u) • ∇(ū i h -u)) • vdx + Ω ((ū i-1 h -u) • ∇u) • vdx + 1 2 Ω (div(ū i-1 h -u))ū i h • vdx + κ1∈T h κ1 (f -fh ) • vdx + Ω ν th (ū i-1 h )∇ū i h : ∇vdx.
(51) For a given mesh edge (or face) e ⊂ ∂Ω, we denote by (κ, κ ) ∈ (T h ) 2 the two elements that share e and set

v = v e = L e [(ν + ν th (ū i-1 h ))∇ū i h -pi h I)(σ)n]ψ e on {κ, κ }, 0 on Ω\{κ κ },
where ψ e is the edge-bubble (or face-bubble) function and L e the lifting operator defined at the beginning of Section 5.

Using (48), replacing v e by its value, using the fact that ∇u ∈ L ∞ (Ω) and applying the Cauchy-Schwarz inequality, we get:

[(ν + ν th (ū i-1 h ))∇ū i h -pi h I)(σ)n]ψ 1/2 e 2 L 2 (e) d ≤ C 4 || fh -∇p i h + div((ν + ν th (ū i-1 h ))∇ū i h ) -ūi-1 h • ∇ū i h -1 2 (div ūi-1 h )ū i h || L 2 (κ κ ) d ||v e || L 2 (κ κ ) d +ν|u -ūi h | H 1 (κ κ ) d |v e | H 1 (κ κ ) d + ||u|| L 4 (κ κ ) d |u -ūi h | H 1 (κ κ ) d ||v e || L 4 (κ κ ) d +||p -pi h || L 2 (κ κ ) |v e | H 1 (κ κ ) d + ||u -ūi-1 h || L 4 (κ κ ) d |ū i h -u| H 1 (κ κ ) d ||v e || L 4 (κ κ ) d +||u -ūi-1 h || L 2 (κ κ ) d ||∇u|| L ∞ (Ω) ||v e || L 2 (κ κ ) d + 1 2 |u -ūi-1 h | H 1 (κ κ ) d ||ū i h || L 4 (κ κ ) d ||v e || L 4 (κ κ ) d + ||f -fh || L 2 (κ κ ) d ||v e || L 2 (κ κ ) d +C |ū i h -u| H 1 (κ κ ) d + |ū i-1 h -u| H 1 (κ κ ) d + ||(ν th (u) -ν t (u))∇u|| L 2 (κ κ ) d×d +||ν t (u)∇u|| L 2 (κ κ ) d×d |v e | H 1 (κ κ ) d .
We multiply by h e and we use (2) and Theorem 4.7 to obtain: 

h e [(ν + ν th (ū i-1 h ))∇ū i h -pi h I)(σ)n]ψ 1/2 e 2 L 2 (e) d ≤ C 5 h e || fh -∇p i h + div((ν + ν th (ū i-1 h ))∇ū i h ) -ūi-1 h • ∇ū i h -1 2 (div ūi-1 h )ū i h )|| L 2 (κ κ ) d ||v e || L 2 (κ κ ) d +||u -ūi h || H 1 (κ κ ) d h e |v e | H 1 (κ κ ) d + |u -ūi h | H 1 (κ κ ) d + |u -ūi-1 h | H 1 (κ κ ) d h e ||v e || L 4 (κ κ ) d +||p -pi h || L 2 (κ κ ) h e |v e | H 1 (κ κ ) d + ||ū i-1 h -u|| H 1 (κ κ ) d h e ||v e || L 2 (κ κ ) d +||f -fh || L 2 (κ κ ) d h e ||v e || L 2 (κ κ ) d + ||(ν th (u) -ν t (u))∇u|| L 2 (κ κ ) d×d h e |v e | H 1 (κ κ ) d +||ν t (u)∇u|| L 2 (κ κ ) d×d h e |v e |
e∈εκ h e |[(ν + ν th (ū i-1 h ))∇ū i h -pi h I)(σ)n]|| 2 L 2 (e) d ≤ L(w κ ), (52) 
where w κ is defined in Theorem 5.6. (4) Finally, as div u = 0, we have:

Ω q(x) div(u(x) -ūi h (x)) dx = - Ω q(x) div ūi h (x)dx. (53) 
We choose for a given κ ∈ T h q = q κ = div ūi h ξ κ . where ξ κ denotes the characteristic function of κ. We have

κ div ūi h div(u -ūi h )dx = - κ (div ūi h ) 2 dx.
Applying the Cauchy-Schwarz inequality to the left-hand side, we obtain

|| div ūi h || L 2 (κ) ≤ √ d||u -ūi h || H 1 (κ) d . (54) 
Collecting (44), (50), ( 52) and (54), we get the final result.

