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ABSTRACT
The interactions between inertial oscillations (IO) and lee waves (LW)
close to the bottom of the ocean and the role of IO in energy dis-
sipation are addressed for a range of physical parameters typical of
Southern Ocean conditions. Idealized numerical simulations in a ver-
tical plane and resonant interaction theory are combined for this
purpose. The lee waves are emitted by a uniform geostrophic flow
over a sinusoidal topography for a constant buoyancy frequency at
mid-latitude. We show that IO can grow by triadic resonant interac-
tionswith the LW. Two triads aredominant,which involvewaveswith
frequencyωLW , f andωLW − f , whereωLW is the intrinsic frequency of
the LW and f the Coriolis frequency (assumed positive). These triads
differ by the sign and value of the IO vertical wavenumber. Results
from the numerical simulations show that the triad associated with
the upward phase propagation of the IO is selected, consistent with
oceanic observations, that a good agreement is obtainedwith the IO
growth rate predicted theoretically and that the IO develop in a bot-
tom layer of height less than 1000m. A quasi-steady flow regime is
eventually reached, with the IO amplitude being of the sameorder as
the geostrophic flow speed. During this regime, depending upon the
flow parameters, the IO kinetic energy is equal to 30–70% of the LW
energy fluxduringone inertial period. This large rangeof values is not
reflected in the turbulent kinetic energy (TKE) dissipation rate, which
is comprised between 10 and 30% of the LW energy flux, whatever
the IO amplitude, even if vanishingly small. Therefore, for the set of
parameters we consider, the TKE dissipation rate cannot be inferred
from the IO amplitude. Yet, the nonlinear interactions between the
lee waves and the IO are critical in setting the energy spectrum, and
similarly for the internal tide and the IO at low latitudes according to
the literature. This implies that IO should be taken into account in the
parameterisation of mixing in the ocean.
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1. Introduction

Emission of internal gravity waves at a boundary by a steady mean !ow, called lee waves
(LW), has received considerable attention since the 1960s, pointing to the major impact of
these waves on mean !ows in the atmosphere. As reviewed by Bretherton (1969) already,
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the emission of LWresults in a pressure (or drag) force on the topography in the direction of
themean !ow. LWexert a force on themean !ow only when they break or dissipate. Indeed
the waves transport momentum upwards up to the altitude where breaking occurs and the
wave-inducedmomentum is deposited there, resulting in the deceleration of themean !ow
(or its acceleration if the mean !ow direction has changed at the breaking level). Momen-
tum transfer to the mean !ow also occurs at a critical level, where the wave frequency
relative to that !ow vanishes (Bretherton 1966).

In the ocean, by contrast, the interest in internal gravity waves lies primarily in their
ability to mix the !uid via breaking. Mixing processes are indeed required to raise the deep
cold water masses to the surface, as part of the meridional overturning circulation (Munk
and Wunsch 1998), and the sources and locations of mixing are key questions in physical
oceanography (Waterhouse et al. 2014). Themixing of the !uid and thewave-induced force
on the !uid resulting from breaking are actually two facets of the same process: mixing
results in the increase in the background potential energy of the !ow while the wave-
induced force is associated with a change in the distribution of the potential vorticity of
the !ow (e.g. McIntyre and Norton 1990). Concern about the latter force has recently been
raised in the ocean and its role in the momentum balance of energetic regions questioned
(Olbers and Eden 2017). There is also a growing interest in improving the representation
of bottom drag (which includes the drag due to lee wave generation) in ocean circulation
models considering the impact of this representation on large scale !ow properties (Arbic
et al. 2019).

Until the end of the 1990s, emission of LWwas considered as unimportant in the ocean,
the two main mechanical sources of internal gravity waves being the wind blowing at the
sea surface and the tide !owing above seamounts and continental shelves (Munk andWun-
sch 1998). However, "eld experiments have revealed the presence of strongmixing regions
over rough topography at the bottom of the Southern Ocean, extending up to about one
thousand metres above the bottom (Polzin and Firing 1997, Naveira Garabato et al. 2004).
These observations and subsequent "eld campaigns in the Southern Ocean shaped a sce-
nario of LWradiation by theAntarctic CircumpolarCurrent (ACC) and geostrophic eddies
!owing over rough topography, resulting inmomentum transport and breaking away from
the topography. Subsequent estimates of the energy !ux of LW in the ocean indicate that
about 50% of that !ux occurs in the Southern Ocean (Nikurashin and Ferrari 2011).
Moreover, the power input from geostrophic motions into LW appears to be comparable
(possibly only two times smaller) to that from the tide into the internal tide and from the
wind to near-inertial oscillations (Waterhouse et al. 2014, Wright et al. 2014).

Near-inertial oscillations are internal gravity waves of frequency close to (and above)
the Coriolis frequency. These waves are ubiquitous in the ocean. The primary source is
the wind at the sea surface but their energy can be transferred toward the deep ocean
as shown from "eld measurements by Alford (2010) and theoretically by, e.g. Danioux
et al. (2011). Other mechanisms induce near-inertial oscillations (see Alford et al. 2016,
for a review), such as wave-wave interactions involving the internal tide near the critical
latitude1 (e.g. Gerkema et al. 2006). Near-inertial oscillations are associated with very large
horizontal wavelengths, of 10–100 km, and comparatively very small vertical wavelengths,
of 100–400m. These waves are therefore associated with a high vertical shear, prone to

1 The critical latitude is the latitude at which the Coriolis parameter is half the tidal frequency.
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instabilities and turbulence, and are generally considered as a major driver for mixing
across the thermocline (Burchard and Rippeth 2009, Chen et al. 2016). One may wonder
if these waves could not also contribute to the mixing observed in the deep ocean.

The interactions between inertial oscillations (IO) and LW close to the bottom of the
ocean and the role of IO in energy dissipation are addressed in the present paper for a range
of physical parameters typical of Southern Ocean conditions. Numerical simulations in a
vertical plane and resonant interaction theory are combined for this purpose.

The two-dimensional idealised con"guration we consider is described in section 2; the
overall behaviour of the !ow is also presented.We show in section 3 that IO and LW can be
involved in a resonant triad of internal gravity waves. The growth rate of IO is predicted in
section 4 using the resonant interaction theory and compared to results from the numerical
simulations. The !ow reaches eventually a quasi-steady regime and, in section 5, the IO
kinetic energy during this regime is compared to the LW energy !ux during one inertial
period. The relationship between the IO kinetic energy and the dissipation rate of turbulent
kinetic energy (TKE) is also investigated. A discussion of the results and a conclusion are
presented in section 6.

2. Physical configuration and numerical set-up

2.1. Physical con!guration

When a geostrophic current of uniform speed UG !ows over a sinusoidal topography of
wave number kT , internal gravity waves are radiated provided their frequency, equal to
kTUG in the frame of reference of the geostrophic !ow, is comprised between the Coriolis
parameter f (assumed positive) and the buoyancy frequency N (assumed to be constant)

f < kTUG < N. (1)

This frequency satis"es indeed the dispersion relation of internal gravity waves

(kTUG)2 = N2 sin2 θ + f 2 cos2 θ , (2)

where θ is the angle that the wave vector makes with the vertical (e.g. Gill 1984).
In the following, we consider the simple !ow con"guration of Nikurashin and Fer-

rari (2010a) sketched in "gure 1. It consists of a uniform geostrophic !ow of speed UG =
0.1m s−1 !owing in the positive (zonal) x-direction over a sinusoidal topography of the
form h(x) = H cos(kTx). The topography half-height H takes the values 20m, 40m and
80m and the wavelength 2π/kT is equal to either 1200m or 2000m. The value ofN is uni-
form with value 10−3 s−1. The value of the Coriolis frequency is equal to 10−4 s−1, except
in two runs discussed in section 5 in which this value is doubled. The latter value, equal to
2 10−4 s−1, is not realistic from a geophysical point of view but it will serve to illustrate a
case where no resonant interaction involving the IO and the LW occurs.

