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Abstract

Predicting the heat flux through a horizontal layer of fluid confined between a hot bottom plate and a cold top one

has always spurred theoretical, numerical and experimental work on Rayleigh–Bénard convection. Customarily, the

Nusselt number (the heat flux in non-dimensional form) has been modelled in the form of one or several power-laws

of three parameters, the Rayleigh, Prandtl and Reynolds numbers. Quantifying the large-scale flow that spontaneously

develops in a turbulent Rayleigh–Bénard cell, the Reynolds number, unlike the Rayleigh and Prandtl numbers, is not

a control parameter strictly speaking and, depending on the model, is sought as another power-law or introduced as

an external input. Whereas balancing the different transport mechanisms can predict the exponents in these power

laws, experimental and numerical results are required to adjust the various prefactors. The early and simple model of

Malkus [1] and Howard [2] assumed that the value of the Nusselt number could be directly deduced from the marginal

stability of the two sheared thermal boundary layers along the upper and lower plates, interacting via the large-scale

flow. Maintaining this simplicity, this work shows that in the classical regime of turbulent convection, considering

the linear critical conditions of absolute (as opposed to convective) thermo-convective instabilities alleviates the flaws

of the original model. Revisiting available Direct Numerical Simulations from which a Reynolds number can be

unambiguously extracted, the present approach then yields the Nusselt number as a function of the Rayleigh and

Prandtl numbers agreeing well with the numerical results.

1. Introduction

Rayleigh–Bénard (RB) convection has attracted the

interest of the scientific community for more than a cen-

tury as, on the one hand, its simple configuration (a fluid

confined between two, hot and cold, horizontal plates)

facilitates its study and, on the other hand, it encom-

passes the basic physics occurring in numerous natu-

ral or industrial flows. Rayleigh–Bénard convection has

therefore played a crucial role in the study of hydro-

dynamic instabilities, from the early concepts to more

involved ones as spatio-temporal chaos [3] and consti-

tutes a convenient set-up to experimentally and numeri-

cally investigate turbulent processes. The driving force

of thermal convection, the buoyancy, is quantified by the

Rayleigh number Ra = gα∆h3/(νκ) based on the ther-

mal expansion coefficient α, kinematic viscosity ν and

thermal diffusivity κ of the fluid, and the acceleration

due to gravity g, the vertical distance and the temper-
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ature difference between the hot, bottom and top, cold

plates, h and ∆, respectively. The main outcome and

metric of RB convection, the vertical heat flux across the

cell, is quantified by the Nusselt number Nu = Φh/(λ∆)

based on the horizontally averaged heat fluxΦ and λ the

thermal conductivity of the fluid. Moreover, the fluid-

specific competition between heat diffusion and viscos-

ity is quantified by the Prandtl number Pr = ν/κ. For

Rayleigh numbers between 105 and 1011 − 1012, ex-

perimental and numerical results all converge towards

a universal functional dependence of Nu with Ra and Pr

[4]. In addition to Nu, a secondary response parame-

ter is the Reynolds number Re = Vh/ν, characterizing

the velocity field observed in the RB cell. A Reynolds

number is more difficult to define, investigate and mea-

sure than Nu. Indeed, for fixed control parameters and

in steady state, Φ is constant and equal to the heat flux

through the two horizontal plates, whereas the velocity

field results from the complex combination of turbulent

motions and coherent structures, as plumes, boundary

layers and large-scale circulation in the bulk of the cell,

also known as “wind” [5]. Consequently, several def-

initions are possible for the characteristic velocity V ,

such as the root-mean-square velocity averaged over the

whole fluid, Vr.m.s. =
√
⟨V2

x + V2
y + V2

z ⟩, or some mag-

nitude of the wind flow (Vw). Nevertheless, a functional

dependence of Re with Ra and Pr also seems to pre-

vail [6, 7]. These converging results are noteworthy for

such a system, in which boundary layers (BLs) and tur-

bulent flows in the bulk interact in a complex fashion.

On the other hand, in configurations where Ra is larger

than 1011 − 1012, a controversy has been going on for

more than twenty years on the existence and conditions

for the appearance of a convection regime called “ulti-

mate regime” [8, 9]. For these large Rayleigh numbers,

experimental results seem to call into question a func-

tional dependence of Nu and Re with Ra and Pr. The

present model covers the classical convection regime

(Ra ⪅ 1010) and there is no evidence that it might be

applicable to the ultimate regime. Indeed, the ultimate

regime is associated with boundary layers having transi-

tioned from laminar to turbulent behaviour [8, 9], which

contradicts the assumptions used in the present theory.

