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Abstract

In this work, we approach the interesting problem of representing and studying the position, velocity, acceleration

and arc-length of trajectories of points defined in a two-dimensional geometrical space, which has been chosen for being

simpler than three-dimensional spaces while retaining much of their structure, and richer than the one-dimensional line.

In addition to providing an integrated revision of several aspects from linear algebra, differential calculus, and analytic

geometry, the present work can also be understood as a starting point for studies of several ares in physics, especially

particle dynamics, but also including electromagnetism, fluid dynamics and statistical physics. The presentation starts

with mathematical concepts of spaces, bases and vectors, as well as the Dirac delta ‘function’ and its derivative, as a

means for approaching motion discontinuity. The text then proceeds by presenting the concepts of position, motion

(or trajectory) of points in terms of parametric curves, also addressing. The concept of arc-length of a trajectory is

then presented, followed by a discussion of how point motion can interact with scalar and vector fields (including the

concepts of gradient and line integrals). Brief presentations of the the concepts of relative position and speed, as well as

moving frames conclude this work. Several examples and illustrations of the covered concepts have also been provided.

“... the intrinsic affinity between mathematics and physics has

intrigued humans from at least as early as Pythagora’s time...”

Excerpt from the present work.

1 Introduction

One of the most basic concepts develed by humans while

trying to model nature (e.g. [1]) is that of a point, corre-

sponding to a minute sphere whose radius can be as small

as possible. It is probably not by chance that Euclid’s El-

ements of Geometry (e.g. [2, 3]) starts with the definition

of a point, which is simply understood as ‘having no part”.

Interestingly, Euclid’s geometric understanding of a point

was directly related to Democritus (c.460bC – c.370bC)

definition of an atom as being indivisible. The fact that

Euclid was active around 300bC suggests that his defini-

tion may have been inspired by Democritus’s concept of

atom.

Be that as it may, the fact that the point has long been

motivated attention from the geometrical and physical

perspective is of particular interest to the present work

(see Fig. 1), as this concept represents one of the earliest

Figure 1: Even though approaching point motion mostly from the

mathematic-geometric perspective, the present work can be under-

stood as being at the intersection between differential geometry

(meaning also the areas of linear algebra, calculus, analytical ge-

ometry, and differential equations) and particle dynamics.

and most fundamental links between mathematics and

physics, two areas which have since then been actively

developed and merged into areas such as mathematical

physics and applied mathematics.

The continuing importance of mathematical physics

stems from the success of using mathematical concepts
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and constructs to model and better explain the physical

world. Indeed, the intrinsic affinity between mathematics

and physics has intrigued humans from at least as early as

Pythagora’s time (c.570bC –c.495bC), to the point that

it has been suggested that mathematics could be the very

language underlying the physical world. Though that pos-

sibility could be at least partially accounted for by the

fact that mathematics was actually developed mostly to

remain compatible with the real-world, its success an ef-

fectivity in describing and predicting physical phenomena

remains as being particularly remarkable.

Despite the great interest motivated by better under-

standing the nature of the relationship between mathe-

matics and physics, this captivating discussion shall not

constitute the main focus of the present work, as it in-

volves many areas including logic, ontology, foundations

of mathematics, as well as philosophy. Our objective here

is much simpler and specific, consisting of approaching

the motion of a single massless point, more specifically a

point, from a purely mathematical/geometrical perspec-

tive, i.e. without expressly considering mass (and there-

fore physical force, work, energy, etc.).

The separation between the mathematical and phys-

ical aspects of motion underlying the present work has

the two following motivations. First, by being mostly in-

dependent of the physical related aspects, the concepts

and methods presented here can provide an entry point

not only to all areas of physics involving particle motion,

but also many other related areas involving point motion,

geometry of trajectories and scalar and vector fields. Ex-

amples of such areas include, but are not limited to: fluid

dynamics, computer graphics, image processing/analysis,

optimization, pattern recognition, and even artificial in-

telligence.

A more mathematically focused approach also allows

the subjects of motion and fields to be approached from

a broader perspective, since there are not specific phys-

ical constraints to be satisfied, especially Newton’s laws

of motion establishing how particles with mass interact

with force fields (gravitational). Therefore, the present

work provides an ampler perspective that can be subse-

quently contrasted with the physical world specificities.

The adopted approach also helps realizing that some im-

portant physical concepts such as inertial reference frames

and conservative fields originate directly from the mathe-

matical point of view, without additional physical require-

ments.

In addition, though the initial section, addressing vec-

tor spaces, develops in R3, the remainder of this work de-

velops exclusively on the R2 space. This choice has been

taken as a compromise between dealing on the ampler

R3 space (more equations would have been involved, also

involving more challenging visualizations in R3) and the

much simpler R space of the line. At the same time, the

concepts and results in R2 are almost straightforwardly

extensible to higher dimensional metric spaces. It is ar-

guable that generalizing from R2 to R3 is simpler than

from R into R2, not to mention R3.

Special attention is throughout given to the concepts

of parametric curves (here understood as specifying the

point motion), arc-length, as well as respective deriva-

tives. Though we shall refer to the first and second deriva-

tive of a parametric curve also as instantaneous velocity

and instantaneous acceleration respectively, these terms

should not be necessarily related to their physical coun-

terparts, reflecting the fact that we shall not be expressly

considering mass. The adopted approach is therefore

more closely related to the mathematical areas (e.g. [4]) of

linear algebra (e.g. [5]), calculus (e.g. [6, 7, 8, 9]), analytic

geometry (e.g. [10]), differential Equations (e.g. [11, 12]),

as well as differential geometry (e.g. [13]).

To complement our mathematical study of the proper-

ties of the motion of a single massless point, we will also

consider how it can be influenced by scalar and vector

fields, as well as how motion can be approached in rela-

tive terms and from distinct moving frames of reference.

Before we proceed with the presentation, it should be

observed that it is expected that the reader his prelimi-

nary acquainted with basic mathematics (including some

background on trigonometry, vectors, and matrices), up

to rudiments of analytical geometry and differential cal-

culus level. Some references are also suggested for com-

plementary and subsequent studies.

2 Spaces, Bases, and Vectors

As studied in linear algebra (e.g. []), vector spaces are

mathematical spaces whose elements, known as vectors,

satisfy several conditions, including but not being limited

to vector addition closure, associativity, commutativity,

as well as existence of inverse. These properties refer to

both the respective vectors in those spaces, but also to

product with scalar values, which obey the distributive

property, among others. Vector spaces are much broader

than the traditional geometrical vector, also encompass-

ing matrices and functions. The present work will focus

on Cartesian spaces, especially R2 and R3. These spaces

have an additional interesting property that they incorpo-

rated the concept of inner product 〈~u,~v〉 between any two

respective vectors ~u and ~v and respectively induced dis-

tance between vectors, therefore constituting geometrical

spaces, or metric spaces.

The importance of vector spaces is that they have a

respective structure, specified by the respective general

properties as summarized above, that allows us to handle
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vectors in well-posed manners. For instance, this struc-

ture ensures that the sum of two vectors will always exist.

Given a vector space, it is possible to obtain one or

more respective basis, namely a subset of vectors from

which all other vectors can be obtained by respective lin-

ear combinations.

