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Abstract: We discuss controller designs for asymmetric saturated discrete-time linear systems.
Under the assumption that a locally stabilizing controller of the origin is known, we augment
the original controller with an additional term that vanishes in a neighborhood of the origin.
The augmented controller outperforms the original controller in terms of the estimate of the
region of attraction. The paper translates the results discussed in Braun et al. (2022a,b), from
the continuous-time setting to the discrete-time setting, and numerically verifies that the results
derived for continuous-time systems are recovered if the discrete-time system is obtained through
an Euler discretization of a continuous-time system with a sufficiently small sampling rate.

Keywords: Systems with saturation; Lyapunov methods; Asymptotic stabilization;
discrete-time systems; semidefinite programming.

1. INTRODUCTION

Actuator saturation is widely present in control systems
due to physical limitations or safety/compliance reasons.
It may affect the closed-loop system stability and its per-
formances. The saturated responses may exhibit diverse
properties, including global stability, multiple equilibria,
local stability or undesired limit cycles for instance. A
large literature is dedicated to saturated control in both
the continuous-time and discrete-time domains (see for
instance the books (Hu and Lin, 2001; Tarbouriech et al.,
2011; Benzaouia et al., 2017)).

When local stability is ensured, an important problem
is providing nonconservative estimates of the region of
attraction of the origin. A standard technique is to obtain
an estimate of the region of attraction via the level set of a
Lyapunov function or of a Gauge function (Fiacchini et al.,
2013), considered as invariant sets, see (Blanchini, 1999). A
large range of contributions is available by using different
models for the saturation (polytopic representation (Hu
and Lin, 2001), (generalized) cone bounded sector condi-
tions (Tarbouriech et al., 2006)) and various classes of Lya-
punov functions (polyhedral (da Silva and Tarbouriech,
1999), piecewise affine (Milani, 2002), piecewise quadratic,
composite functions (Hu and Lin, 2003), for example). A
frequent assumption is to impose (or restrict) the satu-
ration in the symmetric case, nevertheless, in practice,
the saturation has often asymmetric thresholds. Only a
few contributions are focused on asymmetric saturation.
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One of the first result provides a non-symmetrical poly-
hedral Lyapunov function (Benzaouia and Burgat, 1988),
which has been generalized to the union of preconstructed
positively invariant sets (Benzaouia, 2005). Asymmetric
partition of the space and piecewise quadratic Lyapunov
functions have been proposed in (Groff et al., 2019). The
paper (Li and Lin, 2016) introduces an asymmetric Lya-
punov function that is contractively invariant. The idea
in (Benhayoun et al., 2013) is to shift the asymmetric
constraints to the symmetric framework. Finally the anti-
windup approach used in (Gomes da Silva Jr. and Tar-
bouriech, 2006) can be underlined. In the continuous-time
setting, the paper (Yuan and Wu, 2015) uses a switching
strategy to deal with asymmetric saturation.

In this paper, we consider shifted coordinates for a linear
system with asymmetric saturation and, by assuming that
there exists a locally stabilizing controller of the origin
associated with an ellipsoidal estimate of the region of
attraction, we schedule a shifting parameter to obtain
enlarged estimates of the region of attraction. This al-
lows convergence to a shifted equilibrium, which will be
afterwards steered to the origin (Benzaouia et al., 2017,
Chapter 3). As a consequence the estimate of the region
of attraction comprises the union of shifted ellipsoids. The
paper translates results in (Braun et al., 2022a,b) from the
continuous-time setting to the discrete-time setting.

The rest of the paper is organized as follows. Section 2
introduces the setting and the shifted stabilizers, while
Section 3 provides an optimization-based control law that
asymptotically stabilizes the origin associated with an
estimate of the region of attraction as the union of shifted
ellipsoids. A numerical illustration is discussed in Section 4



to highlight the practical relevance of our approach. Fi-
nally, concluding remarks are provided in Section 5.

Notation. For u−, u+ ∈ Rm≥0, m ∈ N, sat[u−,u+](u) =

max{min{u+, u},−u−} defines the saturation, where the
maximum/minimum are to be understood componentwise.
The deadzone is defined as dz[u−,u+](u) = u−sat[u−,u+](u).

