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Abstract—This paper proposes a first step towards the automa-
tion of the safety assurance level assessment using model-based
methods applied to the domain of complex digital System-On-
a-Chip (SoCs). Model-based safety and reliability engineering
is widely deployed in critical systems area such as aeronautics
but remain unused in the field of digital system design where
Failure Mode Effect Defect Analysis (FMEDA) are performed
manually or using fault injection. We describe here an automatic
approach to build dysfunctional models of digital blocks suitable
for use with existing safety engineering frameworks. The choice of
SimfiaNeo (Airbus Protect) framework explores the possibility of
modelling beyond classical electromechanical systems, exploring
application of Model-Based Safety Analysis (MBSA) to digital
systems. Experiments have been conducted on a simple serial
↔ parallel adapter system, as a proof-of-concept laying the
base for a more complete and extended application to complex
digital systems. Such preliminary work is needed to ensure the
viability and scalability of the approach when targeting heavily
interconnected systems as such as complex SoCs.

Abstract—Cet article propose une première approche vers
l’automatisation de l’évaluation du niveau d’assurance de la
sûreté fonctionnelle à l’aide de méthodes basées sur les modèles
(Model-Based Safety Assessment ou MBSA) appliquées au do-
maine des systèmes digitaux complexes de type système sur puce
(SoC). L’ingénierie de la sécurité et de la fiabilité basée sur
les modèles est largement utilisée dans le domaine des systèmes
critiques tels que l’aéronautique, mais elle reste marginale dans le
domaine de la conception des systèmes numériques où l’analyse
des modes de défaillance, des effets et des défauts (FMEDA) est
effectuée manuellement ou par injection de fautes. Nous décrivons
ici une approche automatique visant à construire des modèles
dysfonctionnels de blocs digitaux permettant leur utilisation dans
les flots d’ingénierie de sûreté fonctionnelle existants. Le choix
de SimfiaNeo (Airbus Protect) permet d’explorer l’utilisation
des méthodes MBSA au-delà des systèmes électromécaniques
classiques, en appliquant l’ingénierie de la sûreté fonctionnelle
basée sur les modèles (MBSA) aux systèmes digitaux complexes.
Une application à un système simple d’adaptation série vers
parallèle, est présentée comme preuve de concept en vue d’une ap-
plication à des systèmes plus complexes. Ces travaux préliminaires
sont nécessaires pour garantir la viabilité et l’évolutivité de
l’approche qui vise une application à des systèmes fortement
inter-communicants de type SoCs.

I. INTRODUCTION

In the context of new applications for autonomous mobility,
digital components a required to reach high levels of functional
safety performances. This level of assurance is necessary to
supply safely the computational power and advanced process-
ing required by those applications. It is therefore necessary for
digital SoCs safety engineers to be able to demonstrate thru
advanced provable methods the achieved reliability of their
system and counter measures.

Similarly to complex electomecanical systems, it is difficult
to predict the failure modes of a complex SoC which exhibits
an almost infinite state space (in the order of 2n, n is the num-
ber of sequential elements, reaching ten’s of thousands easily)
and distributed-systems characteristics: numerous independents
sub-systems operating and communicating asynchronously.
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Digital systems are subject to two kind of errors, permanent
which are created by destructive or aging effects, and transient
[1] created by particle impacts such as thermal neutrons at
ground level or solar wind in low and high earth orbits [2]
[3]. Permanent effects shows in the form of a permanent stuck
to an electrical value (’0’ or ’1’ logic value) and can occurs
on any digital element (combinational logic, i.e. logic gate or
sequential element, i.e. flip-flops). So do transient faults, also
called soft errors, but with different, non-permanent, effects
on logic or sequential elements. Transient faults on logic gates
are called Single Event Transient (SET) [4] and are particularly
dangerous on clock trees and reset trees (which distributes the
clock and reset signals through the chip using trees of buffers)
of SoCs as their effect, that has the form of a glitch, is to reset
or desynchronize the sequencing of a sub-part of the system.
Transient faults on sequential elements (memories or flip-flops)
only invert the value of the element which will retain the faulty
value until overwritten by a new value. They are called Single
Event Upset (SEU) and are the main cause of safety goals
violations in digital SoCs [5].

