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Abstract

In the context of employing embedding methods to study spectroscopic properties,
the viability and effectiveness of replacing an ensemble of calculations by a single cal-
culation using an average description of the system of study are evaluated. This work
aims to provide a baseline of the expected fluctuations in the average description of
the system obtained in the two cases: from calculations of an ensemble of geometries,
and from an average environment constructed with the same ensemble. To this end,
the classical molecular dynamics simulation of a very simple system was used: a rigid
molecule of acetone in a solution of rigid water. We perform a careful numerical anal-
ysis of the fluctuations of the electrostatic potential felt by the solute, as well as the
fluctuations in the effect on its electronic density, measure through the dipole moment
and the atomic charges derived from the corresponding potential. At the same time, we
inspect the accuracy of the methods used to construct average environments. Finally,
the proposed approach to generate the embedding potential from an average environ-
ment density is applied to estimate the solvatochromic shift of the first excitation of
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acetone. In order to account for quantum-confinement effects that may be important
in certain cases, the fluctuations on the shift due to the interaction with the solvent are
evaluated using Frozen-Density Embedding Theory. Our results demonstrate that, for
normally-behaved environments, the constructed average environment is a reasonably
good representation of a discrete solvent environment.

1 Introduction

Dealing with the electronic properties of molecules requires the use of quantum mechan-
ics. Given the ubiquity of the condensed phase in laboratory chemistry, the calculation
of electronic properties in condensed matter is indispensable for connecting theoretical cal-
culations with experimental observables. The large size of such condensed phase systems
makes the electronic-structure calculations computationally challenging and approximations
are essential for maximizing computational efficiency. A commonly encountered approach for
reducing the cost of condensed phase quantum calculations are multi–level methods where
the full system is partitioned into two pieces treated with varying levels of complexity. The
first partition is a small subsystem of interest, here termed fragment A, which is treated with
high–level quantum chemical methods. This subsystem is then embedded within a surround-
ing environment, here called fragment B, to which various approximations and lower–level
methods are applied to minimize computational cost.

An important application of multi-level methods is to the computational study of liquid-
phase photochemistry, where a quantum mechanical chromophore is embedded in an approx-
imation of the solvent environment. In such studies, one is typically interested in changes
in solute electronic excitation energy brought about by the solvent environment, which is
characterized by

δνex = νemb − νiso, (1)

where νiso is the excitation energy of the isolated solute in vacuum, νemb is the excitation
energy of the solute embedded in the solvent environment, and δνex the ‘solvent shift’ of the
excitation energy. The quality of the excitation energy calculation is usually evaluated by
comparing νemb to the maxima of measured electronic absorption spectra, whereas the shift
is compared to the shift in the chromophore’s absorption maximum between the solvent of
interest and the maximum in a non-polar solvent such as n-hexane, where the non-polar
solvent measurement acts as a stand–in for the more demanding gas–phase measurements.
Single-reference quantum chemical methods, such as time-dependent Density Functional
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Theory (TDDFT),1,2 configuration interaction (CI),3,4 equation of motion coupled-cluster
(EOM-CC),5 among others, are used to model the solute electronic transitions, and a number
of different approximations can be employed to describe the solvent environment.

One method for treating the solvent is to determine a single average solvent environment
in which to embed the chromophore. This approach has the obvious benefit of requiring
only two calculations for determining δνex: one for νiso and one for νemb. In the polarizable
contiuum model (PCM),6,7 the environment is described as a polarizable dielectric contin-
uum. In the simplest implementation of PCM, the solvent is modeled as a linear isotropic
continuum characterized by the static dielectric constant, ε, of the bulk solvent.6 In more
sophisticated formulations, the solute cavity is given a molecular shape and the reaction field
is described in terms of polarization charges or reaction field factors included in the solute
Hamiltonian. This approach allows for self-consistency to be reached between the solute
wavefunction and the solvent polarization by means of iterative procedures. In particular,
the conductor-like variant of PCM (C-PCM),8 based on the COSMO methods,9 has been
become very popular due to its ease–of–use, low computational cost, reasonable agreement
with experiment, and widespread implementation in quantum chemistry software packages.

Instead of embedding the solute in a dielectric continuum, one can determine an effective
solvent potential which acts on the solute. If this potential is constructed using only solvent
electrostatics it is called the ‘averaged solvent electrostatic potential’ (ASEP).10 Such a po-
tential was constructed in Ref. 10 by placing point-charges at grid points to approximate the
average solvent configuration obtained from molecular dynamics (MD) simulations. The val-
ues of the charges are fitted to reproduce the ASEP at the position of the solute by means of
the ChELPG procedure,11 while the position and the number of point-charges is optimized.
A second method for constructing the ASEP utilizes scaled charges in all the positions of
solvent atoms generated by an MD simulation, as was done by Coutinho et al.12 These
workers constructed an ‘average single configuration’ using 60 000 scaled charges from 100
superposed configurations of 200 water molecules centered around a single acetone solute.
An important aspect of this procedure, termed as ASEC, is the selection of the configu-
rations, which ensures convergent results by using statistically uncorrelated configurations
that extend to outer layers of the solvent. The ASEC method has been used to model the
effect of the solvent on spectroscopic properties,13 such as NMR shielding parameters, ab-
sorption spectra,14,15 electronic hyperpolarizabilities,16,17 and more sophisticated protocols
to optimize the free energy of the full system.18

Another category of continuum models of the solvent is based on Frozen-Density Em-
bedding Theory (FDET).19 In these methods, the embedding potential includes a non-linear
term in the solute electron density, which is responsible for describing the electronic exchange-
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correlation and Pauli repulsion between the fragments. Previous studies done with FDET–
based methods have used the average solvent density to describe solvatochromic shifts for
aminocoumarin, coumarin 153 and acetone in several solvents.20–24

Comparisons between these average environment calculations and experimental spectra
are, on the surface, simple and straight–forward. Two single–point calculations are per-
formed to determine δν(calc)ex , two absorption spectra measured to determine δν(exp)ex , and the
resulting maxima and shifts compared. In reality, condensed phase spectra are not the result
of a single chromophore in a static average environment, but of a fluctuating distribution
of flexible chromophore conformations in an ensemble of solvent configurations, each con-
tributing a distinct excitation energy to the observed spectrum. The resulting distribution of
excitations, in conjunction with other factors such as vibronic transitions and finite excited
state lifetimes, introduces substantial broadening (on the order of 0.34–0.40 eV for coumarin
153, a common solvatochromic probe, in dipolar liquids)25 and asymmetry to the measured
spectra. The broadening and asymmetry complicates determination of the experimental 0→0
solute transitions for comparison with theory, hence the use of the spectral maximum as a
proxy. The single–point nature of average environment methods does not allow for straight–
forward determination of spectral broadening and makes it difficult to evaluate differences
between δν(calc)ex and δν(exp)ex .