These values of UG, N and of topography scales are typical of those encountered in
the Southern Ocean, as discussed in Nikurashin and Ferrari (2010b) using measurements
in the Drake passage and in the southeast Paci"c region. For the Drake passage the latter
authors showed thatwave radiation is dominated by scales of 1 kmand larger. This accounts
for the value of 2 km (as in Nikurashin and Ferrari 2010a) and 1.2 km we consider.
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Figure 1. Numerical setting. A uniform geostrophic current UG flows over a sinusoidal topography of
horizontal wavenumber kT and height 2H in a two-dimensional domainwith horizontal periodic bound-
ary conditions. Internal lee waves are emitted, as sketched by dashed phase lines, which are damped in
a sponge layer of thickness 5000m starting at 2000m above topography.

2.2. Numerical set-up

The numerical simulations were carried out with Symphonie NH, a non-hydrostatic
regional ocean model which solves the Navier-Stokes equations in the Boussinesq approx-
imation (Auclair et al. 2011). The physical con"guration involving a uniform !ow over a
y-invariant topography in a rotating reference frame, the velocity "eld is three-dimensional
but all !ow components depend upon the x- and z- coordinates only. Hence, the sim-
ulations are performed in a vertical (x, z) plane. Periodic boundary conditions are used
along the x-direction, consistent with the sinusoidal topography, and the wavelength of the
topography is also the horizontal extent of the numerical domain, denoted L. The bottom
boundary conditions are set either to free slip or to partial slip with a bottom roughness
of 1mm. To avoid wave re!ection from the upper boundary, a damping layer of thickness
5000m starting at 2000m above the bottom is applied. Hence the height of the physical
domain is 2000m.

The !ow is initiated from a state of rest. The horizontal velocity component is then
forced through a body force fUG in the meridional momentum equation. During the "rst
24 h, the !ow "eld is relaxed towards the desired value of UG with a time scale of 3 h,
to damp spurious oscillations generated at the initial time. After 24 h, the relaxation is
removed and the integration is carried out for 20 inertial periods.

The numerical grid has a "xed spacing in the horizontal direction equal to$x = 12.5m
and a topography-following (σ -) coordinate along the vertical direction. In the damping
layer, vertical grid spacing is stretched from about 5m to about 300m, and the viscosity
and di#usivity are increased in proportion with the vertical grid spacing. The viscosity and
di#usivity are set to 10−2 m2 s−1 and 10−3 m2 s−1, respectively, below the damping layer.

The numerical and physical parameters of the simulations are summarised in table 1.
For clarity, the names of the calculations are composed of three parts: the height of the
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Table 1. Summary of the simulations.

Simulation L H f Bottom condition UG/NH

H20L2 2 km 20m 1.10−4 s−1 Partial-slip 5
H40L2 2 km 40m 1.10−4 s−1 Partial-slip 2.5
H80L2 2 km 80m 1.10−4 s−1 Partial-slip 1.25
H20L2_fs 2 km 20m 1.10−4 s−1 Free-slip
H40L2_fs 2 km 40m 1.10−4 s−1 Free-slip
H80L2_fs 2 km 80m 1.10−4 s−1 Free-slip
H20L1.2 1.2 km 20m 1.10−4 s−1 Partial-slip
H40L1.2 1.2 km 40m 1.10−4 s−1 Partial-slip
H80L1.2 1.2 km 80m 1.10−4 s−1 Partial-slip
H40L2_2f 2 km 40m 2.10−4 s−1 Partial-slip
H80L2_2f 2 km 80m 2.10−4 s−1 Partial-slip

Notes: L is the horizontal length of the numerical domain (equal to the horizontal wavelength of the topography), H is the
half-height of the topography and f is the Coriolis parameter. Either partial-slip or free-slip boundary conditions are used
at the topography for the velocity field. The other physical and numerical parameters are the same for all simulations and
described in section 2.

topography (H20, H40 or H80); the horizontal length of the numerical domain, equal to
either 2 km (L2) or 1.2 km (L1.2); the boundary condition, with either no mention if of the
partial-slip type or denoted fs if of the free-slip type; and the Coriolis parameter, with either
no mention if equal to the reference value of 10−4 s−1 or denoted 2f if equal to twice that
value. (The generic Coriolis parameter and its reference value will therefore be designated
by the same notation f for simplicity.)

2.3. Overall "ow behaviour

In the following, as in Nikurashin and Ferrari (2010a), we decompose the !ow into three
components, which are the geostrophic !ow, the IO "eld and the remaining internal grav-
ity wave "eld. The IO velocity "eld is de"ned as: U IO(t, z) = u(x, z, t) − UG

x, where (.)x

denotes a horizontal average. This de"nition implies that (i) the IO horizontal scale is in"-
nite (namely kIO = 0), (ii) the IO frequency is equal to f so the vertical group velocity
vanishes, (iii) the IO "eld has no vertical velocity. The velocity "eld of the internal grav-
ity wave "eld is de"ned as ULW(x, z, t) = u(x, z, t) − UG − U IO(t, z). This "eld has a zero
horizontal average by de"nition and encompasses all motions that are not of zero horizon-
tal wavenumber. At the beginning of the simulations, it coincides with the lee wave "eld of
frequency UGkT radiated by the geostrophic !ow (in the frame of reference of that !ow)
and will be denoted in the following by the acronym LW for simplicity.

Over the range of parameters we consider, the topography is subcritical, namely the
slope of the phase lines exceeds the slope of the topography. In the limit of long wavelength
(kT " N/UG), the ratio of these two slopes is equal toUG/NH, whose value is larger than 1
in the subcritical case. This parameter can also be interpreted as the ratio of the maximum
distance a !uid particle can travel vertically,UG/N, to the typical height of the topography,
H. It follows that, when UG/NH > 1, the whole !ow passes over the topography and no
blocking occurs at the bottom of the topography. This is the case for all simulations we
consider (see table 1).

Basic features of the !ow behaviour are illustrated in "gure 2 for simulation H40L2 (see
table 1). This "gure displays the vertical velocity at two successive times. After one inertial
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Figure 2. Snapshots of the vertical velocity for simulation H40L2 after one inertial period (upper frame)
and after 7 inertial periods (lower frame). The same colorbar is used for the two frames, but themaximum
value is about three times higher in the lower than in the upper frame. Note the quasi-linear regime in
the upper frame and the strongly nonlinear regime in the lower one (Colour online).

period (upper frame), quasi-linear LW have been radiated and propagate upwards. After
seven inertial periods (lower frame), wave breaking occurs at the bottom of the domain.

