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Abstract
We show the local null-controllability of a fluid-structure interaction system coupling a viscous incom-

pressible fluid with a damped beam located on a part of its boundary. The controls act on arbitrary small
parts of the fluid domain and of the beam domain. In order to show the result, we first use a change of
variables and a linearization to reduce the problem to the null-controllability of a Stokes-beam system in a
cylindrical domain. We obtain this property by combining Carleman inequalities for the heat equation, for
the damped beam equation and for the Laplace equation with high-frequency estimates. Then, the result
on the nonlinear system is obtained by a fixed-point argument.
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1 Introduction
We consider a fluid-structure interaction system composed by a viscous incompressible fluid, modeled by the
Navier-Stokes system, and by an elastic structure located at a part of the boundary of the fluid domain. We
assume that the structure displacement is governed by a damped beam equation. The corresponding model has
been introduced in [46] as a first model to study the blood flow in vessels. To simplify our work, we consider
here a particular geometry in dimension 2 of space (see Figure 1). The fluid domain is confined into an infinite
strip where the bottom boundary is fixed and where the top boundary corresponds to the beam. We also assume
periodic condition in the x1 variables. To be more precise, we set

I := R/(2πZ),

and for any deformation ζ : I → (−1,∞), we consider the fluid domain associated with this deformation:

Ωζ = {(x1, x2) ∈ I × R ; x2 ∈ (0, 1 + ζ(x1))} . (1.1)

Then the fluid-structure interaction system writes

∂tw + (w · ∇)w − divT(w, π) = 1ωf t > 0, x ∈ Ωζ(t),
divw = 0 t > 0, x ∈ Ωζ(t),

w(t, x1, 1 + ζ(t, x1)) = (∂tζ)(t, x1)e2, t > 0, x1 ∈ I,
w = 0 t > 0, x ∈ Γ0,

∂ttζ + α1∂
4
x1
ζ − α2∂

2
x1
ζ − α3∂t∂

2
x1
ζ = −H̃ζ(w, π) + 1J g t > 0, x1 ∈ I,

w(0, ·) = w0 in Ωζ01 , ζ(0, ·) = ζ01 , ∂tζ(0, ·) = ζ02 in I,

(1.2)

where
α1 > 0, α2 ⩾ 0, α3 > 0,

and where
Γ0 = I × {0}.

In the above system, we have used the following notations: (e1, e2) is the canonical basis of R2 and

T(w, π) = 2D(w)− πI2, D(w) =
1

2
(∇w + (∇w)∗) , (1.3)

H̃ζ(w, π)(t, x1) =
[
(1 + |∂x1

ζ|2)1/2 [T(w, π)n] (t, x1, 1 + ζ(t, x1)) · e2
]
. (1.4)

We have also denoted by n the unit exterior normal to Ωζ(t). In (1.2), w and π are respectively the velocity
and the pressure of the fluid and they satisfy the Navier-Stokes system (two first lines), with no-slip boundary
conditions (third and forth equations). The elastic displacement satisfies the damped beam equation written in
the fifth line of (1.2). Finally, our aim is to control (1.2) by using two distributed controls f and g respectively
localized in an arbitrary small nonempty open subset ω of Ω and in an arbitrary small nonempty open subset
J of I.

Let us remark that the well-posedness and the stabilization of system (1.2) have been already studied in the
literature. Let us quote some of the corresponding articles: [12] (existence of weak solutions), [5], [34], [20] and
[39] (existence of strong solutions), [47] (stabilization of strong solutions), [1] (stabilization of weak solutions
around a stationary state). We can also mention some works devoted to the case δ = 0 (undamped beam
equation/wave equation): [19], [42], [53] (weak solutions), [21], [2], [3], [4] (strong solutions). Some authors
have tackled the study of more complex models: [33, 32] (linear elastic Koiter shell), [43] (dynamic pressure
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Figure 1: Our geometry

boundary conditions), [44, 45] (3D cylindrical domain with nonlinear elastic cylindrical Koiter shell), [50] and
[51] (nonlinear elastic and thermoelastic plate equations), [37], [38] (compressible fluids), etc.

A standard strategy to study this kind of systems consists in using a change of variables to write the fluid
system into a cylindrical domain, and then in linearizing the system after this transformation. A large part of
the work is thus devoted to the corresponding linear system, the results for the nonlinear system are deduced
by estimating the coefficients coming from the change of variables and by using a fixed-point argument. We
follow here this approach and after a change of variable and a linearization (see Section 6 for the details), we
are reduced to work on the spatial domain

Ω := Ω0 = I × (0, 1)

(see Figure 1) and to show the null controllability of the following linear system

∂tw −∆w +∇π = 1ωf in (0, T )× Ω,
divw = 0 in (0, T )× Ω,

w = 0 on (0, T )× Γ0,
w = (∂tζ)e2 on (0, T )× Γ1,

∂2t ζ + α1∂
4
x1
ζ − α2∂

2
x1
ζ − α3∂t∂

2
x1
ζ = −T(w, π)n · e2 + 1J g in (0, T )× I,

w(0, ·) = w0 in Ω, ζ(0, ·) = ζ01 , ∂tζ(0, ·) = ζ02 in I,

(1.5)

where
Γ1 = I × {1}.

In what follows, to simplify the notation, we take

α1 = α2 = α3 = 1.

The values of these constants do not play any role in our study. As it is standard (see, for instance, [52, Theorem
11.2.1, p.357]), the controllability of (1.5) is equivalent to an observability inequality for the adjoint system

∂tu−∆u+∇p0 = 0 in (0, T )× Ω,
div u = 0 in (0, T )× Ω,

u = 0 on (0, T )× Γ0,
u = ∂tηe2 on (0, T )× Γ1,

∂2t η + ∂4x1
η − ∂2x1

η − ∂t∂
2
x1
η = −T(u, p0)n|Γ1

· e2 in (0, T )× I,
u(0, ·) = u0 in Ω, η(0, ·) = η01 , ∂tη(0, ·) = η01 in I.

(1.6)

Before writing the corresponding observability inequality, let us mention an important remark and introduce
some notation. We set

L2
0(I) :=

{
f ∈ L2(I) ;

∫ 2π

0

f(x1) dx1 = 0

}
.

3



Remark 1.1. Using the particular geometry considered here, we can simplify the above adjoint system. First
on Γ1, n = e2 and using (1.3), we deduce

−T(u, p0)n · e2 = −2∂x2u2 + p0 = 2∂x1u1 + p0 = p0 on Γ1, (1.7)

since u1(x1, 1) = 0 for x1 ∈ I.
Moreover, using the incompressibility of the fluid and the boundary conditions, we deduce that

0 =

∫
Ω

div u dx =
d

dt

∫ 2π

0

η dx1.

Assuming that η01 ∈ L2
0(I) then, we deduce that for all t ⩾ 0, η(t, ·) ∈ L2

0(I). Using this condition on the beam
equation leads to the following condition on the pressure:∫ 2π

0

p0(t, x1, 1) dx1 = 0. (1.8)

In particular, in contrast with the standard Stokes system, the pressure is not determined up to a constant.

We define the operators associated with the beam equation:

D(A1) := H4(I) ∩ L2
0(I), A1η := ∂4x1

η − ∂2x1
η, (1.9)

D(A2) := H2(I) ∩ L2
0(I), A2η := −∂2x1

η. (1.10)

We also define the Hilbert space of states for our system:

H :=
{
(u, η1, η2) ∈ L2(Ω)×D(A

1/2
1 )× L2

0(I) ; u2 = η2 on Γ1, u2 = 0 on Γ0, div u = 0 in Ω
}
, (1.11)

endowed with the canonical scalar product of L2(Ω)×D(A
1/2
1 )× L2(I). With the above remark and notation,

the adjoint system writes

∂tu−∆u+∇p0 = 0 in (0, T )× Ω,
div u = 0 in (0, T )× Ω,

u = 0 on (0, T )× Γ0,
u = ∂tηe2 on (0, T )× Γ1,

∂2t η +A1η +A2∂tη = p0|Γ1
in (0, T )× I,

u(0, ·) = u0 in Ω, η(0, ·) = η01 , ∂tη(0, ·) = η02 in I,

(1.12)

with the condition (1.8). Our main result stated below is an observability inequality for (1.12):

Theorem 1.2. Assume T > 0, ω ⋐ Ω and J ⋐ I are nonempty open sets. For any [u0, η01 , η
0
2 ] ∈ H, the

solution of (1.12) satisfies

∥u(T, ·)∥2L2(Ω) + ∥η(T, ·)∥2H2(I) + ∥∂tη(T, ·)∥2L2(I)

⩽ k2T

(∫∫
(0,T )×ω

|u|2 dx dt+

∫∫
(0,T )×J

|∂tη|2 dx1 dt

)
, (1.13)

and we can choose kT in the form
kT = CeC/T

2

, (1.14)

with a constant C > 0.
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The controllability of fluid-structure interaction systems has already been tackled in the case where the
structure is a rigid body in [8], [9], [15], [23], [48]. Up to our knowledge, the above theorem is the first result of
controllability for the system (1.5). Let us mention also [41] where the author obtains an observability inequality
for the adjoint of a linearized simplified compressible fluid-structure model similar to our system.

Let us point out that due to the structural damping in the beam equation (−∂t∂2x1
ζ) the corresponding

beam equation becomes a parabolic equation (see, for instance, [13]). In a previous work [11], we have replaced
the damped beam equation by a heat equation and we have shown the corresponding controllability result.
The proof done here is inspired by our previous work, and in particular, in the proof of the observability, we
first apply results on the heat equations to the fluid velocity by considering the pressure as a source term, (in
the spirit of [17]). Then, we estimate the pressure by using that it satisfies a Laplace equation. Since the
boundary conditions of this Laplace equation are difficult to handle, our estimates on the pressure depend on
the boundary value of the pressure and more precisely on the high frequencies of the pressure on the boundary
of the fluid domain. To conclude, we apply some energy inequalities combined with a high frequency argument
in the horizontal direction to estimate these high frequencies. Using the microlocal analysis near boundaries
and interfaces to derive Carleman estimates and to show the controllability of coupled parabolic systems is
quite standard and one can quote for instance [7, 6, 10, 24, 27, 28, 29] and the recent books [25, 26] for elliptic
counterparts).

One of the main differences with [11] is that we work here directly with the time variable whereas in
the previous work we show a spectral inequality and then use an abstract method ([30, 31]) to deduce the
corresponding observability inequality. Here we do not follow the same approach since it uses that the main
operator of our system is self-adjoint, and here our main operator is not self-adjoint or even a perturbation of
a self-adjoint operator as in the framework considered in [30]. A consequence of working directly with the time
variable is that the separation between low and high frequencies is done through a pseudo-differential operator,
which symbol depends on time, and in particular we need some standard commutator estimates from these
operators in order to handle the high frequencies.

Remark 1.3. With respect to [11] or to the stabilization result [1], one should expect to obtain the controllability
of (1.2) or of (1.5) without any control on the beam equation (g ≡ 0). However, with our present approach, it
seems difficult to handle the elastic displacement without any observation on the beam equation. Even with the
presence of two controls, a particular treatment of the coupling between the pressure and the elastic displacement
in the proof of the observability is needed. Concerning the particular geometry, we are using it several times in
order to simplify several proofs but the corresponding result in a general geometry should hold even if it is not
a direct consequence of our work.

We deduce from Theorem 1.2 the local controllability of (1.2):

Theorem 1.4. Assume T > 0 and that ω ⋐ Ω and J ⋐ I are nonempty open sets. There exists R0 > 0 such
that for any ζ01 ∈ D(A

3/4
1 ), ζ02 ∈ D(A

1/4
1 ), w0 ∈ H1(Ωζ01 ) satisfying

divw0 = 0 in Ω, w0 = 0 on Γ0, w0(x1, 1 + ζ01 (x1)) = ζ02 (x1)e2 (x1 ∈ I), (1.15)

and ∥∥ζ01∥∥H3(I) +
∥∥ζ02∥∥H1(I) +

∥∥w0
∥∥
H1

(
Ω

ζ01

) ⩽ R0, (1.16)

there exists a control
(f, g) ∈ L2(0, T ;L2(ω))× L2(0, T ;L2(J ))

such that the solution of (1.2) satisfies

ζ(T, ·) = 0, ∂tζ(T, ·) = 0 in I, w(T, ·) = 0 in Ω.

The proof of Theorem 1.4 is quite standard from Theorem 1.2: we need to estimate the coefficients of the
change of variables and use a fixed point argument. Similar procedure is done to show the well-posedness or
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the stabilization of the system. We only sketch the proof of Theorem 1.4, the details can be found for instance
in [47], [1].

The outline of the article is as follows: in the next section, we complete the functional setting needed in this
article, introduce the Carleman weights and some classical results on pseudodifferential operators. Section 3
is devoted to Carleman estimates: a Carleman estimate for the heat equation, a Carleman estimate for the
damped beam equation and a Carleman estimate for the pressure. Gathering them yields an estimate of the
fluid velocity and pressure and of the elastic displacement by terms localized in ω or in J and by high frequencies
of the pressure on the boundary. To get rid of these last terms, we show in Section 4 high frequency estimates
using the Stokes system. This allows us to show the observability inequality in Section 5. We give the sketch of
the proof of Theorem 1.4 in Section 6. Finally, in Appendix A, we recall some technical results concerning the
Carleman estimates of Section 3.

Notation 1.5. In the whole paper, we use C as a generic positive constant that does not depend on the other
terms of the inequality. The value of the constant C may change from one appearance to another. We also use
the notation X ≲ Y if there exists a constant C > 0 such that we have the inequality X ⩽ CY .

2 Notation and preliminaries

2.1 Functional setting
We complete the notation introduced in the introduction: we consider the control operator for the beam equation:

BJ g := PL2
0(I) (1J g) ,

where PL2
0(I) : L2(I) → L2

0(I) is the orthogonal projection. With the above notation and (1.9), (1.10), the
beam equation in (1.5) writes

∂2t ζ +A1ζ +A2∂tζ = PL2
0(I)π +BJ g.

We also consider the orthogonal projection on the space H defined by (1.11):

P : L2(Ω)×D(A
1/2
1 )× L2

0(I) → H.

We recall (see, for instance, [1, Proposition 3.1]) that the orthogonal of H in L2(Ω)×D(A
1/2
1 )× L2

0(I) is given
by

H⊥ =
{
(∇p, 0, PL2

0(I)p|Γ1
) ; p ∈ H1(Ω)

}
. (2.1)

Then we define the space

V :=
{
(u, η1, η2) ∈ H1(Ω)×D(A

3/4
1 )×D(A

1/4
1 ) ; u = η2e2 on Γ1, u = 0 on Γ0, div u = 0 in Ω

}
,

and the unbounded operator A associated with (1.5):

D(A) := V ∩
[
H2(Ω)×D(A1)×D(A

1/2
1 )

]
, A

 uη1
η2

 := P

 ∆u
η2

−A1η1 −A2η2

 .
It is shown (see, for instance, [1, Proposition 3.11]) that A is the infinitesimal generator of an analytic semigroup
on H. We have in particular that if F ∈ L2(0, T ;H), Φ0 ∈ V, then there exists a unique solution

Φ ∈ L2(0, T ;D(A)) ∩ C0([0, T ];V) ∩H1(0, T ;H)

to
dΦ

dt
= AΦ+ F in (0, T ), Φ(0) = Φ0 (2.2)
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and we have the estimate

∥Φ∥
L2(0,T ;H2(Ω)×D(A1)×D(A

1/2
1 ))

+ ∥Φ∥
H1(0,T ;L2(Ω)×D(A

1/2
1 )×L2(I))

≲ ∥F∥
L2(0,T ;L2(Ω)×D(A

1/2
1 )×L2(I)) +

∥∥Φ0
∥∥
V . (2.3)

Finally, we consider the control operator:

B
[
f
g

]
:= P

 1ωf
0

BJ g

 .
Using the above notation and (2.1), we can write (1.5) as

d

dt

 wζ
∂tζ

 = A

 wζ
∂tζ

+ B
[
f
g

]
in (0, T ),

 wζ
∂tζ

 (0) =

w0

ζ01
ζ02

 . (2.4)

We say that the above system is null-controllable in time T > 0 if for any
[
w0, ζ01 , ζ

0
2

]
∈ H, there exists a

control
[
f, g

]
∈ L2(0, T ;L2(ω)× L2(J )) such that the solution of the above system satisfies wζ

∂tζ

 (T ) = 0.