However, digital system exhibit a natural resistance to soft
errors and most of them have no functional effect while a small
proportion of them (≈ 10% of them in a standard 5-stages pro-
cessor [6], [7]) will lead to system execution failure. FMEDA
analysis [8], targeting goals such as ISO26262 automotive
safety norm [9] certification will consist in quantifying those
failure modes, proving the effectiveness of counter measures
and absence of safety goals violation. An effective solution
consists in submitting the system to faults, by simulation or
under radiation beam, therefore stressing it and provoking
intentionally dysfunctional behaviors. Those ’out of trajectory’
behaviors can then be recorded, analysed and used for FMEDA
analysis in the certification process. However, both methods
are costly both in term of engineering setup needed and cost:
fault injection of a full SoC requires a complex setup, test
suite and costly hardware emulator while radiation test requires
an acquisition system, a test setup and access to costly and
constrained radiation facilities, Both have the disadvantage
to require, the full SoC gate netlist (fault injection [10]) or
silicon (irradiation [11]). Also, both methods can be classified
as experimental as it is a verification ’by observation’ of the
resilience of the system to faults. No proof, except statistical
confidence is made on the extracted faults metrics.

In this work, we aim to assess the capability of Model-
Based Safety Assessment methods to build the dysfunctional
model of a digital SoC from its subsystems and perform the
currently hand-made FMEDA of the full system automatically.
We expect the methods to be able to quantify globally the
system safety metrics more accurately than with hand-made
spreadsheets which only basically multiply probabilities. Au-
tomatic failure analysis such as fault trees extraction, fault
sequences leading to unwanted events are also expected to be
of great help during the certification process. The problem to
solve is then to extract and build the required dysfunctional
models of the different subsystems of the SoC and to properly
expose the failure modes in the constructed models to be able



to use existing model composition frameworks.
The document is organized as follow: we first present the

system used as example and how fault injection is used
to expose dysfunctional behaviors and extract a model. The
chosen approach is then detailed reminding generic principles
before explaining specific mechanisms put in place to model
digital system. Finally, the document details fault injection
campaign post-processing methods and obtained results. We
compare composition results with fault injection performed on
the full system used as a reference.

II. STATE-OF-THE-ART

A. Probabilistic Methods in Digital Systems Safety
Probabilistic methods [12] [13] have been developed to es-

timate propagation and masking rates of errors in gate netlists.
Such approaches, restricted to combinational logic provide
an helper to estimate certain metrics (λspf , i.e. Dangerous
Undetected by a safety mechanism faults [14]) required in
ISO26262, but are far from being able to provide metrics even
at the sequential block level. Likewise, industrial formal proof
tools [15] [16] are able to compute such metrics by using
formal methods.

Methods like FIDES [17] [18] targets Commercial Off-
the-Shelf (COTS) based Electronic Control Unit (ECU), with
components failure rates extracted from available reliability
databases. It takes into account systematic or aging failures
but not transient effects such as soft-errors.

B. Formal Methods in Digital Systems Safety
Formal methods [19], [20] are mostly used on unitary blocks

or functionalities to prove assertions (i.e. properties) expressed
in linear [21] or branching [22] timing logic. When applied to
safety, it comes to proving absence of safety goals violations
that are expressed as assertions on outputs in the presence
of faults. Tools like [15] [16] are able to compute, given
a nelist of logic gates and flip-flops and an initial state,
the cone of influence of flip-flops or gates and whether a
fault in such elements can propagate to a given output. Such
structural analysis can perform Out-of-Cone-of-Influence (COI)
fault analysis allowing to classify a fault as safe when it
cannot reach a given output. Activation analysis determine
whether a fault injected on a specific node can be activated.
Propagatability analysis determine if an activated fault in a
COI can propagate to a strobed output and detection analysis
determines if a fault will (always) be propagated and detected
at the checker output. Such analysis can reveal what logic is
covered by a safety mechanism or not. However, no formal
methods is able to address such safety properties at SoC level.