One way for accessing these fluctuations is to use molecular dynamics (MD) simulations
(or Monte Carlo sampling26,27) to generate ensembles of discrete solute/solvent configurations
on which to perform an ensemble of single–point quantum mechanical (QM) calculations.28,29

Due to the large number of solvent nuclei needed for simulating realistic dynamics, the
solvent cannot be treated explicitly, and approximate descriptions of the discrete solvent
environment are needed to make the QM computations tractable. The most simplest method
for describing a discrete solvent environment is point–charge embedding (PCE), where the
solute is embedded the electric field generated by the surrounding solvent atoms. In order
to capture the effects due to mutual polarization or other non-electrostatic interactions,
the assignment of charges values for the environment and the embedding process can be
made self-consistent. Examples of such polarizable embedding methods30 are the ASEP-MD
methods31–33 , the Effective Fragment Potential (EFP)34 and X-Pol.35 An alternative to
electrostatic–only embedding is FDET, where the two independent variables, namely: an
auxiliary NA-electrons wavefunction ΨA and the electron density of the environment ρB(r),
are both generated from the individual solute/solvent configurations.36,37

These ensemble methods provide access to the inhomogeneous broadening of spectra, i.e
broadening due to the distribution of solute/solvent configurations, and give some insight into
the range of δνex expected in the system that single–point calculations are unable to provide.
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These approaches are still not perfect, as most applications do not realistically account for
homogenous broadening effects such as the aforementioned vibronic transitions and finite
excited state lifetimes. Even though they provide valuable information on fluctuations,
ensemble calculations can become prohibitively expensive when the embedded system is
large or many solute/solvent configurations must be considered, necessitating a fall–back to
single–point approaches.

The goal of the present study is assess the validity of substituting a single averaged solvent
environment for an ensemble of environments. We wish to determine the fluctuations and
uncertainties in properties derived from such calculations, and provide guidance on how
to realistically construct an average environment. In essence, we wish to test whether or
not an averaged environment can capture the features of an ensemble of calculations, an
approximation we summarize as:〈

Ô
[
ΨA(RA)[B]

]〉
≈ Ô

[
ΨA(R̄A)[B̄]

]
. (2)

In this expression, we define Ô[Ψ] as the quantum mechanical expectation value, 〈Ψ|Ô|Ψ〉
of some system property described by Ô. On the left–hand side, we take ΨA(RA)[B] to be
the wavefunction of fragment A, with instantaneous nuclear coordinates RA, embedded in
instantaneous environment B, which could be described using any of the previously discussed
methods. The 〈〉 indicates averaging over an ensemble of realizations of RA and B, and we
will refer to this quantity as the ensemble average of Ô. On the right–hand side we have
the same operator Ô, but instead of operating on every instantaneous realization of RA

and B, Ô is evaluated once for a single wavefunction, ΨA(R̄A)[B̄]. Here, the instantaneous
coordinates RA and environment B are replaced by an averaged set of subsystem coordinates
R̄A embedded in the averaged environment B̄. This quantity will be referred to as the
environmental average of Ô. The quantities R̄A and B̄ may be ensemble averages, but are
not required to be, as would be the case in a method such as PCM.

If Eq. 2 is a reasonable approximation, we expect the environmental averages to fall
well within the fluctuations of the ensemble calculations and be reasonably close to the
actual ensemble average. To evaluate Eq. 2, we have performed classical MD simulations
of the acetone (ACE) and water solute/solvent system in order to generate a realistic set
of solute/solvent configurations for determining ensemble and environmental averages of
various system properties as well as the first electronic transition of ACE. We chose to use
the ACE/water system because the first excitation of ACE in water has been used extensively
by our group and others as a benchmark for solvation models.20,24,38–40 The ensemble averages
will be calculated from N independent MD frames, which can be written using the notation
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of Eq. 2 as:

〈
Ô
[
ΨA(RA)[B]

]〉
=

1

N

N∑
i=1

Ô
[
ΨA(RA)[Bi]

]
= 〈O〉N , (3)

where Bi represents the environment of MD frame i out of a total of N frames, and 〈O〉N
a shorthand for the ensemble average which we will use for the remainder of this work. We
consider the ensemble average the ‘true’ average of Ô and will characterize its fluctuations
using the standard deviation, σ:

σ =

√√√√ 1

N

N∑
i=1

(
〈O〉N − Ô

[
ΨA(RA)[Bi]

])2
. (4)

In order to keep our analysis focused on Eq. 2 as closely as possible, all molecules will
be simulated with fixed molecular geometries. This allows us to replace R̄A in Eq. 2 with a
single RA for the static ACE geometry and all the fluctuations we observe can be attributed
to reorientation of the solvent environment. Complicating factors such as chromophore and
solvent flexibility will be left for future studies. We then express the environmental averages
as

Ô
[
ΨA(R̄A)[B̄]

]
= Ô

[
ΨA(RA)[B̄]

]
= ŌN , (5)

with ŌN being our abbreviation for the environmental averages. The various strategies used
for determining B̄ will be discussed as they appear in the text.

In our statistical analysis of Eq. 2, we will consider the ensemble and environmental
averages of four different system properties that are influenced by their solvent environment.
The most fundamental of these is the electrostatic potential (ESP) generated by the solvent,
which we study using the ESP evaluated at the nuclei of the ACE solute. We will then move
on to three properties derived from the ESP: the atomic point-charges and dipole moments
of ACE embedded in the solvent ESP determined using the ChELPG method,11 and the first
electronic transition of ACE. In each case we will compare the ensemble averages and their
fluctuations with the single value generated by an averaged environment calculation. As
mentioned previously, the fluctuations we observe will be a consequence of only the rotation
and translation of solvent molecules due to our use of rigid solute and solvent molecules in
our simulations.

Our results suggest that the ensemble averages of these four properties are well– re-
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produced by our environmental averaging methods. Although the average properties of
the system are captured, properties of a single solvent configuration can become strongly
decorrelated when different ESP approximations are applied to the system. We therefore
advise caution when comparing the quality of calculations performed on a single solvent
configuration under differing sets of approximations, as these differences between different
approximations on the same configuration can become much larger than the differences be-
tween the ensemble and environmental averages. We conclude that that Eq. 2 is a valid
approximation when the fluctuations of the properties in question are normally distributed,
as we observed for the rigid solute/solvent simulations performed here.

2 Methods

2.1 The Embedding Energy

The embedded quantum system A (the solute) is characterized by the position of its M nuclei,
RA, and their momentum, pA. Any instantaneous configuration of the mobile environment
B (the solvent) is characterized by the position of all its atoms, RB, and their momentum,
pB. The energy of the total A + B system can be written within the Born-Oppenheimer
approximation as

E(RA,RB,pA,pB) =K(pA,pB) + VB(RB)

+ Eemb[vemb](RA,RB) (6)

with K(pA,pB) being the classical kinetic energy of the nuclei, VB(RB) is the self-energy of
fragment B, and Eemb[vemb](RA,RB) is the energy of embedding A in B. Note that from
now on, the dependence on the nuclear coordinates RA and RB will be kept implicit.

To be consistent, the integration of the solvent equations of motion should be done with
the full Hamiltonian, including both QM and molecular mechanics (MM) parts.41 Addi-
tionally, one should thus include the true AB quantum mechanical coupling using the full
electronic density ρA. This could be done in future studies, but for the time being we apply a
simplified strategy. Instead of following the standard QM/MM approaches where both levels
are evaluated sequentially or simultaneously with the proper partitioning of the MM and
QM energies,41 we will perform classical MD simulations first, followed by QM calculations
on the structures generated by classical simulations. As a consequence, the kinetic energy of
the nuclei will be 0, and the total energy will depend only on VB and Eemb[vemb]. A proper
way to make the statistics generated this way compatible with the appropriate statistics in
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the canonical ensemble will be given in Section 3.1.4.
Here, we suppose that the environmental self-energy term, VB, can be reduced to a

molecular mechanics force field, i.e, VB = V MM
B . Furthermore, to compute the solute-solvent

electrostatic interaction, the electron density carried by each solvent molecule is gathered
with their nuclei point charges to yield a simplified, effective point charge representation
σ̂B(r), that given by the MM force field, i.e.,

σ̂B(r) =

Nsolv∑
j=1

qj δ(r−RB,j), (7)

where the hat symbol designates discrete distributions. Then, the embedding potential is
defined as the electrostatic interaction with these discrete charges

vemb(r) = velst(r) =

∫
dr′

σ̂B(r′)

|r− r′|
, (8)

which yields the only-electrostatics embedding energy

Eemb =HA + Velst

=
〈

ΨA|ĤA|ΨA

〉
+

∫ ∫
drdr′

(ρ̂NA
(r) + ρA(r))σ̂B(r′)

|r− r′|
(9)

with the solute nuclei charge density given by ρ̂NA
(r) =

∑M
k=1 Zk δ(r−RA,k).