Numerous theories have been developed to predict

the functional dependence Nu(Ra,Pr) in the classical

regime [see 5, 10, 3, for detailed and thorough ac-

counts]. The widely accepted Grossmann and Lohse

(GL) model [11, 12] is based on splitting the mean ki-

netic energy and thermal dissipation rates into two con-

tributions each, one from the bulk and one from the

boundary layers. It assumes that RB convection is a

mixture of eight convection regimes, Nu and Rew =

Vwh/ν being described by power-laws of Ra and Pr for

each of these regimes. The Nusselt and Reynolds num-

bers are then obtained as functions of Ra and Pr, using

the two equations:

(Nu − 1)RaPr−2 =
c1

g(Rew)
Re2

w + c2Re3
w,

Nu = c3
√

X + c4X, X = Rew Pr f (Nu,Rew).
(1)

The function f captures the cross-over of a thermal BL

of thickness δT nested in the kinetic one of thickness δV

to the reciprocal situation. For very large Pr’s, the func-

tion g describes the saturation of the kinetic BL thick-

ness as Rew decreases below a critical Reynolds num-

ber. This critical Reynolds number and the four prefac-

tors c1–c4 have been computed in [13] by fitting (1) to

experimental and numerical results. It was recently pro-

posed [7] to use functional forms for the prefactors c1–

c4 to improve the predictions of (1). Note that whether

from experiments or simulations, obtaining the velocity
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of the wind Vw remains a major challenge. It is gener-

ally assumed that Vw = ξ Vr.m.s., with ξ = 1, the value of

ξ only impacting the model constants [11, 12].

Before these fine-tuned quantitative models,

Malkus [1] and Howard [2] had suggested that in

turbulent convection (Ra ⪆ 105), the lower and upper

thermal boundary layers would self-adjust to reach the

critical conditions, above which thermal convection

rolls develop. These critical conditions are accessi-

ble by linear stability analysis. They deduced that

Nu ∝ Ra1/3 (Eq. 5), in agreement with the dimensional

analysis proposed by Priestley [14]. This exponent

1/3 is indeed the only scaling for Nu ensuring that the

heat flux is independent of the height of the cell h. To

capture the departure from the 1/3 exponent observed

in the experimental results, Castaing et al. [5] proposed

a mixing zone model, distinguishing three regions in

the RB cell. In addition to the two thermal boundary

layers and the centre of the cell, they considered an in-

termediate region where sheets of fluid are ejected from

the BLs. The scalings of the velocities of the ejected

fluid with Ra then led to predict that Nu ∝ Ra2/7. This

mixing zone model was then further developed to take

into account the Pr-dependence [15, 16], predicting

Nu ∝ Ra2/7 Pr2/7 for small Pr and Nu ∝ Ra2/7 Pr−1/7 for

large enough Pr.

In order to agree with experimental and numerical

results, these models have been increasingly complex-

ified, departing from the seminal simplicity of Malkus

and Howard’s interpretation. Furthermore, these im-

provements do not fix the original flaw of this interpre-

tation: whatever the shear profile and boundary condi-

tions, the linear threshold of thermo-convective insta-

bility of the thermal BL is unaffected by the shear and

independent of the Prandtl number. This work establish

that it is possible to eliminate this flaw by considering

the absolute instabilities of the sheared thermal BLs in-

stead of the convective ones, i.e. the impulse response

instead of infinitely extended perturbations.

After revisiting the early Malkus–Howard model and

its shortcomings in §1, this work alleviate these lat-

ter by specifically considering the marginal stability of

the thermal BLs in the framework of absolutely (as

opposed to convectively) unstable sheared Rayleigh–

Bénard (sRB) convection in §1. Section 1 shows that

the prediction for Nu as a function of Ra, Pr and Rew of

this model compares very favourably with existing re-

sults from the three-dimensional Direct Numerical Sim-

ulations from which both the Nusselt and the Reynolds

numbers are available over the ranges 105 < Ra < 2·109

and 10−2 < Pr < 103. Section 1 finally concludes and

further discusses the pivotal roles of the large-scale flow

and Reynolds number, which, in our model, remains an

input that has to be inferred from numerical simulations.