Let B be a basis of some 3D vector space, any vector ~uB
in this space should be uniquely written as the following

linear combination of its basis vectors:

~uB = ux,B ~B1|B + uy,B ~B2|B + uz,B ~B3|B (1)

where ux,B , uy,B , and uz,B , are the coordinates of the

vector ~uB in basis B and ~Bi|B are the components of

that same basis. We can represent the vector in this basis

more compactly as:

~uB =

 ux,B
uy,B
uz,B

 = (ux,B , uy,B , uz,B) (2)

Because there is an infinite number of possible basis,

it is convenient to identify one of them that can be un-

derstood as being canonical (e.g. simplest, including that

the basis elements have magnitude one and are mutually

orthogonal). In the case of R3, its canonical basis consists

of the three versors ~i, ~j, and ~k given as:

î =

 1

0

0

 ĵ =

 0

1

0

 k̂ =

 0

0

1

 (3)

so that:

||̂i|| = ||ĵ|| = ||k̂|| = 1 (4)〈
î, ĵ
〉

= îT ĵ = 0 (5)〈
î, k̂
〉

= îT k̂ = 0 (6)〈
ĵ, k̂
〉

= ĵT k̂ = 0 (7)

where T stands for the transpose of a vector (or matrix).

Observe that, though there is an infinite number of al-

ternative basis composed by vectors that are mutually

orthogonal and have unit magnitude (e.g. any rotation of

the canonical basis above), they are not usually consid-

ered to be canonic. It is interesting to observe that there

is no more precise definition of a canonical basis.

Now, any vector ~u of R3 can be uniquely expressed in

terms of the following linear combination of the canonical

basis elements:

~u = x î+ y ĵ + z k̂ =

= x

 1

0

0

+ y

 0

1

0

+ z

 0

0

1

 =

= (x, y, z) (8)

Thus, we can represent the canonical basis in terms of

the following matrix:

CC =

 ↑ ↑ ↑
î ĵ k̂

↓ ↓ ↓

 =

 1 0 0

0 1 0

0 0 1

 = I (9)

where I is the identity matrix.

However, it is also possible to uniquely express the vec-

tor ~uB respectively to the canonical basis, which can be

done by translating the basis vectors B represented into

the canonical basis, i.e.:

~uC = ux,B ~B1|C + uy,B ~B2|C + uz,B ~B3|C =

= ux,B

 b1,1
b2,1
b3,1

+ uy,B

 b1,2
b2,2
b3,2

+ uz,B

 b1,3
b2,3
b3,3

 =

=

 ux,B b1,1 + uy,B b1,2 + uz,B b1,3
ux,B b2,1 + uy,B b2,2 + uz,B b2,3
ux,B b3,1 + uy,B b3,2 + uz,B b3,3

 =

=

 b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

  ux,B
uy,B
uz,B

 =

=⇒ ~uC = BC ~uB (10)

where:

BB =

 ↑ ↑ ↑
~B1|C ~B2|C ~B3|C
↓ ↓ ↓

 =

 b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3


(11)

Observe that the matrices representing basis are square.

So, we have that:

~uC = BC ~uB =⇒ (12)

=⇒ ~uB = B−1
C ~uC (13)

where BC is assumed to be invertible (i.e. det(BC) =

|BC | 6= 0) in order to allow any vector expressed in the

canonical basis to be uniquely translated into basisB (and

vice-versa). As there is an infinite number of invertible

real-valued matrices, it becomes plain that a same vector

space can have an infinite number of respective bases.

Going back to our discussion of basis transformation,

let us illustrate Equations 12 and 13 respectively to Fig-

ure 2, which assumes the vector space R2. Here, we have

a vector ~u represented in terms of the canonical basis C

as well as another basis B.

More specifically, we have that:

BC =

[
1 3

2 2

]
~uB =

[
1.5

0.5

]
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Figure 2: Example of basis transformation (or coordinates ex-

change). Observe that the plot coordinates refer to the canonical

basis C, shown in blue. The green vectors illustrate the linear com-

bination of the coordinates of vector ~u in basis B. It corresponds to

the parallelogram law for vector addition after respective scalings

of the basis elements specified by the coordinates of ~uB . A similar

construction (not shown) also holds respectively to the canonical

basis. The vector in in any valid coordinate system is shown in

magenta. Please refer to the text for additional information.

The canonical coordinates of the vector ~uB can be ob-

tained by Equation 13 as:

~uC = BC ~uB =

[
3

4

]
It is interesting to observe that Equations 12 and 13

correspond to linear transformations of vectors ~uB and

~uC , respectively. Expressed more generally respectively

to a vector ~x and a real-valued matrix A, a linear trans-

formation of the elements of ~x can be written as:

~y = A~x (14)

A closely related more general type of transformation

consists of affine transformations of a vector ~u by a matrix

A and a displacement vector ~v:

~y = A~x+ ~v (15)

Therefore, linear transforms can be understood as a

special case of affine transformations. As affine transfor-

mations are known to preserve parallelism and straight

lines, so are linear transforms.

Given that nothing specific about the canonical basis

has been taken in consideration in the above developments

and results, Equations 12 and 13 also hold for any other

generic basis D other than the canonical, provided BD is

invertible. Thus, we can generalize this result as:

~uD = BD ~uB (16)

~uB = B−1
D ~uD (17)

Equations 12 and 13 (as well as Equations 16 and 17)

can be immediately modified to translate two (or more)

vectors from basis B to basis C in “parallel” fashion:

VB =

 ↑ ↑ ↑
~uB,1 ~uB,2 ~uB,3
↓ ↓ ↓

 (18)

VC = BC VB (19)

In particular, if VB is the triple of vectors of the basis

B expressed respectively to itself, we have:

VB =

 ↑ ↑ ↑
~B1|B ~B2|B ~B3|B
↓ ↓ ↓

 = BB

BC = BC BB =⇒ (20)

=⇒ BB = I = CC (21)

Thus, we have the interesting (and sometimes unno-

ticed) fact that a generic valid basis B becomes the canon-

ical basis when its vectors are represented respectively to

itself. At the same time, the vectors of B represented in

terms of the canonical basis (i.e. the columns of BC), in

general, are not guaranteed to be orthogonal or to have

unit magnitude.

Now, let us consider the previous vector ~u translated

into another basis D of the same vector space. We already

know that:

~uC = DC ~uD =⇒ (22)

=⇒ ~uD = D−1
C ~uC (23)

By combining Equations 23 and 12, it follows that:

~uD = D−1
C ~uc = D−1

C BC ~uB =

=
(
D−1
C BC

)
~uB = W ~uB (24)

which provides a means for exchanging the coordi-

nates of a vector from basis B to basis D, while matrix

W−1 specifies the coordinate changes from frame D to B.

These results can be summarized as:{
~uD = W ~uB = D−1

C BC ~uB
~uB = W−1 ~uD = B−1

C DC ~uD
(25)

These equations remain valid when the canonical basis

C is replaced by any valid other basis E.

An important additional aspect of vectors in a vector

space concerns theirs respective position. Consider the
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Figure 3: Though all the displayed vectors have the same magni-

tude and orientation, their respective varying positions cannot be

determined from their coordinates.

situation shown in Figure 3. There are at least two possi-

ble respective understandings. One of them is that these

vectors (except for that at the coordinate system origin)

are not actually valid because their positions in the re-

spective space cannot be specified by their coordinates,

which only establish position of the arrowed extremity

of a vector respectively to the coordinate systems origin

(0, 0). In this sense, the only vector valid in Figure 3

would be that starting at (0, 0).

Another possible is that the vectors represent relative

displacement, which allows them to be shifted in the re-

spective space. However, this requires the definition an

additional property of each vector, specifying its point of

application, which ab be done by associating an additional

vector expressing the coordinates (xp, yp, zp) of the non-

arrowed extremity of the vector.

