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Abstract—
Due to uncertainties in weather conditions, trajectory predic-

tion and constant flight evolution, controlling traffic in a sector
is a dynamic problem. Furthermore, when the traffic increases,
Air traffic control can become a complex dynamic optimization
problem difficult to handle by human operators. In the context
of offering air traffic controllers intelligent decision support
tools adapted to the dynamic nature of traffic, we compare
two options to address this issue. Previous work has already
used an evolutionary algorithm to solve conflicts at given time
steps. In this paper, we compare two different approaches using
this evolutionary algorithm. The first one periodically calls an
automatic solver, and the second one uses a memory method to
guide successive resolutions. In order to choose the more adapted,
we test them on different scenarios of continuous traffic. The
memory approach can handle higher densities by maneuvering
fewer aircraft and inducing lower delays. It is also more stable
over time as early planned maneuvers are more likely to comply
to effective maneuvers.

I. INTRODUCTION

Dynamic evolutionary optimization is an active research
topic and has many applications in real world. Dynamic
problems are problems that change over time. Dynamic Opti-
mization Problems (DOP) are dynamic problems solved by
an optimization algorithm. In real life, most DOP involve
uncertainties where changes occur over time in the objective
function, environmental parameters or constraints [1]. These
different changes can have consequences in the objective
function, on the optimium solution and its evolution.

Many dynamic optimization algorithms are based on the
principles of Artificial Evolution. Evolutionnary Algorithms
(EAs) belong to this class of algorithms because they are
inspired by the theory of species evolution. However, an
adapted Dynamic Evolutionnary Algorithm (DEA) have to
be able to follow a changing optimal solution and needs to
take advantage of information gathered in previous generations
to speedup the optimization search, even if the environment
changes quickly.

Air traffic conflict resolution in a control sector can be
defined as a DOP. The problem evolves because aircraft enter
or exit the sector, their positions evolve and their trajectory
prediction constantly change with time, because of uncertain-
ties on speed and maneuver executions. Air traffic controllers

manage the traffic by taking decisions on trajectories at
specific time while the situation is permanently evolving.

In the literature, DOP are either defined as a sequence
of static problems linked by dynamic rules ([2], [3], [4]),
or as a problem that has time-dependent parameters in its
mathematical expression ([5],[6]). Generally in stationary op-
timization, the only goal of optimization algorithms is to
find the global optimum as quickly as possible. However,
in Evolutionary Dynamic Problem (EDP) research where the
considered problems vary over time, the goal shifts from
finding the global optimum to detecting changes and then
tracking the evolution of optima (local optima or ideally the
global optimum) over time. Additionally, in the case where the
problem after the change somehow correlates with the problem
before the change, an optimization algorithm should also learn
as much as possible from its previous search experience to
hopefully move forward search more efficiently.

A. Naive approches

A basic approach consists in restarting the EA when a
change happens in the system environment. In the Rerandom-
ization PSO (RPSO) described by Hu and Eberhard [7], the
entire or a part of the swarm is randomly relocated in the
search space when a change occurs. The principal risk of this
approach is to lose information from previous research and,
consequently, to slow down the convergence.

B. Implicit memory

Implicit memory approach calls on redundant representa-
tions in order to memorize some good solutions which may
be reuse later (redundant representations are representations
containing more information than necessary to define a phe-
notype). Whereas Goldberg and Smith introduced a triallelic
scheme in 1987 [8], where an allele can take “0,” “recessive
1,” or “dominant 1” values, Ng and Wong proposed in 1995
a new diploid [9] scheme using a diploid scheme with four
possible alleles (“0 recessive,” “1 recessive,” “0 dominant,”
and “1 dominant”). In their experiments, diploid scheme seem
better than haploid or triallelic schemes.

C. Explicit memory

Explicit memory approach uses external memory to store
past elements population that may be useful in future steps
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of the evolutionary process. Contrary to implicit memory,
with explicit memory we know how and when the specific
information stored will be reused in later generations. An
explicit memory was introduced by Louis and Xu in 1996 [10]
on an open shop scheduling or re-scheduling problem as an
example. When a change occurs during the simulation, a part
of elements from previous generations of the EA are reused,
and the other chromosomes are randomly initialized. The main
limit encountered is when the environment changes are too
much significant. As an example, in their case, a deleted
task had an important repercussion on new good schedules
and it was much more efficient to build a new solution from
scratch. A similar method employed a short-term memory in
order to recall, when a change occurs, individual’s ancestors
that have been evaluated good in last generations [11]. In
[12], authors add a local memory on each chromosome about
their ancestors solutions. Their conclusion is linked to Louis
and Xu’s approach because it highlights the fact that the
method efficiency is correlated with the nature of environment
changes.