2. Revisiting the Malkus and Howard model

Malkus and Howard assumed that, for turbulent con-

vection, the temperature averaged over time is almost

uniform in the bulk flow and the mean temperature in-

creases by ∆/2 when crossing the thickness δT of each

thermal boundary layer (see Fig. 1a). They also as-

sumed that the bulk flow only serves to transmit the con-

stant heat flux between the two boundary layers and has

no impact on their stability. More precisely, we pos-

tulate that the bulk could be seen as a ‘conveyor belt’

advecting the perturbations of temperature and velocity

from one boundary layer to the other. This crude pic-

ture advantageously discards the need of a mixing zone
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Figure 1: (a) Schematic view of the flow in a RB cell for Ra ⪆ 105. Also shown: the mean temperature profile and the two thermal boundary

layers of thickness δT close to the bottom and top plates. ∆ is the difference of temperature between the two horizontal plates. In the forthcoming

analysis, the top and bottom boundary layers will be modelled by sheared Rayleigh-Bénard flows, the schematic view of which is shown in (b).

to explicitly address the complex interactions between

the thermal BLs and the bulk [see 17, for an experimen-

tal account of such complex flow structures]. Instead,

it leads to merge the two BLs into a single one, in the

form of a thin sheared Rayleigh–Bénard cell, as shown

in Fig. 1(b). This 2δT -thick mixed convection layer is

controlled by the Rayleigh number

Rabl =
gα∆(2δT )3

νκ
= Ra

(
2δT
h

)3

(2)

and, as underlined in [5], the Reynolds number

Rebl =
2δT VwF

ν
=

2δT
h

Rew F . (3)

The correction factor F comes from the fact that the

wind velocity at the edge of each thermal BL is not sys-

tematically equal to Vw (see Fig. 1 in [11]). For Pr ≤ 1,

as δV ≤ δT , F should be equal to 1. For larger Pr, the

relevant velocity should be less than Vw, namely about

VwδT /δV [11], yielding to F ≈ δT /δV when δV > δT .

Even for large Pr numbers, though, Direct Numerical

Simulations (DNS) in [7] have shown that δV remains

very close to δT , leading to F very close to unity. We

will show later that variations in F have little impact on

the results of the model.

The central idea of Malkus and Howard is to as-

sert that Rabl is equal to the critical Rayleigh number

of thermo-convective rolls, obtained by linear stability

analysis. Equations (2) and (3) entail Rabl ≪ Ra and

Rebl ≪ Rew, respectively, for thin thermal boundary

layers (δT /h ≪ 1). Even for the large Ra numbers of

turbulent convection, marginally stable boundary layers

can exist if they are thin enough. Assuming such a lam-

inar BL profile, the average heat flux can be written as

Φ = λ∆/(2δT ), which gives

2δT
h
=

1
Nu
. (4)

For Ra ⪅ 1010, previous experimental and numerical

works have confirmed the validity of (4) (see Fig. 2a

of [7] for example). In contrast, for larger Ra numbers

or for the ultimate regime, as a logarithmic mean tem-

perature profile is expected and reported in experiments

[18, 19], (4) certainly no longer holds. Equations (2)
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and (4) then result in

Nu =
(

Ra
Rabl

)1/3

. (5)

Irrespective of the velocity profile and boundary con-

ditions, when thermo-convective instabilities of infinite

extension along the direction of the shear are consid-

ered, rolls the axes of which are aligned with this di-

rection are the first to become linearly unstable. Their

critical Rayleigh number is found to be independent of

the shear flow, the well-known value Ra0
c ≈ 1708 being

retrieved, for Dirichlet boundary conditions. Assuming

Rabl = Ra0
c , equation (5) then shows that Nu must vary

as Ra1/3. This approach, however, has three caveats.

First, the linear stability analysis of these longitudinal

rolls show that Ra0
c is independent of Rebl, so the sta-

bility of the BLs is obviously not affected by the wind

flow. Then, as Ra0
c is also found to be independent of

the Prandtl number, so is the scaling (5). Finally, exper-

iments usually observe that Rabl > Ra0
c and conclude

that the BLs should be unstable [20], calling the initial

assumption of this model into question.