2.2 Frozen-Density Embedding Theory

The ultimate goal is to go beyond electrostatic-only embedding to describe the interaction
between fragment A and B, especially when studying electronic properties, as quantum-
confinement effects may play an important role. For that, we turn into methods based on
Frozen-Density Embedding Theory (FDET).19

Contrary to the electrostatics-only case, the embedding potential,

vemb[ρA, ρB; velst](r) = velst(r) + vnadxcT [ρA, ρB](r), (10)

due to the non-additive exchange-correlation and kinetic term, vnadxcT [ρA, ρB](r), is not ho-
mogeneous with the density ρA, i.e., the energy is not equal to the expectation value of
the potential. The embedding energy must then be evaluated with ΨFDET

A , the variational
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solution of the equation (
ĤA + vemb

)
ΨFDET = λΨFDET. (11)

The FDET embedding potential given in Eq. 10 and the total energy (EFDET
vAB

[ΨFDET, ρB])
satisfy by construction the condition of self-consistency with the Hohenberg-Kohn energy
functional (EHK

vAB
[ρ]),42,43 meaning that

EFDET
vAB

[ΨFDET, ρB] = EHK
vAB

[ρFDET
A + ρB] (12)

where ρFDET
A is the density corresponding to the wavefunction obtained in Eq. 11, for any

admissible ρB(r).

2.2.1 FDET interpretation of Eq. 2

In FDET, the expectation value of any quantum mechanical operator evaluated at the ge-
ometry {RA}, {RB}i is a functional of ρBi

:〈
Ψ

FDET(RA,R
i
B)

A [ρBi
]
∣∣Ô∣∣ΨFDET(RA,R

i
B)

A [ρBi
]
〉

≡ 〈ÔRA,R
i
B
〉[ρBi

] (13)

where Ψ
FDET(RA,R

i
B)

A [ρBi
] denote the optimal embedded FDET wavefunction for a given ρBi

(r)

and nuclear positions {RA}, {RB}i. The index i here indicates the i-th configuration of frag-
ment B, from an ensemble of N geometries. The square brackets in Ψ

FDET(RA,R
i
B)

A [ρBi
] indi-

cate that, up to the unitary transformation, the FDET embedded wavefunction is uniquely
determined by ρBi

for a given {RA}, {RB}i.
Therefore, B̄ from Eq. 2 is defined in FDET by the set of {RB}i and ρBi

, which deter-
mine the local fields (functions of r in 3D), 〈ρB〉(r) and 〈ρnucB 〉(r). The fields represent the
probability to find the negative (electrons) or positive (nuclei) charge in a given position r,
respectively. The field 〈ρnucB 〉(r) can be easily transformed to the field of the corresponding
electrostatic potential which is denoted with 〈vnucB (r)〉.

Hence, equation 2 takes the following form:

〈
〈ÔRA,R

i
B
〉[ρBi

]〉
〉
N
≈ 〈ÔRA,〈vnuc

B 〉〉[〈ρB〉] (14)

The approximation in Eq. 14 has been used previously in combination with 3D-RISM and
MD simulations to study solvatochromism in absorption20,21,24 and emission.23 For the sake
of this publication, we unify the notation and rewrite this key approximation in the same
format used in the introduction. In this particular case, as mentioned before, we use a fixed
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geometry of the environment, which means that ΨA(RA) = ΨA(R̄A), so equation 14 can be
expressed as: 〈

Ô
[
ΨA(RA)[ρB]

]〉
≈ Ô

[
ΨA(R̄A, v̄

nuc
B )[ρ̄B]

]
(15)

2.3 Computational Technical Details

2.3.1 Molecular Dynamics

All classical molecular dynamics simulations were performed using DL_POLY_4.10.44,45

The intermolecular interactions were treated using a simple Lennard-Jones plus Coulomb
force-field, and the simulated system consisted one acetone (ACE) molecule dissolved in 1000
SPCE waters.46 The ACE structure and point charges were taken from Aidas et. al 39 and the
Lennard-Jones parameters from the ketone and methyl group parameters of the OPLS-AA
force-field.47 Lennard-Jones parameters for cross-species interactions were calculated using
the Lorentz-Berthelot mixing rules. Electrostatics were handled using an Ewald summation
and electrostatics and Lennard-Jones forces were cutoff at 15 Å. Trajectories were integrated
using the velocity Verlet algorithm with a 2 fs timestep. All molecules were held rigid using
the SHAKE algorithm with the default tolerance settings of DL_POLY_4.10.

Initial conformations were generated using the fftool and PACKMOL48 packages. The
systems contained one ACE and 1000 SPCE molecules in an initial 32 Å box with cubic pe-
riodic boundary conditions. The following equilibration procedure was then followed. First,
forces were minimized using the conjugate gradient method followed by a 25 ps simulation
in the NVT ensemble. The temperature was 298.15 K and controlled using a Nosé–Hoover
thermostat with a relaxation time of 0.5 ps. Next, a 50 ps simulation in the NPT ensemble
was conducted in order to relax the system volume using a Nosé–Hoover barostat with 1
atm of pressure a relaxation time of 1.5 ps. Following the NPT simulation, the volume of
the system was then fixed followed by a final 25 ps equilibration simulation in the NVT
ensemble. A production simulation of 5 ns was then performed with frames saved every 1
ps, resulting in 5000 frames for later analysis. The production frames were then centered
and wrapped around the ACE center-of-mass using the MDAnalysis package.49 All images
generated from the MD simulations were created using the VMD 1.9.3 package50 and the
Tachyon ray tracing library.51
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Scheme 1: Space-filling models and atom labels of all simulated systems.