There is an additional interesting issue regarding vector

spaces, and it concerns specifying the position of the ref-

erence coordinate system or frame. Typically, this choice

is performed respectively to some useful purpose. For in-

stance, the coordinate system in Figure 3 is placed at a

specific coordinate relatively to the respective so that is

reasonably close to where it is discussed (i.e. the present

paragraph). The figure remains at its absolute position

until the page is moved (e.g. scrolled), while its position

relative to the page is maintained.

In several situations, as the just mentioned example,

the position of the coordinate system may vary with time,

which constitutes yet another interesting issue that will

be briefly approached in Section 11.

To conclude this section, we observe that the dot prod-

uct (also inner product or scalar product) between any

two vectors ~u and ~v in a vector space provided with this

operation (i.e. a Hilbert space) can be expressed respec-

tively to a same basis as:

〈~u,~v〉 = 〈~v, ~u〉 = x vx + y vy + z vz =

= ||~u|| ||~v|| cos θ (26)

where θ is the smallest angle between the two vectors.

Observe that, in particular:

〈~u, ~u〉 = x2 + y2 + z2 =⇒ ||~u|| =
√
〈~u, ~u〉 (27)

where the norm ||~u|| of ~u allows us to define the distance

between two points specified by respective vectors ~u and

~v as:

d(~u,~v) = ||~v − ~u|| (28)

3 The Dirac Delta “Function” and

its Derivative

Strictly speaking, the Dirac delta “function” is not a func-

tion, but a distribution (e.g. [14]). However, this function

(for simplicity, the quotation marks will not be indicated

henceforth) can be approximated in terms of the follow-

ing limit of the normal function (statistical distribution,

with unit area):

δ(t) = lim
σ→0

1

σ
√

2π
e−

1
2 ( tσ )

2

(29)

we then necessarily have that:

ˆ ∞
−∞

δ(t)dt = 1 (30)

Figure 4(b) illustrates the function c δ(t− t0).

As will be informally discussed in the present section,

the Dirac delta function provides a convenient way to rep-

resent discontinuities. We starta by integrating the more

general Dirac delta function c δ(t − t0) for t ∈ (−∞, T ),

with a ∈ R:

g(t) =

ˆ t

−∞
c δ(u− t0) du =

{
0 t < t0
c t ≥ t0

(31)

The constant c in c δ(t) will be henceforth referred to

as the amplitude or area of the Dirac delta function δ(t).

The result of the above integration is illustrated in Fig-

ure 4. Observe that, as could be expected, the Dirac

delta has implied a discontinuity at t0 with amplitude

determined by the Dirac delta intensity (or area) c.

Interestingly, it is possible to express the first “deriva-

tive” of the Dirac delta function can be expressed as:

Π(t) =
d δ(t)

dt
= lim

∆t→0

δ(t)− δ(t+ ∆t)

∆t
(32)
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Figure 4: The integral function g(t) of the Dirac delta function with

intensity (or area) c at position t0, namely g(t) =
´ t
0 aδ(t − t0) dt,

consists of a discontinuous function characterized by being zero be-

fore t0, and becoming the constant function 1 afterwards. This

property often provides a convenient means for expressing discon-

tinuous functions.

Figure 5: Illustration of the derivative of the Dirac delta, namely

Π(t), can be understood as the limit of a difference of normal dis-

tributions. The values of ∆t are shown in the inset. Observe that

any of the functions in this plot have area equal to zero.

with the understanding that:

ˆ
Π(t− t0) dt = δ(t− t0) + c (33)

where c is a constant implied by the indefinite integral.

The “function” Π(t) can be expressed in terms of the

limit of the normal distribution as follows:

Π(t) =
d δ(t)

dt
= lim

∆t→0

δ(t+ ∆t)− δ(t)
∆t

(34)

Therefore, Π(t) has null area. Figure 5 illustrates the

function Π(t) as the limit of the difference of normal dis-

tributions as specified in Equation 32.

The Dirac delta provides a convenient resource for un-

derstanding discontinuities not of a function itself, but of

Figure 6: Illustration of how the first and second derivatives of a

function f(t) with a discontinuity at t0 can be understood in terms

of the Dirac delta function. As with derivatives in general, the

constant d cannot be directly recovered from f̈(t).

its first (or higher) derivatives. Consider the situation de-

picted in Figure 6(a), consisting of a function f(t) with

a first derivative discontinuity at t = t0, shown in Fig-

ure 6(b). The slope of the first linear part of f(t) is d,

becoming e after t0. The difference of slopes therefore is

c = e−d. The first derivative of f(x), namely g(t) = ṫ(t),

is shown in Figure 6(b), while the second derivative of

f(t) is presented in Figure 6(c), corresponding to a single

Dirac delta with amplitude c at t0.

Let us now consider a function that is continuous and

has at least its two first derivatives also being continuous,

such as is the case with h(t) = 0.5 t2 + b. In case we want

to incorporate a discontinuity with amplitude c at t0, we

can simply write:

h(t) =

ˆ t

0

g(u) + c δ(u− t0) du+ b =

h(t) =

ˆ t

0

u+ c δ(u− t0) du+ b =

=

ˆ t

0

[ˆ u

0

1 + cΠ(v − t0) dv

]
du+ b (35)

where g(t) = d h(t)
dt = t. Observe that b has been con-

sidered externally to the integral representations.

Figure 7 illustrates the above integral representations of

the discontinuity of h(t) in terms of an integral involving

the Dirac delta function, or a double integral incorporat-

ing the Π(t) function, which is represented in the present

work as a double arrow.
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Figure 7: The parabola h(t) = 0.5 t2 + b with a discontinuity of

amplitude c at t = t0 can be expressed as the integral (with null

initial condition) of the identity function u(t) = t plus one Dirac

delta with amplitude c at t0, or as the double integral (also with

null initial condition) of the constant function 1 plus the Pi function

with amplitude c at that same position. Therefore, this figure also

can also be understood as illustrating the first two derivatives of the

function in (a).

Figure 8: The position of a point in R2 can be specified in terms

of its Cartesian coordinates (x, y), which can be associated to a

position vector ~u = [x y]T represented in the canonical basis. More

specifically, in this case we have (x, y) = (0.5, 0.5).

4 Position, Parametric Curves,

and Motion

We start our approach considering a single, static in-

finitesimal point remaining in an arbitrary position in R2,

as illustrated in Figure 8, respective to the Cartesian (or-

thogonal) coordinate system x × y. The natural manner

to mathematically specify the position of the point is in

terms of its coordinates (x, y), which can also be associ-

ated to a respective position (column) vector as follows:

~u =

[
x

y

]
= (x, y) (36)

Now, consider that the position of the point may change

along time t. Mathematically, this can be expressed in

terms of the following mapping Γ from a free variable t in

real interval [a, b] into the space where the point is being

contained, in our case R2:

Γ : t ∈ [a, b] ⊂ R −→ ~u(t) =

[
x(t)

y(t)

]
∈ R2 (37)

with a, b ∈ R.

For simplicity’s sake, we shall henceforth consider that

the position of a point in R2 along the variable t as speci-

fied by the mapping Γ. Therefore, the sequence of points

or vectors (x(t), y(t)) can be understood as the motion,

displacement or trajectory of the point, while the parame-

ter t corresponds to ‘time’. Curves as Γ are often referred

to as being parametric.