We show in the forthcoming that it is possible to

fix these caveats by considering the linear impulse re-

sponse of the sheared thermal BLs instead of their sta-

bility to infinitely extended perturbations. The Green

function of the linearized dynamic equations is the nat-

ural framework to address the stability of open flows, as

these BLs swept by the wind are. It leads to distinguish

among the instabilities the convective ones that grow in

space and time but are eventually swept out by the wind,

and the absolute ones, the growth of which is vigorous

enough to overcome this wind and propagate both up-

and downstream [21]. Absolute instabilities are doubly

relevant here. First, whereas convective instabilities are

usually extrinsic and observed as the result of an exter-

nal forcing, absolute instabilities are driven by the in-

trinsic dynamics of the flow and are more robust. Then,

whereas convective instabilities in sheared Rayleigh–

Bénard convection retrieve the critical Rayleigh number

Ra0
c ≈ 1708, unaffected by the shear flow and indepen-

dent of the Prandtl number, it is established hereinafter

and shown in Fig. 2 that the critical Rayleigh number

of the absolute instabilities (Raabs
c ) substantially varies

with Pr and Rebl.

So, following the idea of Malkus and Howard, we

still suppose that the thermal BLs thickness (δT ) adjusts

itself so as to set Rabl at the threshold of instability, but

we further claim that the relevant threshold pertains to

the emergence of absolute instabilities:

Rabl = Raabs
c (Rebl,Pr). (6)

Combining (2) and (3) fixes the thickness δT , and the

condition of absolute instability (6) becomes

Raabs
c (Rebl,Pr)

Rebl
3 =

Ra
(RewF )3 . (7)

Once Raabs
c as a function of Rebl and Pr has been com-

puted, as elaborated in §1, solving equation (7) yields

Rebl as a function of the three parameters Ra, Pr and

Rew, and equations (5) and (6) yield the Nusselt num-

ber:

Nu =
[

Ra
Raabs

c
(
Rebl (Ra,Pr,Rew) ,Pr

) ]1/3

. (8)

Equation (8) expresses Nu as a function of the 3 param-

eters Ra, Pr and Rew. Whereas Ra and Pr are external

control parameters, Rew results from the dynamics of

the flow. Computing Nu from this model thus requires

to plug in a value for Rew. Strictly speaking, this model

cannot predict the Nusselt number out of the external

parameters. It is nonetheless possible to check the

validity of the basic assumption of our interpretation:
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that the dynamics of turbulent Rayleigh–Bénard con-

vection is driven by the marginal stability of the thermal

boundary layers with respect to absolute modes and

independent of the bulk. This amounts to check that

in existing numerical and experimental results, Nu and

Rew are related by equations (7)–(8).

3. Absolute instabilities in sheared Rayleigh–

Bénard convection

To check the validity of our model, the critical thresh-

old of absolute thermo-convective instabilities develop-

ing in the merged boundary layers Raabs
c (Rebl,Pr) must

be computed beforehand. Although this analysis should

be restricted to configurations that are homogeneous in

the direction of the mean flow, it is assumed here that

changes in the BLs along this direction remain suffi-

ciently weak to be neglected in the analysis.

The configuration the stability of which is computed

then consists of a fluid confined between two horizon-

tal plates at rest, the lower one at temperature ∆/2

while the upper one, at distance 2δT above, is set at

temperature −∆/2, and swept by mean shear flow, as

shown in Fig. 1(b). For the sake of simplicity, this

shear flow is chosen in the shape of a piece-wise linear

profile and it has been further checked that the results

of the stability analysis were only minutely impacted

by changing of this profile to a Poiseuille flow. The

Rayleigh and Reynolds numbers are defined as above,

using respectively (2) and (3), with F = 1. Using

the streamwise, spanwise and wall-normal coordinates

(x, y, z) and related basis, the velocity, pressure and tem-

perature fields are decomposed into the steady base state[
Vx,b, 0, 0, Pb,Θb

]
, consisting of the laminar shear flow

and conduction solution, and temporally evolving per-

turbations
[

Vx,p,Vy,p,Vz,p, Pp,Θp

]
.