2.3.2 Embedding Calculations

For the FDET calculations in this work, the energy and density of the core fragment A
is evaluated with PySCF52 using HF and the aug-cc-pVDZ basis set. The local-density
approximation (LDA) was used for the non-additive functional and functional derivatives,
Enad
xcT [ρA, ρB], vnadxcT [ρA, ρB](r), meaning the Thomas-Fermi kinetic energy functional,53,54 the

Slater exchange functional55 and the Vosko-Wilk-Nusair fit of Eq. 4.4 for the correlation
energy of the uniform electron gas (VWN5).56 The AO contraction of the embedding po-
tential was done using functions from PySCF and our Python libraries FDET-Average57 and
FDETaco.58 The ChELPG charges discussed in subsection 3.1.3 were calculated with the
new single-fragment module in Q-Chem 5.459 from densities obtained from doing linearized-
FDET60 embedding with HF/aug-cc-pVDZ and adding a Møller-Plesset first-order correc-
tion to them. Finally, the excitation energies were obtained also with the linearized-FDET
approximation, with the reference density, ρrefA , being the ground-state HF/aug-cc-pVDZ
density of the isolated acetone. For frame-wise calculations with FDET, the density of the
environment was obtained from the superposition of molecular densities at the HF/aug-
cc-pVDZ level of theory. All excitation energies were computed with the ADCC python
module,61 following the FDE-ADC(2) procedure as described in Prager et al .60
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3 Results and Discussion

3.1 Electrostatic Properties

3.1.1 Solvent Systems and Environmental Averaging Methods

We take this opportunity to not only test Eq. 2, but to also evaluate different sets of
approximations used for building the solvent environment from the MD simulation frames
which we will call Direct/Cube, Direct/Supercube, Grid/Cube, and Grid/Sphere.
In the Direct/Cube method, each MD frame is first centered around the ACE center-of-
geometry1 and the solute coordinates wrapped so that all atoms of the cubic system are
within a box centered at ACE and maintaining the system’s periodicity. Next, we directly
calculate the ESP at the nucleus of each ACE atom using a simple pair-wise sum over all
solvent atoms:

velst(rn) =

Nsolv∑
j=1

qj
|rn − rB,j|

, (16)

where rn in this case is the position of a particular solute nucleus, Nsolv the number of
solvent atoms, and qj the charge of solvent atom j at position rB,j. This process is repeated
for every frame and the values of velst(rn) from each frame are used to build probability
distributions and ensemble averages. Using this method, the ensemble and environmental
average ESPs are by definition exactly the same. Because there are no approximations made
in calculating the ESP in this method, we consider Direct/Cube our reference method.
In order to determine if the 1000 SPCE water system was sufficiently large for the ESP to
converge, we created the Direct/Supercube system, in which 26 copies of the solvent box
were tiled around a central box. The ESP experienced by the central ACE molecule was
then calculated and compared to that of the single 1000 solvent molecule box.

The pair-wise calculation in Direct/Cube can be extremely expensive due to poor scal-
ing of Eq. 16 with Nsolv and the number of grid-points {rn}, particularly when evaluating
velst on a dense integration grid, as it is done in the next subsections to calculate deriva-
tive properties. To address this limitation, we add one approximation in what we call the
Grid/Cube method. The MD frames are prepared in the same manner as in Direct/Cube,
but are then rotated such that each frame is aligned to the ACE nuclei. Next, solvent atoms
and their charges are compacted inside 0.025 nm cubic volume elements using a 3D his-
togram, illustrated in Scheme 2. The ESP at the solute nuclei is then calculated according

1Although our solute is rigid, it is permitted to freely translate and rotate during the simulation
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to

velst(rn) =

Ngrid∑
l=1

ql
|rn − rl|

, (17)

where Ngrid is the number of grid points, ql the average of all solvent charges compacted into
into volume element l, and rl the center of the volume element. This cubic grid ESP is then
extrapolation over the molecular Becke-Lebedev grid using the nearest-neighbor method.
The cubic grid is dense enough such that each point typically contains only 1 atom per MD
frame, therefore no efficiency is gained using the grid method for determining the ensemble
average. On the other hand, the environmental average ESP calculation is much more
efficient, as all solvent atoms from the 5000 frames are compacted into grid points which
significantly reduces the total number of electrostatic interactions to calculate. There are
two main differences in this approximation compared to the that in Ref. 10. First, we build
an evenly distributed cubic grid instead of using the minimal number of charges placed on
spherical shells around the solute with optimized radius. Secondly, we do not optimize the
charges, they are only compacted according to their position.

Scheme 2: The Grid method for averaging. For each volume element, the compacted charge
qk used to evaluate the averaged environment density in Eq. 25, is the combination of all
the charges that appear inside the volume element vα throughout the trajectory. The size
of the cube allows only one atom per volume element in each frame.

Unfortunately, the rotation required to align each frame in Grid/Cube results in a non-
uniform solvent density for distances more than 1/2 a box length away from the ACE nuclei
while also destroying the periodicity of the system. Therefore, physically meaningful envi-
ronmental averages cannot be extracted from the Grid/Cube system, and consequently,
they are not calculated. To alleviate this problem, we employ the Grid/Sphere method,
were we only consider a sphere of water molecules whose oxygen atom is ≤ 1/2 a box length
from the ACE center-of-geometry. Our hope is that these spherical clusters exhibit the
same properties as the Grid/Cube reference system. Illustrations of Direct/Cube, Di-
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rect/Supercube, and Grid/Sphere are shown in Scheme 3. Note that all environmental
averages require alignment of the individual frames, and for the Direct approaches, the
electrostatic potential is evaluated as in Ref. 12, using the charges of all water molecules
over the 5000 frames, scaled by a factor of 1/5000.

3.1.2 Electrostatic Potentials

Distributions of the ESP at the ACE nuclei, rn = RA,n, and the corresponding environmen-
tal averages from the Direct/Supercube, Direct/Cube, Grid/Cube, and Grid/Sphere
methods are shown in Figure 1. The ensemble averages, standard deviations, and environ-
mental averages are plotted in Figure 2 and tabulated in Table ??. These data demonstrate
that the ESP distributions of all the ACE nuclei are roughly Gaussian and all chemically
equivalent atoms have the same distributions and ensemble average. We also observe neg-
ligible differences between the Direct/Supercube and Direct/Cube methods, allowing
us to conclude that the 1000 water molecule box was sufficiently large to converge the sys-
tem. The standard deviations of the Grid/Cube distributions are roughly 30% larger than
the Direct/Cube reference system, whereas the Grid/Sphere distributions are only 20%
larger. We attribute this discrepancy to the zero-th order extrapolation scheme that is used
to project the discrete solvent charges on the 3D-grid; higher order schemes like B-splines
would be more appropriate. The environmentally averaged ESPs are in strong agreement
with their ensemble counterparts and fall well within the standard deviation of the ensemble
averages.
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Figure 1: Probability distributions and and environmental averages (sticks) of the ESP
experienced by the ACE nuclei for the Direct/Supercube, Direct/Cube, Grid/Cube,
and Grid/Sphere systems.

We also found that the ESP distributions, ensemble averages, and environmental aver-
ages of the Grid/Sphere method were all shifted by about -0.29 AU from those of the
Direct/Cube and Grid/Cube methods. This offset can be attributed to the differences in
boundary conditions between the periodic cubic and non-periodic spherical systems, which
results in a constant shift in the ESP. As we shall see, the ESP offset is constant, i.e. it is the
same at every position, explaining why this difference does not affect any of the derivative
properties. See the Appendix A for a complete explanation of the origin of the shift.
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Figure 2: Ensemble and environmental averages of the ESP at all ACE nuclei. Error bars
are the standard deviation.

These results demonstrate that there is no significant difference between the ensemble
and environmentally averaged ESPs derived from Direct/Cube reference method and those
of the Grid/Sphere method results, which allows us to conclude that both the grid approx-
imation and the spherical cluster are acceptable approximations for determining the ESP
experienced by a solute. These approximations effect only a minor increase in the width of
the ESP probability distributions while giving the same ensemble averages. The environ-
mental averaging techniques we employed resulted in average ESPs that are equivalent to
the full ensemble calculations.
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Scheme 3: Cubic (top) and spherical (bottom) systems.