A classical result (see, for instance, [52, Theorem 11.2.1, p.357]) states that the null-controllability is equivalent

to the final-state observability of the adjoint system: there exists kT > 0 such that for any

u0η01
η02

 ∈ H, the

solution of
d

dt

 uη1
η2

 = A∗

 uη1
η2

 in (0, T ),

 uη1
η2

 (0) =

 u0

−η01
η02

 (2.5)

satisfies ∥∥∥∥∥∥
 uη1
η2

 (T )

∥∥∥∥∥∥
2

H

⩽ k2T

∫ T

0

∥∥∥∥∥∥B∗

 uη1
η2

 (t)

∥∥∥∥∥∥
2

L2(ω)×L2(J )

dt. (2.6)

One can show that

D(A∗) = D(A), A∗

 uη1
η2

 = P

 ∆u
−η2

A1η1 −A2η2


and

B∗

 uη1
η2

 =

[
u|ω
η2|J

]
.

Setting η = −η1 we see that (2.5) writes as (1.12) or in the following abstract form

d

dt

 u
η
∂tη

 = A

 u
η
∂tη

 in (0, T ),

 u
η
∂tη

 (0) =

u0η01
η02

 . (2.7)

The observability inequality (2.6) writes as (1.13).
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2.2 Weight functions for the Carleman estimates
We consider nonempty open subsets J0 ⋐ J and ω0 ⋐ ω and (see, for instance, [18, Lemma 1.1], [52, Theorem
9.4.3]) two smooth functions ψI and ψΩ satisfying

ψI > 0 in I, ψ′
I(x1) = 0 ⇒ x1 ∈ J0, (2.8)

ψΩ > 0 in Ω, ψΩ = 0 and ∂nψΩ = −1 on ∂Ω, ∇ψΩ(x) = 0 ⇒ x ∈ ω0, (2.9)

with
J0 ⋐ J , ω0 ⋐ ω. (2.10)

In fact, using our particular geometry, one can show directly the existence of such functions ψI and ψΩ. We
set ψ1(x1) := 2 + sin(x1) and we consider ψ2 ∈ C∞([0, 1]), odd, ψ2(x2) = x2 in a neighborhood of 0, and
ψ′
2(x2) = 0 ⇔ x2 = 1/2. We also consider θ ∈ C∞(R) with compact support in (0, 1) and such that θ ≡ 1 in a

neighborhood of 1/2. Then for ε > 0 small enough,

ψ̃Ω(x1, x2) = ψ2(x2) + εθ(x2)ψ1(x1)

satisfies ψ̃Ω > 0 in Ω, ψ̃Ω = 0 and ∂nψ̃Ω = −1 on ∂Ω and it has only two critical points: (π/2, 1/2) and
(−π/2, 1/2). By a change of variables on ψ1 and on ψ̃Ω (see, for instance, [52, Proposition 14.3.1]), we obtain
functions ψI and ψΩ satisfying (2.8) and (2.9).

We also denote by ℓ the function defined by

ℓ(t) := t(T − t). (2.11)

Let us consider Ψ := ∥ψI∥L∞(I) + ∥ψΩ∥L∞(Ω) and for λ ⩾ µ > 0, let us define the following functions

φ(t, x1, x2) :=
1

ℓ(t)2
(eλψΩ(x1,x2)+µψI(x1)+8λΨ − e10λΨ), ξ(t, x1, x2) :=

1

ℓ(t)2
eλψΩ(x1,x2)+µψI(x1)+8λΨ, (2.12)

φ0(t, x1) :=
1

ℓ(t)2
(eµψI(x1)+8λΨ − e10λΨ), ξ0(t, x1) :=

1

ℓ(t)2
eµψI(x1)+8λΨ. (2.13)

We also define for λ ⩾ µ > 0 the function

ψ(x1, x2) :=
µ

λ
ψI(x1) + ψΩ(x1, x2). (2.14)

2.3 Spatial truncation
In order to use pseudodifferential operators in the x1 variables, we consider that our functions are 2π-periodic
functions defined in the domains

Ω∞ := R× (0, 1), Γ∞
0 := R× {0}, Γ∞

1 := R× {1}.

In the adjoint system (1.12), we also replace the pressure p0 that satisfies (1.8) by a pressure p satisfying another
condition. More precisely, we consider ω1 an open set such that ω0 ⋐ ω1 ⋐ ω and we define

cp(t) := −
∫
ω1

p0(t, x) dx

and
p := p0 + cp. (2.15)

Then the pressure p verifies the condition∫
ω1

p(t, x) dx = 0 in (0, T ). (2.16)
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We consider χ∞ ∈ C∞(R; [0, 1]) with compact support and such that χ∞ ≡ 1 in [0, 2π]. We set

u∞ := χ∞u, p∞ := χ∞p, η∞ := χ∞η. (2.17)

Then we deduce from (1.12) that
∂tu

∞ −∆u∞ +∇p∞ = f (1) in (0, T )× Ω∞,

div u∞ = f (2) in (0, T )× Ω∞,
u∞ = 0 on (0, T )× Γ∞

0 ,
u∞ = ∂tη

∞e2 on (0, T )× Γ∞
1 ,

(2.18)

and
∆p∞ = f (3) in (0, T )× Ω∞, (2.19)

where

f (1) := − (χ∞)
′′
u− 2 (χ∞)

′
∂x1

u+ (χ∞)
′
pe1, f (2) := (χ∞)

′
u1, f (3) = (χ∞)′′p+ 2(χ∞)′∂x1

p. (2.20)

2.4 Pseudodifferential operators
We consider a parameter τ ⩾ 1 and an order function

Λτ (k) :=
√
τ2 + k2 (k ∈ R), (2.21)

where k corresponds to the Fourier variable associated with x1. For m ∈ R, we denote by Smτ the space of
complex smooth functions a = a(x1, k, τ) defined on R× R× [1,∞) and such that for all α, β ∈ N there exists
Cα,β > 0 ∣∣∣∂αx1

∂βk a(x1, k, τ)
∣∣∣ ⩽ Cα,βΛ

m−β
τ (k) ((x1, k, τ) ∈ R× R× [1,∞)). (2.22)

For instance, we have Λmτ ∈ Smτ and for any C ∈ R, the function

(k, τ) 7→ τ2 − Ck2

τ2 + k2

is in S0
τ . We also recall the following classical lemma (see, for instance, [25, Proposition 2.3] or [22, p.73, Lemma

18.1.10] in the classical setting)

Lemma 2.1. If a ∈ S0
τ and χ0 ∈ C∞(R). Then χ0(a) ∈ S0

τ .

From a ∈ Smτ , we can define the following operator on the Schwartz space on R :

[Op(a)u] (x1) :=
1

2π

∫∫
R2

eik(x1−y1)a(x1, k, τ)u(y1) dy1dk.

We can also extend this operator to the Schwartz space on [0, T ]× R× [0, 1] by a similar formula:

[Op(a)u] (t, x1, x2) :=
1

2π

∫∫
R2

eik(x1−y1)a(x1, k, τ)u(t, y1, x2) dy1dk.

From symbolic calculus, we have the following results (see, for instance, [25, pp.27-28, Theorem 2.22 and
Corollary 2.23])

Theorem 2.2. Let m,m′ ∈ R and let a ∈ Smτ , b ∈ Sm
′

τ . Then there exist c ∈ Sm+m′

τ and d ∈ Sm+m′−1
τ such

that
Op(a) ◦Op(b) = Op(c), [Op(a),Op(b)] = Op(d).
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We can extend the operator associated with a symbol of order m to Sobolev spaces. For instance we have
the following result (see [25, p.29, Theorem 2.26])

Theorem 2.3. Let m,m′ ∈ R, and let a ∈ Smτ . Then, Op(a) : Hm+m′
(R) → Hm′

(R) and if m,m′ ∈ N, we
have ∑

i+j⩽m′

τ2i
∥∥∂jx1

Op(a)u
∥∥2
L2(R) ≲

∑
i+j⩽m+m′

τ2i
∥∥∂jx1

u
∥∥2
L2(R) .

In what follows, we assume that the parameter τ is related to functions defined in Section 2.2 through the
formula

τ := τ(t) =
sλe8λΨ

ℓ2(t)
. (2.23)

In particular, τ is a function of time and there exist s0 > 0 and λ0 > 0 such that if s ⩾ s0T
4 and λ ⩾ λ0, then

τ ⩾
τ

λ
⩾ 1. (2.24)

Remark 2.4. Due to (2.23), the symbols in Smτ depends on the time variable through the parameter τ . The
continuity estimates of Theorem 2.3 are uniform with respect to τ , and thus with respect to the time variable if
it only appears in the parameter τ . In what follows, some symbols may depend on time, but not as a function
of τ , this occurs for instance when considering ∂tτ . In that case, we always decompose such symbols in terms
of the form b(t)a(x1, k, τ) where b is a bounded function of time, and a ∈ Smτ .

An important example of symbol used in what follows is a function of the form

χ(τ, k) := χ0

(
τ2 − Ck2

τ2 + k2

)
,

where C is a constant and χ0 ∈ C∞(R). From Lemma 2.1, we have that χ ∈ S0
τ and one can check that

[∂x1
,Op(χ)] = [∂x2

,Op(χ)] = 0.

Moreover, we have the following result on the time derivative of χ:

Lemma 2.5. Let χ be defined as above. Then

∂tχ ∈ ℓ′

(λs)1/2
τ

5
2S−2

τ .

Proof. By standard computations and (2.23),

∂tχ(τ, k) = χ′
0

(
τ2 − Ck2

τ2 + k2

)
2 (C + 1) k2τ∂tτ

(τ2 + k2)
2 , ∂tτ = −2ℓ′

sλe8λΨ

ℓ3
. (2.25)

We have
sλe8λΨ

ℓ3
⩽

τ3/2

(sλ)
1/2

so that using Lemma 2.1 and Theorem 2.2, we deduce the result.

10



3 Carleman estimates
In this section, we show a Carleman estimate for the solutions of (1.6). Using the weights introduced in
Section 2.2, we define the following weighted integrals:

I1(s, λ, η) := λ

∫∫
(0,T )×I

e2sφ0
(
s10ξ100 |η|2 + s8ξ80 |∂x1

η|2 + s6ξ60
(
|∂2x1

η|2 + |∂tη|2
))

dt dx1

+ λ

∫∫
(0,T )×I

e2sφ0s4ξ40
(
|∂3x1

η|2 + |∂x1
∂tη|2

)
dt dx1

+ λ

∫∫
(0,T )×I

e2sφ0s2ξ20
(
|∂4x1

η|2 + |∂t∂2x1
η|2 + |∂2t η|2

)
dt dx1

+ λ

∫∫
(0,T )×I

e2sφ0

(∣∣∂5x1
η
∣∣2 + |∂2t ∂x1η|2 + |∂t∂3x1

η|2
)
dt dx1, (3.1)

I2(s, λ, u) :=

∫∫
(0,T )×Ω

λ2
(
|∇2u|2 + (∂tu)

2
)
e2sφ dt dx+

∫∫
(0,T )×Ω

s2λ4ξ2e2sφ|∇u|2 dt dx

+

∫∫
(0,T )×Ω

s4λ6ξ4e2sφ|u|2 dt dx, (3.2)

and

I3(s, λ, p
∞) :=

∫∫
(0,T )×Ω∞

s3λ4ξ3e2sφ|p∞|2 dt dx+

∫∫
(0,T )×Ω∞

sλ2ξe2sφ|∇p∞|2 dt dx

+

∫∫
(0,T )×∂Ω∞

s3λ3ξ30e
2sφ0 |p∞|2 dt dx1 +

∫∫
(0,T )×∂Ω∞

sλξ0e
2sφ0 |∂x1

p∞|2 dt dx1. (3.3)

Remark 3.1. The above quantities depend also on µ but since we will fix the value of µ = µ0 after Section 3.1,
we suppress reference to it in the notation.

For µ0 > 1, we set
K+ := eµ0 maxψI , K− := eµ0 minψI . (3.4)

In particular, with the definition (2.13) of ξ0 and the definition (2.23) of τ , we have

K−τ ⩽ sλξ0 ⩽ K+τ. (3.5)

Using Lemma 2.1, we can define the following symbol of order 0:

χ(τ, k) := χ0

τ2 − 4K+

K3
−
k2

τ2 + k2

 ∈ S0
τ , with χ0 ∈ C∞(R; [0, 1]) such that χ0 =

{
1 in [3/4,∞)

0 in (−∞, 1/2]
. (3.6)

The main result of this section is stated below:

Proposition 3.2. Assume J0 ⋐ J1 ⋐ J and ω0 ⋐ ω1 ⋐ ω. There exist µ0 > 0, λ0 > 0 and s0 such that for
µ = µ0, λ ⩾ λ0 and s ⩾ s0(T

2 + T 4), any smooth solution [u, p0, η] of (1.6) satisfies

I1(s, λ, η) + I2(s, λ, u) + I3(s, λ, p
∞) ≲ λ

∫∫
(0,T )×J1

e2sφ0
(
s10ξ100 |η|2 + s2ξ20 |∂2t η|2

)
dt dx1

+

∫∫
(0,T )×ω1

e2sφ
(
s4λ6ξ4|u|2 dt dx+ s3λ4ξ3|p∞|2

)
dt dx

+

∫∫
(0,T )×∂Ω∞

τ |∂x1
Op(1− χ) [esφ0p∞]|2 dt dx1, (3.7)

where p∞ is given by (2.15) and (2.17).
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In order to prove Proposition 3.2, we first combine a Carleman estimate for the fluid velocity and a Carleman
estimate for the elastic deformation (see Section 3.1 and Section 3.2). Both estimates contain pressure terms in
the right-hand side and to estimates them, we perform a Carleman estimate for the pressure in Section 3.3. In
this last estimate, we need to put in the right-hand side the trace of the pressure at the boundary, microlocalized
in the high frequency regime.

3.1 A Carleman estimate for the elastic deformation
In this section, we obtain a Carleman estimate for the elastic deformation, mainly based on the results in [40].
This is the only part of the work where µ ⩾ µ0, after this, we will fix µ = µ0 in the weights φ, ξ, φ0, ξ0. To
avoid introducing many notations, we keep the same notation µ0, s0, λ0 during the proofs, but their values may
change from one appearance to another.

First, we deduce from the definitions (2.13), the existence of µ0 such that for λ ⩾ µ ⩾ µ0, t ∈ [0, T ] and
x1 ∈ I, and α ⩾ 0,∣∣∂αx1

φ0

∣∣+∣∣∂αx1
ξ0
∣∣ ≲ µαξ0 (k ⩾ 1),

∣∣∂t∂αx1
φ0

∣∣+∣∣∂t∂αx1
ξ0
∣∣ ≲ Tµαξ

3/2
0 ,

∣∣∂2t ∂αx1
φ0

∣∣+∣∣∂2t ∂αx1
ξ0
∣∣ ≲ T 2µαξ20 . (3.8)

Moreover, there exists µ0 such that for λ ⩾ µ ⩾ µ0, for t ∈ [0, T ] and for x1 ∈ I \ J0,

µξ0 ≲ |∂x1
φ0| , µ2ξ0 ≲ ∂2x1

φ0. (3.9)

With these properties, we can obtain the following result which is proven in [40]. More precisely, the Carleman
estimate below is obtained in [40] with slightly different weights but the author only uses the above properties
in his proof. For sake of completeness, we give in Appendix A.1 a sketch of the corresponding proof.