For Z ∈ Rn×n, He(·) denotes He(Z) = Z + Z>. For Z ∈
Rn×m and z ∈ Rn, Z[k] and zk denote the k-th row and
the k-th entry, respectively. A vector v ∈ Rn satisfies v ≤
min{u−, u+} if vk ≤ min{u−k , u

+
k } for all k ∈ {1, . . . , n}.

For a vector v ∈ Rn, min{v} = min{v1, . . . , vn} ∈ R.

In Rn, we use the norms |x| =
√
x>x, |x|P =

√
x>Px,

P ∈ Rn×n positive definite. Symbol I denotes the identity
matrix of appropriate dimensions, and the vector 1 ∈ Rn
satisfies 1k = 1, k ∈ {1, . . . , n}. Finally, int(A), A denote
the interior and the closure of a set A ⊂ Rn.

2. SYMMETRIC AND SHIFTED STABILIZERS

We consider linear saturated discrete-time systems

x+ = Ax+B sat[u−,u+](u) (1)

with state x ∈ Rn, input u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m
and saturation limits u−, u+ ∈ Rm>0. We define the average
saturation range and the average saturation center as

ū = 1
2 (u+ + u−), u◦ = 1

2 (u+ − u−). (2)

We assume that the average saturation range ūk satisfies
ūk = 1 for all k ∈ {1, . . . ,m}, which can be assumed
without loss of generality by scaling the columns of B.

Assumption 1. It holds that ū = 1 ∈ Rm and the pair
(A,B) is stabilizable. �

Of particular interest is the subspace of induced equilibria

Γ = {xe ∈ Rn : Axe +Bue = xe, ue ∈ Rm}. (3)

Alternatively, Γ can be represented through the kernel of
the matrix [A− I B ] (of dimension q ∈ N), which we
denote by

M =

[
MA

MB

]
.

Here MA ∈ Rn×q, MB ∈ Rm×q, q ∈ N, and it holds that
[A − I B] ·M = 0 by the definition of the kernel. It can
be underlined that q ≥ 1 due to the rectangular structure
of [A− I B]. Thus, Γ, defined in (3) is not empty and can
be written as

Γ = {xe = MAδ ∈ Rn : δ ∈ Rq}
and an equilibrium pair (xe, ue) is uniquely defined
through δ ∈ Rq, i.e.,

δ 7→ xe(δ) = MAδ, δ 7→ ue(δ) = MBδ.

To be able to stabilize an equilibrium pair (xe, ue) addi-
tionally the condition

δ ∈ Φ =
{
δ ∈ Rq : −u− ≤MBδ ≤ u+

}
needs to be satisfied. As in Braun et al. (2022a,b) we define
the function β : Rq → R,

β(δ) = min{min{u− +MBδ, u
+ −MBδ}}, (4)

which satisfies β : Φ→ [0, 1] under Assumption 1.

In a neighborhood of the origin (away from the origin
suitably shifted versions will be constructed), we propose
to use the feedback law

u = Kx+ Ldz[u−,u+](u), (5)

with K ∈ Rm×n, L ∈ Rm×m, asymptotically stabilizing
the origin. Combining (1) and (5), the closed-loop dynam-
ics can be written (close to the origin) as

x+ = (A+BK)x− (B −BL) dz[u−,u+](u)

u = Kx+ Ldz[u−,u+](u).
(6)

Well-posedness of the algebraic loop in control law (5) is
addressed in Proposition 1 below.