3.1.3 ChELPG Charges and Molecular Dipole Moments

The first derivative properties we will consider are the ChELPG charges and dipole moments
of the ACE solute determined in the presence of the solvent ESP. The solute electron den-
sities used to evaluate the electrostatic potential in the ChELPG procedure are obtained
from a Hartree-Fock optimization of ACE in the presence of the solvent ESP, velst(r), as in
Eq. 9. We then performed the ChELPG fitting procedure for each individual frame of the
MD simulations in order to determine the probability distributions and ensemble averages,
〈QChELPG

A 〉, of the point–charge of each ACE atom. This procedure was carried out for ESPs
derived using the Direct/Cube Grid/Cube and Grid/Sphere methods described in Sec-
tion 3.1.2. The environmentally averaged charges, Q̄ChELPG

A , were determined from a single
ChELPG calculation with ACE embedded in the environmentally averaged ESP determined
using either the Direct/Cube or Grid/Sphere methods.
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Figure 3: Probability distributions and and environmental averages (vertical lines) of the
ChELPG charges of all ACE atoms for the Direct/Cube, Grid/Cube, and Grid/Sphere
systems.

Probability distributions, ensemble averages, and environmental averages of the ACE
ChELPG charges are shown in Figure 3. Their ensemble averages, standard deviations, and
environmental averages are plotted in Figure 4 and tabulated in Table ??. As with the
ESPs, all ChELPG charge distributions are Gaussian and chemically equivalent atoms have
the same distributions of point charges. The ensemble and environmental point charges
from all systems are practically identical, just as was seen for the ESPs, but the standard
deviation of the Grid/Cube distributions are, for most atoms, a factor of 2 larger than
Direct/Cube. This is in contrast to the Grid/Sphere standard deviations which are
nearly the same as Direct/Cube. The offset in the ESP observed in the Grid/Sphere
method did not have an effect on the distribution of ChELPG charges. We now can be
confident that ESPs derived from the grid and spherical solvent cluster approximations
do not siginficantly change a solute’s ensemble and environmental average point–charges
compared to a direct ESP evaluation.
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Figure 4: Ensemble and environmental averages of the ChELPG charges for all ACE nuclei.
Error bars are the standard deviation.

As another test of the quality of the ChELPG method and our averaging procedures,
we calculated the dipole moments generated from the quantum mechanical (QM) charge
density resulting from the Hartree-Fock optimization of ACE and the classical (CL) dipole
moments calculated from the fitted ChELPG point charges. The distribution of dipole
moments from the ensemble of calculations and the corresponding environmental averages
using the Direct/Cube Grid/Cube and Grid/Sphere methods are shown in Figure 5.
The ensemble averages, standard deviations, and environmental averages can be found in
Figure 6 and Table 1. The ensemble and environmental average dipole moments are nearly
identical in all systems, whereas the standard deviation of the Grid/Sphere distributions
are 15% narrower than their Direct/Cube and Grid/Cube counterparts. We can conclude
from these data that the ChELPG method does an excellent job of reproducing the average
quantum mechanical solute dipoles as well as their distributions. Additionally, the grid and
sphere approximations do not significantly affect the dipole moment of the solute.
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Figure 5: Distribution of the ACE quantum mechanical (QM, solid lines) dipole moments
and the classical dipole moment derived from the ChELPG point-charges (CL, dashed lines)
of the ACE nuclei from the Direct/Cube, Grid/Cube, and Grid/Sphere systems. The
distributions have been offset vertically for clarity. Vertical lines are the environmental
averages.

Figure 6: Ensemble and environment averages of the quantum mechanical (QM) and classical
(CL) dipole moments. Error bars are the standard deviation.

Although the QM and CL dipole moment averages and distributions are the same for
all three systems, that does not guarantee that the dipole moments of individual frames are
also the same. Confirming this correlation is critical for evaluating differences between cal-
culations performed with different approximations on the same MD frame. The top panel of
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Figure 7 shows the correlation between the QM and CL dipole moments for Direct/Cube,
Grid/Cube, and Grid/Sphere. These data confirm that the ChELPG procedure faithfully
reproduces the dipole moments for every frame/ESP method combination considered here.
On the other hand, correlations between frames treated with different ESP approximations
are not as strong (bottom panel Figure 7). These data show that, for a single frame, the Di-
rect/Cube Grid/Cube and Grid/Sphere methods result in significantly different dipole
moments and, by inference, ChELPG charges and ESPs. We attribute this decorrelation to
two factors: 1) the slight movement of solvent atoms from their ‘true’ positions when the
gridding procedure is applied and 2) the removal of solvent molecules when constructing the
spheres from the cubes. When either procedure 1) or 2) are applied to the original solvent
cube they produce a ‘new’ set of solvent coordinates that are not exactly the same as the
original cube of solvent. Due to the sensitive nature of the ESP, frame-to-frame correlation
is lost, which manifests later in decorrelated ChELPG charges and dipole moments. Even
though the within-frame correlation is lost, no effect is seen in the average properties or
their distributions, suggesting that the ensemble properties of the system are conserved even
though individual frame correlation is not. This effect must always be kept in mind when ap-
plying different approximations to individual frames. Although these approximations do not
affect the ensemble and environmental averages, evaluating approximations by comparing
results from a single MD frame can be misleading.

Table 1: Ensemble, 〈|M |〉, and environmental, ¯|M |, average ACE dipole moments (vertical
lines in Figure 5 and bars in Figure 6). The columns labeled ‘σ / D’ are the standard
deviations of the ensemble averages (error bars in Figure 6). Rows labeled ‘QM’ are the
dipole moments calculated from the quantum mechanical charge density and ‘CL’ from the
CHELPG charges.

Direct/Cube Grid/Cube Grid/Sphere
〈|M |〉 / D σ / D |M̄ | / D 〈|M |〉 / D σ / D |M̄ | / D 〈|M |〉 / D σ / D |M̄ | / D

QM 4.83 0.44 4.80 4.83 0.47 – 4.80 0.38 4.77
CL 4.81 0.43 4.77 4.80 0.47 – 4.78 0.37 4.75
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Figure 7: Top: Correlation between the QM and CL dipole moments in the Direct/Cube,
Grid/Cube, and Grid/Sphere systems. Bottom: Correlation between the Grid/Sphere
CL dipole moments and the Direct/Cube and Grid/Cube systems.

3.1.4 The Separated QM/MM Time-Averaging Scheme

The electrostatic interaction energy defined in Eq. 9 can be written in two equivalent ways, as
a function of the embedding electrostatic potential created by B on A, vels(r) in our previous
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notations, or reversely the external electrostatic potential created by A on B, vA(r; [ρA]), i.e.,

Velst =

∫
dr velst(r) (ρ̂NA

(r) + ρA(r)) (18)

=

∫
dr vA(r; [ρA]) σ̂B(r)

'
∫
dr vA(r;QChELPG

k [ρA]) σ̂B(r) (19)

'
N∑
j=1

qj

M∑
k=1

QChELPG
k

|RB,j −RA,k|
. (20)

In the near equality, the electrostatic potential due to the embedded system charge density
has been approximated by the one created by a set of point charges located on the nuclei,
that are best fitted according to an appropriate scheme. As mentioned above, we have chosen
the electrostatic-potential based ChELPG scheme.

Note that if the QM method used to obtain ΨA is variational, it can be shown easily
(Appendix B) that the appropriate molecular dynamics scheme to handle the Hamiltonian
defined by Eq. 9, with energy conservation only limited by the near equality of Eq. 19,
is typically that for a polarizable system, obtained with the following procedure: 1) for
a given configuration RB, compute ΨA and ρA by minimization of Eq. 9 using Eq. 18,
monitor the ‘gas phase + polarization’ energy

〈
ΨA|ĤA|ΨA

〉
, and extract the set of charges

{QChELPG
k [ρA]}, 2) compute the forces on the environment atoms using those point charges

and Eq. 20, and 3) update the environment positions RB and iterate. Such algorithm is
indeed standard in the literature, but its implementation in our analysis will be left for
future investigations.