Theorem 3.3. Assume r ∈ R and J0 ⋐ J1 ⋐ J . There exist constants s0 > 0 and µ0 > 0 such that for any
smooth function η, for any s ⩾ s0(T

2 + T 4), and for any λ ⩾ µ ⩾ µ0, we have∫∫
(0,T )×I

e2sφ0
(
s2r+7µ2r+8ξ2r+7

0 |η|2 + s2r+5µ2r+6ξ2r+5
0 |∂x1

η|2
)
dt dx1

+

∫∫
(0,T )×I

e2sφ0s2r+3µ2r+4ξ2r+3
0

(
|∂2x1

η|2 + |∂tη|2
)
dt dx1

+

∫∫
(0,T )×I

e2sφ0s2r+1µ2r+2ξ2r+1
0

(
|∂3x1

η|2 + |∂t∂x1
η|2
)
dt dx1

+

∫∫
(0,T )×I

e2sφ0s2r−1µ2rξ2r−1
0

(∣∣∂4x1
η
∣∣2 + |∂2t η|2 + |∂t∂2x1

η|2
)
dt dx1

≲
∫∫

(0,T )×I
e2sφ0s2rµ2rξ2r0

∣∣(∂2t + ∂4x1
− ∂2x1

− ∂t∂
2
x1
)η
∣∣2 dt dx1

+

∫∫
(0,T )×J1

s2r+7µ2r+8ξ2r+7
0 e2sφ0 |η|2 dt dx1. (3.10)

As a corollary, we have the following result

Corollary 3.4. Assume J0 ⋐ J1 ⋐ J . There exist constants s0 > 0 and µ0 > 0 such that for any smooth
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function η, for any s ⩾ s0(T
2 + T 4), and for any λ ⩾ µ ⩾ µ0, we have∫∫

(0,T )×I
e2sφ0

(
s10µ11ξ100 |η|2 + s8µ9ξ80 |∂x1η|2 + s6µ7ξ60

(
|∂2x1

η|2 + |∂tη|2
))

dt dx1

+

∫∫
(0,T )×I

e2sφ0s4µ5ξ40
(
|∂3x1

η|2 + |∂x1∂tη|2
)
dt dx1

+

∫∫
(0,T )×I

e2sφ0

(
s2µ3ξ20

(
|∂4x1

η|2 + |∂t∂2x1
η|2 + |∂2t η|2

)
+ µ

(∣∣∂5x1
η
∣∣2 + |∂2t ∂x1

η|2 + |∂t∂3x1
η|2
))

dt dx1

≲
∫∫

(0,T )×I
e2sφ0sµξ0|∂x1

(∂2t − ∂2x1
+ ∂4x1

− ∂t∂
2
x1
)η|2 dt dx1

+

∫∫
(0,T )×J1

e2sφ0
(
s10µ11ξ100 |η|2 + s2µ3ξ20 |∂2t η|2

)
dt dx1. (3.11)

Proof. We first apply Theorem 3.3 to ∂x1η with r = 1/2 and with an open set J2 such that J0 ⋐ J2 ⋐ J1 :∫∫
(0,T )×I

e2sφ0
(
s8µ9ξ80 |∂x1

η|2 + s6µ7ξ60 |∂2x1
η|2 + s4µ5ξ40

(
|∂3x1

η|2 + |∂t∂x1
η|2
))

dt dx1

+

∫∫
(0,T )×I

e2sφ0

(
s2µ3ξ20

(
|∂4x1

η|2 + |∂t∂2x1
η|2
)
+ µ

(∣∣∂5x1
η
∣∣2 + |∂2t ∂x1

η|2 + |∂t∂3x1
η|2
))

dt dx1

≲
∫∫

(0,T )×I
e2sφ0sµξ0

∣∣∂x1(∂
2
t + ∂4x1

− ∂2x1
− ∂t∂

2
x1
)η
∣∣2 dt dx1

+

∫∫
(0,T )×J2

s8µ9ξ80e
2sφ0 |∂x1η|2 dt dx1. (3.12)

Then, we use a Carleman estimate for the gradient operator (see, for instance, [14, Lemma 3]): there exists
s0 > 0 such that for any smooth function ζ, and for any s ⩾ s0T

4,∫∫
(0,T )×I

sr+2µr+3ξr+2
0 e2sφ0ζ2 dt dx1 ≲

∫∫
(0,T )×J2

sr+2µr+3ξr+2
0 e2sφ0ζ2 dt dx1

+

∫∫
(0,T )×I

srµr+1ξr0e
2sφ0(∂x1

ζ)2 dt dx1.

This Carleman estimate, combined with (3.12), yields that for s ⩾ s0(T
2 + T 4),∫∫

(0,T )×I
e2sφ0

(
s10µ11ξ100 |η|2 + s8µ9ξ80 |∂x1

η|2 + s6µ7ξ60
(
|∂2x1

η|2 + |∂tη|2
))

dt dx1

+

∫∫
(0,T )×I

e2sφ0
(
s4µ5ξ40

(
|∂3x1

η|2 + |∂x1
∂tη|2

))
dt dx1

+

∫∫
(0,T )×I

e2sφ0

(
s2µ3ξ20

(
|∂4x1

η|2 + |∂t∂2x1
η|2 + |∂2t η|2

)
+ µ

(∣∣∂5x1
η
∣∣2 + |∂2t ∂x1

η|2 + |∂t∂3x1
η|2
))

dt dx1

≲
∫∫

(0,T )×I
e2sφ0sµξ0|∂x1

(∂2t − ∂2x1
+ ∂4x1

− ∂t∂
2
x1
)η|2 dt dx1

+

∫∫
(0,T )×J2

e2sφ0
(
s10µ11ξ100 |η|2 + s8µ9ξ80 |∂x1

η|2 + s6µ7ξ60 |∂tη|2 + s2µ3ξ20 |∂2t η|2
)
dt dx1. (3.13)

Then proceeding as in [40], one can absorb the local terms in ∂x1
η and in ∂tη by using a cut-off function and

integrations by parts and we deduce the result.
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3.2 A Carleman estimate for the velocity
From now on, we take µ = µ0 as in Theorem 3.3 and take λ ⩾ µ0. The constants that follow in the article may
depend on µ0. We have the following standard Carleman estimate for the heat equation (see, for instance, [18]
or [16]). For sake of completeness, we also give a sketch of the proof of the following result in Appendix A.2.

Theorem 3.5. Assume µ = µ0 and ω0 ⋐ ω1 ⋐ ω. There exist s0 > 0 and λ0 > 0 such that for any λ ⩾ λ0
s ⩾ s0(T

2 + T 4), and for any smooth function u such that

u = 0 on (0, T )× Γ0, u1 = 0 on (0, T )× Γ1,
∂u2
∂n

= 0 on (0, T )× Γ1,

we have∫∫
(0,T )×Ω

(
|∇2u|2 + (∂tu)

2
)
e2sφ dt dx+

∫∫
(0,T )×Ω

s2λ2ξ2e2sφ|∇u|2 dt dx+

∫∫
(0,T )×Ω

s4λ4ξ4e2sφ|u|2 dt dx

≲
∫∫

(0,T )×Ω

sξe2sφ |(∂t −∆)u|2 dt dx+

∫∫
(0,T )×ω1

s4λ4ξ4e2sφ|u|2 dt dx. (3.14)

3.3 A Carleman estimate for the pressure
In order to obtain a Carleman estimate for the pressure, we use that from (1.12), the pressure p0 is harmonic in
Ω. We recall that p∞ is defined from p0 by (2.15) and (2.17). In particular, it satisfies the Laplace equation(2.18)
but without any explicit boundary condition. Thus in our Carleman estimate, we keep in the right-hand side a
boundary term microlocalized in a high frequency regime (represented by supp(1−χ), with χ defined by (3.6)).
We recall that τ is defined in (2.23).

Proposition 3.6. Assume µ = µ0 and ω0 ⋐ ω1 ⋐ ω. There exist s0 > 0 λ0 > 0 and C > 0 such that for any
s ⩾ s0(T

2 + T 4), λ ⩾ λ0 and for any smooth function p, the function p∞ := pχ∞ satisfies∫∫
(0,T )×Ω∞

s3λ4ξ3e2sφ|p∞|2 dt dx+

∫∫
(0,T )×Ω∞

sλ2ξe2sφ|∇p∞|2 dt dx

+

∫∫
(0,T )×∂Ω∞

s3λ3ξ30e
2sφ0 |p∞|2 dt dx1 +

∫∫
(0,T )×∂Ω∞

sλξ0e
2sφ0 |∂x1

p∞|2 dt dx1

⩽ C

(∫∫
(0,T )×Ω∞

e2sφ|∆p∞|2 dt dx+

∫∫
(0,T )×ω1

s3λ4ξ3e2sφ|p∞|2 dt dx

+

∫∫
(0,T )×∂Ω∞

τ |∂x1 Op(1− χ) [esφ0p∞]|2 dt dx1

)
. (3.15)

Proof. We start by a standard Carleman estimate for p∞ in Ω∞, using that χ∞ has a compact support. First,
we set

q = esφp∞

and we perform standard computations (see, for instance, [16], [31], [25, pp.106–117]), to obtain the existence
of positive constants c, C, s0 such that for s ⩾ s0(T

2 + T 4),

c

∫∫
(0,T )×Ω∞

(
s3λ4ξ3q2 + sλ2ξ |∇q|2 + 1

sξ
|∆q|2

)
dt dx

+

∫∫
(0,T )×∂Ω∞

(
−s3λ3ξ3 |∇ψ|2 ∂ψ

∂n
q2 − 2sλ2ξ |∇ψ|2 ∂q

∂n
q − 2sλξ∇ψ · ∇q ∂q

∂n
+ sλξ

∂ψ

∂n
|∇q|2

)
dt dx1

⩽ C

(∫∫
(0,T )×Ω∞

(−∆p)
2
e2sφ dt dx+

∫∫
(0,T )×ω1

s3λ4ξ3q2 dx

)
. (3.16)
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From (2.14) and (2.9), we have
∂ψ

∂x1
=
µ0

λ
ψ′
I ,

∂ψ

∂n
= −1 on ∂Ω∞.

Thus there exist λ0 > 0 and s0 > 0 such that for λ ⩾ λ0, s ⩾ s0(T
2 + T 4), we have on (0, T )× ∂Ω,

− s3λ3ξ3 |∇ψ|2 ∂ψ
∂n

q2 − 2sλ2ξ |∇ψ|2 ∂q
∂n

q − 2sλξ∇ψ · ∇q ∂q
∂n

+ sλξ
∂ψ

∂n
|∇q|2

= s3λ3ξ3 |∇ψ|2 q2 + sλξ

(
∂q

∂n

)2

− sλξ

(
∂q

∂x1

)2

− 2sλ2ξ |∇ψ|2 ∂q
∂n

q − 2sµ0ξψ
′
I
∂q

∂x1

∂q

∂n

⩾
1

2
s3λ3ξ30q

2 +
1

2
sλξ0

(
∂q

∂n

)2

− 2sλξ0

(
∂q

∂x1

)2

. (3.17)

Let us denote by q̂ the Fourier transform of q in the x1 direction. Then by using the Plancherel theorem, there
exists c > 0 such that∫∫

(0,T )×∂Ω∞

(
1

2
s3λ3ξ30q

2 − 2sλξ0

(
∂q

∂x1

)2
)
dx1 dt ⩾ c

∫∫
(0,T )×∂Ω∞

τ
(
K3

−τ
2 − 4K+k

2
)
|q̂|2 dk dt

and thus, there exist two constant c, C > 0 such that∫∫
(0,T )×∂Ω∞

(
1

2
s3λ3ξ30q

2 − 2sλξ0

(
∂q

∂x1

)2
)
dx1 dt+ C

∫∫
(0,T )×∂Ω∞

(1− χ)2τk2 |q̂|2 dk dt

⩾ c

∫∫
(0,T )×∂Ω∞

τ
(
τ2 + k2

)
|q̂|2 dk dt. (3.18)

Using again the Plancherel theorem, and combining the above relation with (3.17) and with (3.16), we deduce
the result.

3.4 Gathering the Carleman estimates
We are now in a position to prove Proposition 3.2

Proof. Assume that (u, p0, η) is the solution of (1.12). We consider p defined from p0 by (2.15) and p∞ defined
from p by (2.17). We apply Corollary 3.4, Theorem 3.5 and Proposition 3.6 and using that ∇p0 = ∇p, we
obtain the following relations for I1, I2 and I3 (defined by (3.1)–(3.3)):

I1(s, λ, η) ≲
∫∫

(0,T )×I
e2sφ0sλξ0|∂x1p|2 dt dx1 + λ

∫∫
(0,T )×J1

e2sφ0
(
s10ξ100 |η|2 + s2ξ20 |∂2t η|2

)
dt dx1, (3.19)

I2(s, λ, u) ≲
∫∫

(0,T )×Ω

sλ2ξe2sφ |∇p|2 dt dx+

∫∫
(0,T )×ω1

s4λ6ξ4e2sφ|u|2 dt dx, (3.20)

and

I3(s, λ, p
∞) ≲

∫∫
(0,T )×Ω∞

e2sφ|f (3)|2 dt dx+

∫∫
(0,T )×ω1

s3λ4ξ3e2sφ|p∞|2 dt dx

+

∫∫
(0,T )×∂Ω∞

τ |∂x1 Op(1− χ) [esφ0p∞]|2 dt dx1. (3.21)

Then, we can estimate f (3) by using (2.20) and we deduce that∫∫
(0,T )×Ω∞

e2sφ|f (3)|2 dt dx ⩽ Cλ−2I3(s, λ, p
∞).

Using that χ∞ ≡ 1 in (0, 2π) × (0, 1), and taking λ ⩾ λ0 with λ0 > 0 sufficiently large, we can combine the
three Carleman estimates (3.19)–(3.21) and the above relation to obtain (3.7).
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4 High frequency estimates
In this section, we eliminate the last term in (3.7) by showing high frequency estimates for u and p. The method
used here is the same as the one used in [11]. We conjugate the system (2.18) with esφ0 , using that the spatial
derivatives of φ0 involve only powers of µ0 that is fixed, instead of powers of λ for the spatial derivatives of φ.
This allows us to perform energy estimates of the Stokes system, by considering all the terms coming from the
conjugaison as lower order terms in the high frequency regime.

4.1 Estimates from the Stokes system
We recall that u∞, p∞ and η∞ are defined in (2.17) by using the function χ∞. We introduce

χ̃∞ ∈ C∞
0 (R, [0, 1]), χ̃∞ ≡ 1 in suppχ∞. (4.1)

Then, we set
ǔ := esφ0u∞, p̌ := esφ0p∞, η̌ := esφ0η∞, (4.2)

ũ := Op(1− χ)ǔ, p̃ := Op(1− χ)p̌, η̃ := Op(1− χ)η̌, (4.3)

ũ∞ := χ̃∞ Op(1− χ)ǔ, p̃∞ := χ̃∞ Op(1− χ)p̌, η̃∞ := χ̃∞ Op(1− χ)η̌. (4.4)

Our aim is to estimate p̃ (see (3.7)) but we need to use χ̃∞ to work on a bounded domain and to apply the
elliptic regularity of the Stokes system. In order to estimate p̃, we use that, with our choice of truncation
functions, we have the relations

p̃ = p̃∞ + [1− χ̃∞,Op(1− χ)]p̌.