D. Multiple Population Approaches

Multiple population approaches use multiple sub-
populations to track multiple peaks in the landscape.
A popular design proposed in ([13]), called a shifting
equilibrium genetic algorithm, deployed a base population to
exploit the best optimum found so far and multiple colonies
to explore the search space. A measure of diversity, distance
from the main population, was included in assessments of
colony fitness. Interesting results have been obtained by the
self-organizing scouts proposed by Branker in 2000 [14].
This algorithm use a mother population to explore research
space, whereas daughter populations follow local optima,
over the objective function changes.

II. ORIGINAL EVOLUTIONARY ALGORITHM

In this article we deal with traffic in the horizontal plane and
only accept one maneuver per aircraft. In order to comply with
air traffic controllers behavior, our model takes into account
uncertainties in trajectory prediction, which increase over time.
Many realistic uncertainty models have been presented in
previous work [15], [16]. In this article we use a simplified
version of uncertainty described in [17] that increases the size
of the separation standard linearly with time.

A. Maneuvers

Time is discretized into steps of duration τ to describe
maneuvers. τ is small enough to detect every conflict in the
application (in the simulations, τ = 3 s, [18] discusses the
topic).

In the trajectory model chosen, maneuvers are heading
changes of α degrees, starting at time t0 and ending at time
t1. Heading changes α take values that are discretized by
steps of 5 degrees in order to comply with air traffic con-
trollers practice. α is relative to the current heading. Figure 1
summarizes a current Air Traffic Control maneuver which can

easily be implemented by pilots and current FMS technologies
(cf. [19]).
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Fig. 1: Maneuver model.

Uncertainty is added to the model by increasing the separa-
tion standard linearly with time. Using such a growing norm
is very convenient for quickly calculating the conflicting zone,
but it can only model an isotropic growth of uncertainty. For
example a 5% of the mean speed increase on the separation
standard models a 5% speed uncertainty and a 3◦heading
uncertainty.

B. Data

The EA used is similar to those described in [20] and [21]. It
finds optimal maneuvers t0, t1, α for each aircraft of a scenario
with the uncertainty model.

An example of a population element (chromosome) is given
in figure 2 for a situation including n aircraft. Each value is
coded by a positive float.
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Fig. 2: Structure of a chromosome

The algorithm receives as input the current time tc, the
current flight plans of each aircraft, and their current maneuver
(null if the aircraft is not maneuvered). If a maneuver has
already started for an aircraft, its heading α and t0 cannot be
modified. However, if the end of maneuver t1 is more than 60
seconds after tc, t1 can still vary and will be optimized.

A lag (lag = 30 seconds in the experiments) was introduced
to prevent any maneuver modification while the solver is
optimizing the solution. For entering aircraft, another lag
(lagb = 120 seconds in the experiments) was introduced.
If tb is the entering time of an aircraft, a new maneuver
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cannot begin before tc + lag or before tb + lagb. This lag
simulates the necessary time to take a new aircraft into
account. We also make sure that the position at time t1 allows
an acceptable maneuver, i.e. a maneuver which respects the
maximum turning rate toward the exit point. required (the 3◦

per second standard rate was chosen).
The Evolutionary Algorithm chosen used is described in

[20]. An intelligent crossover operator is used to recombine
the most promising maneuvers of each parent solutions. An
intelligent mutation operator is also used to correct problem-
atic maneuvers in the chromosome chosen for mutation. 100
generations are executed, the population is set to 150 elements.
At each generation, 40% of the population is crossed and 40%
of the population is muted. A σ = 2 truncation scaling is used
and a simple sharing process is adopted to prevent convergence
to local minimum. It divides the fitness of solutions that share
the same characteristics by their occurrence numbers: two
solutions share the same characteristics if they turn right or
left or keep straight the same aircraft.

In the initial population and for both approaches, when a
new maneuver is randomly defined, we chose to give one time
out of 10 a direct route to the aircraft in order to favor solutions
with the least number of maneuvers and shortest delay in the
algorithm.

C. Fitness

The fitness function takes into account the four following
criteria ranked by their criticality:

1) eliminate remaining conflicts (nconf the number of
conflicts). Whenever a conflict remains, we try to delay
it as late as possible because it could get a chance to be
solved later. A parameter vtmin ∈ [0 : 1] measures the
latest remaining conflict ;

2) minimize number of aircraft maneuvered (nman the
number of maneuvered aircraft);

3) minimize delays caused by maneuvers (delay the sum
of delays);

4) start maneuvers as late as possible (nb the sum of the
differences between the maximum possible value of
maneuver start t0max

and the actual maneuvering start
t0) : because of uncertainties, it is worth waiting as late
as possible before maneuvering an aircraft.