In the case of a completely separated MM and QM calculation scheme, as in this work,
the MM simulations are performed with a reference non-polarizable system to generate af-
terwards the correct statistics for the polarizable system itself. To this end, one can define a
reference, fixed set of charges {Q0

k}, and a reference Hamiltonian H0 where the electrostatic
interaction seen by the environment in Eq. 20 is replaced by that with the fixed charges
{Q0

k}. The polarizable system Hamiltonian can be written as

H = H0 + ∆Velst (21)

= H0 +
N∑
j=1

qj

M∑
k=1

QChELPG
k −Q0

k

|RB,j −RA,k|
. (22)

Then, in the canonical thermodynamic ensemble, the canonical average value of any observ-
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able of the polarizable system can be computed as

〈
Ô(RB)

〉
=

〈
Ô(RB) exp(−β∆Velst(RB))

〉
0

〈exp(−β∆Velst(RB))〉0
, (23)

where the subscript 0 indicates a dynamics performed with the reference Hamiltonian H0,
i.e., with the same self-consistent scheme as above but with the forces computed with the
fixed charges {Q0

k} in step 2.
The biased ensemble averages (calculated while neglecting the exponentials in Eq. 23)

and unbiased ensemble average (calculating using Eq. 23) for the ChELPG charges of all
ACE atoms from the 5000 frame Direct/Cube and Grid/Sphere systems are provided
in Table 2, in addition to the initial ChELPG charges used in the MD simulations. The
variations we see here between the biased and unbiased ChELPG charges are smaller than
the fluctuations due to the environment. Therefore, we are confident in only considering the
biased averages in future calculations. This conclusion by be different, though, if the initial
ChELPG charges were drastically different from the final charges.

Table 2: Initial, biased, and unbiased ensemble average ChELPG charges of ACE from the
Direct/Cube and Grid/Sphere systems.

Direct/Cube Grid/Sphere
atom Initial / e Biased / e Unbiased / e % Diff. Biased / e Unbiased / e % Diff.
CC 0.7800 0.8759 0.8883 1.4% 0.8743 0.8823 0.9%
CT1 -0.4926 -0.4885 -0.4706 -3.7% -0.4890 -0.4743 -3.0%
CT2 -0.4926 -0.4880 -0.5210 6.8% -0.4878 -0.5148 5.5%
HI1 0.1338 0.1437 0.1398 -2.7% 0.1441 0.1385 -3.9%
HI2 0.1338 0.1440 0.1503 4.4% 0.1437 0.1506 4.8%
HO1 0.1423 0.1412 0.1344 -4.8% 0.1412 0.1350 -4.4%
HO2 0.1423 0.1410 0.1550 9.9% 0.1408 0.1442 2.5%
HO3 0.1423 0.1407 0.1281 -8.9% 0.1404 0.1404 0.0%
HO4 0.1423 0.1409 0.1439 2.1% 0.1404 0.1558 11.0%
OA -0.6317 -0.7508 -0.7481 -0.4% -0.7482 -0.7577 1.3%

3.1.5 Conclusions

We find that the grid method for determining the ESP and spherical solvent cluster approxi-
mation have no significant effect on the ensemble and environmental average ESP, ChELPG
charges, or solute dipole moments. On the other hand, these approximations are less effective
when applied within the same frame, which was attributed to differences in the solvent clus-
ter size and shifting of solvent nuclei after applying the grid procedure. This means that the
quality of the approximations can only be evaluated by looking at ensembles of calculations.
Single-frame agreement should be improved by using a higher-order charge extrapolation
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scheme and/or finer grids. This would be at the expense of an increased computation time
for the 3D electrostatic embedding potential acting on the solute. Additionally, unbiasing the
trajectories did not effect the average system properties, but this may not hold for systems
in which the simulated solute charges are drastically different than those of the embedded
solute. Therefore, we conclude that Eq. 2 holds for the ESP, ChELPG charges, and dipole
moments and that Grid/Sphere set of approximations reasonably reproduces the electro-
static properties of the Direct/Cube reference system. We can now confidently use ESPs
determined using the Grid/Sphere method for computing electronic structure properties.

3.2 Acetone Electronic Transitions

Next we will test the applicability of Eq. 2 to solute electronic transitions by calculating the
first electronic transition of ACE embedded in different descriptions of the solvent environ-
ment. For all transition energy calculations, all obtained with the ADC(2) method,62 the
reference is the first excitation energy of an isolated ACE molecule in vacuum.

One set of calculations will be performed using point charge embedding (PCE), where the
ACE solute is embedded in the ESP generated by the solvent point charges taken directly
from the MD forcefield (that of SPCE water). For the ensemble averages, the embedding
ESP is determined from a sphere of solvent molecules with a radius of 1/2 the box length. The
ESP is then determined using the pair-wise method of Eq. 16. This method combines the
direct pair-wise evaluation of the ESP in the Direct/Cube method of Section 3.1.1 with
the spherical solvent cluster approximation. Excitation energies for each frame are then
calculated. For the environmental average, the embedding ESP was calculated using the
Grid/Sphere method and a single-point excitation energy calculation. These procedures for
determining the ensemble and environmental averages were chosen in order to compare our
computationally cheap Grid/Sphere method of ESP determination with a very expensive,
yet very exact, implementation of the PCE procedure.

We also calculated second set of ACE excitation energies using FDET embedding. This
method combines the electrostatic contribution from the solvent with the non-electrostatic
(i.e. Pauli exclusion) portion of the energy. The ensemble averages are determined by first
taking a sphere of solvent molecules with a radius of 1/2 a box length centered at the ACE
solute. A quantum mechanical charge density is then determined at the HF/aug-cc-pVDZ
level of theory from an inner-sphere of solvent molecules 1/4 of a box length from the ACE.
This superposed density is then used in the evaluation of the FDET embedding potential.
All solvent molecules farther than 1/4 a box length distance from the ACE only contribute
to the electrostatic portion of the embedding energy. This procedure is performed for each
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of the 5000 MD frames in order to construct the ensemble average FDET excitation energy.

Figure 8: System used in the frame-wise FDET-embedding calculations. The internal sphere
of water molecules (ball-and-stick models) are treated as densities and used to evaluate the
FDET-embedding potential. Water molecules beyond this layer are treated as point-charges.

For the FDET environmental averages, the embedding charge density is evaluated using
only the positions of the solvent nuclei and their forcefield charges; no quantum mechanical
embedding density is used in order to maximize computational efficiency. We begin by
gridding the solvent nuclei as in the Grid/Sphere method of ESP determination. The
electronic density is obtained by dividing the effective electronic charge qek, that is the effective
number of electrons associated to the atom type k, by the volume element formed by the
grid. As we need to account for all atoms over the ensemble of solvent geometries, instead
of tracking individual atoms we group them into atom types. Here, it is important to stress
that qj from the definition of σ̂B (Eq. 7), is the total effective charge of the j-th atom, taken
from the force field. So, if the j-th atom is of the type k, then

qej(k) = −qj + Zj(k) (24)

where Zj(k) is the nuclear charge of the atom j, of type k. To simplify the notation, from
now on we only use k.