Then, using the commutator property in Theorem 2.2, we can estimate p̃ from p̃∞ and p̌.
Using (3.5), (2.12) and (2.13), we have

τ ≲ sλξ0, τ ≲ sλξ.

This leads us to define (see (3.1)–(3.3))

I4(s, λ, η̌) :=

∫∫
(0,T )×I

(
λ−9τ10|η̌|2 + λ−7τ8|∂x1

η̌|2 + λ−5τ6
(
|∂2x1

η̌|2 + |∂tη̌|2
))

dt dx1

+

∫∫
(0,T )×I

(
λ−3τ4

(
|∂3x1

η̌|2 + |∂x1∂tη̌|2
))

dt dx1

+

∫∫
(0,T )×I

(
λ−1τ2

(
|∂4x1

η̌|2 + |∂t∂2x1
η̌|2 + |∂2t η̌|2

)
+ λ

(∣∣∂5x1
η̌
∣∣2 + |∂2t ∂x1 η̌|2 + |∂t∂3x1

η̌|2
))

dt dx1, (4.5)

I5(s, λ, ǔ) := λ2
∫∫

(0,T )×Ω

(
|∇2ǔ|2 + (∂tǔ)

2 + τ2|∇ǔ|2 + τ4|ǔ|2
)
dt dx, (4.6)

and

I6(s, λ, p̌) := λ

∫∫
(0,T )×Ω∞

(
τ3|p̌|2 + τ |∇p̌|2

)
dt dx+

∫∫
(0,T )×∂Ω∞

(
τ3 |p̌|2 + τ |∂x1 p̌|

2
)
dt dx1. (4.7)

Noting that
I4(s, λ, η̌) ≲ I1(s, λ, η), I5(s, λ, ǔ) ≲ I2(s, λ, u), I6(s, λ, p̌) ≲ I3(s, λ, p

∞),

we deduce from (3.7) that

I4(s, λ, η̌) + I5(s, λ, ǔ) + I6(s, λ, p̌) ≲ λ

∫∫
(0,T )×J1

e2sφ0
(
s10ξ100 |η|2 + s2ξ20 |∂2t η|2

)
dt dx1

+

∫∫
(0,T )×ω1

e2sφ
(
s4λ6ξ4|u|2 dt dx+ s3λ4ξ3|p∞|2

)
dt dx+

∫∫
(0,T )×∂Ω∞

τ |∂x1
p̃|2 dt dx1. (4.8)

The aim of this section is to show the following result:
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Proposition 4.1. There exist λ0 > 0 and s0 > 0 such that for λ ⩾ λ0 and s ⩾ s0(T
2 + T 4), any smooth

solutions [u, p0, η] of (1.6) satisfies

I4(s, λ, η̌) + I5(s, λ, ǔ) ≲ λ

∫∫
(0,T )×J1

e2sφ0
(
s10ξ100 |η|2 + s2ξ20 |∂2t η|2

)
dt dx1

+

∫∫
(0,T )×ω1

e2sφ
(
s4λ6ξ4|u|2 dt dx+ s3λ4ξ3|p|2

)
dt dx, (4.9)

where η̌ and ǔ are defined by (4.2) and p is defined by (2.15).

Before proving Proposition 4.1, let us first introduce some preliminary results and notation. Recalling that
χ is defined in (3.6), we deduce that if χ ̸= 1 then

τ ≲ |k|. (4.10)

This yields the following semi-classical trace inequality:

Lemma 4.2. There exists s0 > 0 such that for any s ⩾ s0T
4 and for any f ∈ H1(Ω∞),

τ1/2
∥∥Op(1− χ)f|∂Ω∞

∥∥
L2(∂Ω∞)

≲ ∥∇Op(1− χ)f∥L2(Ω∞) .

Proof. We write g := Op(1− χ)f and

g2(x1, 1) = g2(x1, x2) + 2

∫ 1

x2

g(x1, y2)∂x2
g(x1, y2) dy2

so that

τ

∫
Γ∞
1

g(x1, 1)
2 dx1 ⩽ τ ∥g∥2L2(Ω∞) + 2τ ∥g∥L2(Ω∞) ∥∂x2g∥L2(Ω∞) ⩽ (τ + 4τ2) ∥g∥2L2(Ω∞) + ∥∂x2g∥

2
L2(Ω∞)

and we conclude by using (4.10).

In particular, using Lemma 4.2, we can estimate the last term of (4.8) as follows:∫∫
(0,T )×∂Ω∞

τ
∣∣∂x1

p̃|∂Ω∞

∣∣2 dt dx1 ≲ ∥∇∂x1
p̃∥2L2(0,T ;L2(Ω∞)) . (4.11)

We have also the following result that will allows us to estimate boundary terms:

Lemma 4.3. There exists s0 > 0 such that for any s ⩾ s0T
4 and for any f ∈ H2(R),

∥Op(1− χ)f∥H3/2(R) ≲ τ−1/2
∥∥Op(1− χ)∂2x1

f
∥∥
L2(R) .

Proof. Denoting by f̂ the Fourier transform of f , we have

∥Op(1− χ)f∥2H3/2(R) =

∫
R
(1 + k2)3/2(1− χ(τ, k))2

∣∣∣f̂(k)∣∣∣2 dk

and by using (4.10), we deduce the result.

In order to estimate p̃ (and prove Proposition 4.1), we consider the system verified by ũ∞ and p̃∞: from
(2.18), we have 

∂tũ
∞ −∆ũ∞ +∇p̃∞ = f̃ (1) in (0, T )× Ω∞,

div ũ∞ = f̃ (2) in (0, T )× Ω∞,
ũ∞ = 0 on (0, T )× Γ∞

0 ,

ũ∞ = h̃e2 on (0, T )× Γ∞
1 ,

ũ∞(0, ·) = ũ∞(T, ·) = 0 in Ω∞,

(4.12)
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where

f̃ (1) = χ̃∞ Op(1− χ)esφ0f (1) + (s∂tφ0)ũ
∞ − s

(
∂2x1

φ0

)
ũ∞ + s2 (∂x1φ0)

2
ũ∞ − 2s∂x1φ0∂x1 ũ

∞ + s∇φ0p̃
∞

+
[
−(s∂tφ0) + s

(
∂2x1

φ0

)
− s2 (∂x1φ0)

2
+ 2s∂x1φ0∂x1 , χ̃

∞ Op(1− χ)
]
ǔ

+ [−s∇φ0, χ̃
∞ Op(1− χ)]p̌− χ̃∞ Op(∂tχ)ǔ− (χ̃∞)

′′
ũ− 2 (χ̃∞)

′
∂x1

ũ+ (χ̃∞)
′
p̃e1, (4.13)

f̃ (2) = χ̃∞ Op(1− χ)(esφ0f (2)) + s∂x1
φ0ũ

∞
1 − [s∂x1

φ0, χ̃
∞ Op(1− χ)]ǔ1 + (χ̃∞)

′
ũ1, (4.14)

h̃ := χ̃∞ Op(1− χ)(∂tη̌ − s (∂tφ0) η̌). (4.15)

We also define

Ĩ(ũ, p̃) := ∥∂t∂x1 ũ∥
2
L2(0,T ;L2(Ω∞)) + ∥∂x1 ũ∥

2
L2(0,T ;H2(Ω∞)) + ∥∇∂x1 p̃∥

2
L2(0,T ;L2(Ω∞))

+ ∥τ∂tũ∥2L2(0,T ;L2(Ω∞)) +
∥∥τ3ũ∥∥2

L2(0,T ;L2(Ω∞))
+
∥∥τ2∂x1

ũ
∥∥2
L2(0,T ;L2(Ω∞))

+
∥∥τ∂2x1

ũ
∥∥2
L2(0,T ;L2(Ω∞))

+ ∥τ∂x1∂x2 ũ∥
2
L2(0,T ;L2(Ω∞)) +

∥∥τ∂2x2
ũ
∥∥2
L2(0,T ;L2(Ω∞))

+
∥∥τ2∂x2 ũ

∥∥2
L2(0,T ;L2(Ω∞))

+
∥∥τ2p̃∥∥2

L2(0,T ;L2(Ω∞))
+ ∥τ∇p̃∥2L2(0,T ;L2(Ω∞)) . (4.16)

From relation (4.10), we have

Ĩ(ũ, p̃) ≲ ∥∂t∂x1
ũ∥2L2(0,T ;L2(Ω∞)) + ∥∂x1

ũ∥2L2(0,T ;H2(Ω∞)) + ∥∇∂x1
p̃∥2L2(0,T ;L2(Ω∞)) . (4.17)

We have the following a priori estimate on (4.12).

Proposition 4.4. There exist λ0 > 0 and s0 > 0 such that for λ ⩾ λ0 and s ⩾ s0(T
2 + T 4), any smooth

solutions [u, p0, η] of (1.6) satisfies

Ĩ(ũ, p̃) ≲
∥∥∥∂x1

f̃ (1)
∥∥∥2
L2(0,T ;L2(Ω∞))

+
∥∥∥∂x1

f̃ (2)
∥∥∥2
L2(0,T ;H1(Ω∞))

+
∥∥∥∂tf̃ (2)∥∥∥2

L2(0,T ;L2(Ω∞))

+
∥∥∥∂x1

h̃
∥∥∥2
L2(0,T ;H3/2(Γ∞

1 ))
+
∥∥∥τ−1/2∂t∂x1

h̃
∥∥∥2
L2(0,T ;L2(Γ∞

1 ))
+ λ−1 (I5(s, λ, ǔ) + I6(s, λ, p̌)) . (4.18)

Proof. First, we differentiate (4.12) with respect to x1:
∂t∂x1 ũ

∞ −∆∂x1 ũ
∞ +∇∂x1 p̃

∞ = ∂x1 f̃
(1) in (0, T )× Ω∞,

div ∂x1 ũ
∞ = ∂x1 f̃

(2) in (0, T )× Ω∞,
∂x1 ũ

∞ = 0 on (0, T )× Γ∞
0 ,

∂x1 ũ
∞ = ∂x1 h̃e2 on (0, T )× Γ∞

1 ,
∂x1

ũ∞(0, ·) = ∂x1
ũ∞(T, ·) = 0 in Ω∞.

(4.19)

Let us consider a bounded smooth domain Ω♮ ⊂ Ω∞ containing supp χ̃∞ × (0, 1). Let us also write

h♮ =

{
∂x1

ũ∞ = 0 on (0, T )×
(
∂Ω♮ \ Γ∞

1

)
,

∂x1
ũ∞ = ∂x1

h̃e2 on (0, T )×
(
∂Ω♮ ∩ Γ∞

1

)
.

Using [35, p.33, Theorem 7.5], there exists H ∈ H2(
{
(x1, x2) ∈ R2 ; x2 < 1

}
) such that H = ∂x1

h̃ on Γ∞
1 .

Multiplying H by an adequate cut-off function we deduce the existence of H♮ ∈ H2(Ω♮) such that H♮ = h♮ on
∂Ω♮. Therefore h♮ ∈ H3/2(∂Ω♮) and we have the estimate∥∥h♮∥∥

H3/2(∂Ω♮)
≲
∥∥∥∂x1

h̃
∥∥∥
H3/2(Γ∞

1 )
.
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With the above notation, we deduce from (4.19) that (∂x1 ũ
∞, ∂x1 p̃

∞) satisfies a Stokes system in Ω♮:
−∆∂x1

ũ∞ +∇∂x1
p̃∞ = ∂x1

f̃ (1) − ∂t∂x1
ũ∞ in (0, T )× Ω♮,

div ∂x1
ũ∞ = ∂x1

f̃ (2) in (0, T )× Ω♮,

∂x1
ũ∞ = h♮ on (0, T )× ∂Ω♮.

(4.20)

Using the elliptic regularity of the Stokes system (see, for instance, [49, Proposition 2.2 p.33]) we obtain

∥∂x1
ũ∞∥2L2(0,T ;H2(Ω∞)) + ∥∇∂x1

p̃∞∥2L2(0,T ;L2(Ω∞)) ≲
∥∥∥∂x1

f̃ (1)
∥∥∥2
L2(0,T ;L2(Ω∞))

+ ∥∂t∂x1
ũ∞∥2L2(0,T ;L2(Ω∞)) +

∥∥∥∂x1
f̃ (2)

∥∥∥2
L2(0,T ;H1(Ω∞))

+
∥∥∥∂x1

h̃
∥∥∥2
L2(0,T ;H3/2(Γ∞

1 ))
. (4.21)

On the other hand, by multiplying the first equation of (4.19) by ∂t∂x1 ũ and integrating by parts, we deduce∫ T

0

∥∂t∂x1 ũ
∞∥2L2(Ω∞) dt+

∫∫
(0,T )×Γ∞

1

∂x1 p̃
∞
|Γ∞

1

∂t∂x1 h̃ dx1dt+

∫∫
(0,T )×Ω∞

∂2x1
p̃∞∂tf̃

(2) dtdx

=

∫∫
(0,T )×Ω∞

∂x1
f̃ (1) · ∂t∂x1

ũ∞ dxdt.

The above relation yields that for any ε > 0,

∥∂t∂x1
ũ∞∥2L2(0,T ;L2(Ω∞)) ≲ ε ∥∇∂x1

p̃∞∥2L2(0,T ;L2(Ω∞)) + ε
∥∥∥τ1/2∂x1

p̃∞
∥∥∥2
L2(0,T ;L2(Γ∞

1 ))

+
1

ε

∥∥∥∂tf̃ (2)∥∥∥2
L2(0,T ;L2(Ω∞))

+
1

ε

∥∥∥τ−1/2∂t∂x1
h̃
∥∥∥2
L2(0,T ;L2(Γ∞

1 ))
+
∥∥∥∂x1

f̃ (1)
∥∥∥2
L2(0,T ;L2(Ω∞))

.

We deduce from the above relation, from (4.4) and from Lemma 4.2 that

∥∂t∂x1
ũ∞∥2L2(0,T ;L2(Ω∞)) ≲ ε ∥∇∂x1

p̃∥2L2(0,T ;L2(Ω∞)) + ε ∥p̃∥2L2(0,T ;H1(Ω∞))

+
1

ε

∥∥∥∂tf̃ (2)∥∥∥2
L2(0,T ;L2(Ω∞))

+
1

ε

∥∥∥τ−1/2∂t∂x1
h̃
∥∥∥2
L2(0,T ;L2(Γ∞

1 ))
+
∥∥∥∂x1

f̃ (1)
∥∥∥2
L2(0,T ;L2(Ω∞))

. (4.22)

Now using (4.1) and (2.17), we have

∇2∂x1
ũ = ∇2∂x1

ũ∞ +∇2∂x1
[(1− χ̃∞),Op(1− χ)] ǔ.

Since, (1− χ̃∞), 1− χ ∈ S0
τ , we deduce from Theorem 2.2 and Theorem 2.3 that∥∥∇2∂x1 ũ

∥∥2
L2(0,T ;L2(Ω∞))

≲
∥∥∇2∂x1 ũ

∞∥∥2
L2(0,T ;L2(Ω∞))

+
∥∥τ2ǔ∥∥2

L2(0,T ;L2(Ω∞))

+ ∥τ∇ǔ∥2L2(0,T ;L2(Ω∞)) +
∥∥∇2ǔ

∥∥2
L2(0,T ;L2(Ω∞))

.