For designing our stabilizer away from the origin, for any
δ ∈ Φ, consider the coordinate transformation

x̃δ = x− xe(δ) and ũδ = u− ue(δ).
It holds that

x̃+
δ = (x− xe(δ))+ = x+ − xe(δ)

= Ax+B sat[u−,u+](u)−Axe(δ)−Bue(δ)
= Ax̃δ +B(ue(δ) + sat[u−+ue(δ),u+−ue(δ)](u− ue(δ)))
−Bue(δ)

= Ax̃+B sat[u−+ue(δ),u+−ue(δ)](ũδ), (7)

with the shifted input ũδ selected as follows

ũδ = Kx̃δ + Ldz[u−+ue(δ),u+−ue(δ)](ũδ). (8)

In the original coordinates, the input (8) is defined as
u = ν(x, δ), with

ν(x, δ)=MBδ +K(x−MAδ)

+ Ldz[u−+MBδ,u+−MBδ](ν(x, δ)−MBδ)

=MBδ +K(x−MAδ) + Ldz[u−,u+](ν(x, δ)), (9)

which allows us to parametrically represent the closed-loop
dynamics (1), (9) for any selection of the parameter δ ∈ Φ.

To characterize regions of attraction of asymptotically
stable (induced) equilibria xe(δ), we consider sublevel sets
of quadratic functions. In particular, for any δ ∈ int(Φ)
and P ∈ Rn×n positive definite, we define the set

Eδ(P ) = {x ∈ Rn : |x− xe(δ)|P ≤ β(δ)}, (10)

where β is defined in (4).

Proposition 1. (Symmetric Stabilizer). Given the plant-
controller pair (1), (9) for δ ∈ int(Φ) let Assumption 1
be satisfied and let α ∈ R≥0. Moreover, let Q ∈ Rn×n,
W,Y ∈ Rm×n, U,X ∈ Rm×m be a solution of the opti-
mization problem

max
Q,Y,U,W,X

log det(Q) (11a)

subject to U > 0 diagonal, Q = Q> > 0

He


−α

2
Q 0 Y >

AQ+BW −α
2
Q −BU +BX

W 0 X − U

 < 0 (11b)

[
1 Y[k]

Y >[k] Q

]
≥ 0, k = 1, . . . ,m. (11c)

Then, selecting

K = WQ−1, L = XU−1, P = Q−1, (12)

for any δ ∈ int(Φ) the nonlinear algebraic loop in (9) is
well posed (i.e., its solution is unique and Lipschitz) and
the Lyapunov function

Vδ(x) := |x−MAδ|2P (13)



exponentially decreases with rate larger than α2 within
the set Eδ(P ), i.e.,

Vδ(x
+) < α2Vδ(x) (14)

for all x ∈ Eδ(P )\{0}. y

Proposition 1 for discrete-time systems is the analogue
result to (Braun et al., 2022b, Proposition 1) (see also
(Mariano et al., 2020, Theorem 1)), both stating parallel
properties for the continuous-time setting, as clarified in
the next remark.

Remark 1. For continuous-time systems

ẋc = (Ac +BcKc)xc

and a quadratic Lyapunov functions Vc(x) = x>Pcx,
Pc > 0, when stabilizing the origin, the decrease condition
(14) generalizes to

V̇c(xc(t)) = 〈2Pxc(t), Axc(t)〉 ≤ −2αcVc(xc(t))

(see (Braun et al., 2022b, Proposition 1)). The ensuing
exponential decrease property for the continuous-time
solutions t 7→ xc(t) can be rewritten in terms of the upper
bound

|xc(t)| ≤
√

λmax(Pc)
λmin(Pc) e

−αct|xc(0)|,

where λmax(Pc) and λmax(Pc) denote the largest and the
smallest eigenvalue of Pc, respectively. Similarly, setting
δ = 0 for simplicity, the discrete-time system x+ = (A +
BK)x, with Lyapunov function V0(x) = x>Px obtained
through Proposition 1, locally satisfies the bound

|x(k)| ≤
√

λmax(P )
λmin(P )α

k|x(0)|,

which can be derived from (14).

Thus, if the discrete-time dynamics stems from an Euler
discretization of the continuous-time system, i.e.,

A = τAc + I, B = τBc, τ > 0,

then αc and α can be related through the condition

α = e−αcτ . (15)

Additionally, note that the subspace of induced equilibria
Γ is invariant under the Euler discretization, i.e., a pair
(xe, ue) satisfies 0 = Acxe +Bcue if and only if

xe = Axe +Bue = τAcxe + xe + τBc

independent of the sampling time τ > 0. ◦

Proposition 1 can be proven by using the results in
Massimetti et al. (2009), for example. Here we give a sketch
of these derivations.