The amplitude of the IO "eld at a height of about 10m above the topography top is
displayed in "gure 3 for all the simulations of table 1, except those with frequency 2f as
explained below. The spin-up of the simulation, during which the mean !ow grows from 0
to the value ofUG, is not shown. The IO amplitude is observed to grow, all themore soH or
kT is larger. As shown in the next section, the IO growth rate is proportional to the square of
the LW amplitude namely to (HkTUG)2 (in the linear theory), which accounts qualitatively
for the di#erent growth rates observed. ForH = 40m andH = 80m, a quasi-steady state
is eventually reached in less than 10 inertial periods. For H = 20m, the duration of the
simulation is not long enough for the IO "eld to reach the quasi-steady state. Indeed, as
discussed in section 4, the dissipation time scale based on the IO vertical wavelength is
about 50 times the e-folding time of the IO growth implying that the latter growth is not
damped (or only weakly so) by viscosity. Finally, for simulations with twice the inertial
frequency f, the IO amplitude does not signi"cantly depart from noise and is not shown.

Figure 4 displays the vertical pro"le of the IO amplitude (upper frame) and of the TKE
dissipation rate (lower frame) averaged from 12 to 15 inertial periods for all simulations
in table 1 (except those with frequency 2f ). The upper frame shows that the IO amplitude
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Figure 3. Temporal evolution of the inertial oscillation (IO) amplitude at about 10m above the topog-
raphy top, as a function of time scaled by the inertial period 2π/f . The IO signal was processed through a
Lanczos low-pass filter at cutoff frequency f. The spin-up of the simulation, duringwhich the geostrophic
current grows from 0 to the value of UG, is not shown (Colour online).

has grown but remains localised close to the bottom of the domain, below 700m or so.
Consistent with the results displayed in "gure 3, the maximum IO amplitude is all the
larger the LW amplitude is higher. For H = 20m, the IO amplitude remains insigni"cant
throughout the water column. For H ≥ 40m, the maximum IO amplitude is of the same
order as the geostrophic !ow speed, ranging between about 1.1 and 2 times that speed. The
lower frame of the "gure shows that the TKE dissipation rate is most intense just above the
topography, in the "rst 200m or so, keeping signi"cant values also below about 700m.

The next two sections aim at identifying the mechanisms at the origin of the IO growth
and at quantifying their growth rate.

3. Resonant interactions involving internal lee waves and inertial
oscillations

In the previous section, we have shown that IO emerge during the evolution of the !ow.
The objective of the present section is to show that IO can interact resonantly with LW
within a wave triad. For this purpose, we rely on the resonant interaction theory (RIT) (see
e.g. Phillips 1967).

We recall that LW are steady in the frame of reference attached to the topography,
namely their absolute frequency vanishes. Since intrinsic wave frequencies are involved
in the RIT, the theory is applied here in a frame of reference attached to the geostrophic
!ow UG. In the following, the word frequency refers to this intrinsic frequency. We also
recall that the RIT considers waves propagating in a vertical plane of in"nite dimension in
both directions, namely the presence of the topography is not taken into account.

3.1. Computation of the resonant triads

When three waves interact resonantly, signi"cant energy exchanges can occur among these
waves (compared to non resonant interactions) if the algebraic sum of both their wave
vectors and their frequencies amount to zero. Assuming two of these waves are the LW
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Figure 4. Vertical structure of the IO horizontal velocity (upper frame) and of the horizontally-averaged
TKE dissipation rate (lower frame) for the simulations displayed in table 1. All fields are averaged from 12
to 15 inertial periods (Colour online).

and the IO and denoting the third wave with a ∗ subscript, these relations are expressed as

σLWkLW + σ∗k∗ + σIOkIO = 0, (3a)

σLWωLW + σ∗ω∗ + σIOωIO = 0, (3b)

where the subscripts refer to the di#erent waves, σ = ±1, k = (k,m) is the wave vector
(in the present two-dimensional case) and ω the intrinsic frequency of either wave. We
assume that all frequencies are positive implying that the σ coe$cients cannot be of the
same sign. Equations (3a) and (3b) together with the three dispersion relations yield 6
equations for 9 variables. Depending on the choice of (σLW , σ∗, σIO), several triads can
arise. We assume that the wave of largest amplitude is the internal lee wave. Since this
wave has the same spectral properties throughout the di#erent triads, the triads can be
considered as independent (Chow et al. 1996).

The problem is closed by expressing that the LW parameters verify

kLW = kT , (4a)

ωLW = UGkT (4b)

and by writing that the IO are homogeneous in the horizontal plane

kIO = 0. (5)
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Wealso know thatωIO = f (or |f | if f <0). The problem therefore boils down to 5 equations
and 5 unknown variables (mLW ,mIO, k∗,m∗, ω∗)

σLWkT + σ∗k∗ = 0, (6a)

σLWmLW + σ∗m∗ + σIOmIO = 0, (6b)

σLWUGkT + σ∗ω∗ + σIOf = 0, (6c)

ω2
∗ = N2k2∗ + f 2m2

∗
k2∗ + m2

∗
, (6d)

(UGkT)2 =
N2k2T + f 2m2

LW
k2T + m2

LW
. (6e)

Solving these equations for the LW "eld yields

kLW = kT , (7a)

ωLW = UGkT , (7b)

mLW = −kT

√
N2 − (UGkT)2

(UGkT)2 − f 2
, (7c)

where we chosemLW < 0 to ensure that the LW radiate energy away from topography.
To solve for the IO and the third wave "elds, we "rst consider the case −σLW = σIO =

σ∗ = 1. For the third wave of the triad, we obtain

k∗ = kT , (8a)

ω∗ = UGkT − f , (8b)

m∗ = ±kT

√
N2 − (UGkT − f )2

(UGkT − f )2 − f 2
. (8c)

We recall that this internal wave can only exist provided f < UGkT − f < N. We notice
from equation (8c) that the sign of m∗ is not determined implying that the ∗ wave can
propagate either upwards or downwards. The vertical wavenumber of the IO is inferred
from the relationmIO = mLW − m∗, implying that the spectral parameters of the IO are

kIO = 0, (9a)

ωIO = f , (9b)

mIO = −kT

(√
N2 − (UGkT)2

(UGkT)2 − f 2
±

√
N2 − (UGkT − f )2

(UGkT − f )2 − f 2

)

. (9c)

The case σLW = σ∗ = −σIO = 1 is equivalent to the case described above.
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Finally, the full solution for the case σLW = −σ∗ = σIO = 1 is

kLW = kT , (10a)

ωLW = UGkT , (10b)

mLW = −

√
N2 − (UGkT)2

(UGkT)2 − f 2
kT , (10c)

k∗ = kT , (10d)

ω∗ = UGkT + f , (10e)

m∗ = ±

√
N2 − (UGkT + f )2

(UGkT + f )2 − f 2
kT , (10f)

kIO = 0, (10g)

ωIO = f , (10h)

mIO = −kT

(√
N2 − (UGkT)2

(UGkT)2 − f 2
±

√
N2 − (UGkT + f )2

(UGkT + f )2 − f 2

)

. (10i)

In summary, two solutions arise for the frequency of the third wave (ω∗ = UGkT ± f ),
and for each solution two possibilities exist for the sign of the vertical wavenumber of the
third wave (m∗), and hence for the value ofmIO. Therefore, there are four solutions for the
vertical wavenumber of the IO.

These triads can in turn be involved in higher order interactions. For instance, the inter-
action between an IO of frequency f and a ∗wave of frequencyUGkT − f may give rise to a
new wave of frequencyUGkT − 2f . More generally, energy transfers occur along a discrete
spectrum of frequencies UGkT + nf , where n is an integer (positive or negative) which
must satisfy

1 − UGkT
f

< n <
N
f

− UGkT
f

(11)

expressing that these frequencies lie in the range of internal wave frequencies.