Using the compact support of χ∞ and the periodicity of uesφ0 , we deduce from the above relation and from
(4.6) that ∥∥∇2∂x1

ũ
∥∥2
L2(0,T ;L2(Ω∞))

≲
∥∥∇2∂x1

ũ∞
∥∥2
L2(0,T ;L2(Ω∞))

+ λ−2I5(s, λ, ǔ). (4.23)

Similarly, with (4.7), we have

∥∇∂x1
p̃∥2L2(0,T ;L2(Ω∞)) ≲ ∥∇∂x1

p̃∞∥2L2(0,T ;L2(Ω∞)) + λ−1I6(s, λ, p̌). (4.24)

Finally,
∂t∂x1 ũ = ∂t∂x1 ũ

∞ − ∂x1 [1− χ̃∞,Op(∂tχ)]ǔ+ ∂x1 [1− χ̃∞,Op(1− χ)]∂tǔ,
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and from Lemma 2.5,

∂tχ ∈ ℓ′

(λs)1/2
τ

1
2S0

τ .

In particular, if s ⩾ T 2, we can combine the two previous relations with Theorem 2.2 and Theorem 2.3 to obtain

∥∂t∂x1 ũ∥
2
L2(0,T ;L2(Ω∞)) ≲ ∥∂t∂x1 ũ

∞∥2L2(0,T ;L2(Ω∞)) + λ−2I5(s, λ, ǔ). (4.25)

Combining (4.17), (4.21), (4.22), (4.23), (4.24) and (4.25), we deduce the result by taking ε > 0 small enough.

Combining (4.18), (4.11) and (4.8), we deduce the existence of λ0 > 0 and s0 > 0 such that for λ ⩾ λ0 and
s ⩾ s0(T

2 + T 4),

I4(s, λ, η̌) + I5(s, λ, ǔ) + I6(s, λ, p̌) + Ĩ(ũ, p̃) ≲ λ

∫∫
(0,T )×J1

e2sφ0
(
s10ξ100 |η|2 + s2ξ20 |∂2t η|2

)
dt dx1

+

∫∫
(0,T )×ω1

e2sφ
(
s4λ6ξ4|u|2 dt dx+ s3λ4ξ3|p∞|2

)
dt dx

+
∥∥∥∂x1 f̃

(1)
∥∥∥2
L2(0,T ;L2(Ω∞))

+
∥∥∥∂x1 f̃

(2)
∥∥∥2
L2(0,T ;H1(Ω∞))

+
∥∥∥∂tf̃ (2)∥∥∥2

L2(0,T ;L2(Ω∞))

+
∥∥∥τ−1/2∂t∂x1 h̃

∥∥∥2
L2(0,T ;L2(Γ∞

1 ))
+
∥∥∥∂x1

h̃
∥∥∥2
L2(0,T ;H3/2(Γ∞

1 ))
. (4.26)

4.2 Estimates of f̃ (1), f̃ (2) and h̃

To obtain Proposition 4.1, it remains to estimate the right-hand side of (4.26). We recall that f̃ (1), f̃ (2) and h̃
are given by (4.13), (4.14) and (4.15).

Combining (3.8), (3.5), (2.13) and (2.22), we deduce that for α ⩾ 0,∣∣∂αx1
φ0

∣∣ ≲ τ

λs
(k ⩾ 1),

∣∣∂t∂αx1
φ0

∣∣ ≲ T
( τ
λs

)3/2
,
∣∣∂2t ∂αx1

φ0

∣∣ ≲ T 2
( τ
λs

)2
(4.27)

∂αx1
φ0 ∈ τ

λs
S0
τ (k ⩾ 1), ∂t∂

α
x1
φ0 ∈ ℓ′

( τ
λs

)3/2
S0
τ , ∂2t ∂

α
x1
φ0 ∈

(
2ℓ+ 3(ℓ′)2

) ( τ
λs

)2
S0
τ . (4.28)

Proposition 4.5. There exist s0 > 0 and λ0 > 0 such that the function f̃ (1) defined by (4.13) satisfies for
s ⩾ s0(T

2 + T 4) and for λ ⩾ λ0,∥∥∥∂x1
f̃ (1)

∥∥∥2
L2(0,T ;L2(Ω∞))

⩽ λ−1
(
I4(s, λ, η̌) + I5(s, λ, ǔ) + I6(s, λ, p̌) + Ĩ(ũ, p̃)

)
.

Proof. Differentiating (4.13) yields,

∂x1 f̃
(1) =

6∑
i=1

F (i) (4.29)

where
F (1) := ∂x1

(
χ̃∞ Op(1− χ)esφ0f (1)

)
, (4.30)

F (2) := ∂x1

(
(s∂tφ0)ũ

∞ − s
(
∂2x1

φ0

)
ũ∞ + s2 (∂x1

φ0)
2
ũ∞ − 2s∂x1

φ0∂x1
ũ∞ + s∇φ0p̃

∞
)
, (4.31)

F (3) := ∂x1

[
−(s∂tφ0) + s

(
∂2x1

φ0

)
− s2 (∂x1

φ0)
2
+ 2s∂x1

φ0∂x1
, χ̃∞ Op(1− χ)

]
ǔ, (4.32)

F (4) := ∂x1
[−s∇φ0, χ̃

∞ Op(1− χ)]p̌, F (5) := −∂x1
(χ̃∞ Op(∂tχ)ǔ) , (4.33)

F (6) := ∂x1

(
− (χ̃∞)

′′
ũ− 2 (χ̃∞)

′
∂x1 ũ+ (χ̃∞)

′
p̃e1
)
. (4.34)
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From (4.30), we have

F (1) = χ̃∞ Op(1− χ)
(
s∂x1

φ0e
sφ0f (1) + esφ0∂x1

f (1)
)
+ (χ̃∞)′ Op(1− χ)esφ0f (1).

From (2.20), (4.27), the properties of χ∞ and the periodicity of u and p in the x1 variable,∥∥∥s∂x1
φ0e

sφ0f (1) + esφ0∂x1
f (1)

∥∥∥2
L2(0,T ;L2(Ω∞))

+
∥∥∥esφ0f (1)

∥∥∥2
L2(0,T ;L2(Ω∞))

≲
∫∫

(0,T )×(0,2π)×(0,1)

e2sφ0

(
τ2

λ2

(
|u|2 + |∂x1u|

2
+ |p|2

)
+
∣∣∂2x1

u
∣∣2 + |∂x1p|

2

)
dx dt

≲
∫∫

(0,T )×Ω∞

(∣∣∂2x1
ǔ
∣∣2 + ( τ

λ

)2
|∂x1

ǔ|2 +
( τ
λ

)4
|ǔ|2 + |∂x1

p̌|2 +
( τ
λ

)2
|p̌|2
)
dx dt.

Since 1−χ ∈ S0
τ (see Lemma 2.1), we deduce from the above estimate, from Theorem 2.3, and from (4.6)-(4.7),

that ∥∥∥F (1)
∥∥∥2
L2(0,T ;L2(Ω∞))

⩽ λ−1 (I5(s, λ, ǔ) + I6(s, λ, p̌)) . (4.35)

From (2.24), (4.31) and (4.27), we have for s ⩾ s0
(
T 2 + T 4

)
and λ ⩾ λ0,∣∣∣F (2)

∣∣∣ ≲ τ2

λ2
(|ũ|+ |∂x1

ũ|) + τ

λ

(∣∣∂2x1
ũ
∣∣+ |p̃|+ |∂x1

p̃|
)
, (4.36)

and thus with (4.16), ∥∥∥F (2)
∥∥∥2
L2(0,T ;L2(Ω∞))

⩽ λ−2Ĩ(ũ, p̃). (4.37)

On the other hand, from (4.32), (4.33),

F (3) =
[
−(s∂tφ0) + s

(
∂2x1

φ0

)
− s2 (∂x1

φ0)
2
+ 2s∂x1

φ0∂x1
, χ̃∞ Op(1− χ)

]
∂x1

ǔ

+
[
−(s∂t∂x1φ0) + s

(
∂3x1

φ0

)
− 2s2∂x1φ0∂

2
x1
φ0 + 2s∂2x1

φ0∂x1 + 2s∂x1φ0∂
2
x1
, χ̃∞ Op(1− χ)

]
ǔ, (4.38)

F (4) = [−s∇φ0, χ̃
∞ Op(1− χ)]∂x1

p̌+ [−s∇∂x1
φ0, χ̃

∞ Op(1− χ)]p̌. (4.39)

From (4.28),

s
(
∂2x1

φ0

)
− s2 (∂x1

φ0)
2 − 2s∂x1

φ0ik ∈ 1

λ
S2
τ , s∂tφ0 ∈ ℓ′

s1/2λ
S3/2
τ

s
(
∂3x1

φ0

)
− 2s2∂x1φ0∂

2
x1
φ0 − 2s∂2x1

φ0ik − 2s∂x1φ0k
2 ∈ 1

λ
S3
τ , s∂t∂x1φ0 ∈ ℓ′

s1/2λ
S3/2
τ ,

−s∇φ0,−s∇∂x1
φ0 ∈ 1

λ
S1
τ ,

so that, from Theorem 2.2, Theorem 2.3 and (4.16),∥∥∥F (3)
∥∥∥2
L2(0,T ;L2(Ω∞))

+
∥∥∥F (4)

∥∥∥2
L2(0,T ;L2(Ω∞))

≲
1

λ2

(∥∥τ2ǔ∥∥2
L2(0,T ;L2(Ω∞))

+ ∥τ∂x1
ǔ∥2L2(0,T ;L2(Ω∞)) +

∥∥∂2x1
ǔ
∥∥2
L2(0,T ;L2(Ω∞))

)
+

1

λ2

(
∥p̌∥2L2(0,T ;L2(Ω∞)) + ∥∂x1

p̌∥2L2(0,T ;L2(Ω∞))

)
≲

1

λ2
(I5(s, λ, ǔ) + I6(s, λ, p̌)) . (4.40)

From (4.33),
F (5) = −χ̃∞ Op(∂tχ)∂x1 ǔ− (χ̃∞)

′
Op(∂tχ)ǔ. (4.41)
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From Lemma 2.5,

∂tχ ∈ ℓ′

(λs)1/2
S1/2
τ

so that from Theorem 2.3 and (4.6),∥∥∥F (5)
∥∥∥2
L2(0,T ;L2(Ω∞))

≲ λ−1
(
∥τ∂x1

ǔ∥2L2(0,T ;L2(Ω∞)) + ∥τ ǔ∥2L2(0,T ;L2(Ω∞)) +
∥∥∂2x1

ǔ
∥∥2
L2(0,T ;L2(Ω∞))

)
≲ λ−2I5(s, λ, ǔ). (4.42)

Finally, from (4.34), (4.16) and (2.24),∥∥∥F (6)
∥∥∥2
L2(0,T ;L2(Ω∞))

≲ λ−2Ĩ(ũ, p̃).

Gathering (4.29), (4.35), (4.37), (4.40), (4.42) and the above estimate, we deduce the result.

Proposition 4.6. There exist s0 > 0 and λ0 > 0 such that the function f̃ (2) defined by (4.14) satisfies for
s ⩾ s0(T

2 + T 4) and for λ ⩾ λ0,∥∥∥∂x1
f̃ (2)

∥∥∥2
L2(0,T ;H1(Ω∞))

+
∥∥∥∂tf̃ (2)∥∥∥2

L2(0,T ;L2(Ω∞))
⩽ λ−1

(
I4(s, λ, η̌) + I5(s, λ, ǔ) + I6(s, λ, p̌) + Ĩ(ũ, p̃)

)
.

Proof. From (4.14)
∂x1 f̃

(2) = G(1) +G(2) +G(3) +G(4), (4.43)

with

G(1) := ∂x1

(
χ̃∞ Op(1− χ)

(
esφ0f (2)

))
, G(2) := ∂x1 (s∂x1φ0ũ

∞
1 ) , (4.44)

G(3) := −∂x1
[s∂x1

φ0, χ̃
∞ Op(1− χ)]ǔ1, G(4) := ∂x1

(
(χ̃∞)

′
ũ1
)
. (4.45)

From (4.44), we have

G(1) = (χ̃∞)
′
Op(1− χ)

(
esφ0f (2)

)
+ χ̃∞ Op(1− χ)∂x1

(
esφ0f (2)

)
,

∂x1
G(1) = (χ̃∞)

′′
Op(1− χ)

(
esφ0f (2)

)
+ 2 (χ̃∞)

′
Op(1− χ)∂x1

(
esφ0f (2)

)
+ χ̃∞ Op(1− χ)∂2x1

(
esφ0f (2)

)
,

∂x2
G(1) = (χ̃∞)

′
Op(1− χ)

(
esφ0∂x2

f (2)
)
+ χ̃∞ Op(1− χ)∂x1

(
esφ0∂x2

f (2)
)
,

with
∂x1

(
esφ0f (2)

)
= s∂x1φ0e

sφ0f (2) + esφ0∂x1f
(2),

∂2x1

(
esφ0f (2)

)
= s∂2x1

φ0e
sφ0f (2) + s2 (∂x1φ0)

2
esφ0f (2) + 2s∂x1φ0e

sφ0∂x1f
(2) + esφ0∂2x1

f (2),

∂x1

(
esφ0∂x2f

(2)
)
= s∂x1φ0e

sφ0∂x2f
(2) + esφ0∂x1∂x2f

(2).

The above relations, combined with (2.20), (4.27), with the properties of χ∞ and with the periodicity of u and
p in the x1 variable, imply∥∥∥esφ0f (2)

∥∥∥2
L2(0,T ;L2(Ω∞))

+
∥∥∥∇(esφ0f (2)

)∥∥∥2
L2(0,T ;L2(Ω∞))

+
∥∥∥∇∂x1

(
esφ0f (2)

)∥∥∥2
L2(0,T ;L2(Ω∞))

≲
∫∫

(0,T )×(0,2π)×(0,1)

e2sφ0

(( τ
λ

)4
|u|2 +

( τ
λ

)2
|∇u|2 +

∣∣∂2x1
u
∣∣2 + |∂x1

∂x2
u|2
)
dx dt

≲
∫∫

(0,T )×Ω∞

(∣∣∇2ǔ
∣∣2 + ( τ

λ

)2
|∇ǔ|2 +

( τ
λ

)4
|ǔ|2
)
dx dt.
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Thus, using 1− χ ∈ S0
τ (Lemma 2.1) along with Theorem 2.3, the property of χ∞ and (4.6), we deduce that∥∥∥G(1)

∥∥∥2
L2(0,T ;H1(Ω∞))

⩽ λ−1I5(s, λ, ǔ). (4.46)

Moreover, using (4.27), we deduce∣∣∣G(2)
∣∣∣+ ∣∣∣∇G(2)

∣∣∣ ≲ τ

λ

(
|ũ|+ |∂x1 ũ|+

∣∣∂2x1
ũ
∣∣+ |∂x2 ũ|+ |∂x1∂x2 ũ|

)
. (4.47)

We deduce from the above relation and (4.16) that∥∥∥G(2)
∥∥∥2
L2(0,T ;H1(Ω∞))

⩽ λ−2Ĩ(ũ, p̃). (4.48)

From (4.45),

∂x1
G(3) = −∂2x1

[s∂x1
φ0, χ̃

∞ Op(1− χ)]ǔ1, ∂x2
G(3) = −∂x1

[s∂x1
φ0, χ̃

∞ Op(1− χ)]∂x2
ǔ1.

Thus from (4.28), (4.6), Theorem 2.2 and Theorem 2.3,∥∥∥G(3)
∥∥∥2
L2(0,T ;H1(Ω∞))

≲ λ−4I5(s, λ, ǔ). (4.49)

From (4.45),
∂x1G

(4) = ∂2x1

(
(χ̃∞)

′
ũ1
)
, ∂x2G

(4) = ∂x1

(
(χ̃∞)

′
∂x2 ũ1

)
,

and thus, from (4.16) and (2.24), ∥∥∥G(4)
∥∥∥2
L2(0,T ;H1(Ω∞))

≲ λ−2Ĩ(ũ, p̃).