Following the procedure and non-dimensionalization

scheme detailed in [22, 23] for Rayleigh–Bénard–

Poiseuille convection, the double curl of the Navier–

Stokes equation and the heat equation, both linearized

about the base state, together with the continuity equa-

tion in the Boussinesq approximation, yield a sys-

tem of partial differential equations satisfied by the

wall-normal velocity and temperature fields of the per-

turbation. Seeking these perturbations in the form[
Vz,p,Θp

]
=

[
vz (z) , θ(z)

]
exp

(
−iωt + ikxx + ikyy

)
re-

casts these PDE’s into the following generalized eigen-

value problem and boundary conditions

(A− ωB)

 vz (z)

θ(z)

 = 0, (9)

vz (±1/2) = dzvz (±1/2) = θ (±1/2) = 0,

the operators reading

A =

 ikxRebl

(
Vx,b∆ − d2

z Vx,b

)
− ∆2 k2

−Rabl Pr−1 ikxRebl Vx,b − ∆


B =

 iPr−1∆ 0

0 iPr−1

 , (10)

with dz the z-derivative, k2 = k2
x + k2

y and ∆ = d2
z − k2.

The eigenvalues of (9) are the complex frequencies ω,

the imaginary parts of which are the growth rates of the

instabilities.

For a given set of parameters and wavenumber(
Rebl,Pr,Rabl, kx, ky

)
, problem (9) is solved by a tau-

collocation spectral method using Chebychev polyno-

mials on 32 Gauss–Lobatto collocation points. For

fixed values of Rebl and Pr, the critical conditions

for the absolute instability are sought after as the set

(Raabs
c , kx, ky), with complex kx and ky, ensuring that
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Figure 2: Results from stability analysis for sheared Rayleigh–Bénard configuration. (a) Raabs
c as a function of Rebl and Pr. Also shown: theoretical

prediction of Rabl vs. Rebl for Ra = 105 (blue line) and Ra = 108 (red line). (b) Raabs
c vs. Rebl for Pr = 1 (solid line). Red dashed curve:

approximation (12). Circles: theoretical prediction of Rabl vs. Rebl for Pr = 1 and, from left to right, for Ra = 105, 106, 107, 108 and 109.

the least stable eigenmode satisfies vanishing growth

rate ℑ (ω) = 0 and group velocity ∂kxω = ∂kyω = 0.

These critical conditions are computed using Newton-

Raphson algorithms and all the linear algebra involved

in those computations is accomplished using NAG (Nu-

merical Algorithms Group, Oxford, UK) routines.

Whereas convective instabilities are known to take

the form of longitudinal rolls the axis of which is

aligned with the direction of the wind, i.e. kx = 0,

absolute instabilities are always found in the form of

transverse rolls, i.e. ky = 0. Figure 2(a) shows the

results of this parametric stability analysis, namely

the function Raabs
c (Rebl,Pr) to be used in equations

(7)–(8). Note that besides the Reynolds number Rebl,

this function would only marginally be affected by

changes in the velocity profile Vx,b(z) of the stability

problem (9)–(10).

4. Comparison between model predictions and DNS

results.

To put our interpretation on firmer grounds, we now

proceed to test the relation (8) between Nu and Rew

in existing numerical results. As for the GL model,

it is assumed hereafter that Vw = ξ Vr.m.s., or equiva-

lently Rew = ξRer.m.s., with ξ independent of Ra and Pr

numbers. The stability analysis in §1 assumes a two-

dimensional base flow but, spanning both wavenumbers

kx and ky, is fully three-dimensional. Selecting ky =

0, the outcome of this analysis is a two-dimensional

flow in the form of transverse rolls. Thus, our model

should be able to retrieve both 2D and 3D DNS re-

sults of Rayleigh–Bénard convection. However, per-

haps counter-intuitively, the bulk flow is more complex

in 2D than in 3D because of recirculation loops in the

corners [26, 27] and the coexistence of multiple sta-

tistically stable states when the ratio between horizon-

tal and vertical extension of the 2D cell is greater than

one [26, 28]. For these reasons, in what follows, we

will compare our model with the results of 3D DNS for
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Figure 3: Reynolds (a) and Nusselt (b) numbers in compensated form, a functions of Ra, for Pr = 1. Symbols: DNS from respective references.

Dotted black curves: GL theory [12] with prefactors from [13]. Solid blue curves in (b): present model (7)-(8) with F = 1, Rer.m.s. = 0.15 Ra1/2

and ξ = 0.22 (thick line), 0.16 or 0.3 (thin lines). Dashed blue curve: Numerical fit (14) of the present model.

which we have both: (i) the Reynolds number based on

the root-mean-square velocity (Vr.m.s.), and (ii) a large

enough aspect ratio and three-dimensional flow, so that

a one-to-one dependence of Nu and Rer.m.s. with Ra and

Pr prevails [29].