3.2. Evidence of resonant triads from spectral analysis

Figure 5 displays the frequency spectrum of the horizontal velocity component along the
x-axis for the wave "eld for simulation H20L2. This wave "eld encompasses the IO and
the internal gravity wave "eld (LW). The spectrum is computed in a frame of reference
moving at speed UG since intrinsic frequencies are to be detected. The straight line is the
con"dence level at 99%, above which the spectrum signi"cantly departs from red noise.
Several peaks emerge from the power spectrum.

The peak close to f is that of the IO. This peak is indeed unchanged in the moving refer-
ence frame since the IO horizontal wavenumber vanishes. The peak is slightly shifted from
(and above) f due to the "nite length of the time series, equal to 15 inertial periods, and
to nonlinear e#ects. Another peak is associated with the LW frequency (ω = UGkT). One
would expect the sum and di#erence of these two peaks (ω = UGkT ± f ) to be dominant
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Figure 5. Variance preserving power spectrum of the horizontal velocity component of the wave field
for simulation H20L2 computed at about 600m above the bottom of the domain, in a frame of refer-
ence moving with the geostrophic velocity UG. The wave field encompasses the entire flow, except for
the geostrophic flow. The straight line is the confidence level at 99% implying that the spectrum sig-
nificantly departs from red noise when it exceeds this line. The inertial and buoyancy frequencies and
the frequencies predicted by the resonant interaction theory are indicatedwith a vertical dashed-dotted
line. The length of the time series is 15 inertial periods implying that the spectral resolution is 0.01f.

as well but only the di#erence of these frequencies appears, as explained in the next section.
A peak at frequency UGkT + 2f also emerges but no peak of value UGkT − 2f . No general
conclusion about the presence of these peaks can be drawn however since, depending upon
the simulation in table 1 we analysed, peaks at frequency UGkT + 3f or UGkT + 4f may
instead (or also) be visible. But this clearly attests of the presence of higher order triads
(which may be non resonant).

4. Growth rate of inertial oscillations

In this section we show that resonant interactions result in the growth of inertial oscil-
lations. This growth rate is next compared with the one diagnosed from numerical
simulations.

4.1. Expression of the inertial oscillation growth rate

Evolution equations for the amplitude of the waves involved in a resonant triad can be
inferred from the RIT (see appendix A.1). This evolution occurs on a slow time scale, t1
say (de"ned in that appendix). When one wave in the triad is of much larger amplitude
than the other two (all waves being of very small amplitude, a basic assumption of the
RIT), this large amplitude wave can be assumed to be steady over the time scale t1. This
allows for the linearisation of the evolution equations, from which the solution for the two
smaller amplitude waves can be inferred. The latter waves either exchange energy within
the triad over a periodic cycle, implying that their amplitude remains bounded, or their
amplitude can grow exponentially, the largest amplitude wave feeding them. We consider
the resonant triad made of the LW, assumed to have the largest amplitude, the IO and the *
wave introduced in the previous section. In an inviscid !uid, the oscillatory or exponential
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behaviour depends upon the sign of the parameter Γ 2 de"ned by

Γ 2 =
(
ALW
2

)2
S∗SIO, (12)

where ALW is the amplitude of the LW, and S∗ and SIO are interaction coe$cients of the ∗
and IO waves, respectively, with the LW. The expression of these coe$cients is

S∗ = σLWσIO
2K2

∗ω∗

[
ω∗
(
K2
LW − K2

IO
)
+ N2k∗

(
kLW]
ωLW

− kIO
ωIO

)

+ f 2m∗

(
mLW
ωLW

LW − mIO
ωIO

)] (
mIOkLW − mLWkIO

)
, (13a)

SIO = σLWσ∗
2K2

IOωIO

[
ωIO

(
K2
LW − K2

∗
)
+ N2kIO

(
kLW
ωLW

− k∗
ω∗

)

+ f 2mIO

(
mLW
ωLW

− m∗
ω∗

)] (
m∗kLW − mLWk∗

)
(13b)

with Ki = |ki|. When Γ 2 > 0, namely S∗SIO > 0, the IO and the * waves grow expo-
nentially at rate ', implying that the LW is unstable in the inviscid limit. When Γ 2 < 0
(S∗SIO < 0), the LW is stable. The derivation of equation (12) is detailed in appendix A.2,
viscous and di#usive e#ects being taken into account.

4.2. Validationwith numerical simulations

For the range of parameters considered in this paper, Γ 2 is strictly positive for the two
triads involving the ∗wave of frequencyUGkT − f (these triads di#er by the value ofmIO).
This result holds for all simulations except for those with twice the inertial frequency since
UGkT − 2f < 2 f in this case. No resonant triad involving the LW and the IO can therefore
be detected in the latter simulations.

The "nding of these triads is consistent with Hasselman’s criterion (Hasselmann 1967),
which states that a primary wave is unstable if it has the highest frequency in the triad.
Hence, the internal lee wave, of frequencyUGkT , is unstable for a triad involving the IO and
the ∗wave atUGkT − f , but stable for a triad involving the IO and the ∗wave atUGkT + f .
(Hasselman’s criterion can actually be shown to be equivalent to S∗SIO > 0.) In the former
triad, energy is continuously transferred from the LW to the IO and the ∗wave, whereas in
the latter triad periodic energy exchange takes place between the three waves. This implies
that although the two types of triads are expected to have a signature in the frequency
spectrum displayed in "gure 5, the triads involving the ∗ wave with frequency UGkT − f
should be dominant, which the latter "gure attests.

Figure 6 displays a scatter plot of ' computed from the resonant interaction theory and
from the simulations, denotedΓRIT andΓsim, respectively (the expression ofΓRIT is derived
in appendix A.2). The theory predicts growth rates of similar values when the sign ofm∗ is
changed (for instance, forH = 40m, the value of ΓRIT/f is equal to 3.33 10−1 form∗ > 0
and to 3.76 10−1 for m∗ < 0) and only the values associated with negative m∗ are shown
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Figure 6. Scatter diagram of the growth rate of the IO diagnosed from the simulations,Γsim, versus that
computed from the resonant interaction theory, ΓRIT , scaled by the inertial frequency. Simulations for
which the inverse of the IO growth rate is smaller than 3 inertial periods are indicatedwith a filledmarker
(black or grey). For simulations with empty markers, the inverse of the IO growth rate is larger than 10
inertial periods.

for clarity. Also, values of ΓRIT in the inviscid limit are shown as the e#ect of viscosity
hardly changes these values (see appendix A.2). Indeed the relative di#erence between the
inviscid and the viscous values for ΓRIT are at most a few percents whatever H. As for the
numerical growth rate Γsim, it is computed from an exponential "t of the curves displayed
in "gure 3 from the beginning of the simulations (namely, after the spin-up time). Only
positive growth rates are shown.

Since simulations with H = 20m present little IO growth (see "gure 3), a precise esti-
mate of the growth rate for these simulations cannot be obtained, hence preventing the
comparison with the theoretical predictions. The growth rates computed for cases with
H ≥ 40 are much more robust. For the latter cases, all values of Γsim but one underes-
timate the theoretical predictions. More precisely, simulations with a free-slip boundary
condition on the topography yield a growth rate in very good agreement with the the-
oretical predictions. This is no longer true when a half-slip boundary condition is used,
consistent with the RIT being inviscid (the RIT predictions being hardly modi"ed by vis-
cous e#ects as said above). As well, whenH = 80m, higher order triads very likely interact
with the dominant one, extracting energy from this triad and damping its growth rate. In
overall, it can be concluded that the values ofΓsim agree reasonably well with those ofΓRIT .