Gathering (4.43), (4.46), (4.48), (4.49) and the above relation, we deduce the estimate for ∂x1 f̃
(2). To estimate

∂tf̃
(2), we derive (4.14) with respect to time:

∂tf̃
(2) = H(1) +H(2) +H(3), (4.50)

with

H(1) := −χ̃∞ Op(−∂tχ)
(
esφ0f (2)

)
+ χ̃∞ Op(1− χ)

((
s∂tφ0f

(2) + ∂tf
(2)
)
esφ0

)
, (4.51)

H(2) := ∂t
(
s∂x1

φ0ũ
∞
1 + (χ̃∞)

′
ũ1
)
, (4.52)

H(3) := −∂t[s∂x1
φ0, χ̃

∞ Op(1− χ)]ǔ1. (4.53)

Combining (2.20), Lemma 2.5, (4.27), Theorem 2.3, the property of χ∞ and (4.6), we deduce that∥∥∥H(1)
∥∥∥2
L2(0,T ;L2(Ω∞))

≲ λ−1I5(s, λ, ǔ). (4.54)

Using (2.20), (4.27) and (4.16), we also find∥∥∥H(2)
∥∥∥2
L2(0,T ;L2(Ω∞))

⩽ λ−2Ĩ(ũ, p̃). (4.55)

For the last term, we write

H(3) = −[s∂x1
∂tφ0, χ̃

∞ Op(1− χ)]ǔ1 + [s∂x1
φ0, χ̃

∞ Op(∂tχ)]ǔ1 − [s∂x1
φ0, χ̃

∞ Op(1− χ)]∂tǔ1.

Combining (4.28), Lemma 2.5, Theorem 2.2 and Theorem 2.3, we deduce∥∥∥H(3)
∥∥∥2
L2(0,T ;L2(Ω∞))

≲ λ−1I5(s, λ, ǔ).

Gathering the above estimate, (4.54) and (4.55) yields the result.
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Proposition 4.7. There exist s0 > 0 and λ0 > 0 such that the function h̃ defined by (4.15) satisfies for
s ⩾ s0(T

2 + T 4) and for λ ⩾ λ0,∥∥∥τ−1/2∂t∂x1
h̃
∥∥∥2
L2(0,T ;L2(Γ∞

1 ))
+
∥∥∥∂x1

h̃
∥∥∥2
L2(0,T ;H3/2(Γ∞

1 ))
≲ λ−1I4(s, λ, η̌).

Proof. From (4.15)
∂x1

h̃ = (χ̃∞)′ Op(1− χ)h̃(1) + χ̃∞ Op(1− χ)h̃(2), (4.56)

with
h̃(1) := ∂tη̌ − s∂tφ0η̌, h̃(2) := ∂x1 h̃

(1) = ∂t∂x1 η̌ − s (∂t∂x1φ0) η̌ − s (∂tφ0) ∂x1 η̌.

Applying Lemma 4.3 and using (4.56), we deduce that∥∥∥∂x1 h̃
∥∥∥2
L2(0,T ;H3/2(Γ∞

1 ))
≲
∥∥∥Op(1− χ)h̃(1)

∥∥∥2
L2(0,T ;H3/2(Γ∞

1 ))
+
∥∥∥Op(1− χ)h̃(2)

∥∥∥2
L2(0,T ;H3/2(Γ∞

1 ))

≲
∥∥∥τ−1/2 Op(1− χ)∂2x1

h̃(1)
∥∥∥2
L2(0,T ;L2(Γ∞

1 ))
+
∥∥∥τ−1/2 Op(1− χ)∂2x1

h̃(2)
∥∥∥2
L2(0,T ;L2(Γ∞

1 ))
.

Then, using that 1− χ ∈ S0
τ , (4.27) and Theorem 2.3, we find∥∥∥∂x1 h̃

∥∥∥2
L2(0,T ;H3/2(Γ∞

1 ))
≲
∥∥∥τ−1/2∂t∂

3
x1
η̌
∥∥∥2
L2(0,T ;L2(Γ∞

1 ))

+
∥∥∥τ−1/2∂t∂

2
x1
η̌
∥∥∥2
L2(0,T ;L2(Γ∞

1 ))
+

3∑
j=0

∥∥∥∥ τ3/2λ3/2
∂jx1

η̌

∥∥∥∥2
L2(0,T ;L2(Γ∞

1 ))

.

From (4.5), we deduce from the above relation that∥∥∥∂x1 h̃
∥∥∥2
L2(0,T ;H3/2(Γ∞

1 ))
≲ λ−1I4(s, λ, η̌). (4.57)

By differentiating (4.56) with respect to t, we obtain

∂t∂x1 h̃ = −(χ̃∞)′ Op(∂tχ)h̃
(1) + (χ̃∞)′ Op(1− χ)∂th̃

(1) − χ̃∞ Op(∂tχ)h̃
(2) + χ̃∞ Op(1− χ)∂th̃

(2). (4.58)

Applying Lemma 2.5, Theorem 2.3 and (4.27), we have for s ⩾ s0(T
2 + T 4) and λ ⩾ λ0,

∥∥∥τ−1/2∂t∂x1 h̃
∥∥∥2
L2(0,T ;L2(Γ∞

1 ))
≲

∥∥∥∥ τ3/2λ3/2
∂x1 η̌

∥∥∥∥2
L2(0,T ;L2(Γ∞

1 ))

+

∥∥∥∥ τ3/2λ3/2
η̌

∥∥∥∥2
L2(0,T ;L2(Γ∞

1 ))

+
∥∥∥τ−1/2∂2t η̌

∥∥∥2
L2(0,T ;L2(Γ∞

1 ))
+
∥∥∥τ−1/2∂2t ∂x1 η̌

∥∥∥2
L2(0,T ;L2(Γ∞

1 ))

+
∥∥∥ τ

λ3/2
∂x1

∂tη̌
∥∥∥2
L2(0,T ;L2(Γ∞

1 ))
+
∥∥∥ τ

λ3/2
∂tη̌
∥∥∥2
L2(0,T ;L2(Γ∞

1 ))
. (4.59)

From (4.5), we deduce from the above relation that∥∥∥τ−1/2∂t∂x1
h̃
∥∥∥2
L2(0,T ;L2(Γ∞

1 ))
≲ λ−1I4(s, λ, η̌). (4.60)

The proof of Proposition 4.1 consists now in combining (4.26) with Proposition 4.5, Proposition 4.6 and
Proposition 4.7. In the next section, we show the observability result from the above relation.
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5 Proof of the observability
This section is devoted to the proof of Theorem 1.2. We first remove in (4.9) the local terms in p and in ∂2t η.
Setting

φ1(t) :=
1

ℓ(t)2
(e8λΨ − e10λΨ), ξ1(t) :=

1

ℓ(t)2
e8λΨ, (5.1)

φ2(t) :=
1

ℓ(t)2
(e(9λ+µ0)Ψ − e10λΨ), ξ2(t) :=

1

ℓ(t)2
e(9λ+µ0)Ψ, (5.2)

we have (see (2.12))
φ1(t) ⩽ φ(t, ·) ⩽ φ2(t), ξ1(t) ⩽ ξ(t, ·) ⩽ ξ2(t) (t ∈ (0, T )).

Let us set

ρ0 := λτ2esφ1 = λ3e16λΨ
s2

ℓ4
esφ1 , (5.3)

ρ1 := s11/2λ−7ξ
11/2
2 e4sφ2−3sφ1 , ρ2 := s9λ−1ξ92e

4sφ2−3sφ1 . (5.4)

Then we have the following result.

Proposition 5.1. There exist s0 > 0 and λ0 > 0 such that for any s ⩾ s0(T
2 + T 4) and for any λ ⩾ λ0, any

smooth solution of (1.6) satisfies∫ T

0

ρ20 ∥[u, η, ∂tη]∥
2
H dt ≲

∫∫
(0,T )×J

ρ21|∂tη|2 dt dx1 +
∫∫

(0,T )×ω
ρ22|u|2 dt dx. (5.5)

Proof. Using (2.16) and applying the Poincaré-Wirtinger inequality, we deduce that∫∫
(0,T )×ω1

s3λ4ξ3e2sφ|p|2 dt dx ≲
∫∫

(0,T )×ω1

s3λ4ξ32e
2sφ2 |∇p|2 dt dx

and with (1.12),∫∫
(0,T )×ω1

s3λ4ξ3e2sφ|p|2 dt dx ≲
∫∫

(0,T )×ω1

s3λ4ξ32e
2sφ2

(
|∂tu|2 + |∆u|2

)
dt dx. (5.6)

From (5.3), (4.5) and (4.6), we have∫ T

0

ρ0(t)
2
(
∥u(t)∥2L2(Ω) + ∥η(t)∥2H2(I) + ∥∂tη(t)∥2L2(I)

)
dt ≲ I4(s, λ, η̌) + I5(s, λ, ǔ). (5.7)

Combining (4.9), (5.7) and (5.6), we deduce

∥ρ0u∥2L2(0,T ;L2(Ω)) + ∥ρ0∂tη∥2L2(0,T ;L2(Γ1))
+ ∥ρ0η∥2L2(0,T ;H2(Γ1))

≲ λ

∫∫
(0,T )×J1

e2sφ0
(
s10ξ100 |η|2 + s2ξ20 |∂2t η|2

)
dt dx1

+

∫∫
(0,T )×ω1

s4λ6ξ4e2sφ|u|2 dt dx+

∫∫
(0,T )×ω1

s3λ4ξ32e
2sφ2

(
|∂tu|2 + |∆u|2

)
dt dx. (5.8)

Now we set

ρ3(t) := λ3e6λΨ
s1/2

ℓ(t)
esφ1(t), ρ4(t) := λ3e−4λΨs−1ℓ(t)2esφ1(t). (5.9)

We have ρ3, ρ4 ∈ C1([0, T ]), ρ3(0) = ρ4(0) = 0 and

|ρ′3| ≲ ρ0 and |ρ′4| ≲ ρ3. (5.10)
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We recall that (1.12) can be written as (2.7). Then, we deduce

d

dt
ρ3

 u
η
∂tη

 = Aρ3

 u
η
∂tη

+ ρ′3

 u
η
∂tη

 in (0, T ),

 ρ3u
ρ3η
ρ3∂tη

 (0) = 0. (5.11)

From (5.10), (5.7) and (2.3),

∥ρ3∂tu∥L2(0,T ;L2(Ω)) + ∥ρ3u∥L2(0,T ;H2(Ω)) +
∥∥ρ3∂2t η∥∥L2(0,T ;L2(Γ1))

+ ∥ρ3∂tη∥L2(0,T ;H2(Γ1))
+ ∥ρ3η∥L2(0,T ;H4(Γ1))

≲ ∥ρ0u∥2L2(0,T ;L2(Ω)) + ∥ρ0∂tη∥2L2(0,T ;L2(Γ1))
+ ∥ρ0η∥2L2(0,T ;H2(Γ1))

. (5.12)

Then, we deduce from (2.7) that

d

dt

ρ4 d
dt

 u
η
∂tη

 = A

ρ4 d
dt

 u
η
∂tη

+ ρ′4
d

dt

 u
η
∂tη

 in (0, T ),

ρ4 d
dt

 u
η
∂tη

 (0) = 0. (5.13)

From (5.10), (5.7), (5.12) and (2.3),∥∥ρ4∂2t u∥∥L2(0,T ;L2(Ω))
+ ∥ρ4∂tu∥L2(0,T ;H2(Ω))

+
∥∥ρ4∂3t η∥∥L2(0,T ;L2(Γ1))

+
∥∥ρ4∂2t η∥∥L2(0,T ;H2(Γ1))

+ ∥ρ4∂tη∥L2(0,T ;H4(Γ1))

≲ ∥ρ0u∥2L2(0,T ;L2(Ω)) + ∥ρ0∂tη∥2L2(0,T ;L2(Γ1))
+ ∥ρ0η∥2L2(0,T ;H2(Γ1))

. (5.14)

Then, from the standard elliptic regularities for the stationary Stokes system ([49, Proposition 2.2 p.33]) and
for A1, we have moreover

∥ρ4u∥L2(0,T ;H4(Ω)) + ∥ρ4η∥L2(0,T ;H6(Γ1))

≲ ∥ρ0u∥2L2(0,T ;L2(Ω)) + ∥ρ0∂tη∥2L2(0,T ;L2(Γ1))
+ ∥ρ0η∥2L2(0,T ;H2(Γ1))

. (5.15)

By integration by parts, we obtain∫∫
(0,T )×J1

s2λξ20e
2sφ0 |∂2t η|2 dt dx1 =

1

2

∫∫
(0,T )×J1

∂2t
(
s2λξ20e

2sφ0
)
|∂tη|2 dt dx1

−
∫∫

(0,T )×J1

s2λξ20e
2sφ0∂3t η∂tη dt dx1.

Using (3.8), we deduce that for s ⩾ s0(T
2 + T 4), for any ε > 0, there exists C > 0 such that∫∫

(0,T )×J1

s2λξ20e
2sφ0 |∂2t η|2 dt dx1 ⩽ C

∫∫
(0,T )×J1

s5λξ50e
2sφ0 |∂tη|2 dt dx1

+ ε
∥∥ρ4∂3t η∥∥2L2(0,T ;L2(Γ1))

+ C

∫∫
(0,T )×J1

s6λ−4ξ60e
4sφ0−2sφ1 |∂tη|2 dt dx1

⩽ ε
∥∥ρ4∂3t η∥∥2L2(0,T ;L2(Γ1))

+ C

∫∫
(0,T )×J1

s6λ−4ξ60e
4sφ0−2sφ1 |∂tη|2 dt dx1. (5.16)

Then, we integrate by parts the last term and we obtain that for any ε > 0, there exists C > 0 such that∫∫
(0,T )×J1

s6λ−4ξ60e
4sφ0−2sφ1 |∂tη|2 dt dx1

⩽ ε
∥∥ρ3∂2t η∥∥2L2(0,T ;L2(Γ1))

+ C

∫∫
(0,T )×J1

s11λ−14ξ110 e
8sφ0−6sφ1 |η|2 dt dx1. (5.17)
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Similarly, for any ε > 0, there exists C > 0 such that∫∫
(0,T )×ω1

s3λ4ξ32e
2sφ2 |∂tu|2 dt dx ⩽ C

∫∫
(0,T )×ω1

s6λ4ξ62e
2sφ2 |u|2 dt dx

+ ε
∥∥ρ4∂2t u∥∥2L2(0,T ;L2(Ω))

+ C

∫∫
(0,T )×ω1

s8λ2ξ82e
4sφ2−2sφ1 |u|2 dt dx

⩽ ε
∥∥ρ4∂2t u∥∥2L2(0,T ;L2(Ω))

+ C

∫∫
(0,T )×ω1

s8λ2ξ82e
4sφ2−2sφ1 |u|2 dt dx. (5.18)

Finally, we consider a nonnegative smooth function χ1 with compact support in ω and such that χ1 ≡ 1 in ω1.
Then by integrating by parts,∫∫

(0,T )×ω1

s3λ4ξ32e
2sφ2 |∆u|2 dt dx

⩽
∫∫

(0,T )×ω
χ1s

3λ4ξ32e
2sφ2 |∆u|2 dt dx =

∫∫
(0,T )×ω

s3λ4ξ32e
2sφ2∆(χ1∆u)u dt dx

⩽ ε ∥ρ4u∥2L2(0,T ;H4(Ω)) + C

∫∫
(0,T )×ω

s8λ2ξ82e
4sφ2−2sφ1 |u|2 dt dx. (5.19)

Gathering (5.8), (5.16), (5.17), (5.18), and (5.19), and using (5.12), (5.14) and (5.15) we deduce∫ T

0

ρ0(t)
2
(
∥u(t)∥2L2(Ω) + ∥η(t)∥2H2(I) + ∥∂tη(t)∥2L2(I)

)
dt

≲
∫∫

(0,T )×J1

ρ21|η|2 dt dx1 +
∫∫

(0,T )×ω
ρ25|u|2 dt dx, (5.20)

with ρ1 defined by (5.4) and with
ρ5 := s4λξ42e

2sφ2−sφ1 . (5.21)
To end the proof of Proposition 5.1, we need to replace in the above estimate the observation by η with an
observation by ∂tη. This is done by using the smoothing effet of the parabolic system (2.7). More precisely, we
apply (5.20) to (∂tu, ∂tη, ∂

2
t η) and we deduce∫ T

0

ρ0(t)
2
(
∥∂tu(t)∥2L2(Ω) + ∥∂tη(t)∥2H2(I) +

∥∥∂2t η(t)∥∥2L2(I)

)
dt

≲
∫∫

(0,T )×J
ρ21|∂tη|2 dt dx1 +

∫∫
(0,T )×ω

ρ25|∂tu|2 dt dx. (5.22)

On the other hand, using (2.7) and the fact that 0 ∈ ρ(A) (see, for instance, [1, Proposition 3.5]),

∥∂t[u, η, ∂tη]∥H = ∥A[u, η, ∂tη]∥H ⩾ c ∥[u, η, ∂tη]∥H .