Numerical results

In this section, we show numerical simulations using the FreeFem++ code (see [START_REF] Hecht | New development in FreeFem++[END_REF]). We consider the domain Ω given by Figure 1 We consider ν = 1 Re where Re is the Reynolds number and we choose the density of body forces f equal to (-1, 0) in the rectangle LGHK and to (0, 0) elsewhere. This implies that the flow will move from the right to the left at the center of the domain; when the flow hits the left boundary, it splits into an upper flow and a lower flow; the BCDE obstacle will cause recirculations in the upper flow on each side of the obstacle. This will in turn generate strong turbulent interactions with the main flow at the center of the domain; the advantage of the LES method is that we can describe the large vortices without having to resolve all the small turbulent details of the flow.

In this section, the initial guess u 0 h is considered to be the solution of the Stokes problem with the same right-hand side and boundary conditions as Problem (P ). We remind that the finite element spaces X h and M h , for the velocity and the pressure, are given by ( 8). We begin the numerical simulations by considering the following iterative Navier-Stokes algorithm:

     For any i ≥ 1, with a known u i-1 h ∈ X h , find (u i h , p i h ) ∈ X h × M h solution of : ∀v h ∈ X h , ν(∇u i h , ∇v h ) + d(u i-1 h , u i h , h ) -(p i h , div v h ) = f , v h , ∀q h ∈ M h , (div u i h , q h ) = 0. (55) 
We introduce the global linearization indicator ηL i as follows:

ηL i = κ∈T h (η L i,κ ) 2 ) 1 2 , (56) 
where η L i,κ is given by [START_REF] Verfürth | A Review of A posteriori Error Estimation and Adaptive Mesh-Refinement Techniques[END_REF]. Algorithm (55) is stopped by using the classical global stopping criterion:

η L i ≤ 10 -6 . (57) 
The first numerical simulations corresponding to Problem (55) with N = 5, 10, 20, 30 show that the algorithm converges for Re ≤ 135. These results are coherent with the literature (see for instance [START_REF] Bernardi | A posteriori analysis of iterative algorithms for Navier-Stokes Problem[END_REF] for more details) which announces that the convergence depends on the Reynolds number for the cavity domain.

In [START_REF] Bernardi | A posteriori analysis of iterative algorithms for Navier-Stokes Problem[END_REF], the authors proposed a simple modification of the numerical scheme (55) allowing to get convergence for a larger range of Reynolds numbers; they introduce the following relaxed numerical scheme:

     For any i ≥ 1, with a known ũi-1 h ∈ X h , find (u i h , p i h ) ∈ X h × M h solution of : ∀v h ∈ X h , ν(∇u i h , ∇v h ) + d(ũ i-1 h , u i h , v h ) -(p i h , div v h ) = f , v h , ∀q h ∈ M h , (div u i h , q h ) = 0, (58) 
and then set

ũi h = u i h + ũi-1 h 2 .
In our case, Scheme (58) with N = 5, 10, 20, 30 converges for Re ≤ 2000. Thus, we adopt this relaxed method for our LES algorithm that we rewrite as follows:

           For any i ≥ 1, with a known ũi-1 h ∈ X h , find (ū i h , pi h ) ∈ X h × M h solution of : ∀v h ∈ X h , ν(∇ū i h , ∇v h ) + (ν t (ū i-1 h )∇ū i h , ∇v h ) + d( ũi-1 h , ūi h , v h ) -(p i h , div v h ) = f , v h , ∀q h ∈ M h , (div ūi h , q h ) = 0, (59) 
and then set

ũi h = ūi h + ũi-1 h 2 .
We introduce the global linearization error indicator ηL i corresponding to (59) as follows:

ηL i = κ∈T h (η L i,κ ) 2 ) 1 2 , (60) 
where

(η L i,κ ) = |ū i h -ūi-1 h | H 1 (κ) d .
In our tests, Scheme (59) for N = 20 and with the stopping criterion ηL i ≤ 10 -6 , converges for large values of Re (we tested up to Re = 50000).