However, from the mathematical point of view the vari-

able t has not physical interpretation other than being a

parameter. The set of points (x(t), y(t)) defined by point
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Figure 9: The motion or trajectory, shown in salmon, specified by

Eq. 38 considering t ∈ [0, 1]. The blue points, sampled at ∆t = 2

intervals along the trajectory, have been included in order to provide

more information about the motion which, in this case, is linear

uniform, the constant speed magnitude being equal to
√
v2x + v2y).

through the mapping Γ and respective motion is hence-

forth associated to the motion of the point according to

the time parameter t.

An important point to bear in mind is that t varies

continuously in the real interval [a, b], going from a to

b, except at both of its extremities a and b, where the

mapping is discontinuous. Thus, the parameter t intrin-

sically imposes a sequence or order along the single point

positions ~u(t) = (x(t), y(t)).

In principle, parameters can be transformed in any con-

tinuous manner, e.g. by introducing a respective relation-

ship r = g(t), such as r = 2 t + 3. Then, it becomes

possible to refer to thereversion of the parameter, namely

considering the transformed parameter q = −r instead of

r.

Let us consider a type of motion, defined as:

~u(t) =

[
x(t)

y(t)

]
=

[
x0 + vx t

y0 + vy t

]
(38)

with x0, y0 ∈ R, vx, vy ∈ R+.

Figure 9 illustrates this trajectory for x0 = 0, y0 = 0,

vx = 1 and vy = 1 considering t ∈ [0, 1]. The points

in blue have been sampled at ∆t = 2 intervals along the

trajectory.

For t = 0, we have that the point is at position (0, 0).

As t increases, the point initiates a straight displacement

along the orientation specified by vector ~v = (1, 1), up to

the other extremity ~u(t = 1) = (1, 1). The type of motion

expressed by Equation 38 is typically called linear.

Let us now consider the following modified version of

Figure 10: Example of a uniformly accelerated linear motion, with

the points being equally sampled along time. Observe that pro-

gressively larger displacements (increasing speed) implied by the

acceleration.

the previous type of motion:

~u(t) =

[
x(t)

y(t)

]
=

[
x0 + a t2

y0 + b t2

]
(39)

with x0, y0 ∈ R, vx, vy ∈ R+.

Figure 10 illustrates this type of motion considering

x0 = y0 = 0, a = b = 1, and ∆t = 0.04. Only the sampled

points in blue are shown for the sake of enhanced visual-

ization. Though the respectively defined set of points is

identical to those obtained in the previous example, we do

not necessarily have pointwise identity: except for t = 0 in

the case of the present example, (x(t), y(t)) 6= (x̃(t), ỹ(t))

for each time instant t (in the particular case of the cur-

rent example, pointwise identity is verified only at both

extremities of the trajectory).

Also of interest in the trajectory in Figure 10 is the fact

that the distance between the points along the trajectory,

and therefore along time, successively grow, implying the

points to be further apart. As it will be further discussed

in Sections 5 and 6, this means that the velocity of the

motion is not constant, implying in respective accelera-

tion.

However, for any given t ∈ [0, 1], it is possible to estab-

lish a bijective correspondence between the two trajecto-

ries by solving the system:{
x(t) = x̃(t) =⇒ x0 + vxt = x0 + a t2 ⇒ vx = a t

y(t) = ỹ(t) =⇒ y0 + vxt = y0 + b t2 ⇒ vy = b t

(40)

Another possible type of movement, known as circular,

can be specified as:

~u(t) =

[
x(t)

y(t)

]
=

[
ρ cos(ωt) + x0

ρ sin(ωt) + y0

]
(41)
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(a)

(b)

Figure 11: (a): The circular trajectory obtained respectively to

Eq. 41 assuming x0 = y0 = 0.1 and ρ = 0.7. The blue points

are equally spaced with ∆t = 0.005. Observe that this trajectory

corresponds to a circle with radius ρ centered at the point (x0, y0),

shown as a red ‘x’. As its angular speed ω = 2πf0 is constant, this

motion is often referred to as being circular uniform. (b): A spiral

trajectory as described in Eq. eq:spiral, adopting x0 = y0 = 0.1,

f0 = 2, and ρ = 0.7. The blue points are sampled at equal intervals

∆t = 0.006.

for t ∈ R, with x0, y0, f0 ∈ R and ω = 2πf0, where

f0 = 2 is the frequency of the motion. This type of tra-

jectory yields an orbit of radius ρ centered at the position

(x0, y0), as illustrated in Figure 11(a) for x0 = y0 = 0.1

and ρ = 0.7. The blue points have been sampled along

the trajectory at intervals ∆t = 0.005.

In the case of the above type of uniform circular motion,

it is possible to link the angular and the magnitude of the

Cartesian speed ~v, which is known as scalar speed vs,

which in the uniform case is also a constant, as:

vs = ω ρ (42)

The orientation of ~v always points toward the center of

the defined circle.

Figure 12: Four types of linear motions with discontinuities at t = 0.

The case shown in (a) has a position discontinuity; the situation in

(b) has speed orientation discontinuity; the motion in (c) is charac-

terized speed magnitude discontinuity, while (b) concerns accelera-

tion discontinuity.

Yet another type of motion, closely related to the cir-

cular case, can be specified as:

~u(t) =

[
x(t)

y(t)

]
=

[
ρ t cos(ωt) + x0

ρ t sin(ωt) + y0

]
(43)

with xc, yc, f0 ∈ R and α ∈ R+. We shall refer to this

type of motion, illustrated in Figure 11(b), as spiral. in-

terestingly, the velocity along this motion varies not only

in terms of its orientation, but its magnitude also progres-

sively increases along time. Unlike the uniform circular

motion, the velocity is not orthogonal to the acceleration

in this type of spiral motion.

Now, consider the following type of motion, assuming

t ∈ [−1, 1]:

(x(t), y(t)) =

{
(t, t) t < 0

(t, t+ 1) t ≥ 0
(44)

Figure 12(a) depicts the trajectory defined by this type

of motion.

The previous example related to a position discontinu-

ity, but there are other possible types of discontinuities.

For instance:

(x(t), y(t)) =

{
(t, t) t < 0

(0.5,
√

2− 0.52) t ≥ 0
(45)

is characterized by orientation discontinuity (see

Fig. 12b).
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Let us now consider the motion:

(x(t), y(t)) =

{
(t, t) t < 0

(2t, 2t) t ≥ 0
(46)

which is characterized by a discontinuity at the first

derivative of the position at t = 0. Yet another type of

discontinuity is as follows:

(x(t), y(t)) =

{
(t, t) t < 0

(t2 + t, t2 + t) t ≥ 0
(47)

in which case the second derivative of the position is

discontinuous at t = 0. This sequence of examples can ex-

tents to discontinuities at any successive derivative orders.

These two types of motion are illustrated in Figures 12(b)

and (c), respectively.

A completely discontinuous displacement can be speci-

fied as:

(x(t), y(t)) = (u(t), v(t)) (48)

where both u(t) and v(t) are random values uniformly

distributed in the interval [0, 1], drawn at each time in-

stant t. Though the respectively obtained trajectory is ex-

tremely dense and discontinuous, to a point that it cannot

even be graphically discerned, it can be shown to cover

the whole square (0 ≤ x ≤ 1, 0 ≤ y ≤ 1) ⊂ R2. One man-

ner to start approaching this mapping is by considering

that all [a, b], R and R2 have Cantor cardinality equal to

2ℵ0 = ℵ1, therefore having the “same number of points’.