Proof of Proposition 1. An immediate consequence of
(Massimetti et al., 2009, Thm. 1) 1 is that for a generic
system

x+ = Aclx+Bq dz(u), u = Kx+ Ldz(u), (16)

where the deadzone range is larger than 1, and for any
scalar α ∈ (0, 1], the Lyapunov function V (x) = x>Q−1x
satisfies (V (x) ≤ 1) ⇒ (V (x+) ≤ α2V (x)) if (11c) holds
together with the linear matrix inequality

1 The result in (Massimetti et al., 2009, Thm. 1) is given for the case
with α = 1. Its extension to a general α ∈ (0, 1] is straightforward
by imposing V (x+) ≤ α2V (x)⇔ α−1V (x+) ≤ αV (x).

He


−α

2
Q 0 Y >

AclQ −
α

2
Q BqU

KQ 0 LU − U

 < 0 (17)

where U is diagonal positive definite. The linear matrix
inequality in (11b) then stems from noticing that (6) can
be written as (16) with the selection Acl = A + BK,
Bq = −B +BL and exploiting the choices in (12).

The remainder of the proof follows the same steps as those
in (Braun et al., 2022b, Cor. 2) for dealing with the shifted
coordinates. �

Remark 2. As in the continuous-time setting, expression
(9) specifies the control input u only implicitly, even
though Proposition 1 ensures that the corresponding so-
lution is Lipschitz. Proceeding as in (Mariano et al., 2020,
Lemma 3), for the single-input case m = 1, the selection

ν(x, δ) = MBδ +K(x−MAδ) (18)

+ L(I − L)−1 dz[u−,u+](MBδ +K(x−MAδ))

can be proven to be the explicit solution to (9). ◦

3. OPTIMIZATION-BASED SHIFTED STABILIZER

3.1 Main result

In this section we propose a scheduled control law and
prove that it asymptotically stabilizes the origin of plant
(1) with region of attraction containing the union of the
sublevel sets generated by all possible values of δ ∈ int(Φ),

R =
⋃

δ∈int(Φ)

Eδ(P ). (19)

To define the feedback law, for x ∈ int(R) and c ≥ 0 we
consider the following optimization problem

δ?(x) ∈ argmin
δ∈Φ

|MAδ|2 + c|δ|2

subject to |x−MAδ|P ≤ β(δ).
(20)

Remark 3. The first term in the objective function of
the optimization problem (20) minimizes the norm of the
induced equilibrium xe(δ) = MAδ while the second term
minimizes δ. For c > 0, the second term in the objective
function ensures that |MAδ|2 + c|δ|2 is strongly convex. If
M>AMA is full rank, then the second term is not necessary
to ensure that |MAδ|2 + c|δ|2 = 0 if and only if δ = 0. ◦

It follows from the results in (Braun et al., 2022a,b, Lemma
1) that for c > 0, δ?(x) ∈ int(Φ) is unique and δ?(·) : R →
int(Φ) is Lipschitz continuous. For completeness, we report
the result here again.

Lemma 1. ((Braun et al., 2022a, Lemma 1)). Let c > 0
and let Assumption 1 be satisfied. Consider the opti-
mization problem (20) where β and R are defined in (4)
and (19), respectively, and matrix P is defined through
Proposition 1. Then the following properties are satisfied:

(1) for each x ∈ R, (20) is feasible, and the feasible set
is closed and convex. Moreover, for x ∈ int(R) the
interior of the feasible set is nonempty;

(2) the set-valued map F : R⇒ Φ,

F (x) = {δ ∈ Φ : |x−MAδ|P ≤ β(δ)},
defining the feasible set of (20), is continuous;



(3) δ?(x) = 0 for all x ∈ R such that |x|P ≤ β(0);
(4) |x −MAδ

?(x)|P = β(δ?(x)) for all x ∈ R such that
|x|P > β(0);

(5) δ?(x) ∈ Φ is unique for all x ∈ R;
(6) δ?(·) : int(R)→ Φ is Lipschitz continuous; and
(7) δ?(x) ∈ int(Φ) for all x ∈ int(R). y

The result (Braun et al., 2022a, Lemma 1) is derived
for a different objective function. However, since only
strict convexity of the objective function is used in the
proof, the result and its derivation remain unchanged.
Additionally, item 6 in (Braun et al., 2022a, Lemma 1)
only states continuity of δ?(·). Lipschitz continuity follows
from (Hager, 1979, Appendix D).