C. Altarica
Functional safety objective is to identify the most probable

failure combinations leading to a feared event. Model-Based
Safety Analysis performs safety analysis by building dysfunc-
tional models for each block of the considered system and
using formal methods to combine and extract failure modes at
the system level [23]. MBSA introduces the use of high level
modeling languages dedicated to functional safety analysis [24]
[25] [26]. It allows extending classical methods such as FMEA
or fault trees. These languages help capture system dynamics
and how failures propagate inside it. Moreover, models support
structural modeling allowing identifying and locating induced
effects of a failure inside the architecture.

Altarica Dataflow (Fig. 1) is an event-driven asynchronous
language that implements discrete variables with a finite num-
ber of values, leading to a finite number of combinations
of state values and propagated flows, allowing theoretically
to cover the entire system state space. AltaRica Dataflow is
at the core of several Reliability, Availability, Maintainability
and Safety (RAMS) environments: Cecilia OCAS (Dassault
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Fig. 1: Altarica Dataflow Model

Aviation), SimfiaNeo (Airbus Protect), and Safety Designer
(Dassault Systèmes)

• Variables: AltaRica variables are discrete and represents
an enumerated finite set of values called its domain.
Variable definition inside its domain is free. The variable
can represent for example functional modes, dysfunctional
status, message types . . . .
Inside MBSA models, state variables are generally used to
represent dysfunctional status with a default value as nom-
inal behavior and a value for each degraded mode reached
from any failure mode. Flow variables are generally to
describe the type of data exchanged between components.
This type can represent a functional value (e.g. instruction
value) or a dysfunctional value (e.g. message status). It
depends of the model level of detail. As flows are used to
propagate failures, they can be described either by sending
a status or a faulty value.
Transitions: Transitions describe possible states changing
values. Transitions are guarded by a condition allowing
the transition to become fireable when true. A transition
is associated with a triggering event and is fired when
the event is triggered and the guard is true. In MBSA
modeling, triggering events are used to represent failure
modes. AltaRica allows to assign a probability law to
an event, modeling the behavior of random failures or
deterministic actions. The transition completion describes
the effect of the failure mode on the component state.
Guards can be enriched to restrict to describe conditional
failures. For example, in a cold redundancy, some failures
can’t happen when the component is off.

• Assertions: Assertion is the mechanism used to set out-
puts values of a node. Output values are a function
of input values and internal state values. Assertion can
be interpreted as a logical function describing a truth
table assigning outputs according to each combination
of inputs and internal state values. Combinations are
described through Boolean expressions and imperative
programming constructs such as if-then-else or case.
Assertions are used to propagate failures from a faulty
component to other blocks. Fault injected on the internal
state is propagated to its output and then to others blocks.
Depending of the granularity level of the model, assertions
are manipulating either functional values or states.

III. MODELING DIGITAL SYSTEMS FOR MBSA

Digital systems, by essence, lend themselves well to finite
state machines representation making the use of languages and
formalism such as Altarica very suitable for their modelling.
However, dysfunctional modeling requires extracting the faulty
behaviour of the blocks composing the system. Such task is
usually carried out by a Failure Mode and Effect Analysis
(FMEA) to identify possible malfunction of the individual
blocks. In digital system, such task can be performed auto-
matically by simulation with fault injection [27] and possibly
formal methods [28].



The main issue in modelling digital systems for MBSA is
choosing the adequate level of abstraction avoiding a direct
1⇔ 1 translation of Hardware Description Languages (HDL)
modeling concepts into Altarica. When extracting a safety
model from a digital block three points must be addressed:

• Structural hierarchy: Because Altarica support hierarchy
[29], translating hierarchy with adequate granularity can
be straightforward, especially as natural design hierarchy
is usually a good candidate.

• Behavioral modelling: Faulty behavioral aspects requires
extraction of failure modes which can be performed
manually, based on design knowledge or automatically
using fault injection or formal approaches. Fault injection
is well suited to such analysis, especially in the world of
digital design which rely heavily on HDL simulators and
digital fault injection driven by ISO26262 requirements.
In this work we will exclusively focus on fault injection.