The average solvent density at the position of the point with index α (rα = {xα, yα, zα}),
as in our previous work,24 is evaluated as

〈ρB〉(α) =
∑
k

qekgk(α), (25)
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here, the division over the volume elements is contained inside the solvent distribution func-
tion gk(α). For a given atom type k in the volume element corresponding to the point
α:

gk(α) =
nα,k
Nνα

;
∑
k,α

gk(α)να = Nnuc, (26)

where N is the number of configurations (MD-frames), Nnuc being the total number of nuclei
in the box, nα,k the number of occurrences of an atom of type k in the volume element να,
and the total volume of the box V =

∑
α να. Therefore, the average electrostatic potential

is computed as

velst[〈ρB〉](r) =
∑
k,α

(−qek + Zk)gk(α)να
|r− rα|

(27)

We emphasize that this ESP is equivalent to the Grid/Sphere method described in Sec-
tion 3.1.1. Whereas for the PCE the embedding potential is just velst(r), for the FDET
calculations the embedding potential is:

vemb[ρA, 〈ρB〉; velst](r) =velst[〈ρB〉](r)

+ v
nad(lin)
xcT [ρA, 〈ρB〉](r). (28)

The environmental average excitation from FDET is then obtained from a single-point cal-
culation in the presence of the potentials of Eq. 28.

For comparison with the single-point environmental averages, we calculate the ensemble
average transition energies using two approaches. First, we take the weighted average of the
transition energies:

〈νex〉 =
N∑
i=1

wiν
(i)
ex , (29)

where ν(i)ex is the excitation energy of frame i, and the weight, wi, is determined from the
oscillator strength, fi, according to

wi =
fi∑N
i=1 fi

. (30)

The weighted standard deviation of 〈νex〉 is calculated as:

σwt =

√√√√ N∑
i=1

wi
(
νi − 〈ν〉

)2
. (31)
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Note that Eq. 3.2 is only valid when
∑

iwi = 1. We also calculate the unweighted average
of νex,

〈νex〉d =
1

N

N∑
i=1

ν(i)ex . (32)

which is the version of an ensemble average closest to the environmental average, where
a single calculations is performed. Note that this expression assumes that the excitation
energies can be decoupled from their oscillator strength (hence the subscript d). If this
assumption holds we expect to observe 〈νex〉 = 〈νex〉d.

Figure 9: Electronic transitions of ACE in SPCE water evaluated using PCE and FDET
embedding methods. Due to the symmetry of the transition, the oscillator strength of the
isolated ACE and environmentally averaged calculations is effectively 0.

Table 3: Ensemble and environmental first excitation energies of ACE. The ensemble averages
(Eq. 3) are weighted by the oscillator strength. Shifts are calculated with respect to the
isolated ACE. All values are in eV.

〈νex〉d 〈δνex〉d 〈νex〉 〈δνex〉 σwt ν̄ex ¯δνex
Isolated – – – – – 4.270 –

PCE 4.480 0.210 4.503 0.233 0.105 4.493 0.223
FDET 4.478 0.208 4.493 0.223 0.093 4.497 0.227

The ACE transitions from these three sets of calculations are plotted in Figure 9, and
all transition energy averages and single-point calculation results are given in Table 3. The
environmental average transition energies are in excellent agreement with the ensemble aver-
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ages, to within 0.2%. One can also observe that the difference between the PCE and FDET
methods is rather small. This is consistent with previous observations which found that the
magnitude of the shift can be primarily attributed to the solute-solvent electrostatic interac-
tion24,39. Additionally, the small difference between 〈νex〉d and 〈νex〉 shows that decoupling
the oscillator strengths and excitation energies is a good approximation, applicable to model
the average behavior of the transitions. However, in terms of frame-to-frame correlation,
similar to the dipole moments, the single-frame oscillator strengths and transition energies
are not well correlated with each other when different sets of approximations are applied
(see Figure 10).

Figure 10: The correlation between the PCE and FDET oscillator strengths (top) and
transition energies (bottom) for the first ACE electronic excitation. The black line represents
a perfect 1:1 correlation.
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3.3 Sample Size Dependence

At the outset of this study, we arbitrarily chose to use 5000 MD frames in the hope that
this was a sufficiently large sample for properly converging the ensemble and environmental
averages. In future applications involving high level theories, 5000 frames may be computa-
tionally intractable and a smaller number of calculations must be considered. We now look
to determine the number of calculations needed in order to be ‘reasonably’ confident in the
average excitation shift generated by an ensemble of calculations. For this section, we will
consider only the solvatochromic shift, δνex = νemb − νiso, i.e. the shift between the isolated
and embedded transition energies. We use this quantity, instead of the excitation energies,
as we are interested in the accuracy of the description of the effect of the environment, and
not the accuracy of the QM method itself.

First we will consider the number of frames required to converge an ensemble average
shift, 〈δνex〉. We begin by splitting the 5000 frame FDET/Sphere trajectory into nsamp

samples consisting of nframe sequential frames, where nsamp ∗ nframe = 5000. The sample’s
mean excitation shifts were calculated as in Section 3.2, together with the weighted standard
deviation. We will call these individual sample calculations the ‘sample means’ and ‘sample
standard deviations.’ After processing each sample, the mean of the sample means and
its 95% confidence interval were calculated, which we will refer to as the ‘aggregate mean’
and ‘aggregate standard deviation.’ The aggregate standard deviation gives insight into the
uncertainty of 〈δνex〉 when it is calculated from nframe individual calculations.
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Figure 11: Break down of the full 5000 FDET/Sphere transition energy shifts, 〈ν〉 =∑N
i=1wiνi, into smaller sequential samples of varying size.

Such data for nframe = 100, 500, and 1000 are plotted in Figure 11, where the individual
sample means are plotted as blue circles with blue error bars representing the sample standard
deviation. The aggregate means and standard deviations are plotted as cyan and red lines,
respectively. These demonstrate that the fluctuations within a sample (blue error bars) are
reasonably well captured by as few as 100 MD frames. Therefore, if one wishes only to
characterize the fluctuations in the shift itself, only 100 or so calculations are needed. The
relationship between the uncertainty in the ensemble average shift and nframe is shown in
Figure 12. The aggregate standard deviations fit well to a/√nsamp law, as expected for a
Gaussian random variable. Based on this fit, at least 775 individual transitions must be
calculated in order to achieve an aggregate standard deviation in 〈νex〉 of ≤ 5 meV.

31



Figure 12: Top: Aggregate means of the ensemble average transition energy shift 〈δνex〉
vs. nsamp. Error bars are the aggregate standard deviation. Bottom: Aggregate standand
deviations vs. nsamp. The red curve is a fit to a/√nsamp where a = 139 meV.

Although we have confirmed that the ensemble calculations behave normally, this does
not necessarily mean that the same conclusion can be made for the environmental averages.To
characterize the uncertainty in ν̄ex, we broke down the 5000 frame MD trajectory into samples
of 100, 500, and 1000 sequential frames. An average environment using the Grid/Sphere
method from each sample and an FDET calculation was performed in the same manner as
in Section 3.2. Figure 13 shows the resulting environmentally averaged transition energy
shift from each of these samples, and the aggregate means and standard deviations of δν̄ex
are given in Table 4. We find that in order to ensure an uncertainty in δν̄ex of ≤ 5 meV,
a minimum of 500 MD frames must be used to construct the average solvent environment.
Note that this is a lower bound on the uncertainty, as we have not included any solute or
solvent flexibility or polarizability in our simulations. Our result is roughly in agreement
with the coupled-cluster with single- and double-excitations reported in Ref. 39, where it
was shown that from 400 MD configurations, the standard deviation of ensemble averages
of the first excitation energy of acetone was smaller then 100 cm−1 (approx. 12 meV).
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Figure 13: Environmentally averaged transition energy shifts, δν̄ex = ν̄emb−νiso, constructed
from a varying nframe number of sequential simulation frames.