For Pr = 1, all DNS data of [24, 6, 7] shown in Fig.

3(a) are consistent with Rer.m.s. behaving as the square-

root of Ra:

Rer.m.s. = b Ra1/2, (11)

with b = 0.15. Using (11), ξ = 0.22 and F = 1, a

nice agreement is observed for Nu between the DNS

data and the predictions of Eqs. (7)-(8), depicted by the

thick solid blue curve in Fig. 3(b). This agreement was

also obtained and extended to Pr , 1 using a fit of the

numerically computed values for Rer.m.s. instead of (11).

Figure 3(b) also shows that variations of ξ impact this

result, particularly as Ra increases. There are no DNS

results available so far to unambiguously calculate ξ. It

seems reasonable, however, to find a typical wind flow

velocity Vw lower than the the root-mean-square veloc-

ity. The velocity Vw could actually be closer to the char-

acteristic horizontal velocity, Vh,r.m.s. =
√
⟨V2

x + V2
y ⟩/2.

Using the results of [30, 31], it is found Vh,r.m.s./Vr.m.s. ≈

0.5, a value closer to ξ = 0.22.

Figure. 4(b) then shows that the present model also

retrieves with a good accuracy the variations of Nu with

both Ra and Pr, using again F = 1, ξ = 0.22 and Rer.m.s.

fitted from DNS results as plotted in Fig. 4(a). For

Ra Pr ≤ 109, as δV ≤ δT , F (δT /δV ) = 1 [7] and changes

in the ratio δT /δV have no effect on the theoretical re-

sults. For Ra Pr ≥ 109, F (δT /δV ) = δT /δV can be cal-

culated using the numerical results of [7]. Figure 4(b)

shows that the effect of the ratio δT /δV is significant for

Ra ≥ 109 only and Pr ≥ 10 (magenta solid line: F = 1,

and dash-dotted line: F = δT /δV ). Even in this case, the

effect of the ratio δT /δV is limited and numerical results

are inconclusive to discriminate the theoretical results.

In agreement with experimental, numerical and pre-

vious theoretical approaches, this model shows that Nu

does not strictly behave as a power-law of Ra and for
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Figure 4: Rer.m.s. Pr (a) and Nu (b) vs. Ra. From bottom to top: Ra = 105, 106, 107, 108, 109. Symbols: DNS from respective references. Dotted

curves: GL theory [12] with prefactors from [13]. Solid curves in (b): present model (7)-(8) with F = 1, ξ = 0.22 and Rer.m.s. fitted from DNS

results depicted by the solid curves in (a). Dash-dotted magenta curve in (b): (7)-(8) with ξ = 0.22, Rer.m.s. represented by magenta curve in (a)

and the ratio F = δT /δV as given in [7].

Pr = 1, the analytical approximation (14) clearly shows

that Nu deviates from Ra1/3, i.e. from the original

Malkus–Howard theory. For a fixed Rayleigh number,

the model also explains why the Nusselt number is al-

most constant for a wide range of Pr numbers (Pr ≥ 0.2,

see Fig. 4b), while Rer.m.s. is a decreasing function of

Pr (Rer.m.s. ∼ 1/Pr at larger Pr, see Fig. 4a). In-

deed, when Pr increases, Raabs
c increases significantly

(Fig. 2a), whereas both Rer.m.s. and Rebl decrease. At

fixed Ra number, these two effects compensate and

combine in an almost constant Rabl when Pr ≥ 0.2 (see

Fig. 2a, red line: Ra = 105, blue line: Ra = 108),

whereas Rabl increases significantly when Pr is further

decreased below 0.2. Using (8), it can be concluded that

Nu is almost constant for Pr ≥ 0.2 whereas it decreases

for smallest Pr numbers (Fig. 4b).