With δ?(·) as in (20), the following state dependent feed-
back law is obtained:

u = µ(x) = ν(x, δ?(x)), (21)

where ν(·, ·) is given implicitly in (9) and (for the single-
input case) explicitly in (18).

Remark 4. If δ is one dimensional (i.e., q = 1), δ?(x) can
be computed explicitly (see (Braun et al., 2022b, Section
IV)). Since here the objective function is slightly different,
the calculations need to be adapted, but the derivation
does not change. For q > 1, convex optimization algo-
rithms can be used to solve (20) efficiently. Additionally,
suboptimal solutions can be used to update δ?(x) at every
time step following an approach similar to (Braun et al.,
2022a, Section V). ◦

With (20) the following properties of the closed-loop
dynamics with shifted reference points can be shown for
solutions starting in x ∈ int(R).

Proposition 2. Consider the discrete-time plant (1) and
let Assumption 1 be satisfied. In addition, let P > 0
be obtained through Proposition 1 for α > 0 fixed. Let
c > 0 correspond to the parameter in (20) and consider
the controller (21) defined through (18) and (20) for x ∈
int(R). Then the following properties are satisfied.

For any initial condition x(0) = x0 ∈ int(R) the solution
x(·) : N→ int(R) using controller (21) is well-defined and

1) the sequence (fk)k∈N with

fk = |MAδ
?(x(k))|2 + c|δ?(x(k))|2

is monotonically decreasing;
2) there exists K ∈ N such that δ?(x(k)) = 0 for all

k ≥ K. y

The proof of Proposition 2 is given below in Section 3.2
to avoid breaking the flow of the exposition. From Propo-
sitions 1 and 2 the main result of this paper in terms of
asymptotic stability properties of the origin of the closed-
loop system (1), (21) defined through (18), (20) follows.

Theorem 1. Consider the discrete-time system (1) and let
Assumption 1 be satisfied. In addition, let P > 0 be
obtained through Proposition 1 for α > 0 fixed. Let
c > 0 correspond to the parameter in (20) and consider
the controller (21) defined through (18) and (20) for x ∈
int(R).

Then, the origin of the closed-loop system is asymptoti-
cally stable and the region of attraction contains the set
int(R) defined in (19). y

Proof. First note that asymptotic stability with estimate
of the region of attraction given by E0(P ) follows from
Proposition 1 and Lemma 1, item 3. Then asymptotic
stability of the origin with estimate of the region of
attraction given by int(R) follows from Proposition 2, item
2, where we have established that all solutions starting in
int(R) reach the set E0(P ) in finite time. �

We emphasize that, not only the stabilizer (21) ensures an
enlarged estimate of the region of attraction, but it also
preserves locally the “local” feedback law (5), which, by
Proposition 1, ensures (local) α-exponential convergence.

3.2 Proof of Proposition 2

To the end of proving Proposition 2, we first note that
the condition x ∈ int(R) implies that the optimization
problem (20) is feasible and δ?(x) ∈ int(Φ) according to
Lemma 1, item 7. Then µ(x) in (21), and in particular
(9), is well defined according to the well-posedness of
the algebraic loop established in Proposition 1. Moreover,
Proposition 1 implies that x+ ∈ int(Eδ(x))(P )) ⊂ int(R)

for x ∈ int(R). Thus, x+ and δ?(x+) ∈ int(Φ) are well
defined. Since this argument can be applied iteratively, it
follows that x(·) : N→ int(R) is well defined.