5 First Derivative of Position

Given a motion specified parametrically, it is possible to

consider its first derivative, in case it exists, which is also

called instantaneous velocity or speed, which can be ex-

pressed in many ways:

~v(t) = ~̇u(t) =

(
dx(t)

dt
,
dy(t)

dt

)
=

= (ẋ(t), ẏ(t)) = (x′(t), y′(t)) = (vx(t), vy(t)) = (49)

Observe that ~v(t) is a vector quantity. The following

notation will be predominantly adopted in the present

work:

~v(t) = ~̇u(t) =

[
vx(t)

vy(t)

]
=

[
u̇x(t)

u̇y(t)

]
(50)

As an example, let us calculate the speeds of the ex-

amples of motion provided in Section 4. Let us start

by the speeds corresponding to the previously considered

continuous motions, respectively to Equations 38, 39, 41,

and 43:

~v(t) = (vx, vy) (51)

~v(t) = (2t vx, 2t vy) (52)

~v(t) = ρω (− sin(ωt), cos(ωt)) (53)

~v(t) = ρ (cos(ωt)− ωt sin(ωt), sin(ωt) + ωt cos(ωt)) (54)

In both Equations 51 and 52, the obtained velocity is

not a function of time, being therefore constant. As these

motions are also linear, we have a uniform linear motion.

It is also interesting to consider the circular motion

speed obtained in Equation 53 after transforming the

Cartesian coordinates (x(t), y(t)) into respective polar co-

ordinates. For simplicity’s sake, we assume that x0 =

y0 = 0, which leads to:

{
ρ =

√
x(t) + y(t) = ρ

θ = arctan
(
y(t)
x(t)

)
= ωt

(55)

from which we can obtain the respective angular veloc-

ity :

θ̇ = ω (56)

which turns out to be constant. Therefore, the motion

specified by Equation 41 can be called circular with con-

stant angular velocity, or simply uniform circular motion,

being illustrated in Figure 13(a). It can be observed that

the speed vectors, shown in red in that figure, are always

tangent to the vectors pointing toward the respective cen-

ter of the circle defined by this specific type of motion,

while their respective magnitude and angular speed re-

main both constant.

The speed of the spiral motion, given in Equation 43,

are depicted in Figure 13(b). Interestingly, as the param-

eter t increases, both the magnitudes of the speed and

acceleration also increase.

To conclude this section, we now provide the

speed of the discontinuous motions specified by Equa-

tions 44, 45, 46, and 47:

~v(t) =

{
(1, 1) t 6= 0

(0, δ(t)) t = 0
(57)

~v(t) =

{
(1, 1) t < 0

(0.5,
√

2− 0.52) t ≥ 0
(58)

~v(t) =

{
(1, 1) t < 0

(2, 2) t ≥ 0
(59)

~v(t) =

{
(t, t) t < 0

(2t+ 1, 2t+ 1) t ≥ 0
(60)
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(a)

(b)

Figure 13: (a): The velocity (red) and acceleration (dark green)

fields associated to a uniform circular motion with radius ρ = 0.7

and center (x0, y0) = (0.1, 0.1). (b): The velocity (red) and acceler-

ation (green) vectors respective to spiral motion obtained by using

Eq. 54, with (x0, y0) = (0.1, 0.1). In both cases, the magnitudes of

the velocity and acceleration vectors are not shown to the original

scale for improved visualization. It can be verified that the velocity

is not orthogonal to the acceleration in this type of motion.

6 Second Derivative of Position

The second derivative of the position of a motion ~u(t) can

be expressed as:

~a(t) = ~̇v(t) = ~̈u(t) =

(
d2x(t)

dt2
,
d2y(t)

dt2

)
=

= (ẍ(t), ÿ(t)) = (x′′(t), y′′(t)) (61)

as well as:

~a(t) =

[
ax(t)

ay(t)

]
=

[
v̇x(t)

v̇y(t)

]
=

[
üx(t)

üy(t)

]
(62)

The accelerations obtained for the motions defined by

Equations 38, 39, 41, and 43 are presented respectively as

follows:

~a(t) = (vx, vy) (63)

~a(t) = (2t vx, 2t vy) (64)

~a(t) = ρω2 (− cos(ωt),− sin(ωt)) (65)

~a(t) = ρω (ax(t), ay(t)) (66)

where:

{
ax(t) = −2 sin(ωt)− ωt cos(ωt)

ay(t) = 2 cos(ωt) + ωt sin(ωt)

In the case of the uniform circular motion, we can learn

more about the relationship between the respective speed

and acceleration vectors by performing their respective

inner product:

〈 (vx(t), vy(t)), (ax(t), ay(t)) 〉 =

= 〈 (ẋ(t), ẏ(t)), (ẍ(t), ÿ(t)) 〉 =

= ρ2ω3 [cos(ωt) sin(ωt)− sin(ωt) cos(ωt)] = 0 (67)

thus indicating that circular motion with constant an-

gular speed is characterized by having the velocity vector

being always orthogonal to the acceleration vector for any

value of t, which can be observed in Figure 13.

The second derivatives of the motions in Equa-

tions 44, 45, 46, and 47 can be obtained as:

~v(t) =

{
(0, 0) t 6= 0

(0,Π(t)) t = 0
(68)

~v(t) =


(0, 0) t < 0

(−0.5δ(t),
(√

2− 0.52
)
δ(t)) t = 0

(0, 0) t ≥ 0

(69)

~v(t) =


(0, 0) t < 0

(δ(t), δ(t)) t = 0

(0, 0) t > 0

(70)

~v(t) =

{
(1, 1) t < 0

(2, 2) t ≥ 0
(71)

Though we shall constrain our more detailed study of

point motion to its first and second derivative, higher

derivatives can be obtained and analyzed in similar man-

ners.
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7 Arc-Length of Motion

Given a motion ~u(t) starting at t0, with respective speed

~v(t) = ~̇x(t), it is often interesting to known the total arc-

length of its trajectory from the initial time t0 until a

subsequent time t, which can be formally defined as:

s(t) =

ˆ t

t0

||d~u(r)|| dr =

ˆ t

t0

||~̇u(r)|| dr (72)

where:

||d~u(t)|| = ||~̇u(t)|| =
√

[vx(t)]
2

+ [vy(t)]
2

(73)

Conceptually, the arc-length between two distinct

points of a trajectory can be understood as representing

the trajectory as a thread, cutting it at those two points,

extending it, and measuring the respective length.

As an example, let us calculate the arc-length of the

trajectory defined by Equation 38:{
x(t) = x0 + vxt

y(t) = y0 + vyt
(74)

We thus have that:{
d x(t)
dt = ẋ(t) = vx

d y(t)
dt = ẏ(t) = vy

(75)

Assuming that t0 = 0, we have:

s(t) =

ˆ t

0

||d~u(v)|| dt =

ˆ t

0

√
(vx)

2
+ (vy)

2
dv =

=

ˆ t

0

c dv = c t (76)

with c =
√

(vx)
2

+ (vy)
2
.

Once we obtain the expression of the arc-length of a

motion ~u(t) as a function of the free parameter t, i.e. s(t),

we obtain t as a function of s, i.e.:

t = s−1(t) = h(s) (77)

By replacing t by h(s) in the original parametric mo-

tion ~u(t), we get ~u(s), which therefore is parametrized by

the arc-length s. This type of parametric curve will be

necessarily characterized by:

||~̇u(s)|| = ||~v(s)|| = 1 (78)

In other words, the curve ~u(s) will have constant speed

magnitude equal to 1, though the speed vector can un-

dergo orientation changes.