Combining the above estimate and (5.22) implies∫ T

0

ρ20 ∥[u, η, ∂tη]∥
2
H dt ≲

∫∫
(0,T )×J

ρ21|∂tη|2 dt dx1 +
∫∫

(0,T )×ω
ρ25|∂tu|2 dt dx. (5.23)

We integrate by parts the last term: recalling (5.21), we obtain that for any ε > 0, there exists C > 0 such that∫∫
(0,T )×ω1

ρ25|∂tu|2 dt dx ⩽ C

∫∫
(0,T )×ω1

s11λ2ξ112 e
4sφ2−2sφ1 |u|2 dt dx

+ ε
∥∥ρ4∂2t u∥∥2L2(0,T ;L2(Ω))

+ C

∫∫
(0,T )×ω1

s18λ−2ξ182 e
8sφ2−6sφ1 |u|2 dt dx. (5.24)

We deduce (5.5) by combining (5.23), (5.24) and (5.15).
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Using Proposition 5.1, one can deduce Theorem 1.2:

Proof of Theorem 1.2. We fix λ = λ0 and s = s0(T
2 + T 4) in (5.3) and (5.4). In particular the constants that

follows may depend on λ0 and s0. Then we deduce from (5.5) that∫ 3T/4

T/4

ρ20 ∥[u, η, ∂tη]∥
2
H dt ≲

∫∫
(0,T )×J

ρ1(t)
2|∂tη|2 dt dx1 +

∫∫
(0,T )×ω

ρ2(t)
2|u|2 dt dx. (5.25)

From (5.3) and (5.4), there exists C > 0 such that

C

T
e−C/T

2

⩽ ρ0 in
(
T

4
,
3T

4

)
,

and
ρ1 ≲ 1, ρ2 ≲ 1.

Since A is the generator of a semigroup of contractions (see, for instance, [1, Proposition 3.4]), we deduce the
result from the above relations.

6 Proof of Theorem 1.4
We give here a sketch of the proof of Theorem 1.4. First we construct a change of variables to write (1.2)
in a cylindrical domain, then we use the “source term method” and Theorem 1.2 to show Theorem 1.4 by a
fixed-point argument.

6.1 Change of variables
We can assume that for some δ > 0

ω ⊂ I × (0, 1− δ).

Let us consider a smooth function θ ∈ C∞([0, 1]; [0, 1]) with compact support in (1− δ, 1] and such that θ ≡ 1
in [1− δ/2, 1]. We consider the change of variables

X(t, ·) : Ω → Ωζ(t), (y1, y2) 7→ (y1, y2 + θ(y2)ζ(t, y1)) (6.1)

that is a diffeomorphism if

∥θ′∥L∞(0,1) ∥ζ∥L∞(0,T ;L∞(I)) ⩽
1

2
. (6.2)

We denote by Y (t, ·) the inverse of X(t, ·).
We write

W (t, y) := Cof(∇X)∗(t, y)w(t,X(t, y)), Π(t, y) := π(t,X(t, y))

X0 := X(0, ·), W 0 := Cof(∇X0)∗w0 ◦X0.

We also write
a := Cof(∇Y )∗. (6.3)

After some standard calculations (see, for instance, [2]) (1.2) is transformed into
∂tW − divT(W,Π) = 1ωf + Fζ(W,Π) t > 0, x ∈ Ω,

divW = 0 t > 0, x ∈ Ω,
W = ∂tζe2 t > 0, x ∈ Γ1,

W = 0 t > 0, x ∈ Γ0,
∂ttζ +A1ζ +A2∂tζ = PL2

0(I) (Π + 1J g +Gζ(W )) t > 0, x1 ∈ I,

(6.4)
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W (0, ·) =W 0 in Ω, ζ(0, ·) = ζ01 , ∂tζ(0, ·) = ζ02 in I, (6.5)

with

[Fζ(W,Π)]i := −
∑
k

∂tai,k(X)Wk + (ai,k(X)− δi,k) ∂tWk −
∑
k,l

ai,k(X)
∂Wk

∂yl

∂Yl
∂t

(X)

+
∑
k,j

∂2ai,k
∂x2j

(X)Wk + 2
∑
k,j,l

∂ai,k
∂xj

(X)
∂Wk

∂yl

∂Yl
∂xj

(X) +
∑
k,j,l

ai,k(X)
∂Wk

∂yl

∂2Yl
∂x2j

(X)

+
∑
k,j,l,m

(
ai,k(X)

∂Yl
∂xj

(X)
∂Ym
∂xj

(X)− δi,kδl,jδm,j

)
∂Wk

∂yl∂ym
−
∑
l

(
∂Yl
∂xi

(X)− δl,i

)
∂Π

∂yl

−
∑
j,m,k

aj,m(X)
∂ai,k
∂xj

(X)WmWk −
1

det(∇X)

∑
m,k

ai,k(X)Wm
∂Wk

∂ym
, (6.6)

Gζ(W ) := −
(
∂x1

ζ + (∂x1
ζ)

2
) ∂W1

∂x2

∣∣∣∣
x2=1

. (6.7)

Then, we can write Theorem 1.4 as follows:

Theorem 6.1. Assume T > 0, ω ⋐ Ω and J ⋐ I are nonempty open sets. There exists R0 > 0 such that for
any [W 0, ζ01 , ζ

0
2 ] ∈ V with ∥∥[W 0, ζ01 , ζ

0
2 ]
∥∥
V ⩽ R0, (6.8)

there exists a control
(f, g) ∈ L2(0, T ;L2(ω))× L2(0, T ;L2(J ))

such that the solution of (6.4), (6.5), (6.6) and (6.7) satisfies

ζ(T, ·) = 0, ∂tζ(T, ·) = 0 in I, W (T, ·) = 0 in Ω.

6.2 The fixed point argument
Using the notation of Section 2.1, the result of Theorem 1.2 states the existence of kT satisfying (1.14) such
that for any

[
u0, η01 , η

0
2

]
, ∥∥∥∥∥∥eTA∗

u0η01
η02

∥∥∥∥∥∥
2

H

⩽ k2T

∫ T

0

∥∥∥∥∥∥B∗etA
∗

u0η01
η02

∥∥∥∥∥∥
2

L2(ω)×L2(J )

dt. (6.9)

From standard results (see, for instance, [52, Theorem 11.2.1, p.357]), this yields the null-controllability of (1.5).
Using the “source term method” (see, [36]), one can improve this result. Let us consider the following weight
functions

σ1(t) := e
− C1

(T−t)2 , σ2(t) := e
− C2

(T−t)2 , σ3(t) := e
− C3

(T−t)2 (6.10)

and the corresponding spaces (for σ = σ1, σ2 or σ3)

Lpσ(0, T ;X ) := {f/σ ∈ Lp(0, T ;X )} ,

Cασ ([0, T ];X ) := {f/σ ∈ Cα([0, T ];X )} ,

Hs
σ(0, T ;X ) := {f/σ ∈ Hs(0, T ;X )} ,

for p ⩾ 1, k ∈ N, s ∈ R+ and X a Banach space. The abstract result proved in [36] yields the following result:
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Proposition 6.2. Assume (6.9) with (1.14). Then there exist σ1, σ2, σ3 as in (6.10) and a bounded map

ET : V × L2
σ1
(0, T ;L2(Ω)× L2(I)) → L2

σ2
(0, T ;L2(ω)× L2(J ))

such that for any [W 0, ζ01 , ζ
0
2 ] ∈ V and for any (F,G) ∈ L2

σ1
(0, T ;L2(Ω)× L2(I)), the solution of

∂tW − divT(W,Π) = 1ωf + F t > 0, x ∈ Ω,
divW = 0 t > 0, x ∈ Ω,
W = ∂tζe2 t > 0, x ∈ Γ1,

W = 0 t > 0, x ∈ Γ0,
∂ttζ +A1ζ +A2∂tζ = PL2

0(I) (Π + 1J g +G) t > 0, x1 ∈ I,

(6.11)

W (0, ·) =W 0 in Ω, ζ(0, ·) = ζ01 , ∂tζ(0, ·) = ζ02 in I, (6.12)
with the control

(f, g) = ET ([W 0, ζ01 , ζ
0
2 ], (F,G))

satisfies

∥W∥L2
σ3

(0,T ;H2(Ω))∩C0
σ3

([0,T ];H1(Ω))∩H1
σ3

(0,T ;L2(Ω)) + ∥Π∥L2
σ3

(0,T ;H1
0 (Ω))

+ ∥ζ∥L2
σ3

(0,T ;H4(I)) + ∥ζ∥C0
σ3

([0,T ];H3(I)) + ∥ζ∥H1
σ3

(0,T ;H2(I))

+ ∥ζ∥C1
σ3

([0,T ];H1(I)) + ∥ζ∥H2
σ3

([0,T ];L2(I)) ≲
∥∥[W 0, ζ01 , ζ

0
2 ]
∥∥
V + ∥(F,G)∥L2

σ1
(0,T ;L2(Ω)×L2(I)) . (6.13)

Moreover, we can assume
σ2
3 ≲ σ1. (6.14)

We are now in a position to prove Theorem 6.1 and thus Theorem 1.4.

Proof of Theorem 6.1. Assume that [W 0, ζ01 , ζ
0
2 ] satisfies (6.8) for some R0 and let us assume that

∥(F,G)∥L2
σ1

(0,T ;L2(Ω)×L2(I)) ⩽ R0.

Applying Proposition 6.2, we deduce the existence of a control (f, g) ∈ L2
σ2
(0, T ;L2(ω)× L2(J )) such that the

corresponding solution of (6.11), (6.12) satisfies

∥W∥L2
σ3

(0,T ;H2(Ω))∩C0
σ3

([0,T ];H1(Ω))∩H1
σ3

(0,T ;L2(Ω)) + ∥Π∥L2
σ3

(0,T ;H1
0 (Ω))

+ ∥ζ∥L2
σ3

(0,T ;H4(I)) + ∥ζ∥C0
σ3

([0,T ];H3(I)) + ∥ζ∥H1
σ3

(0,T ;H2(I))

+ ∥ζ∥C1
σ3

([0,T ];H1(I)) + ∥ζ∥H2
σ3

([0,T ];L2(I)) ⩽ CR0 (6.15)

for some constant C > 0. Using the Sobolev embeddings, we have in particular that

∥ζ∥C0([0,T ];W 2,∞(I)) ⩽ CR0 (6.16)

for some constant C > 0. This yields that for R0 small enough, (6.2) holds and we can consider the change of
variables of Section 6.1. We thus define X, a, F and G by respectively, (6.1), (6.3), (6.6) and (6.7). Moreover,
following the arguments in [47], [1] and using (6.14), one can show that

∥Fζ(W,Π)∥L2
σ1

(0,T ;L2(Ω)) + ∥Gζ(W )∥L2
σ1

(0,T ;L2(I)) ⩽ CR2
0, (6.17)

and in particular for R0 small enough, the closed set

BR0
:=
{
(F,G) ∈ L2

σ1
(0, T ;L2(Ω)× L2(I)) ; ∥(F,G)∥L2

σ1
(0,T ;L2(Ω)×L2(I)) ⩽ R0

}
is invariant under the map

Z : (F,G) → (Fζ(W,Π),Gζ(W )).

One can also show that for R0 > 0 small enough, the above map is a strict contraction on BR0 . Using the
Banach fixed point we deduce the existence of fixed point (F,G) for Z. One can notice that the corresponding
solution (W,Π, ζ) of (6.11)-(6.12) verifies the conclusion of Theorem 6.1.
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A Technical results

A.1 A Carleman estimates for the damped beam equation
The proof of Theorem 3.3 follows directly from the proof done in [40]. The differences with respect to this article
is the weight in time and the powers of s, µ, and ξ0. For sake of completeness, we give here a brief sketch of
the proof of Theorem 3.3 by using what is already done in [40].

We recall that φ0 and ξ0 are given by (2.13). We set

fη := ∂2t η + ∂4x1
η − ∂2x1

η − ∂t∂
2
x1
η, (A.1)

ζ := esφ0ξr0η. (A.2)

We say that a function g is l. o. t (lower order term) if it satisfies for some ε1, ε2 ⩾ 0, ε1ε2 ̸= 0,

|g| ≲ s−ε1λ−ε2ξ−ε10

(
s7/2µ4ξ

7/2
0 |ζ|+ s5/2µ3ξ

5/2
0 |∂x1ζ|+ s3/2µ2ξ

3/2
0

(∣∣∂2x1
ζ
∣∣+ |∂tζ|

)
+s1/2µξ

1/2
0

(∣∣∂3x1
ζ
∣∣+ |∂t∂x1ζ|

)
+ s−1/2ξ

−1/2
0

(∣∣∂4x1
ζ
∣∣+ ∣∣∂t∂2x1

ζ
∣∣+ ∣∣∂2t ζ∣∣)) .

From the Leibniz formula

esφ0ξr0
∂4

∂x41

(
e−sφ0ξ−r0 ζ

)
=

4∑
α=0

(
4

α

)
esφ0

∂α

∂xα1

(
e−sφ0ζ

)
ξr0

∂4−α

∂x4−α1

(
ξ−r0

)
.

From (3.8), we obtain ∣∣∣∣ξr0 ∂4−α∂x4−α1

(
ξ−r0

)∣∣∣∣ ≲ µ4−α

and thus a direct computation and (3.8) yield that for s ⩾ s0(T
2 + T 4),

3∑
α=0

(
4

α

)
esφ0

∂α

∂xα1

(
e−sφ0ζ

)
ξr0

∂4−α

∂x4−α1

(
ξ−r0

)
= l. o. t .