Item 1. The first item follows from the definition of the
control law (8) stabilizing the reference point xe(δ) = MAδ
and the definition of the optimization problem (20). In
particular, under the assumption x ∈ Eδ?(x)(P ) it follows

that x+ ∈ int(Eδ?(x)(P )) according to the stabilizing
properties established in Proposition 1. This implies that
|x+ −MAδ

?(x)|P < β(δ?(x)), i.e., the constraints in (20)
are satisfied for x+ and δ?(x). Since, δ is optimized with
respect to the objective function f(δ) = |MAδ|2 + c|δ|2,
monotonicity in the form

|MAδ
?(x+)|2 + c|δ?(x+)|2 ≤ |MAδ

?(x)|2 + c|δ?(x)|2

holds (according to Lemma 1, items 3 and 4).

Item 2. To simplify the notation, we use δk = δ?(x(k)) in
the following. From Item 1 we know that fk is monoton-
ically decreasing. Furthermore, |MAδ|2 + c|δ|2 = 0 if and
only if δ = 0 since c > 0 by assumption. Let λmin > 0
denote the smallest eigenvalue of (MA)>MA + cI. Then it
holds that

λmin|δk|2 ≤ δ>k (M>AMA + cI)δk = fk ≤ f0.

Hence, (fk)k∈N as well as (δk)k∈N are bounded sequences.

Due to the monotonicity of fk ≥ 0, the sequence fk
is convergent. Since (δk)k∈N is bounded, there exists a
convergent subsequence (δkj )j∈N, j ∈ N, satisfying δkj →
δ# for k → ∞, and δ# denotes an accumulation point of
(δk)k∈N (in view of the Bolzano-Weierstrass theorem).

To show that δk → 0 for k → ∞ assume for the sake of
a contradiction that there exists an accumulation point
δ# 6= 0. For k ∈ N, let εk ∈ Rq be defined such that
δk = δ# + εk. It holds that

Vδk(x) = |x−MAδk|2P = |x−MA(δ# + εk)|2P
= |x−MAδ

#|2P − 2(x−MAδ
#)>PMAεk

+ (MAεk)>P (MAεk)

= Vδ#(x) + µx(εk)



where

µx(ε) = −2(x−MAδ
#)>PMAε+ (MAε)

>P (MAε)

by definition. For all x ∈ Rn it holds that µx(ε) → 0 for
|ε| → 0.

From the decrease condition (14) it follows that

Vδk(x(k + 1)) = Vδ#(x(k + 1)) + µx(k+1)(εk)

≤ (1− 2α)
(
Vδ#(x(k)) + µx(k)(εk)

)
and thus

Vδ#(x(k + 1)) ≤ (1− α)Vδ#(x(k))− αVδ#(x(k)) (22)

+ |µx(k+1)(εk)|+ (1− 2α)|µx(k)(εk)|.

Since

fk = |MAδk|2 + c|δk|2 → |MAδ
#|2 + c|δ#|2

for k →∞, fk ≥ |MAδ
#|2 + c|δ#|2 and since δk = δ?(xk)

is optimal with respect to the objective function, it holds
that Vδ#(x(k)) ≥ β(δ#)2 > 0.

However, from the continuity of β(·) and the continuity
of Vδ(x) in δ and x, and from the convergence of a
subsequence of (δk)k∈N to δ#, it follows that for all K ∈ N
there exists k > K with the property

(1− α)Vδ#(x(k)) ≤ β(δ#)2.

Moreover, for k ∈ N sufficiently large, it holds that

αVδ#(x(k))≥αβ(δ#)2> |µx(k+1)(εk)|+(1−2α)|µx(k)(εk)|.
Combining the last two inequalities with (22) implies

Vδ#(x(k + 1)) = |x(k + 1)−MAδ
#|2P < β(δ#)2.

However, this leads to a contradiction of the update δk+1

since

Vδk+1
(x(k + 1)) = |x(k + 1)−MAδk+1|2P = β(δk+1)2

according to Lemma 1, item 4, and

|MAδk+1|2 + c|δk+1|2 < |MAδ
#|2 + c|δ#|2.

Thus, we can conclude that δ# = 0, which in particular
implies that (δk)k∈N is converging.