Let us illustrate the above procedure respectively to the

case in Equation 38. We already know that the arc-length

of this motion is given by Equation 76, so that:

s(t) = c t =⇒ t =
1

c
s = h(s) (79)

with:

c =

√
(vx)

2
+ (vy)

2
. (80)

Substituting this expression into Equation 38, we ob-

tain:

~u(s) = (x(s), y(s)) =
1

c
(vx s+ x0, vy s+ y0) =⇒

=⇒ ~̇u(s) = (ẋ(s), ẏ(s)) =
1

c
(vx, vy)

From which it follows that:

||~̇u(s)|| =

√
(vx)

2
+ (vy)

2√
(vx)

2
+ (vy)

2
= 1

Now, let us proceed to the circular motion in Equa-

tion 41. Assuming that t0 = 0, we have:

s(t) =

ˆ t

0

√
[−ρω sin(ωt)]

2
+ [ρω cos(ωt)]

2
dt =

= ρω

ˆ t

0

(
[sin(ωt)]

2
+ [cos(ωt)]

2
)
dt = ρω t (81)

Recalling that ω = 2πf0, if we take t = 1/f0 = T0,

corresponding to a complete period of this motion, the

arc-length results equal to s(T0) = ρωT0 = ρ2πf0T0 =

2πρ, which indeed coincides with the perimeter of a circle

with radius ρ.

8 Probing Fields

A scalar filed ψ(x, y) in R2 can be understood as the map-

ping that associates a scalar value to each point (x, y) of

R2, i.e.:

ψ(x, y) : (x, y) ∈ R2 → ψ(x, y) = c ∈ R (82)

A simple example of scalar field is:

ψ(x, y) = a x y, a ∈ R (83)

A vector field is a mapping that associates a vector to

each point (x, y) of R2, i.e.:

~φ(x, y) : (x, y) ∈ R2 → ~φ(x, y) =

[
φx(x, y)

φy(x, y)

]
∈ R2

(84)

The gradient of a scalar field on R2 is defined as:

~∇ψ(x, y) =
∂ψ(x, y)

∂x
~i+

∂ψ(x, y)

∂y
~j (85)

from which we conclude that the gradient defines a vec-

tor field on R2.
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The gradient of a scalar field ψ(x, y) at any point (x, y)

can be understood as pointing to the direction of maxi-

mum variation of that field at that point.

As a simple example of a scalar field, we have:

ψ(x, y) = a x y (86)

which induces the following respective gradient vector

field:

~∇ψ(x, y) = a y î+ a x ĵ (87)

Given a scalar field ψ(x, y), and a generic small (differ-

ential) displacement vector d~u at point (x, y):

d~u = dx~i+ dy~j (88)

the total derivative of ψ(x, y) implied by d~u can be ex-

pressed as follows:

dψ(x, y)|d~u = 〈ψ(x, y), d~u〉 = ~∇ψ(x, y) · d~u =

=
∂ψ(x, y)

∂x
dx+

∂ψ(x, y)

∂y
dy (89)

As an example, consider the small displacement vector

placed at (x = 1, y = 2):

d~u = 0.02~i− 0.003~j (90)

and the scalar field defined as:

ψ(x, y) = 5x y (91)

We have from Equation 89 that the total variation of

the scalar field associated to the displacement d~u is:

dψ(x = 1, y = 2)|d~u =

= 5(0.02)(2) + 5(0.003)(1) = 0.215 ≈
≈ ψ(x+ dx, y + dy)− ψ(x, y) = 0.2153

A particular important aspect regarding the possible

relationship between trajectories and scalar and vector

fields concerns the concept of line integrals.

Given a scalar field ψ(x, y) and a continuous trajectory

~u(t) sharing the same domain (e.g. R2), the line integral

of this scalar field from ti to tf can be written as:

ˆ tf

ti

ψ(x(t), y(t)) ||~̇u(t)|| dt (92)

The resulting scalar value can be understood as the

area beneath the scalar field sliced by the considered tra-

jectory. It is sometimes interesting to thing of the moving

point as a probe that is used to measure and analyze the

vector field, in terms of its integration, along the respec-

tively defined trajectory.

As an example, let us consider the line integral from

ti = 0 to tf = 1 of the scalar field:

ψ(x, y) = 2x y

considering the trajectory:

~u(t) = (x(t), y(t)) =

[
t

−t+ 2

]
so that:

~̇u(t) = (ẋ(t), ẏ(t)) =

[
1

−1

]
The scalar field restricted by the considered trajectory

can be written as:

ψ(x(t), y(t)) = 2 (t) (−t+ 2) (93)

It follows from Equation 92 that:

ˆ 1

0

ψ(x(t), y(t)) ||~̇u(t)|| dt =

=

ˆ 1

0

2 t (−t+ 2)
√

(1)2 + (−1)2 dt =

= 2

ˆ 1

0

[
−t2 + 2t

]√
2 dt =

= 2
√

2

[
− t

3

3
+

2 t2

2

] ∣∣∣∣∣
1

0

=

= 2
√

2

[
−1

3
+ 1

]
=

4

3

√
2 (94)

Given a vector field ~φ(x, y), it is possible to define its

line integral, by a continuous trajectory ~u(t) from ti to tf
as:

ˆ tf

ti

~φ(x(t), y(t)) · ~̇u(t) dt (95)

Therefore, the line integral of a scalar field along a given

trajectory can be thought of as probing the ‘net agree-

ment’ between the relative orientations of the gradient

and the first derivative of the point motion along its re-

spective trajectory.

As an example, let us calculate the line integral of the

vector field corresponding to the gradient of the scalar

filed used in the previous example and that same trajec-

tory considering ti = 0 and tf = 1. We then have that:

~φ(x, y) = ~∇ψ(x, y) =

[
2 y

2x

]
(96)

The gradient field restricted by the considered trajec-

tory can be expressed as:

~φ(x(t), y(t)) =

[
2 (−t+ 2)

2 t

]
(97)
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No, by using Equation 95, it follows that:

ˆ 1

0

~φ(x(t), y(t)) · ~̇u(t) , dt =

=

ˆ 1

0

(−2t+ 4, 2t) · (1,−1) dt =

= 2

ˆ 1

0

(−2t+ 2) dt =

= 2
[
−t2 + 2t

] ∣∣∣1
0

= 2

Interestingly, it can be shown that the line integral be-

tween two points ~a = (x(ti), y(ti)) and ~b = (x(tf ), y(tf ))

of a vector field ~φ(x, y) corresponding to the gradient of

a scalar field ψx, y does not depend on the specific trajec-

tory between these two points, provided it is continuous.

That is why this type of vector field is called conservative.

We also have that:ˆ tf

ti

~φ(x(t), y(t)) · ~̇u(t) , dt =

= ψ(x(tf ), y(tf ))− ψ(x(ti), y(ti)) = ψ(~b)− ψ(~a) (98)

Interestingly, it follows that even though the scalar field

ψ(x, y) is not directly taken into account, it is still possible

to calculate its relative change from its gradient scalar

field by using the property above.

The line integral over a closed trajectory ~u(t) is called

circulation of that field by the given trajectory. It follows

from the previous property that:˛
~u(t)

~φ(x(t), y(t)) · ~̇u(t) dt = 0 (99)

Let us now switch R3, so that we can define the vector

product between two vectors, as this will be used in the

section about interaction between fields and trajectories.