To compare Schemes (58) and (59), we introduce the global discretization error indicator associated to:

(1) Problem (58):

ηD i = κ∈T h (η D i,κ ) 2 1 2 , (61) 
where

(η D i,κ ) = h κ ||f h + div(ν∇u i h ) -ũi-1 h • ∇u i h - 1 2 div(ũ i-1 h )u i h -∇p i h || L 2 (κ) d + 1 2 e∈εκ h 1/2 e ||[(ν∇u i h -p i h I) • n]|| 0,e + || div u i h || L 2 (κ) .
(2) Problem (59):

ηD i = κ∈T h ((η D i,κ ) 2 + (η F i,κ ) 2 ) 1 2 , (62) 
where 2 and3 show a comparison in logarithmic scale of the error indicators as a function of the iteration counts between the NS algorithm (58) and LES algorithm (59) for Re = 1000 on a uniform mesh with N = 20. We remark that the LES scheme (59) converges with fewer iterations compared to the NS scheme, and we attribute this to the higher viscosity induced by the turbulence model. Figure 4 shows a comparison in logarithmic scale of the global error indicators between the uniform NS (58) and uniform LES (59) Schemes for Re = 1000 with respect to the number of degrees of freedom for various values of N , multiplied by the number of iterations needed to reach the prescribed convergence tolerance. From these figures, we could conclude that the LES scheme (59) produces more accurate results than the NS scheme (58) for a given computational effort; however, we have to be very careful since the indicators are equivalent to, but are not the actual errors, and since unknown constants are involved in the equivalence inequalities. The fact that both curves have the same final trend was expected, since refining the mesh in LES implies that the turbulent viscosity tends to 0 and thus the total viscosity is close to the standard NS physical viscosity. Now, we aim to compare the LES method on uniform meshes with the LES method on meshes which are locally refined based on the indicators (62) and in which the iterative stopping criterion is based on (60). We refer to the algorithm proposed in [START_REF] Bernardi | A posteriori analysis of iterative algorithms for Navier-Stokes Problem[END_REF] for the strategy of the adapted method: the authors used the following adaptive stopping criterion:

(η D i,κ ) = h κ || fh + div((ν + ν t (ū i-1 h ))∇ū i h ) -ũi-1 h • ∇ū i h - 1 2 div( ũi-1 h )ū i h -∇p i h || L 2 (κ) d + 1 2 e∈εκ h 1/2 e ||[((ν + ν t (ū i-1 h ))∇ū i h -pi h I) • n]|| L 2 (e) d + || div ūi h || L 2 (κ) and (η F i,κ ) = ||ν t (ū i-1 h )∇ū i h || L 2 (κ) d . Figures
η L i ≤ γη D i , (63) 
where γ is a positive parameter which balances the discretization and linearization errors. They chose γ = 0.01 for their numerical experiments. This adaptive stopping criterion was introduced and studied in [START_REF] Alaoui | Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems[END_REF][START_REF] Ern | Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs[END_REF]. In the present work, we choose γ = 0.01 (same value as in [START_REF] Bernardi | A posteriori analysis of iterative algorithms for Navier-Stokes Problem[END_REF]) for our numerical applications.

Figures 5678show the evolution of the mesh during the refinement levels of the algorithm for Re = 1000 and a starting uniform mesh produced with N = 20. We remark that, from an iteration to another, the concentration of the refinement is on the complex vorticity region. the other hand, on which a vertical cut of the velocity norm is shown. Both comparisons show a better accuracy of the results on adapted meshes. Indeed, as one refines the meshes, the velocity modulus tends to increase (because the turbulent viscosity decreases), and we observe that it increases more rapidly on adapted meshes than on uniform ones. 

Conclusion

In this work, we have derived a posteriori error estimates for the finite element discretization of the Large Eddy Simulation applied to the Navier-Stokes system. These estimates yield an upper bound of the error which is computable up to unknown constants and allows to distinguish the discretization, the linearization and the filtering errors. In this work, we show the advantages of the LES method combined to an adaptive mesh refinement and an adaptive linearization stopping criterion.
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Figure 10 .Figure 11 .

 1011 Figure 10. Velocity norm on a uniform mesh with N = 160

Figure 12 .

 12 Figure 12. Velocity norm: Vertical cut (constant x) through the right-hand vortex center on uniform meshes with N = 20, 40, 80 and 160.
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 13 Figure 13. Velocity norm: Vertical cut (constant x) through the right-hand vortex center on adapted meshes with level 0 (uniform with N = 20), levels 2, 5 and 8.

  H 1 (κ κ ) d . As was done above for v κ , we have the following bound:||v e || L 4 (κ κ ) d ≤ S 4 |v e | H 1 (κ κ ) d . Next, || L 2 (κ κ ) d , square the resulting inequality and, for a given κ, we sum over e ∈ ∂κ; we obtain:

	we use both items of Property 5.2, inequality (50), simplify by h 1/2 e ||v e
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