Finally, since β(0) > 0, there exists K ∈ N such that
MAδ

?(x(K)) ∈ E0(P ) and x(K) ∈ E0(P ) (since x(k) →
MAδ

?(x(k)) for k →∞). This completes the proof of item
2 and the proof of Proposition 2.

4. NUMERICAL ILLUSTRATION

To illustrate the results derived in this paper and to
illustrate the connection with the continuous-time setting
discussed in Braun et al. (2022a,b), with reference to the
notation in Remark 1, we consider the continuous-time
counterpart of (1) defined through the matrices

Ac =

[
0.6 −0.5
0.3 1

]
, Bc =

[
1
3

]
,

and its Euler discretization A = τAc + I, B = τBc, for
different values of τ > 0. Additionally, we consider the
saturation limits umin = 1.5, umax = 0.5.

Figure 1 shows on the left the set R obtained through
the continuous-time results in Braun et al. (2022b) (see
in particular (Braun et al., 2022b, Section 5)), and on
the right the set R defined in (19) for the discrete-
time dynamics with τ = 0.01. For the computation of
R, the parameter αc = 0.1 is used, and α is defined
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Fig. 1. Comparison of the set R for the continuous-time setting
(left) and the discrete-time setting (right). The discrete-time
dynamics are derived from the continuous-time dynamics using
an Euler discretization with sampling time τ = 0.01.

according to Remark 1, Equation (15). The two sets are
almost indistinguishable. This is also reflected through the
matrices

Pc =

[
0.7399 −0.6654
−0.6654 0.8266

]
, P =

[
0.7476 −0.6745
−0.6745 0.8376

]
,

(see Remark 1) defining the two quadratic Lyapunov
functions in (Braun et al., 2022a, Proposition 1) and in
Proposition 1, respectively. 2
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Fig. 2. Visualization of E0(P ) (blue), the set R (cyan), the set
Γ (red) and two solutions starting in x0 = −[1.6, 0.95]> and
x0 = −[4.9, 2.95]> for the discretized system with sampling
time τ = 1. The solutions corresponding to the shifted stabilizer
(21) are converging to the origin (black) while the solutions
corresponding to (5) are diverging (magenta).

For τ = 1, the set R changes slightly (see Figure 2).
Figure 2 additionally contains the closed-loop solutions
starting in x0 = −[1.6, 0.95]> and x0 = −[4.9, 2.95]>,
respectively, using shifted stabilizer (21) (black) and the
control law (5) (magenta). The convergence/divergence of
the solutions numerically verifies the statements of The-
orem 1 and shows the superiority of the control law (21)
compared to (5). The solutions corresponding to the initial
conditions x0 = −[1.6, 0.95]> and x0 = −[4.9, 2.95]>

together with the evolution of the input u and δ?(x) are
also shown in Figure 3 for completeness.

5. CONCLUSIONS

In this paper we have shown how the shifting-based con-
troller design for continuous-time linear input-saturated
2 The corresponding linear matrix inequalities are solved using CVX
Grant and Boyd (2014) in Matlab.



0 20 40
-2

-1.5

-1

-0.5

0

0 20 40
0

1

2

3

4

5

0 20 40
0

0.1

0.2

0.3

0.4

0 20 40
-1.5

-1

-0.5

0

0 20 40
0

0.5

1

1.5

2

0 20 40
-6

-4

-2

0

Fig. 3. Closed-loop solution as well as input u and δ?(x) corre-
sponding to the initial conditions x0 = −[1.6, 0.95]> (left) and
x0 = −[4.9, 2.95]> (right), and the control law (21).

systems derived in Braun et al. (2022a,b) can equiva-
lently be applied and derived in the discrete-time setting.
In particular, we have shown how a locally stabilizing
controller can be augmented with an additional state-
dependent term to increase the estimate of the region of
attraction of the origin of the closed-loop system using the
modified controller. In particular, by leveraging on Lya-
punov arguments and forward invariance and by gradually
shifting the additional term in the controller to the origin,
a closed-loop system with enlarged estimate of the region
of attraction of the origin has been derived.
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