Thus, the vector product or cross product between two

vectors ~u = (ux, uy, uz) and ~v = (vx, vy, vz) can be defined

in terms of the following determinant:

~u× ~v =

∣∣∣∣∣∣
î ĵ k̂

ux uy uz
vx vy vz

∣∣∣∣∣∣ =

= uy vz î+ uz vx ĵ + ux vy k̂−

− uz vy î− ux vz ĵ − uy vx k̂ =

= (uy vz − uz vy) î+ (uz vx − ux vz) ĵ + (ux vy − uy vx) k̂

(100)

We also have that the magnitude of the cross-product

can be obtained as:

|~u× ~v| = |~u| |~v| sin θ n̂ (101)

where θ is the smallest angle between the two vectors,

and n̂ is the unit magnitude vector that is normal to both

Figure 14: The corkscrew rule for the cross product ~u× ~v between

two vectors ~u and ~v.

vectors. Observe that, unlike the dot product, the cross

product is not commutative.

The direction of the cross product between ~u and ~v can

be obtained by the right-hand rule, in which we use our

right hand, aligning vector ~u with the pointer figer, vector

~v with the middle finger, so that the resulting direction

is given by the thumb. It is also possible to consider the

corkscrew rule, in which vector ~u is rotated towards ~v,

with the direction of the respective cross product being

provided by the direction of a corkscrew rotating in that

manner, as illustrated in Figure 14.

9 Field-Motion Interactions

So far in the present work, we have concentrated our at-

tention on how motions/trajectories can be understood

as providing means for better understanding and probing

scalar and vector fields, which can be done in terms of

respective line integrals.

Now, we turn our attention to the particularly inter-

esting question of how a given vector field ~φ(t) can be

made to influence the motion of a point. Although there

is an unlimited number of ways in which this can be

done, here we first focus our interest on directly pro-

portional relationships, through proportionality constants

b, c ∈ R, c 6= 0, between the field vectors and the vectors

obtained by time-differentiating the point location func-

tion ~u(t), i.e.:

b
dn ~u(t)

dtn
= ~u[n](t) = c ~φ(x, y, t) (102)

where the non-negative integer n indicates the order of

the considered derivative at which the field/point motion

relationship takes place.

Observe that the relationship specified by Equation 102

necessarily implies that the n−th derivative of the posi-

tion vector ~x(t) will have the same orientation as that of

the field or, in other words, will be necessarily parallel to

that field. Therefore, only changes in the magnitude of

the n−th derivative of ~x(t) can take place.
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The establishment of a fully determined relationship

between the point trajectory ~u and the field ~φ(t) therefore

requires the definition of two parameters: (i) the propor-

tionality constant c; and (ii) the order of the derivative

n.

The specification of n implies some important conse-

quences, including: (i) the derivatives from n upwards

are determined by the vector field irrespectively to initial

conditions; and (ii) the n derivatives n − 1, n − 2, 1, 0 of

the point position are determined by the action of the the

vector field over respective the initial conditions.

Given a specified differentiation of order n, we have that

when ~φ(x, y) = ~0 throughout, it will follow tha ~u[n−1]

down to ~u[0] can be non-zero vectors. For instance, if

~u[n](t) is a constant vector, ~u[n−1](t) =
´
x[n]dt will be

linearly increasing, etc.

Assuming continuity of the derivatives, the choice of n

determines the extent of the ‘memory ’ of the motion along

time t after the force field ~f(x) is removed or abruptly

vanishes. Therefore, if a point is moving under influence

of a field as discussed above respectively to a given value

of n, the point will henceforth keep its derivative ~u[n−1]

constant as of at the instant when the field is completely

removed, while the other lower order derivatives, as well

as the point position, are progressive changed by the re-

maining constant derivative ~u[n−1].

The above discussion is illustrated in Figure 15 respec-

tively to a point moving under the influence of the follow-

ing time-constant field:

~φ(x, y) =

{
φx(x, y) = 0.1 y

φy(x, y) = 0.2x
(103)

For simplicity’s sake, we henceforth take c = 1, t ∈
[0, 10], and that the initial point position in all cases is

(x0, y0) = (3, 2). We shall assume two possible situa-

tions: (i) the field remains during all considered time

values, defining the trajectory shown in blue; and (ii)

that the vector field φ(x, y) is completely removed at

tr = 1.616162, shown in green. The share portion of the

respective trajectories for t varying from 0 to tr are shown

in red. The presented points have been equally sampled

at time intervals δt = 0.1010101.

The situation depicted in Figure 15(a) concerns point

motion with n = 1, in which case the tangent of the point

velocity, at each time instant t, simply follows the im-

posed vector field until, when the latter is removed, the

trajectory simply stops at its current position (last point

along the trajectory shown in red).

Now, we consider the case in which the field interac-

tion takes place for n = 2, i.e. the action of the field im-

plies directly proportional changes in the velocity of the

point motion, which is illustrated in Figure 15(b). The

initial velocity (vx(0), yy(0)) is shown as the blue vector

(a)

(b)

(c)

Figure 15: Different types of interaction between a point and a field.

Motion of a point with (x0, y0) =, (x0, y0) = under the vector field
~φ(x, y) = considering n = 0 (a), n = 1 (b) and n = 2 (c).
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at the initial position. In case the field is kept along

time, the point has its velocity (blue vectors) continu-

ously changed, becoming progressively aligned with the

field vectors. However, in the situation where the force

is nullified at tr, the point continues its motion with con-

stant vector speed (in green) equal to what it had when

of the ceasing of the field .

Figure 15(c) depicts the case when n = 3. The

initial velocity and acceleration vectors are shown at

(vx(0), yy(0)) respectively in blue and dark red. The

blue and green vectors along the two trajectories refer

to the vector velocity, while the acceleration vectors are

presented in cyan. When the field is kept constant, the

point has its respective velocity and acceleration progres-

sively aligned with the field vectors (blue trajectory). At

the same time, the acceleration itself is increased along

time. Interesting, and in marked contrast with the previ-

ous example, the point retains its acceleration when the

field is removed at tr, which then acts so as to progres-

sively change the velocity it had at that same time, while

the velocity of the acceleration remains constant. Though

not shown in the figure as a consequence of the considered

spatial region, the green trajectory will thereon substan-

tially diverge from the blue trajectory, while keeping its

velocity vectors not necessarily aligned to the originally

existing field.

Given a second vector field ~ψ(x, y, t) also influencing the

point motion as specified in Equation 102 for a certain

proportionality constant e and the same differentiation

order n, in case these two effects can be linearly combined,

we have:

b
dn ~u(t)

dtn
= ~u[n](t) = c ~φ(x, y, t) + e ~ψ(x, y, t) (104)

This equation therefore provides an example of the lin-

ear superimposition of effects.