4.3. Vertical propagation of the inertial oscillations

As discussed in the previous section, we consider only the two triads involving the LW, the
IO and the ∗ wave with frequency UGkT − f . These triads di#er by the expression of the
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Figure 7. Time-height diagram of the IO horizontal velocity for H20L2. The slope of the black line is the
vertical phase speed of the IO, f/mIO, for the resonant triad involving a∗wave of frequencyUGkt − f and
mIO > 0. The horizontal white line indicates the height of 1000m (Colour online).

IO vertical wavenumber

mIO = −kT

(√
N2 − (UGkT)2

(UGkT)2 − f 2
±

√
N2 − (UGkT − f )2

(UGkT − f )2 − f 2

)

, (14)

from where the expression of the IO phase speed in the vertical direction can be com-
puted, czφ|IO = f /mIO. The productm∗mIO is negative, meaning that a ∗wave whose phase
propagates downwards (m∗ < 0) is associated with an IOwhose phase propagates upwards
(mIO > 0).

Figure 7 displays a time-height diagram of the horizontal velocity of the IO for simula-
tion H20L2. The value of the IO vertical phase speed predicted by the RIT for mIO > 0 is
indicated with a black line. This value compares very well with the numerical result below
about 1000m, where the IO amplitude is the largest. As discussed above, a theoretical solu-
tion with a negative value of mIO is also found from RIT but it does not appear in the
numerical solution. One possible explanation is that the latter IO wave is of smaller verti-
cal scale than the mIO > 0 wave (2π/|mIO| is equal to 240m for mIO < 0 and to 1015m
formIO > 0) and therefore more prone to dissipation. Indeed, the viscous time scale (esti-
mated as 1/(νm2

IO)) associated with themIO < 0 wave is about 2 inertial periods, against
40 inertial periods for themIO > 0 wave, which may account for the former wave to be of
insigni"cant amplitude.

Figure 7 also shows that the IO"eld ampli"es at lower heights with time, as if the IOwere
propagating energy downwards. This would imply that the IO is near-inertial. However,
the formation of a near-inertial wave is forbidden by the periodic boundary conditions
because these conditions quantify the horizontal wavenumbers into nkT , with n ≥ 0. A
near-inertial oscillation would be associated with a non-zero and very small (" kT) hori-
zontal wavenumber, which is not possible. This behaviour of the IO "eld, possibly due to
nonlinear e#ects, needs to be clari"ed.
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Figure 8. Scatter plot of the IO kinetic energy EIO versus the TKE dissipation rate ε integrated over the
physical domain D and from 12 to 15 inertial periods. ε is scaled by the LW energy flux taken at a height
of about 10m above the topography top and averaged horizontally over the physical domain, denoted
Pup. The IO kinetic energy is scaled by Pup during one inertial period 2π/f . Simulations for which the
inverse of the IO growth rate is smaller than 3 inertial periods are indicated with a filled marker (black
or grey). For simulations with empty markers, the inverse of the IO growth rate is larger than 10 inertial
periods. The+ and× signs refer to simulations with Coriolis frequency 2f , for which Γ 2 < 0.

5. Energy transfer from the lee waves to inertial oscillations versus TKE
dissipation

The objective of this section is two-fold: (i) to estimate the energy transferred from the LW
to the IO; (ii) to determine whether a relationship can be found between the IO kinetic
energy and the TKE dissipation rate.

For this purpose, a scatter plot of the IO kinetic energy EIO and of the TKE dissipation
rate ε is displayed in "gure 8. Both quantities are integrated over the physical domain and
averaged from 12 to 15 inertial periods, when the IO amplitude (see "gure 3) and ε (see
Labreuche 2015, "gure 2.3) have reached a quasi-steady regime. The quantity ε is scaled
with the LW energy !ux p′w taken at about 10m above the top of the topography and
averaged horizontally over the physical domain, denoted Pup (p′ is the pressure deviation
from hydrostatic balance). The quantity EIO is scaled by the LW energy !ux during one
inertial period Pup/(2π/f ).

Figure 8 shows that, forH larger than 40m and f = 10−4 s−1, an appreciable part of the
energy transported by the LW over one inertial period is converted to IO kinetic energy,
comprised between 35% and 70%. For H = 20 m, the growth rate of the IO is very small
(1/Γ is greater that 10 inertial periods) and EIO does not exceed 15% of the LW energy
!ux during one inertial period, being vanishingly small when the domain size is 1.2 km or
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if a free-slip boundary condition is used. For f twice larger, Γ 2 de"ned by equation (12)
is negative and no IO can grow by resonant interactions. This is attested in the "gure (+
symbol) for H = 40m. For H = 80m, IO kinetic energy is still detected (× symbol), the
IO "eld having possibly been created by nonlinear (non-resonant) interactions during the
turbulent regime; however their kinetic energy is not more than 12% of the LW energy
!ux during one inertial period. In overall, "gure 8 shows that resonant interactions are an
e$cient mechanism to force IO from the LW.

Focusing now on the total TKE dissipation rate, "gure 8 shows that ε is comprised
between about 10 and 30% of the LW energy !ux for f = 10−4 s−1 (when IO grow). These
values are consistent with ratios of dissipated to radiated energy (estimated fromwave radi-
ation theory) observed in the Scotia Sea within 1 km of the seabed (Sheen et al. 2013).
Figure 8 also shows that ε is largest when Γ 2 < 0, namely when no resonant growth of IO
occurs (see the simulations with frequency 2f ). It follows from this "gure that no clear
dependence of the total TKE dissipation rate upon the total IO kinetic energy can be
inferred, even though the vertical structure of the IO and of ε seems to be related (see
"gure 4). Therefore, for the set of parameters we consider, it is not possible to infer the
TKE dissipation rate from the IO amplitude.

6. Conclusion and discussion

The interactions between lee waves (LW) and inertial oscillations (IO) are addressed in
this paper for an idealised con"guration and a range of parameters typical of the Southern
Ocean. The lee waves are radiated by a geostrophic !ow over a two-dimensional sinusoidal
topography in a stably-strati"ed !uid of constant buoyancy frequency N at mid-latitude.
Inertial oscillations are internal gravity waves of frequency equal to the Coriolis frequency
f (assumed positive for simplicity). Themain result of this paper is that IO can grow by tri-
adic resonant interactions with the LW. The dominant triad involves waves with frequency
UGkT , f and UGkT − f , where UGkT is the intrinsic frequency of the LW (measured in
a frame of reference attached to the geostrophic !ow of speed UG; kT is the horizontal
wavenumber of the topography). This resonant mechanism is valid whatever the param-
eters of the problem provided the LW intrinsic frequency is comprised between 2f (as
UGkT − f should be larger than f ) and N. For f = 10−4, N = 10−3 and UG = 0.1m s−1,
which are the values considered in the present con"gurations, this condition implies that
the wavelength of the topography is comprised between 600m and 3 km, which are typical
values for oceanic bottom topographies.