We also deduce from (3.8) that

esφ0
∂4

∂x41

(
e−sφ0ζ

)
= −4s3 (∂x1

φ0)
3
∂x1

ζ + 6s2 (∂x1
φ0)

2
∂2x1

ζ − 4s∂x1
φ0∂

3
x1
ζ + ∂4x1

ζ + s4 (∂x1
φ0)

4
ζ

− 12s3 (∂x1
φ0)

2
∂2x1

φ0ζ + l. o. t

and thus

esφ0ξr0
∂4

∂x41

(
e−sφ0ξ−r0 ζ

)
= −4s3 (∂x1φ0)

3
∂x1ζ + 6s2 (∂x1φ0)

2
∂2x1

ζ − 4s∂x1
φ0∂

3
x1
ζ + ∂4x1

ζ

+ s4 (∂x1φ0)
4
ζ − 12s3 (∂x1φ0)

2
∂2x1

φ0ζ + l. o. t . (A.3)

Note that
−12s3 (∂x1φ0)

2
∂2x1

φ0ζ = l. o. t,

but we follow the trick of [40] to keep this term in order to show the Carleman estimate.
We can show similarly that

esφ0ξr0
∂2

∂x21

(
e−sφ0ξ−r0 ζ

)
= l. o. t . (A.4)

31



We also have

esφ0ξr0
∂2

∂t2
(
e−sφ0ξ−r0 ζ

)
= esφ0

∂2

∂t2
(
e−sφ0ζ

)
+ 2esφ0

∂

∂t

(
e−sφ0ζ

)
ξr0
∂

∂t

(
ξ−r0

)
+ ζξr0

∂2

∂t2
(
ξ−r0

)
.

Thus, using (3.8), for s ⩾ s0(T
2 + T 4),

esφ0ξr0
∂2

∂t2
(
e−sφ0ξ−r0 ζ

)
= ∂2t ζ + l. o. t . (A.5)

Finally,

esφ0ξr0
∂

∂t

∂2

∂x21

(
e−sφ0ξ−r0 ζ

)
= esφ0

∂2

∂x21

(
e−sφ0ζ

)
ξr0
∂

∂t

(
ξ−r0

)
+ esφ0

∂

∂t

∂2

∂x21

(
e−sφ0ζ

)
+ 2esφ0

∂

∂x1

(
e−sφ0ζ

)
ξr0
∂

∂t

∂

∂x1

(
ξ−r0

)
+ 2esφ0

∂

∂t

∂

∂x1

(
e−sφ0ζ

)
ξr0

∂

∂x1

(
ξ−r0

)
+ ζξr0

∂

∂t

∂2

∂x21

(
ξ−r0

)
+ esφ0

∂

∂t

(
e−sφ0ζ

)
ξr0

∂2

∂x21

(
ξ−r0

)
.

From (3.8), for s ⩾ s0(T
2 + T 4), and for p = 0, 1, 2,∣∣∣∣ξr0 ∂p∂tp ∂α

∂xα1

(
ξ−r0

)∣∣∣∣ ≲ µαξ
p/2
0

and

esφ0ξr0
∂

∂t

∂2

∂x21

(
e−sφ0ξ−r0 ζ

)
= esφ0

∂

∂t

∂2

∂x21

(
e−sφ0ζ

)
+ l. o. t .

Consequently, using (3.8), we deduce that for s ⩾ s0(T
2 + T 4),

esφ0ξr0
∂

∂t

∂2

∂x21

(
e−sφ0ξ−r0 ζ

)
= s2 (∂x1φ0)

2
∂tζ − 2s∂x1φ0∂t∂x1ζ + ∂t∂

2
x1
ζ + l. o. t .

Gathering (A.3), (A.4), (A.5), and the above relation and combining them with (A.1) and (A.2), we deduce

M1ζ +M2ζ = esφ0ξr0fη + l. o. t, (A.6)

with
M1ζ := s4 (∂x1

φ0)
4
ζ + 6s2 (∂x1

φ0)
2
∂2x1

ζ + ∂4x1
ζ + 2s (∂x1

φ0) ∂t∂x1
ζ + ∂2t ζ,

and
M2ζ := −4s3 (∂x1

φ0)
3
∂x1

ζ − 4s∂x1
φ0∂

3
x1
ζ − ∂t∂

2
x1
ζ − s2 (∂x1

φ0)
2
∂tζ − 12s3 (∂x1

φ0)
2
∂2x1

φ0ζ.

In what follows, we say that a term G is a L.O.T (Lower Order Term) if there exist ε1 ⩾ 0, ε2 ⩾ 0, ε1ε2 ̸= 0,
such that

|G| ≲
∫∫

(0,T )×I
s−ε1λ−ε2ξ−ε10

(
s7µ8ξ70 |ζ|2 + s5µ6ξ50 |∂x1

ζ|2 + s3µ4ξ30
(
|∂2x1

ζ|2 + |∂tζ|2
)

+ sµ2ξ0
(
|∂3x1

ζ|2 + |∂t∂x1
ζ|2
)
+ s−1ξ−1

0

(∣∣∂4x1
ζ
∣∣2 + |∂2t ζ|2 + |∂t∂2x1

ζ|2
))

dt dx1 (A.7)

Then, we deduce

∥M1ζ∥2L2(0,T ;L2(Ω)) + ∥M2ζ∥2L2(0,T ;L2(Ω)) + 2

∫∫
(0,T )×I

M1ζ ·M2ζ dx1 dt

= ∥esφ0ξr0fηζ∥
2
L2(0,T ;L2(Ω)) + L.O.T . (A.8)
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Writing Ii,j for the product term of the i-th term of M1ζ with the j-th term if M2ζ, we have∫∫
(0,T )×I

M1ζ ·M2ζ dx1 dt =
∑

i,j∈{1,...,5}

Ii,j

and we have to estimate all the terms Ii,j . This is done in a precise way in [40] using (3.8). For instance, by
integration by parts,

I1,2 = −4s5
∫∫

(0,T )×I
(∂x1

φ0)
5
ζ∂3x1

ζ dx1 dt = −30s5
∫∫

(0,T )×I
(∂x1

φ0)
4
∂2x1

φ0 (∂x1
ζ)

2
dx1 dt

+ 20s5
∫∫

(0,T )×I

[
4 (∂x1

φ0)
3 (
∂2x1

φ0

)2
+ (∂x1

φ0)
4
∂3x1

φ0

]
ζ∂x1

ζ dx1 dt

and using (3.8), we deduce, as in [40] that

I1,2 = −4s5
∫∫

(0,T )×I
(∂x1

φ0)
5
ζ∂3x1

ζ dx1 dt = −30s5
∫∫

(0,T )×I
(∂x1

φ0)
4
∂2x1

φ0 (∂x1
ζ)

2
dx1 dt+ L.O.T .

Then, following the computations in [40], we find∫∫
(0,T )×I

M1ζ ·M2ζ dx1 dt ⩾ c

∫∫
(0,T )×I

(
s7µ8ξ70 |ζ|2 + s5µ6ξ50 |∂x1

ζ|2 + s3µ4ξ30
(
|∂2x1

ζ|2 + |∂tζ|2
)

+ sµ2ξ0
(
|∂3x1

ζ|2 + |∂t∂x1ζ|2
)
+ s−1ξ−1

0

(∣∣∂4x1
ζ
∣∣2 + |∂2t ζ|2 + |∂t∂2x1

ζ|2
))

dt dx1

− C

∫∫
(0,T )×J0

(
s7µ8ξ70 |ζ|2 + s5µ6ξ50 |∂x1

ζ|2 + s3µ4ξ30
(
|∂2x1

ζ|2 + |∂tζ|2
)

+ sµ2ξ0
(
|∂3x1

ζ|2 + |∂t∂x1
ζ|2
)
+ s−1ξ−1

0

(∣∣∂4x1
ζ
∣∣2 + |∂2t ζ|2 + |∂t∂2x1

ζ|2
))

dt dx1.

Then by using standard techniques as in [40], we deduce the result.

A.2 A Carleman estimate for the heat equation
We give here a sketch of the proof of Theorem 3.5. We recall that φ and ξ are defined by (2.12) and we define

φ̃(t, x1, x2) :=
1

ℓ(t)2
(e−λψΩ(x1,x2)+µψI(x1)+8λΨ − e10λΨ), ξ̃(t, x1, x2) :=

1

ℓ(t)2
e−λψΩ(x1,x2)+µψI(x1)+8λΨ. (A.9)

We also recall that ψ is defined by (2.14) and we define

ψ̃(x1, x2) :=
µ

λ
ψI(x1)− ψΩ(x1, x2). (A.10)

We have in particular

φ =
1

ℓ2
(eλ(ψ+8Ψ) − e10λΨ), ξ :=

1

ℓ2
eλ(ψ+8Ψ), φ̃ =

1

ℓ2
(eλ(ψ̃+8Ψ) − e10λΨ), ξ̃ :=

1

ℓ2
eλ(ψ̃+8Ψ).

We set
v := esφξru, ṽ := esφ̃ξ̃ru.

Using (2.9), we have

ψ = ψ̃, φ = φ̃, ξ = ξ̃, v = ṽ,
∂ψ

∂x1
=

∂ψ̃

∂x1
,

∂ψ

∂n
= −∂ψ̃

∂n
on (0, T )× ∂Ω, (A.11)
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and using that
∂u2
∂n

= 0 on (0, T )× Γ1, we deduce that

∂v2
∂n

= −∂ṽ2
∂n

on (0, T )× Γ1. (A.12)

Since µ = µ0, taking λ0 ⩾ µ0 and λ ⩾ λ0, we deduce that

|ψ|+ |∇ψ|+
∣∣∇2ψ

∣∣+ ∣∣∣ψ̃∣∣∣+ ∣∣∣∇̃ψ∣∣∣+ ∣∣∣∇̃2ψ
∣∣∣ ≲ 1.

There exists s0 > 0 such that for s ⩾ s0(T
2 + T 4),

1 ⩽ sξ, |∇αξ|+ |∇αφ| ≲ λαξ (k ⩾ 1), |∂t∇αξ|+ |∂t∇αφ| ≲ λαTξ3/2,
∣∣∂2t∇αξ

∣∣+ ∣∣∂2t∇αφ
∣∣ ≲ λαT 2ξ2,

1 ⩽ sξ̃,
∣∣∣∇αξ̃

∣∣∣+ |∇αφ̃| ≲ λαξ̃ (k ⩾ 1),
∣∣∣∂t∇αξ̃

∣∣∣+ |∂t∇αφ̃| ≲ λαT ξ̃3/2,
∣∣∣∂2t∇αξ̃

∣∣∣+ ∣∣∂2t∇αφ̃
∣∣ ≲ λαT 2ξ̃2,

Using the above relations and following standard calculations (see, for instance, [16]), we obtain the existence
of s0, c, C, c̃, C̃ > 0 such that for s ⩾ s0(T

2 + T 4),

c

∫∫
(0,T )×Ω

(
s3λ4ξ3 |v|2 + sλ2ξ |∇v|2 + 1

sξ
|∆v|2 + 1

sξ
|∂tv|2

)
dxdt

−
∫∫

(0,T )×∂Ω
2s3λ3ξ3 |∇ψ|2 ∂ψ

∂n
|v|2 dx1dt−

∫∫
(0,T )×∂Ω

4sλ2ξ |∇ψ|2 ∂v
∂n

· v dx1dt

−
∫∫

(0,T )×∂Ω
4sλξ (∇v∇ψ) · ∂v

∂n
dx1dt+

∫∫
(0,T )×∂Ω

2sλξ
∂ψ

∂n
|∇v|2 dx1dt

−
∫∫

(0,T )×∂Ω
2∂tv ·

∂v

∂n
dx1dt−

∫∫
(0,T )×∂Ω

2s2λξ
∂ψ

∂n
∂tφ |v|2 dx1dt

⩽ C

(∫∫
(0,T )×Ω

|∂tu−∆u|2 ξ2re2sφ dxdt+
∫∫

(0,T )×ω1

s3λ4ξ3 |v|2 dxdt

)
(A.13)

and

c̃

∫∫
(0,T )×Ω

(
s3λ4ξ̃3 |ṽ|2 + sλ2ξ̃ |∇ṽ|2 + 1

sξ̃
|∆ṽ|2 + 1

sξ̃
|∂tṽ|2

)
dxdt

−
∫∫

(0,T )×∂Ω
2s3λ3ξ̃3

∣∣∣∇ψ̃∣∣∣2 ∂ψ̃
∂n

|ṽ|2 dx1dt−
∫∫

(0,T )×∂Ω
4sλ2ξ̃

∣∣∣∇ψ̃∣∣∣2 ∂ṽ
∂n

· ṽ dx1dt

−
∫∫

(0,T )×∂Ω
4sλξ̃

(
∇ṽ∇ψ̃

)
· ∂ṽ
∂n

dx1dt+

∫∫
(0,T )×∂Ω

2sλξ̃
∂ψ̃

∂n
|∇ṽ|2 dx1dt

−
∫∫

(0,T )×∂Ω
2∂tṽ ·

∂ṽ

∂n
dx1dt−

∫∫
(0,T )×∂Ω

2s2λξ̃
∂ψ̃

∂n
∂tφ̃ |ṽ|2 dx1dt

⩽ C̃

(∫∫
(0,T )×Ω

|∂tu−∆u|2 ξ̃2re2sφ̃ dxdt+
∫∫

(0,T )×ω1

s3λ4ξ̃3 |ṽ|2 dxdt

)
. (A.14)
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Summing (A.13) and (A.14) and using (A.12), (A.12), we deduce that

c

∫∫
(0,T )×Ω

(
s3λ4ξ3 |v|2 + sλ2ξ |∇v|2 + 1

sξ
|∆v|2 + 1

sξ
|∂tv|2

)
dxdt

+ c̃

∫∫
(0,T )×Ω

(
s3λ4ξ̃3 |ṽ|2 + sλ2ξ̃ |∇ṽ|2 + 1

sξ̃
|∆ṽ|2 + 1

sξ̃
|∂tṽ|2

)
dxdt

⩽ C

(∫∫
(0,T )×Ω

|∂tu−∆u|2 ξ2re2sφ dxdt+
∫∫

(0,T )×ω0

s3λ4ξ3 |v|2 dxdt

)

+ C̃

(∫∫
(0,T )×Ω

|∂tu−∆u|2 ξ̃2re2sφ̃ dxdt+
∫∫

(0,T )×ω1

s3λ4ξ̃3 |ṽ|2 dxdt

)
. (A.15)

Then, using that φ̃ ⩽ φ and ξ̃ ⩽ ξ, we deduce that∫∫
(0,T )×Ω

(
s3λ4ξ3 |v|2 + sλ2ξ |∇v|2 + 1

sξ
|∆v|2 + 1

sξ
|∂tv|2

)
dxdt

≲
∫∫

(0,T )×Ω

|∂tu−∆u|2 ξ2re2sφ dxdt+
∫∫

(0,T )×ω1

s3λ4ξ3 |v|2 dxdt. (A.16)

From the elliptical regularity of the Laplace operator, we deduce∫∫
(0,T )×Ω

(
s3λ4ξ3 |v|2 + sλ2ξ |∇v|2 + 1

sξ

∣∣∇2v
∣∣2 + 1

sξ
|∂tv|2

)
dxdt

≲
∫∫

(0,T )×Ω

|∂tu−∆u|2 ξ2re2sφ dxdt+
∫∫

(0,T )×ω1

s3λ4ξ3 |v|2 dxdt (A.17)

and with standard computations, we can come back to u:∫∫
(0,T )×Ω

e2sφ
(
s2r+3λ2r+4ξ2r+3 |u|2 + s2r+1λ2r+2ξ2r+1 |∇u|2

+s2r−1λ2rξ2r−1
∣∣∇2u

∣∣2 + s2r−1λ2rξ2r−1 |∂tu|2
)
dxdt

≲
∫∫

(0,T )×Ω

|∂tu−∆u|2 (sλξ)2re2sφ dxdt+
∫∫

(0,T )×ω1

s2r+3λ2r+4ξ2r+3e2sφ |u|2 dxdt. (A.18)

We deduce Theorem 3.5 by taking r = 1/2.
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