The EA first tries to eliminate every conflict, and then
optimize trajectories resulting from maneuvers.

Finally, the resulting fitness of a chromosome is :

F =

{
1

1+nconf
∗ vtmin if nconf > 0

1 + (n− nman) +
1

1+2∗delay+nb
else.

III. APPROACHES DESCRIPTION

In this section, we detail the two different approaches in
order to continuously solve conflicts. The main difference
between these approaches concerns the notion of memory
defined in I-C.

A. Naive Approach (NA)

This approach is a naive version which launches the EA
every ∆s = 30 seconds. Maneuvers calculated by the solver
are applied if they begin in less than 60 seconds, otherwise
they are not sent to the aircraft because they may be applied
at the next step.

B. Explicit Memory Approach (EMA)

With the Explicit Memory Approach, the idea is to keep
information found from previous optimization to build new
solutions. Unlike the Naive Approach, the EMA tries to build
new solutions that are closer to the old ones. Indeed, after
every resolution performed by the solver, we keep in an
external file the last generation population in order to initialize
the new population of the solver (∆s = 30 seconds later).
Only solutions that still comply with the current environment
constraints are kept.

There are three main cases :
• A new aircraft arrived in the sector : a new maneuver

allele will be randomly initialized and added for each
population element ;

• An aircraft left the sector : the corresponding maneuver
allele will be removed from each population element ;

• An aircraft has been maneuvered since the last EA opti-
misation : population elements which suggested another
maneuver for this aircraft (a different t0 or a different
α for example), will have this maneuver allele randomly
initialized with a maneuver which respects the new con-
straints (same t0 and same α).

IV. EXPERIMENTS

In this section, the air traffic generation scenario is described
and the criteria used to compare the two approaches are
presented.

A. Exercise generation

In order to generate continuous random traffic scenarios
with different conflicts configurations, we consider a circular
sector of 50 nautical mile radius (about 15 minutes of flying
time for an aircraft), with 14 possible entry points regularly
positioned on its circumference.

For our tests, the number of aircraft in the traffic situations
is regulated using a Poisson law with variable λ depending on
the scenario. Each aircraft is randomly assigned:

• a nominal speed, randomly chosen between 370 and 550
knots;

• its entry point, in a rectangular area of 10 nautical miles
around one of the sector’s entry points;

• an exit point on the opposite side of the sector, in a
slice extending by plus or minus 30 degrees around the
opposite point on the circle.

Initially, each aircraft flies directly from its entry point to its
exit point.

However, in order to build conflict scenarios and avoid un-
manageable traffic situations, a minimal duration of 4 minutes
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TABLE I: Scenarios

λ Number of aircraft
1.1 97
1.2 102
1.3 103
1.4 105
1.6 113
1.9 123
2.0 128
2.5 136
3.0 151
3.5 161

is required before the first conflict of an aircraft entering the
sector.

Finally, different density scenarios using increasing values
of λ (see table I) are compared with both approaches. Each
scenario last 3 hours and 20 minutes (12000 seconds).

B. Comparison parameters

1) The first objective, included in the EA fitness function,
is to solve all conflicts. Because we only included one
flight level and strong restrictions on maneuvers (only
heading change per aircraft), some situations become
difficult to solve when the density increases. We first
compare the number of unsolved conflicts in both ap-
proaches.

2) Second, we compare the percentage of aircraft maneu-
vered for both approaches.

3) Third, we compare the percentage of delay due to
maneuvers for both approaches.

4) Fourth, we compare the number of conflict pairs detected
by both approaches. Because both approaches lead to
different decisions and thus different trajectories, the
number of conflict pairs detected at the end of each
scenario is different.

5) Fifth, we compare the number of maneuver heading
changes : this happens when the solution calculated
30 seconds before contains a maneuver in the opposite
direction compared to the new one. These elements will
impact controllers reactions and appreciation of the tool
if such a tool is used to help them make decisions : the
more stable the resolution over time, the more acceptable
and the less stressful it is for air traffic controllers.

The last item (maneuver heading changes) deserves to be
more explained. For an aircraft in particular, there is a heading
change if it is in one of the following situations at time t, with
t+ lag > t0 and t−∆s + lag < t0 :

• at time t−∆, the aircraft had a heading change α to the
right and at time t the aircraft has heading change to the
left;

• at time t−∆, the aircraft had a heading change α to the
left and at time t the aircraft has heading change to the
right;

• at time t−∆, the aircraft had no heading change (α = 0)
and at time t the aircraft has a heading change (α ̸= 0);

V. RESULTS

Results from simulations on each scenario are transcribed
in table II.