Another interesting basic manner in which the motion

of a point can be affected by a vector field corresponds

to considering a vector field ~τ defined as a consequence of

another vector field ~β acting on some of the derivatives

m of the point position, such as in the following exam-

ple, which necessarily assumes R3 because of the cross

product:

~τ(x, y, z, t) = a
dm ~u(t)

dtm
× ~β(x, y, z, t) (105)

The vector field ~τ(x, y, x, t) will therefore be orthogonal

to both the considered derivative of the point position and

the vector field ~β(x, y, x, t). The resulting vector field

~τ(x, y, z, t) can then influence the n-th derivative of the

point motion as:

b
dn ~u(t)

dtn
= a

dm ~u(t)

dtm
× ~β(x, y, z, t) (106)

In case all the above vector fields φ(x, y, x, t),

ψ(x, y, x, t) and τ(x, y, x, t) influence the point motion by

acting on the same derivative n of its position by linear

superimposition, the following single equation incorporat-

ing the interactions of the point motion with the three

considered vector fields:

b
dn ~u(t)

dtn
= c ~φ(x, y, z, t) + e ~ψ(x, y, z, t)+

+ a
dm ~u(t)

dtm
× ~β(x, y, z, t) (107)

10 Relative Position and Speed

Let two, possibly moving, points P and Q in R2 be spec-

ified by respective canonical coordinates (xP (t), xQ(t))

and (xQ(t), yQ(t)). We can define the relative position

of Q respectively to P as:{
xQ,P (t) = xQ(t)− xP (t)

yQ,P (t) = yQ(t)− yP (t)
(108)

which allows us to determine the respective instanta-

neous relative velocity as corresponding to:{
ẋQ,P (t) = ẋQ(t)− ẋP (t)

ẏQ,P (t) = ẏQ(t)− ẏP (t)
(109)

The instantaneous relative acceleration then corre-

sponds to: {
ẍQ,P (t) = ẍQ(t)− ẍP (t)

ÿQ,P (t) = ÿQ(t)− ÿP (t)
(110)

In case we translated these two points equally to an-

other position (X,Y ) ∈ R2, we will have:{
xP (t) = xP (t) +X

yP (t) = yP (t) + Y
(111){

xQ(t) = xQ(t) +X

yQ(t) = yQ(t) + Y
(112)

It can be immediately verified that this translation will

have no effect whatsoever on the relative position, veloc-

ity or acceleration, because the constant terms X and

Y are respectively canceled by the subtraction involved

in the definition of the relative position. Actually, any

other function derived from the relative position will be

preserved.

11 Moving Frames

Though we have so far studied the motion of a point re-

spectively to a fixed Cartesian coordinate system, it is

also interesting to consider how a same motion can be

understood from different coordinate systems. One main
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Figure 16: Two coordinate systems, or frames, with respective ori-

gins at different positions, are used to specify the position of the

point p. Observe that we chose to express the position of the origin

of the (u, x) frame in terms of the relative vector (X,Y ).

motivation for this study is that there is no absolute po-

sition where to place our coordinate system in the real

world. For simplicity’s sake, we shall also refer to these

coordinate systems as frames.

We start with the situation illustrated in Figure 16,

where two Cartesian frames (x, y) and (u, v) are placed a

distinct positions, namely (0, 0) and (1, 2).

More specifically, we have that the origin of the frame

(u, v) is here specified in terms of the relative vector

(X,Y ). which allows us to write:{
x = X + u

y = Y + v
(113)

therefore relating the coordinates from both frames.

We can now express the relationship between the posi-

tion of the point P in the two considered frames as:{
xP = X + uP
yP = Y + vP

(114)

It immediately follows that any motion observed in

terms of the frame (x, y) will be identical to that tracked

by using frame (u, v), except for a translation by the rel-

ative vector (X,Y ).

Let us now consider the situation in which frame (u, v)

is moving with constant speed respectively to frame (x, y),

as illustrated in Figure 17. In this case, we can write:{
X(t) = (a t+ b)

Y (t) = (c t+ d)
(115)

In case point P is performing a generic motion, so that

its coordinates become a function of t. In this case, it

Figure 17: Two distinct frames are considered for observing a point,

but one is moving with constant speed relatively to the other.

follows that: {
xP (t) = (a t+ b) + uP (t)

yP (t) = (c t+ d) + vP (t)
(116)

The coordinates relative to the (u, v) frame become

functions of time. As the motion of the frames is rela-

tive one another, we can rewrite the previous equations

as: {
uP (t) = xp(t)− (a t+ b)

vP (t) = yp(t)− (c t+ d)
(117)

We therefore also have that:{
u̇P (t) = ẋP (t)− a
v̇P (t) = ẏP (t)− c (118)

Thus, if (ẋP , ẋP ) is constant, so will (u̇P , v̇P ) be. This

implies that a uniform linear motion in any of the frames

will also be perceived as such by the other frame, though

with possibly distinct constant speed implied by the rel-

ative motion between the two frames. Figure 18 illus-

trates this important property, showing a uniform motion

as seen from frames (x, y) and (u, v), respectively.

Now, let us consider that frame (u, v) is undergoing an

accelerated motion relatively to frame (x, y), which can

be expressed as:{
uP (t) = xp(t)−

(
a t2 + bt+ c

)
vP (t) = yp(t)−

(
d t2 + et+ f

) (119)

In this case, if point P is moving with constant speed re-

spectively to the frame (x, y), the following motion speed

will be perceived from frame (u, v):{
u̇P (t) = ẋp(t)− (a t+ b)

v̇P (t) = ẏp(t)− (d t+ e)
(120)
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Figure 18: A uniform linear motion in frame (x, y) will be nec-

cessarily perceived as a uniform motion when observed from the

frame (u, v) undergoing uniform linear motion relatively to the other

frame.

Figure 19: A uniform linear motion in frame (x, y) can be perceived

as an accelerated motion when observed from a relatively acceler-

ated frame (u, v).

Therefore indicating that, unless a = d = 0, the uni-

form linear motion respectively to frame (x, y) will be

understood as being accelerated (changing speed) when

observed from frame (u, v). Figure 19 presents how a

uniform linear motion in frame (x, y) will become when

observed from frame (u, v).

Important implication of the above developments is

that a relative uniform linear motion between two frames

will transform linear motions into linear motions. In case

one of the frames is accelerating relatively to the other,

this will no longer be guaranteed, and it will be impos-

sible for a observed placed in the accelerating frame to

decide if the observed non-uniform motion is indeed non-

uniform, of whether the observed variation of speed is a

consequence of its frameworks not moving with uniform

linear motion.

12 Concluding Remarks

Mathematics and physics are possibly the two most basic

areas in the physical sciences. That there is an intrin-

sic, effective relationship underlying these two areas, es-

pecially in the sense that the former provides a suitable

main backbone for the latter, has not only paved the way

to continuing discoveries and advances, but also intrigued

scientists for a long time.

The present work has been conceived and developed

from the perspective of approaching the interesting prob-

lem of point motion, as well as its properties including

interaction with fields, from an almost exclusively general

mathematical perspective. The choice of R2 instead of R3

has been motivated as a manner to reach a balance be-

tween the extreme simplicity of R and the substantially

denser development considering R3. Thus, even though

the present work is in a sense less general regarding the

adopted space dimensionality, the extension to R3 should

be mostly direct, especially because the present approach

focuses on differential aspects, and not integration, which

would be intrinsically less directly extensible to R3.

The main reasons for the mathematics-based presenta-

tion is that it could provide useful background for subse-

quent studies in any area involving point motion, of which

there are many, as well as for obtaining a treatment of mo-

tion that is more general than that in physics, as there

is not need to satisfy constraints such as Newton’s lass of

motion. Therefore, in a sense the present work could be

understood as approaching the issue of particle point mo-

tion, but without considering any related physical prop-

erty such as mass or electric charge. Of additional inter-

est is the fact that the derivation, along the current work,

of important physics concepts such as inertial frames of

reference and conservative fields while considering only

mathematical aspects.

The enhanced generality of treating point motion as a

preparation for approaching the physics of particle mo-

tion provides an additional interesting feature: it creates

an ampler perspective that can then be made more spe-

cific when the physical constraints are brought in. For

instance, the studied interaction between a moving point

and scalar and vector fields considered a linear relation-

ship taken at any possible motion derivative order. Thus,

when Newtons’s law of motion are considered, it becomes

clear that they implement one choice among a much wider

range of possibilities, emphasizing the importance of the

discovery and application of these laws. The possibil-

ity of instantiating the broader concepts presented in the

present work by incorporation of physical constraints is

expected to be developed in a subsequent work.
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