Solving equations (7) and (8) is based on the numeri-

cal resolution of (9) to compute (6). To alleviate this nu-

merical stability analysis, Fig. 2(b) shows that for Pr = 1

and Rebl ≤ 30, Raabs
c could be adequately fitted by:

Raabs
c

Ra0
c

= 1 + a
 Re3

bl

Raabs
c

2/3

, (12)

with a = 1.1. Using (11) and (12), (7) then becomes

Raabs
c

Ra0
c

= 1 + c Ra1/3, (13)

with c = ab2ξ2 = 0.0012. Using (13), (8) can now be

approximated by

Nu(Ra) =
(

Ra/Ra0
c

1 + c Ra1/3

)1/3

. (14)

Figure 3(b) shows that (14) (dashed blue curve) is a

very good approximation of the numerical resolution

of (7)-(8) (thick solid blue curve) for Pr = 1 and

105 ≤ Ra ≤ 109 and remains in good agreement with

the DNS results (symbols). Note, however, that, (14)

probably fails beyond Ra = 109 as this approximation

assumes the scaling (11) that has only been reported for

Pr = 1 and Ra ≤ 109 [6, 7].
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5. Conclusions

It has been found in this study that the linear threshold

of absolute instability of the sheared thermal boundary

layers could quantitatively relates the heat flux through

a RB cell and the magnitude of the large scale wind

in this cell. On the basis of computing the critical

Rayleigh number of absolute instability, Raabs
c (Rebl,Pr)

(these numerical results are available upon request) of

the merged sheared thermal boundary layers, equations

(7) and (8) predict the variations of Nu as a function

of the three parameters Ra, Pr and Rew. Whereas our

approach supports the pivotal role of absolute thermo-

convective instabilities in the dynamics of turbulent

Rayleigh–Bénard convection, it does not yield, nonethe-

less, a quantitative model predicting the Nusselt num-

ber as a function of the Prandtl and Rayleigh numbers,

as the wind Reynolds number Rew remains an external

input. Moreover, whereas our results support the idea

that the boundary conditions between the bulk and the

thermal boundary layers might be unimportant to model

the heat flux, they do not exclude that these boundary

conditions could be pivotal for the wind, the velocity of

which Vw remains an external input in our model. Un-

fortunately, the wind characteristic velocity Vw remains

ambiguous to define and is seldom reported in the lit-

erature. On the contrary, Vr.m.s. is univocally defined

and frequently addressed, but its exact relation to Vw re-

mains an open question.

While two- and three-dimensional DNS and experi-

ments with aspect ratios close to unity exhibit a single

large scale circulation in the bulk, several cells sepa-

rated by plumes have been reported in large aspect ratio

two-dimensional DNS [19] and a complex network of

plumes circumscribing regions of obvious sheared ther-

mal boundary layers is observed experimentally [34].

These plumes obviously carry the heat through the bulk,

but it remains unclear whether they contribute or not to

the heat flux close to the plates and this latter could still

be mostly imposed by the heat flux through the ther-

mal boundary layers. Besides, two-dimensional DNS

have also shown that this large-scale organization in

cells and plumes is non-unique [28], though the three-

dimensional generalization of this result remains an

open question. The relation between the wind and Vr.m.s.

is very likely non trivial and Vw should probably be de-

scribed in a statistical fashion [35]. Our approach could

nonetheless remain valid and useful as an ”elementary

brick” upon which to build a more complex model.

Albeit crude, assuming a linear relation Vw = ξVr.m.s

to compute Rew from values of Rer.m.s. reported in the

literature, our model still retrieves the corresponding

Nu. The coefficient ξ is so far the only parameter the

adjustment of which is required to validate the model

against experimental or DNS results. In the ranges

105 ≤ Ra ≤ 109 and 0.02 ≤ Pr ≤ 200, setting ξ = 0.22

was found to be good enough to capture Nu as a function

of Pr and Ra with a reasonable accuracy. This agree-

ment could suggest that thermal plumes may have a lim-

ited impact on the total thermal flux. This ad hoc value

ξ = 0.22 seems sensible since we find a typical wind

flow velocity Vw close to the mean horizontal velocities

Vh,r.m.s., as reported in DNS [30, 31]. Though always

close to unity, the value of ξ nevertheless depends on

the actual velocity profile used in the stability analysis

of the thermal boundary layers.

Despite the hefty amount of existing experimental

and numerical results, the characterization of the wind,

its typical velocity, its fluctuations, its relation to the av-

eraged velocity still require further work. Experimental

10



measurements of the velocity and temperature in the

thermal boundary layers remain particularly delicate

and three-dimensional DNS in cells with large aspect

ratios are still limited by their numerical cost.
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