A. Remaining conflicts

There is a big difference between the two approaches on
the number of unsolved conflicts. For low densities, both
approaches solve all the conflicts. Remaining conflicts for low
densities are probably caused by the lack of coordination when
aircraft enter the sector. Some significant number of unsolved
conflicts appear when λ ≥ 1.9 for the naive approach, whereas
the memory version keeps a low number of unsolved conflicts
for λ ≥ 3.

Fig. 3: Number of unsolved conflicts

B. Percentage of maneuvered aircraft

The number of maneuvered aircraft is for all experiments
smaller with the Explicit Memory Approach than with the
Naive Approach. For low traffic densities, there are more than
30% more maneuvers with the NA than with the EMA. This
ratio tends to decrease when the density increases, which is
due to the fact that in high densities, every aircraft tends to
be maneuvered.
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Fig. 4: Percentage of maneuvered aircraft

C. Delays

The percentage of delay per aircraft increases with the traffic
density for both approaches. However there is a big difference
between the two approaches : the EMA approach induces a
smaller delay to aircraft. For λ = 3.5, the delay observed with
the NA is 70% higher than the delay observed with the EMA.

Fig. 5: Delay (in %)

D. Conflict pairs

As expected, the number of conflict pairs detected increases
with the density. However it seems that the EMA solutions
reduce the number of conflict pairs.

Fig. 6: Number of conflict pairs detected

E. Percentage of Heading changes

The percentage of heading changes varies a lot with the
scenarios. However the EMA tends to keep it lower than the
NA, which was the goal of the Memory Approach. When
the density is very high, both percentages of heading changes
converge, probably because situations change more often.

Fig. 7: Percentage of heading changes

F. Amount of useful memory

The main particularity of the Explicit Memory Approach
is to keep as much information as possible from the last
generation of the previous optimization and to reuse it in
the current generation, we measured the proportion of alleles
reused during each experiments, which we called the amount
of useful memory.

The following figure traces the percentage of reused alleles
for each λ scenarios.
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Fig. 8: Percentage of reused alleles

The percentage of reused alleles increases with traffic den-
sity. It can be explained by the fact that the higher the traffic
density, the more maneuvering constraints there are. When
aircraft started a maneuver they cannot change the maneuver
start time or heading angle, this information is kept in the next
generation. It would be interesting in further work to separately
count these cases.

VI. CONCLUSION AND FURTHER WORK

In this article, we compared two approaches for conflict
resolution in the evolving environment of a sector. Results
globally show that an explicit memory approach is better than
a naive approach in terms of number of maneuvers, delays,
unsolved conflicts, conflict pairs and heading changes.

Indeed, the memory-based approach allows to keep the
number of unsolved conflicts smaller for higher densities.
It reduces significantly the number of maneuvered aircraft,
which is a very important factor for building manageable
solutions. The delays per aircraft during the simulations are
also significantly reduced which probably impacts the number
of conflict pairs. The percentage of heading changes measures
the number of times a solution is drastically changed over time.
It measures the stability of the solutions planned in advance.
This percentage is also much lower with a Memory approach.
A maneuver predictor should be as stable as possible if it were
to be used as an aid for air traffic control. We can notice that
on the average, 70% to 90% percent (according to the traffic
density) of previous alleles are used in the memory process.

In future work, we should add a vertical dimension to the
problem, which would make it more realistic and allow to
explore a bigger range of maneuvers and higher densities of
traffic.

Another memory approach could be imagined by keeping
alive a population of solutions and picking regularly in this
evolving population the best solution to decide the maneuvers
to assign to aircraft.
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TABLE II: Results

λ Approach Remaining conflicts Percentage of Delay Conflict pairs Percentage of
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1.1
EMA 0 46 2 101 26
NA 0 62 3 114 37
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EMA 1 48 5 135 34
NA 1 73 9 160 47

1.3
EMA 0 49 3 126 32
NA 0 66 5 143 43

1.4
EMA 1 53 3 148 23
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EMA 0 63 5 237 30
NA 4 80 15 302 36

2
EMA 0 60 5 235 27
NA 6 84 14 332 48

2.5
EMA 0 65 7 291 36
NA 6 90 17 380 51

3.0
EMA 3 80 11 455 31
NA 7 91 19 525 46

3.5
EMA 6 83 13 572 35
NA 11 92 23 685 35
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Polytechnique de Paris in 1990 and from ENAC in 1992.
He has been a design engineer at the Centre d’Études de la
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