• Faults propagation: Blocks in a SoCs are usually con-
nected though buses with well defined protocols and their
failures modes (unaligned access . . . ) are known. The
issue comes in the granularity of the modelling that, if too
low will lead to too numerous events (1 HDL signal →
1 flow variable) while a too high abstraction may prevent
catching of some protocol failures.

Fault injection campaigns are used to characterize the behavior
of the system from its output pins point of view which are the
’vectors’ for faults propagation between blocks. Also, knowing
the functionality of each of these pins, it is possible to attach
some possible consequences to the failure to such (group of)
output(s). Such semantic labelling is, however, still manual and
based on safety engineers knowledge and experience.

IV. METHODOLOGY

On top of any explicit finite state machine or control code
encoding the user specified behaviour, a more complete state
exist that includes the totality of the signals belonging to the
control path of a design, such as data states implicitly exposed
in controls states, or implicitly coded control states. These
signals compose a more complete and larger state machine
exposing new states and transitions that are implicitly specified,
for example resulting from Cartesian product of automatons.
Those are, technically, the signals driving transitions condi-
tions.

Combinations of these signals in those states can lead to a
subtle set of fault states, difficult to identify from the HDL
description as the encoding in this state machine is sparse
due to correlations. Such argument comes from the fact that
even for a small (>≈50) number of flip-flops, the complete
state space (250) cannot be traversed in a reasonable time.
Therefore a non-negligible proportion of these states are what
we call illegal states i.e. unreachable under normal behaviour,
potentially leading to undesired and unspecified behavior when
the block is exposed to those states though faults.

In order to build a failure model from a nominal behavioral
Register Transfer Model (RTL) in Verilog or VHDL, behaviour
of the system under faults must be analyzed and faulty behavior
as well as failure modes must be extracted. We proceed using
the following steps:

1) Identification and Extraction of State Signals: Starting
from the functional description, the set of flip-flops,
belonging to both the control and possibly data) paths
composing what we name as the state, has to be identi-
fied and extracted. This set, composed by all the flip-flops
composing the control path and possibly the datapath
which maintain the control state of the block, correspond
to possible fault injection sites.

2) Testbench Setup : A standalone testbench is set up with
care given to coverage and testbench representability as
the states traversed during this golden execution will
serve as non-faulty reference behavior. Tools like Incisive
Metrics Coverage (IMC) [30] or Certitude [31] can be

used to assess testbench coverage. A first reference run is
performed to allow extraction of golden functional states
that will be used later in the process to be differentiated
from non-functional ones under fault injection.

3) Fault Injection Campaign: Fault injection is the mean by
which the misbehavior and faulty execution is exposed
on purposes. Probes (i.e., observation points) are defined
during the setup of the fault injection campaign. They
are set on the outputs of all blocks in order to identify
failures that propagates to other blocks. Probes monitor
and compare the probed signal value at each clock cycle
with the golden reference and report any difference. They
have been set to stop simulation when a fault reaches an
output of the design. This step is the core of our analysis
aimed at extracting faulty behaviour, modes and effects
though exploration of the faulty states by fault injection.

4) Extraction of Faulty Behavior: Once the faulty runs
have completed, non-functional (i.e. faulty) states and
behavior are extracted by subtracting functional (golden)
states taken from the golden run state dictionary to the
faulty run states, leaving only newly discovered faulty
states and transitions.

5) Construction of the Faulty Model: The newly discovered
states and transitions are used to augment the func-
tional models with faulty behavior. Transitions from a
functional to a non-functional state are labeled with
the responsible faults so are states responsible for an
incorrect output. This model serves as a base for the
translation into the Altarica language.

Currently, the method is limited in the effect analysis of
the FMEA. Effect such as loss of power cannot be attached
automatically to a faulty state as it would requires an inference
and abstraction process out the reach of the tool currently.
Thus, such labelling is performed manually by attaching effects
to outputs and then back-propagating them into the states and
faults responsible for the given outputs corruptions.