The resonant growth mechanism of IO is assessed from numerical simulations with
wavelength of the topography equal to 1.2 km and 2 km. IO do grow in the simulations,
in a bottom layer of height less than 1000 m, with a growth rate in good agreement with
predictions of inviscid resonant interaction theory (RIT). This theory predicts that two
resonant triads can occur, associated with IO with either a positive (upward) or a negative
(downward) phase speed along the vertical direction. Only the former triad is found in
the simulations consistent with oceanic observations (e.g. Leaman and Sanford 1975). A
possible argument to account for the absence of the negative phase speed IO is that the
latter wave is damped by viscosity.

IO have a zero group velocity so they amplify at their generation site. This is close
to the bottom in the present case, possibly because the LW away from the topography
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are no longer energetic enough to amplify the IO (having forced them close to the bot-
tom), dispersive and viscous e#ects coming also into play. We remind that, for internal
gravity waves, a positive phase speed along the vertical is associated with a negative ver-
tical group velocity. Thus, in the ocean where near-inertial oscillations can be generated,
these results imply that the latter waves should accumulate close to the topography while
growing, possibly leading to mixing via shear instability. Such a downward energy prop-
agation of near-inertial oscillations close to rough bathymetry has been observed, e.g. by
Alford (2010) in the Eastern North Paci"c and by Waterman et al. (2014) in the South-
ern Ocean. In the latter case, measurements show an elevated energy dissipation rate up to
'250m above the topography (see Zemskova and Grisouard 2021, for further references
and discussion).

In the present paper, the amplitude evolves in time toward a quasi-steady regime, reach-
ing values as large as the speed of the geostrophic !owwhen the parameterUG/NH is order
1 (H is the half-height of the topography). During this regime, depending upon the !ow
parameters, the IO kinetic energy is equal to 30–70 % of the LW energy !ux during one
inertial period. This wide range of variation is not re!ected in the TKE dissipation rate:
this rate is comprised between 10 and 30% of the LW energy !ux, whatever the IO ampli-
tude, even if vanishingly small. Therefore, for the set of parameters we consider, it cannot
be concluded that the TKE dissipation rate can be inferred from the IO amplitude.

The RIT framework considered in this paper is no longer valid during the quasi-steady
regime, LW being now radiated by the superposition of the geostrophic !ow and the IO
"eld of similar amplitude. This !ow regime is studied by Nikurashin and Ferrari (2010a).
An asymptotic expansion as a function of the LW amplitude is derived by these authors,
in which the geostrophic !ow and the IO are zero order "elds. It is shown that the IO are
forced by the divergence of the wave-induced Reynolds stress, this divergence being due
to dissipative e#ects. Dissipation is introduced in the equations of motion by a Rayleigh
damping force to make the problem mathematically tractable. This forcing mechanism of
the IO therefore requires very di#erent assumptions than the one proposed in the present
paper: in the RIT, the IO amplitude is much smaller that the LW amplitude and dissipative
e#ects do not play any role. These twomechanisms can actually be seen as complementary:
in"nitely small amplitude IO grow by inviscid resonant interactions involving the LW and
when the IO amplitude becomes of the same order as that of the geostrophic !ow, momen-
tum deposition by the LW comes into play through a viscous nonlinear process, which
forces the IO.

The results presented in this paper have actually more generality, as literature on the
internal tide shows it. Indeed Nikurashin and Legg (2011), while adressing the mecha-
nism of turbulent energy dissipation above the bottom in the Brazil basin from the internal
tide, found from two-dimensional numerical simulations that the triad (ωtide, f ,ωtide − f )
is dominant in the energy spectrum in the "rst 1000m above the bottom (ωtide denotes the
tidal frequency). These authors conclude that this triad is a key player in energy transfer
from the internal tide to small vertical scale waves and therefore in turbulent processes.
Richet et al. (2018) showed that this triad is a resonant triad, similarly to the present
"nding where the energy source is provided by the lee waves. From the work of Richet
et al. (2018), one can actually note that, as f increases from 0 at the equator to its value
at the critical latitude de"ned by fc = ωtide/2, the frequency of the secondary waves f
and ωtide − f becomes each equal to ωtide/2, namely the resonant process becomes of the
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parametric subharmonic instability type. This points toward the crucial role of this reso-
nant triad as f varies from 0 to fc and of IO in energy transfer toward small scales in the
ocean.

These results imply that IO should be taken into account in the parameterisation of
mixing in the ocean (as also stressed by Alford et al. 2016). Indeed, it is usually assumed
in such parameterizations that the turbulent cascade is driven by wave-wave interactions
not subject to rotation. The present paper shows that the nonlinear interaction between lee
waves and IO is critical to setting the energy spectrum.

Acknowledgments
The authors thankMatthieu Leclair and Francis Auclair for technical assistance with themodel con-
"guration. Symbolic calculations were performed with SageMath (Stein 2012). We are grateful to
MaximNikurashin and Jacques Vanneste for fruitful discussions. Computations were performed on
the CINES supercomputer centre. The authors received funding from the Laboratoire d’Excellence
OSUG@2020 and from the national Program LEFE of the INSU-CNRS.

Disclosure statement

No potential con!ict of interest was reported by the author(s).

References
Alford, M.H., Sustained, full-water-column observations of internal waves andmixing near mendo-

cino escarpment. J. Phys. Oceanogr. 2010, 40, 2643–2660.
Alford, M.H., MacKinnon, J.A., Simmons, H.L. and Nash, J.D., Near-inertial internal gravity waves

in the ocean. Annu. Rev. Mar. Sci. 2016, 8, 95–123.
Arbic, B., Fringer, O., Klymak, J., Mayer, F., Trossman, D. and Zhu, P., Connecting process models

of topographic wave drag to global eddying general circulation models. Oceanography 2019, 32,
146–155.

Auclair, F., Estournel, C., Floor, J.W., Herrmann,M., Nguyen, C. andMarsaleix, P., A non-hydrostatic
algorithm for free-surface ocean modelling. Ocean Model. 2011, 36, 49–70.

Bretherton, F.P., The propagation of groups of internal gravity waves in a shear !ow.Q. J. R.Meteorol.
Soc. 1966, 92, 466–480.

Bretherton, F.P., Momentum transport by gravity waves. Q. J. R. Meteorol. Soc. 1969, 95,
213–243.

Burchard, H. and Rippeth, T.P., Generation of bulk shear spikes in shallow strati"ed tidal seas.
J. Phys. Oceanogr. 2009, 39, 969–985.

Chen, S., Polton, J.A., Hu, J. and Xing, J., Thermocline bulk shear analysis in the northern North Sea.
Ocean Dyn. 2016, 66, 499–508.

Chow, C.C., Henderson, D. and Segur, H., A generalized stability criterion for resonant triad
interactions. J. Fluid Mech. 1996, 319, 67–76.

Danioux, E., Klein, P., Hecht, M.W., Komori, N., Roullet, G. and Le Gentil, S., Emergence of wind-
driven near-inertial waves in the deep ocean triggered by small-scale eddy vorticity structures. J.
Phys. Oceanogr. 2011, 41, 1297–1307.

Gerkema, T., Staquet, C. and Bouruet-Aubertot, P., Decay of semi-diurnal internal-tide beams due
to subharmonic resonance. Geophys. Res. Lett. 2006, 33, L08604.

Gill, A., Atmosphere-Ocean Dynamics, 1982 (Academic Press, London).
Hasselmann, K., A criterion for nonlinear wave stability. J. Fluid Mech. 1967, 30, 737–739.
Koudella, C. and Staquet, C., Instability mechanisms of a two-dimensional progressive internal

gravity wave. J. Fluid Mech. 2006, 548, 165–196.