Table 4: Aggregate mean and standard deviation of the environmentally averaged transition
energy shifts.

nsamp nframe δν̄ex Agg. Mean / meV δν̄ex Agg. Stdev / meV
50 100 233.8 12.5
10 500 235.6 4.0
5 1000 235.7 2.9

4 Conclusions

The results of our study demonstrate that Eq. 2 is a valid approximation for a rigid solute
dissolved in a rigid solute. The the three different methods used for treating the solvent
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environment, Direct/Cube Grid/Cube and Grid/Sphere, were found to give the same
ensemble averages of the ESP, ChELPG charges, and solute dipole moments. Strong corre-
spondence was found between these ensemble averages and their corresponding environmen-
tal averages. When reducing the system from a cube of solvent to a sphere, we observed a
uniform shift of -0.29 eV in the ESP due to the change in the boundary conditions. Because
this shift was constant for all points in space, it did not affect any properties derivative of the
ESP. We found that the most efficient method to get environmental averages, Grid/Sphere,
is valid for determining averages, but frame-to-frame correlation is lost due to the shifting of
solvent atoms inherent in the grid approximation. This correspondence can only be recovered
by using a very fine grid, so that the potential converges to the exact solution. Therefore,
the Grid/Sphere method is not recommended when looking at properties that depend on
the instantaneous fluctuations of the solvent or the solute. Because we chose to perform
uncoupled QM/MM calculations, the effect of the choice in the charges used for the classical
simulation was explored. We found that there was no significant difference in the ensemble
averages before and after an unbiasing procedure was applied.

When studying the first vertical excitation of acetone, as in this particular case, the
shift in the excitation energy due to the solvent is mainly the result of the electrostatic
interactions, it was not a surprise finding that the results from PCE and FDET were very
similar. The ensemble and environmental averages were found to be very close to each other
in both cases: 0.233 eV and 0.223 eV with PCE, and 0.223 eV and 0.227 eV with FDET,
proving once more the validity of Eq. 2. Finally, we looked at the dependence of the shift
in the excitation energy on the number of independent frames used for constructing the
ensemble and environmental averages. We found that at least 775 frames are needed for the
ensemble averages to have an uncertainty of < 5 meV, whereas the environmental averages
required at least 500 frames.

The immediate following steps in this project are to: 1) explore other approaches to
construct environmental averages, for instance molecular density functional theory, and 2)
investigate the applicability of environmental averages in cases where the solute is flexible
and where the construction of an average geometry is required.63
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Appendix A: Potential shift due to the change from P-type

to M-type boundary conditions

Solvent molecules located at far distances from the solute molecule perspective, where the
solute electric field is small, appear to be rotating freely. Therefore, on average, solvent
molecules at the borders can be seen as averaged charges or charged spheres. For instance,
water molecules are reduced to an isotropic quadrupole (γ = 2qHd

2) and higher isotropic
multipoles.

In the language of Kastenholz,64 the periodic boundary conditions (PBC) used in MD and
Molecular Density Functional Theory (MDFT) are labeled as P-boundary type. In this case,
the average charge density at every point in the box is zero, and there are no discontinuities
at the borders. On the contrary, M-type boundary conditions, where molecules are taken as
a whole at the boundaries, give a different picture – due to the split of molecules there is a
surface polarization PM at the borders. According to Ref. 64, the polarization at the surface

PM −
1

2
ργ (33)

where ρ is the liquid density, creates inside the box a uniform shift ∆φ of the potential,φM =

φout −∆φ. In the infinite fluid case,

∆φ =
2π

3
ργ. (34)

For SPCE water model, d = 1 Å, ρ = 0.03328 mol /Å2, qH = 0.4238 e, and γ = 0.8476,
therefore

∆φ =
2π

3
ργ ≈ 0.059 e/Å ≈ 0.031 e/Bohr. (35)

Appendix B: The Separated QM/MM Time-Averaging Scheme

Supposing for simplicity that the solute A is kept immobile and the embedding potential
reduced to its electrostatic component, and adopting here a DFT framework, the total energy
of the A+B system in Eq. 6 can be expressed as

H(RA,RB,pB) =K(pB) +HA[ρA(r)]

+ Velst[ρA(r),RA,RB]

+ VMM(RA,RB), (36)
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changing here E in H, and knowing indeed that there is a parametric dependence of ρA(r)
on both RA and RB, i.e. ρA(r) ≡ ρA(r;RA,RB). VMM(RA,RB) is the MM force field
that describes the mutual interaction of the solvent molecules and their non-electrostatic
interaction with the solute, modelled by site-site Lennard-Jones contributions. The force on
any atom j of the solvent can be written as

∂E

∂RB,j
= −

∫
dr

[
δHA

δρA(r)
+ velst(r)

]
∂ρA(r)

∂RB,j
(37)

−
∫
dr (ρA(r) + ρ̂NA

(r))
∂velst(r)

∂RB,j
− ∂VMM

∂RB,j

The bracket in the first term is just the Euler-Lagrange equation for the quantum system
and it vanishes for all r’s. So does the whole integral. The second term is the electrostatic
contribution to the force, Felst

B,j . Accounting from the equalities 17-19 in the main text it can
be rewritten as

FelestB,j '
∫
dr

M∑
k=1

QChELPGk δ(r−RA,k)
N∑
j=1

qj
(RB,j − r)

|r−RB,j |3

=

N∑
j=1

qj

M∑
k=1

QChELPGk

(RB,j −RA,k)

|RA,k −RB,j |3

= − ∂

∂RB,j

N∑
j=1

qj

M∑
k=1

QChELPGk

|RA,k −RB,j |

= − ∂

∂RB,j

N∑
j=1

qjvA(RB,j ;Q
ChELPG
k [ρA]) (38)

This implies that once the quantum Hamiltonian has been minimized, yielding the ground
state electronic density ρminA , the total energy of the QM/MM system is given by

H(RA,RB,pB) =K(pB) +HA[ρminA (r)]

+
N∑
j=1

qjvA(RB,j;Q
ChELPG
k [ρminA ])

+ VMM(RA,RB), (39)

and the force are given consistently by Eq. 38 above. This leads to the self-consistent
molecular dynamics algorithm described in the text. As mentioned there too, one can define
at this point a reference classical Hamiltonian H0 for which the energy is defined exactly as
above but with a fixed set of solute charges {Q0

k}. One can then decompose the total energy
into H = H0 + ∆Velst as in Eqs. 20-21. The following Eq. 22 is a standard relationship,
exact in the canonical thermodynamic ensemble, which enables to compute the property of
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the system under study from a dynamics performed with the reference Hamiltonian. Even
if exact in theory, the formula is only applicable in practice if the reference system remains
close to the exact one (here if the reference charges are a good guess with respect to the
ChELPG charges measured on average), or if the statistics in ∆Velst is Gaussian (a seemingly
good approximation in our study). In that case, the following formula can be used〈

Ô(RB)
〉

=
〈
Ô(RB)

〉
0
− 2β

〈
δ∆Velst(RB)δÔ(RB)

〉
0
, (40)

where δX = X = 〈X〉 indicate the fluctuation.
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