A. Faulty Behavior Model Construction
Once the faulty behavior has been extracted from faulty runs,

the faulty model can be constructed using graph analysis algo-
rithms. The first step in the model construction is collapsing
states that are not meaningful for the dysfunctional model. We
proceed currently with the following rules:

• Any component (connected subgraph) comprising only
legal states and legal transitions are collapsed into one
single functional state.

• Legal states with illegal transitions or incorrect outputs
(outputs values do differs from reference in these states)
are kept and illegal transition probabilities are attached.

• Any component comprising only nodes not propagating
any faults to outputs are collapsed into one single faulty
state. Probabilities to enter this state can be extracted from
transitions leading to the collapsed states.

• Faulty nodes propagating faults to outputs are kept and
transitions probabilities are attached to allow computing
incorrect outputs probabilities.

• Effect attached to output pins are back propagated in the
state graph faulty states where output corruptions occurs.

However additional rules may be added like to remove faulty
nodes and transitions from masked faults for example, es-
pecially those not leading to any latent faults (execution is
correct with no faults propagated to outputs and internal state
doesn’t differs from reference one at some point, i.e. fault has
vanished). We ultimately target discrete-time Markov chains
[32] for our dysfunctional behaviour modelling (Fig. 2).

B. Completeness of Extraction
The main risk in state identification is to under or overes-

timate the state which would lead to uncovered faulty states
(fault not injected in a flip-flop misidentified as not control)



Fig. 2: Altarica Dysfunctional Model

or over estimate the state leading to classification of what are,
in fact, data state as control states. The latter can be easily
identified as randomizing data in the golden or faulty state
machine extraction step leads to an increasing number of states
with the number of runs. On Fig. 3, a correct identification
leads to a saturating number of states (green curves) while
an incorrect one leads to a diverging number of states as the
number of tests grows (red curve).

Fig. 3: Completeness of the Extraction

C. Altarica Modeling
Such an automaton representation is adequate for Altarica

modelling as described below. When performing translation to
Altarica, two elements shall be extracted:

1) The internal state machine corresponding to failures.
2) The assertion part corresponding to the propagation

failure probability from input to one or more output of
element.

Base modelling must include at least four states (Fig. 6): a
nominal state where no failure occurs, a failure state cor-
responding to a bit-flip error injection and an illegal state
corresponding to propagation of the failure to one or more
outputs. The legal state correspond to failures leading to legals
transitions, without failure propagation to outputs.

Assertions on outputs are conditioned by the internal state
machine and inputs of the block. Every time internal state
machine is in the illegal state, outputs values are updated. In
same way, if one input of the block is set in the failed state,
outputs are updated. Probabilities to generate a faulty output
or to propagate failures from inputs to outputs are extracted
from fault injection campaigns (Table II). Currently, all illegal
states are collapsed into a single one, but different non-
functional states corresponding to different failure modes can
be extracted as well, such as represented on Fig. 6 where two
illegal states are identified whether or not a simulation timeout
(10% of golden execution time) occurs. Criteria for refined
dysfunctional automaton extraction are not yet addressed as
well as construction and reduction rules from fault injection
data for such an automaton.

TABLE I: IMC Coverage Figures (%)

I2C AHB
cov. tot. overall cov. tot. overall

Overall 352 410 93.8% 333 1057 61.3%
block 164 180 95.4% 51 68 85.55%
Expression 44 44 100% 7 17 41.18%
Toggle 112 148 75.68% 266 963 30.17%
FSM 32 38 83.36% 9 9 100%

V. APPLICATION: I2C TO AHB BRIDGE

In order to exercise the methodology presented in Section
IV, we use a test case composed of 2 blocks: an I2C slave
[33] connected to an AHB [34] bus master interface (Fig. 4).
Commands (read or write) along with parameters (address
and data) are received on the serial line and transformed
into a series of AHB read and write transactions. Such a
system, composed of two interconnected blocks, is humanely
understandable so are its dysfunctional modes, while being
complex enough to detail thoroughly the methodology.