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 19

Labreuche, P., Ondes de relief dans l’océan profond: mélange diapycnal et interactions avec
les oscillations inertielles. Ph.D. Thesis, Université Joseph Fourier, 2015. Available online at:
https://tel.archives-ouvertes.fr/tel-01684248.

Leaman, K. and Sanford, T., Vertical energy propagation of inertial waves: a vector spectral analysis
of velocity pro"les. J. Geophys. Res. 1975, 80, 1975–1978.

McIntyre, M.E. and Norton,W.A., Dissipative wave-mean interactions and the transport of vorticity
or potential vorticity. J. Fluid Mech. 1990, 212, 403–435.

Munk, W. and Wunsch, C., Abyssal recipes II: energetics of tidal and wind mixing. Deep Sea Res. I
1998, 45, 1977–2010.

NaveiraGarabato, A.C., Polzin, K.L., King, B.A., Heywood, K.J. andVisbeck,M.,Widespread intense
turbulent mixing in the Southern Ocean. Science 2004, 303, 210–213.

Nikurashin,M. and Ferrari, R., Radiation and dissipation of internal waves generated by geostrophic
motions impinging on small-Scale topography: I. Theory. J. Phys. Oceanogr. 2010a, 40,
1055–1074.

Nikurashin,M. and Ferrari, R., Radiation and dissipation of internal waves generated by geostrophic
motions impinging on small-scale topography: II. Application to the Southern Ocean. J. Phys.
Oceanogr. 2010b, 40, 2025–2042.

Nikurashin, M. and Ferrari, R., Global energy conversion rate from geostrophic !ows into internal
lee waves in the deep ocean. Geophys. Res. Lett. 2011, 38, L08610.

Nikurashin, M. and Legg, S., A mechanism for local dissipation of internal tides generated at rough
topography. J. Phys. Oceanogr. 2011, 41, 378–395.

Olbers, D. and Eden, C., A closure for internal wave – mean !ow interaction. Part I: energy
conversion. J. Phys. Oceanogr. 2017, 47, 1389–1401.

Phillips, O., Theoretical and experimental studies of gravity wave interactions. Proc. R. Soc. A: Math
1967, 299, 104–119.

Polzin, K. and Firing, E., Estimates of diapycnal mixing using LADCP and CTD data from I8S. Int.
WOCE Newslett. 1997, 29, 39–42.

Richet, O., Chomaz, J.M. and Muller, C., Internal tide dissipation at topography: triadic resonant
instability equatorward and evanescent waves poleward of the critical latitude. J. Geophys. Res.
Oceans 2018, 123, 6136–6155.

Sheen, K., Brearley, J., Naveira Garabato, A., Smeed, D.,Waterman, S., Ledwell, J., Meredith, M., L. St
Laurent, Thurnherr, A., Toole, J. and Watson, A., Rates and mechanisms of turbulent dissipation
and mixing in the Southern Ocean: results from the diapycnal and isopycnal mixing experiment
in the Southern Ocean (DIMES). J. Geophys. Res. Oceans 2013, 118, 2774–2792.

Stein, W., Sage Mathematics Software (Version 4.7.1), The Sage Development Team, 2012. Available
online at: https://www.sagemath.org.

Waterhouse, A.F., MacKinnon, J.A., Nash, J.D., Alford, M.H., Kunze, E., Simmons, H.L., Polzin,
K.L., Sun, O.M., Pinkel, R., Talley, L.D., Whalen, C.B., Huussen, T.N., Carter, G.S., Fer, I.,
Waterman, S., Naveira Garabato, A.C., Sanford, T.B. and Lee, C.M., Global patterns of diapy-
cnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr. 2014, 44,
1854–1872.

Waterman, S., Polzin, K.L., Naveira Garabato, A.C., Sheen, K.L. and Forryan, A., Suppression of
internal wave breaking in the antarctic circumpolar current near topography. J. Phys. Oceanogr.
2014, 44, 1466–1492.

Wright, C.J., Scott, R.B., Ailliot, P. and Furnival, D., Lee wave generation rates in the deep ocean.
Geophys. Res. Lett. 2014, 41, 2434–2440.

Zemskova, V.E. and Grisouard, N., Near-inertial dissipation due to strati"ed !ow over abyssal
topography. J. Phys. Oceanogr. 2021, 51, 2483–2504.

Appendix: Resonant interaction theory
This annex is a step by step guide through the resonant interaction theory derivation.

https://tel.archives-ouvertes.fr/tel-01684248
https://www.sagemath.org


20 P. LABREUCHE ET AL.

A.1 Derivation of the amplitude equations
Let (u, v,w) be the velocity components of the internal gravity wave "eld. In the paper, these com-
ponents do not depend upon the y-coordinate so that a stream function ψ can be introduced:
u = −∂ψ/∂z, w = ∂ψ/∂x. We note the density deviation with respect to hydrostatic balance as ρ.
The Navier-Stokes equations in the Boussinesq approximation can thus be written as (e.g. Koudella
and Staquet 2006)

∂t$ψ + J(ω,ψ) = f ∂zv + ∂xρ + ν$2ψ , (A.1a)

∂tv + J(v,ψ) = −f ∂zψ + ν$v, (A.1b)

∂tρ + J(ρ,ψ) = −N2∂xψ + κ$ρ, (A.1c)

where ν is the molecular viscosity and κ the di#usivity of buoyancy.
These equations are scaled using N−1 as a time scale, 1/K as a length scale with K being a typ-

ical wavenumber of the wave "eld and U as a velocity scale of the !uid particles displaced by the
waves. Introducing the Froude number Fr = UK/N, the scaled equations become (keeping the same
notation for the original and scaled variables)

∂t$ψ + FrJ($ψ ,ψ) = f
N
∂zv + ∂xρ + Fr

Re
$2ψ , (A.2a)

∂tv + FrJ(v,ψ) = − f
N
∂zψ + Fr

Re
ν$v, (A.2b)

∂tρ + FrJ(ρ,ψ) = −∂xψ . +
Fr

RePr
$ρ. (A.2c)

Re = U/νK and Pr = ν/κ are the Reynolds and Prandtl number, respectively.
Assuming that the Froude number is much smaller than 1, we introduce a fast-time scale t0, of

order N−1, and a slow-time scale t1 = Fr t0 over which resonant interactions take place: t = t0 +
Fr t1. Thus

∂t = ∂t0 + Fr∂t1 , (A.3a)

∂2t = ∂2t0 + 2Fr∂t0∂t1 + Fr2∂2t1 . (A.3b)

We then expand the "elds as a function of the small parameter Fr

ψ(x, t0, t1) = ψ0(x, t0, t1) + Frψ1(x, t0, t1) + O(Fr2), (A.4a)

v(x, t0, t1) = v0(x, t0, t1) + Frv1(x, t0, t1) + O(Fr2), (A.4b)

ρ(x, t0, t1) = ρ0(x, t0, t1) + Frρ1(x, t0, t1) + O(Fr2). (A.4c)

At zero order, assuming that the "elds are not damped by viscosity, one obtains

∂2t0$ψ
0 + ψ0

xx +
(
f
N

)2
ψ0
zz = 0, (A.5a)

∂t0v
0 + f

N
∂zψ

0 = 0, (A.5b)

∂t0ρ
0 + ψ0

x = 0. (A.5c)
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Thus, the solution at zero-order describes the evolution of plane waves. We assume that these plane
waves consist in the superposition of three waves whose amplitude varies slowly in time

ψ0(x, t0, t1) =
2∑

j=0
Ai(t1)eiφi + c.c., (A.6a)

v0(x, t0, t1) =
2∑

j=0

f
N

mi
ωi

Ai(t1)eiφi + c.c., (A.6b)

ρ0(x, t0, t1) =
2∑

j=0

ki
ωi

Ai(t1)eiφi + c.c., (A.6c)

where φj is the phase of the j-wave

φj = kj.x − ωjt0 with kj = (kj,mj).