The I2C slave, taken from [35], receives read or write
commands followed by an address byte and an optional data
byte. On an I2C read, the byte returned from the AHB read
transaction is returned. chronogramm for the read and write
sequences are represented on Fig. 5. The system is represented
on Fig. 4. At both end of the system (I2C input and AHB
output buses), I2C master and AHB slave Verification IPs (VIP)
are attached to generate and verify correctness of I2C and AHB
transactions.
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Fig. 4: I2C to AHB System Block Diagram

Fig. 5: I2C/AHB System Model

A. I2C Block Modeling
The testbench is composed of a series of read and write

random transactions. The coverage evaluation of the design
has been carried out, results are presented in Table I. Having
considered the results of the coverage evaluations sufficient
for the demonstration, application of the method presented in
section IV have been performed. The list of all injection sites,
reported by Cadence Xcelium Fault Simulator (FSV) [30] fault
injection tool are considered for state including ones containing
data as the serial nature of the I2C protocol, which mixes
control and data frames on the same signals thought time-
multiplexing, doesn’t allow differentiation. However, the small
size of data considered (8-bit) only induce a low (256) superset
of the real control states. All outputs are probed so that any
mismatch with the reference run will stop the simulation and
report the fault as Detected. State (flip-flop value, i.e. ’0’ or
’1’) is simply extracted at each clock cycle and printed in the
simulation logs to be post-processed.



Fault injection traces are then processed following rules
described in section IV-A extracting transitions probabilities
between the connected subgraphs:

• Nominal 1 - Subgraph made of legal states only, part
of the nominal execution.

• Nominal 2 - Subgraph made of legal states only, part
of the nominal execution.

• Faulty 1 - Illegal state Subgraph, leading to a propa-
gation of the fault to the output.

• Faulty 2 - Illegal state Subgraph, leading to a simula-
tion timeout.

The resulting model is represented on Fig. 6.
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B. AHB Block Modeling
The AHB bus interface is taken from the GRLIB [36] library

with added custom logic to connect it to the master parallel
interface of the I2C. The added logic comprise an interpreter
for the command received by the I2C and the glue logic
interface to the AHB master side. A verification IP is connected
to the AHB slave interface side to respond to transactions and
check protocol. Fig. 5 represents the translation of I2C signals
into an AHB transaction by the system. Coverage for AHB
block is low and can be explained as only a limited use of the
AHB protocol is made:

1) only byte accesses are performed.
2) only single (SINGLE) non-sequential (NONSEQ) trans-

fers are performed.
3) the VIP has not been programmed to insert HREADY

wait states in the transaction.
4) the VIP has not be programmed to generate HRESP

transaction response error.
The low coverage obtained here doesn’t restrict the generality
of the methodology but may prevents some failure modes to
be identified in this specific case.

C. Complete System Test Case
The complete system is composed of both the I2C slave

and AHB master along with VIPs at both ends. As previously
mentioned, probes are placed on all outputs of the complete
system, leaving this time, faults freely propagating internally
between the I2C and the AHB without being reported by FSV
nor the simulation to be stopped. The main difference of this
testbench regarding the two standalone previous ones is that
faults injected in one block will be able to propagate to the
other one (I2C → AHB, for example) and back-propagate to
the first block (AHB→ I2C) as simulation will not be stopped
when the fault will output from the first (i.e. I2C), and later
second (i.e. AHB), block. Such ”fault loop” (I2C 	 AHB or
AHB 	 I2C) are expected to be the main possible source of
faulty states differences between the standalone and full system
faulty states extraction. However, as faults are injected on the
inputs in both approach (standalone and full system), we expect
to capture, at least a part of theses ”fault loops” induced faulty
states in the standalone extractions, if such case exist.

The AltaRica structural model architecture follows the nat-
ural hierarchy of the system. As shown on Fig. 7, the AltaRica
models includes the exact same blocks with the same intercon-
nections between blocks as the functional model. The main I2C
and AHB modules are composed of two sub-elements, shown
respectively in Fig. 8 and Fig. 9.

Fig. 7: I2C to AHB System Model

Fig. 8: I2C Block Model

Fig. 9: AHB Block Model

The first element is the functional state machine of the
module. In case of internal or external fault, this state machine
will dispatch the fault to the impacted outputs. This state
machine only model the internal faults propagation and do not
generate any random failure on its own. The second element is
the internal failure state machine. This state machine generate
internal random failures and provide to the functional state
machine the outputs impacted by it. In addition, the AHB
module include an additional glue-logic block that converts
I2C output signals to AHB bridge input signals. No internal
failure are generated by this element. At both end of the I2C
and AHB blocks, links module have been added to model
the faults coming from outside of the system. To model the
behavior of the I2C and AHB system, only standalone block
fault injection test results have been used.

Depending on the methodology, two types of metrics can
be extracted. The first one is the probability to propagate
internal failure to one or more outputs of the system. From the
test results, this probability has been extracted by considering
all faults injected in the studied system. The probability to
propagate internal faults to an output of the system is then
equal to the ratio between the faults detected by the output
probe and the total number of faults injected.

The second metrics is the probability to propagate a failure
from an input of the system to one or more output of the
system. For this metric, only fault injected on inputs have been
taken into account. This probability is the ratio of the input
faults leading to an erroneous output over the total number of
input faults injected.

SimfiaNeo allows to perform Monte-Carlo simulation. In
this type of simulation, a large number of failure scenarios
are generated to assess the mean behavior of the system under
random failure scenarios. The first possible assessment ran-
domly injected one failure by failure scenario inside the system



TABLE II: Block and Full System Fault Injection Results

I2C AHB I2C + AHB
Golden states (static) 44 11 44 11
Golden transitions (static) 90 20 89 19
Faulty states (static) 223 126 198 193
Faulty transitions (static) 1093 470 899 428
Injected faults (400 / FF) 11670 41200 52878
Detected faults golden 6840 (58.61%) 19285 (46.80%) 23840 (45.08%) 22089 (41.77%)

faulty 19 (0.16%) 466 (1.31%) 219 (0.41%) 1970 (3.72%)
Detecting states golden 44 (100%) 11 (100%) 44 (100%) 11 (100%)

faulty 5 (1.87%) 13 (9.48%) 5 (2.06%) 70 (34.31%)

TABLE III: RTL Fault Injection Vs Altarica Model Failures

AHB I2C+AHB Altarica I2C I2C+AHB Altarica
Failure RTL Model Failure RTL Model
haddr 0.00551 0.00551 SDA 0.00338 0.00339
hwdata 0.00382 0.00382 Read req 0.00254 0.00255
hsize 0.00068 0.00068 Data 0.00580 0.00581
hbusreq 0.00026 0.00026 Data valid 0.00322 0.00323
hwrite 0.00022 0.00022

while the outputs are monitored. If at least one output triggers
a faulty state, the error is accounted to have been propagated
outside of the system. With this methodology, it’s possible to
estimate the probability to have a failure propagation from the
I2C+AHB system to the I2C or AHB external signals. The
second possible assessment randomly injected one failure by
failure scenario in a link module and monitored the other link
module. If the opposite link module triggers a faulty state, the
error is accounted to have been propagated from one end to
another. With this methodology, it is possible to estimate the
probability to have a failure propagation from AHB or I2C
back to the other link.

VI. RESULTS

Result of composition obtained by SimfiaNeo are compared
to fault injection performed on the full system with probes
set only on external outputs of the system on table III for the
I2C and AHB side signal. Because the system is simple and
faults propagate only forward, it came to simple probability
multiplication explaining exact matching of model and system
fault injection. No back-propagating faults were observed.

VII. DISCUSSION AND FUTURE WORK

In this work, we have proposed and experimented the use of
Model-Based Safety Assessment on digital system for safety
analysis. We have addressed the construction of dysfunctional
model for digital system using simulation and have been
able to build a simple, but functional dysfunctional model
in Altarica. Ongoing work include automatic dysfunctional
models reduction to more than one state and the application to
a small RISCV SoC and software reliability [37].
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