At order 1, viscous and di#usive e#ects are taken into account. Careful development of that order
leads to

∑

σl=±1

2∑

l=0
Fl +

∑

σn=±1

∑

σp=±1

2∑

n=0

2∑

p=0
Gn,p = 0, (A.7)

where Fl gathers the linear terms and Gn,p the non-linear terms

Fl = − iσlK2
l ωleiσlφl

[

2
∂A(σl)

l
∂t1

+ 1
RePr

k2l
ω2
l
A(σl)
l + 1

Re
K2
l A

(σl)
l −

(
f
N

)2 1
Re

m2
l

ω2
l
A(σl)
l

]

, (A.8)

Gn,p = iσnσp(mnkp − mpkn)A(σn)
n A(σp)

p ei(σnφn+σpφp)

×
[

K2
p(σnωn + σpωp) +

kp
ωp

(σnkn + σpkp) +
(
f
N

)2 mp

ωp
(σnmn + σpmp)

]

, (A.9)

where A(1)
j = Aj and A(−1)

j is the complex conjugate.
Taking into account that K2

j ωj − (f /N)2m2
j /ωj = k2j /ωj from the dispersion relation, the equa-

tions become
∑

σl=±1

∑

l
eiσlφl

[

σlK2
l ωl

(

2
∂A(σl)

l
∂t1

+ 1
Re

k2l
ω2
l

(
1 + 1

Pr

)
A(σl)
l

)]

=
∑

σn=±1
σp=±1

∑

n,p
ei(σnφn+σpφp)

[

σnσp(mnkp − mpkn)A(σn)
n A(σp)

p

×
(

K2
p(σnωn + σpωp) +

kp
ωp

(σnkn + σpkp) +
(
f
N

)2 mp

ωp
(σnmn + σpmp)

)]

.

(A.10)

From this equation, it follows that for resonant interaction to occur, the waves need to satisfy

∀{l, n, p} ∈ {0, 1, 2}3, l *= n *= p, ∃(σl, σn, σp) ∈ {−1, 1}3, σlφl = σnφn + σpφp. (A.11)

We can here choose the convention ωj > 0 without any loss of information. The resonant condition
can be written as

∀{l, n, p} ∈ {0, 1, 2}3, l *= n *= p, ∃(σl, σn, σp) ∈ {−1, 1}3,
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σlωl = σnωn + σpωp, (A.12a)

σlkl = σnkn + σpkp. (A.12b)

Injecting the resonant condition into (A.10) yields

∂A(σl)
l
∂t1

+ 1
Re

k2l
2ω2

l

(
1 + 1

Pr

)
A(σl)
l = σnσpA(σn)

n A(σp)
p

(mnkp − mpkn)
2K2

l ωl

×
[

(K2
p − K2

n)ωl +
( kp
ωp

− kn
ωn

)
kl +

(
f
N

)2 (mp

ωp
− mn
ωn

)
ml

]

. (A.13)

Let us rewrite the two main results from this section in a more general way (in equations (A.12) σl
is changed into −σl, without any loss of generality)

σlωl + σnωn + σpωp = 0, (A.14a)

σlkl + σnkn + σpkp = 0. (A.14b)

The "nal amplitude evolution equation becomes

∂A(σl)
l
∂t1

+ 1
Re

k2l
2ω2

l

(
1 + 1

Pr

)
A(σl)
l = σnσpA(−σn)

n A(−σp)
p

(mnkp − mpkn)
2K2

l ωl

×
[

(K2
p − K2

n)ωl +
( kp
ωp

− kn
ωn

)
kl +

(
f
N

)2 (mp

ωp
− mn
ωn

)
ml

]

. (A.15)

A.2 Calculation of the growth rate
Let us assume that wave 0 is originally of large amplitude (this is the ILW in the present paper),
and serves as thermostat to the system (it provides energy, and its amplitude is subject to only small
relative variations on timescale t1).Waves 1 and 2 are originally of small amplitude, and grow thanks
to the energy provided by wave 0.

From equation (A.15), the set of amplitude evolution equations becomes

∂t1A
(σ1)
1 + C1A(σ1)

1 = S1A(−σ0)
0 A(−σ2)

2 , (A.16a)

∂t1A
(σ2)
2 + C2A(σ2)

2 = S2A(−σ0)
0 A(−σ1)

1 , (A.16b)

where

Ci = 1
Re

k2i
2ω2

i

(
1 + 1

Pr

)
, (A.17a)

S1 =σ0σ2
(m2k0 − m0k2)

2K2
1ω1

×
[
(
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0 − K2

2
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ω1 +

(
k0
ω0

− k2
ω2

)
k1 +

(
f
N

)2 (m0
ω0

− m2
ω2

)
m1

]

, (A.17b)

S2 =σ0σ1
(m1k0 − m0k1)

2K2
2ω2

×
[
(
K2
0 − K2

1
)
ω2 +

(
k0
ω0

− k1
ω1

)
k2 +

(
f
N

)2 (m0
ω0

− m1
ω1

)
m2

]

. (A.17c)
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Since (C1,C2, S1, S2) ∈ R4, we can rewrite equation (A.16a) as

(∂t1 + C2)(∂t1 + C1)A1 = S1S2|A0|2A1, (A.18a)

(∂t1 + C2)(∂t1 + C1)A2 = S1S2|A0|2A2. (A.18b)

We can already deduce from equation (A.18a) that waves 1 and 2 will have the same time evolution.
Let A1(t1) = A1(0) eΓ t1 and A2(t1) = A2(0) eΓ t1 , where ' is the growth rate of the secondary

waves. This entails
Γ 2 + (C1 + C2)Γ + C1C2 − S1S2|A0|2 = 0. (A.19)

The secondary waves will grow if ' is real and positive, which occurs if

$Γ = (C1 + C2)
2 − 4

(
C1C2 − S1S2|A0|2

)
> 0. (A.20)

If this is the case, the exponential growth rate of the waves is

Γ = 1
2

[
− (C1 + C2) +

√
(C1 − C2)2 + 4S1S2|A0|2

]
. (A.21)

Viscosity damps the growth rate as expected.


	1. Introduction
	2. Physical configuration and numerical set-up
	2.1. Physical configuration
	2.2. Numerical set-up
	2.3. Overall flow behaviour

	3. Resonant interactions involving internal lee waves and inertial oscillations
	3.1. Computation of the resonant triads
	3.2. Evidence of resonant triads from spectral analysis

	4. Growth rate of inertial oscillations
	4.1. Expression of the inertial oscillation growth rate
	4.2. Validation with numerical simulations
	4.3. Vertical propagation of the inertial oscillations

	5. Energy transfer from the lee waves to inertial oscillations versus TKE dissipation
	6. Conclusion and discussion
	Acknowledgments
	References
	A.1. Derivation of the amplitude equations
	A.2. Calculation of the growth rate


