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Abstract

This study reviews the PSM and HSM deep learning architectures for disparity estimation
from an input stereo pair and assesses their applicability for satellite stereo reconstruction.
All methods are tested on urban landscapes unseen at training time, using pre-trained weights
learned from a stereo matching benchmark for aerial imagery. The quality of the disparity maps
output by each method is assessed based on the subsequent surface models, which are evaluated
using a lidar reference model. The conducted experiments give insight into the robustness of each
architecture (e.g. robustness to different input resolutions, color spaces or acquisition dates), as
well as their generalizability across different cities. Lastly, the results obtained with the different
networks are compared with those of a state-of-the-art variant of the semi-global matching
algorithm, which is a well-known classic methodology for satellite dense stereo matching.

Source Code

The source code and documentation for this algorithm are available from the web page of this
article1. Usage instructions are included in the README.md file of the archive. The original
implementation of the methods is available here2 and here3.
This is an MLBriefs article, the source code has not been reviewed!

Keywords: stereo matching; disparity estimation; deep learning; satellite images; aerial images

1https://doi.org/10.5201/ipol.2022.435
2https://github.com/JiaRenChang/PSMNet
3https://github.com/gengshan-y/high-res-stereo
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1 Introduction

The concept of disparity refers to the horizontal displacement d between corresponding pixels of two
images that observe the same scene from different viewpoints. Estimating disparity from stereo, i.e.,
knowing that a pixel (x, y) in the left image corresponds to a pixel (x− d, y) in the right image, is a
classic and well-known problem in computer vision. The disparity values that match a stereo pair of
images are valuable information because they are inversely proportional to the depth of the scene.
Assuming a simple pinhole camera model, the depth z of the point that corresponds to the 3D point
denoted x and observed by the pixels (x, y) and (x− d, y) is equal to

z = f ·B
d

, (1)

where d is the disparity, f is the focal length of the camera and B is the baseline length, corresponding
to the segment between the two camera centers. The depth z in (1) represents the depth of x with
respect to the baseline of the system.

In this paper we review some deep learning networks for disparity estimation from an input stereo
pair. We focus on the Pyramid Stereo Matching (PSM) and Hierarchical Stereo Matching (HSM)
architectures [4, 33]. In particular, the objective is to evaluate the suitability of such methods for
high-resolution remote sensing images. Figure 1 shows an example of the input and output data.
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Figure 1: Example of input stereo pair [3] and the resulting disparity maps, in pixel units, obtained with a classic matching
algorithm [11] and a deep learning (DL) network [4].

The majority of satellite stereo pipelines employ classic methodologies to construct disparity maps,
which could be potentially replaced by a neural network. However, the lack of public benchmarks
makes direct comparisons difficult [15, 32]. Most deep architectures are originally conceived and
trained for synthetic or street-level scenes [14, 24, 23], which raises questions about their performance
in other fields, such as satellite imagery. It seems unfair to draw conclusions using networks that have
never seen anything resembling a satellite image. For this purpose, we employ pre-trained weights
that have been fine-tuned using a stereo matching benchmark for aerial imagery [32]. Our choice
is motivated by the fact that aerial images can be understood as fragments of very high resolution
satellite images, with a great similarity from the semantic point of view. Previous work has already
demonstrated the advantages of using fine-tuned weights to work with remote sensing images [15, 32].

To assess the methods, we replace the matching algorithm of the satellite stereo pipeline S2P [6]
using each of them. Then, using the same rectified pairs and camera models, S2P is used to re-
construct multiple surface models, which are evaluated using a lidar-acquired ground truth. Since
the only element that changes is the disparity map used to extract each surface model, the altitude
errors are directly indicative of disparity accuracy.
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2 Related Work
The combination of global and local information is a widely studied subject in the field of disparity
estimation. Both classic and deep learning methods have proposed various strategies to address this
key issue. For each branch, this section reviews the most relevant algorithms related to this work.

2.1 Classic Stereo Matching
Local methods compute a matching cost (e.g. sum of absolute differences, normalized cross correla-
tion, census) between a window centered on a pixel of the reference image and an equivalent window
centered on some pixel of the secondary image [30, 13]. Epipolar geometry is used to reduce the
amount of matching candidates [16]. These methods are known to fail on ill-posed regions containing
repetitive patterns, untextured regions or reflective surfaces.

Global methods overcome the limitations of local methods by approaching stereo matching as an
energy minimization problem that adds a regularization term to the matching cost. The idea behind
the regularization term is that neighbor pixels of the same object should have similar disparities.
Most global matching energies take the generic form

E(d) =
∑
p∈I

C(dp) +
∑

(p,q)∈ξ
V (dp, dq), (2)

where C(dp) is the local matching cost of assigning disparity dp to pixel p and V (dp, dq) is the
regularization term enforcing that dp should be similar to dq, where q is a neighbor pixel of p. The
domain I comprises all nodes (or pixel coordinates) and ξ is the edge set pointing to the neighbor
pixels taken into account. Usually, the graph G = (I, ξ) is 4-connected or 8-connected.

The Semi-Global Matching (SGM) algorithm [18] is a popular choice for satellite imagery [2, 6, 5]. It
computes an approximate solution to the NP-hard problem (2) using a regularization term equal to

V (d, d′) =


0 if d = d′,

P1 if |d− d′| = 1,
P2 otherwise.

(3)

The regularization term (3) considers three different categories. A small penalty P1 is imposed for
small disparity differences (up to 1 pixel), which are common on slanted surfaces. A larger penalty
P2 (with P2 > P1) is given to stronger disparity discontinuities. Finally, there is no penalty if
neighbor disparities d and d′ are the same. Such categories are particularly suitable for terrestrial
surface modeling, which consists mostly of flat or slanted terrain and roofs, with a minority of large
discontinuities (e.g. cliffs or building boundaries).

The strategy adopted by SGM consists in dividing the original 2D problem into multiple 1D prob-
lems defined on scan lines, which are straight lines that run through the image in the 4 or 8 cardinal
directions. Each scan line can be processed as an independent process, allowing for parallelization
and high speed computation. For each direction r, a cost volume Lr is computed recursively starting
from the image borders. The cost Lr(p, d) at pixel p along direction r at disparity level d is

Lr(p, d) = C(p, d) + min


Lr(p− r, d),
Lr(p− r, d− 1) + P1,
Lr(p− r, d+ 1) + P1,
mini Lr(p− r, i) + P2

 , (4)

where
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- Lr(p, d) is the cost of assigning disparity d to pixel p following direction r.

- C(p, d) is the matching cost of assigning disparity d to pixel p.

- Lr(p− r, d) is the previous cost in r direction at disparity d.

- Lr(p− r, d− 1) is the previous cost in r direction at disparity d− 1.

- Lr(p− r, d+ 1) is the previous cost in r direction at disparity d+ 1.

- mini Lr(p− r, i) is the previous minimum cost in r direction, at any disparity level.

By combining (3) and (4), the cost (4) can be summarized as

Lr(p, d) = C(p, d) + min
d′∈D

(Lr(p− r, d′) + V (d, d′)) . (5)

The different costs (5) computed in each direction r are added to obtain a single cost volume,

Ccost =
∑

r
Lr(p, d), (6)

and the final disparity for each pixel is selected using a Winner-Takes-All (WTA) evaluation [13] of
Ccost(p, ·), i.e. the disparity d with minimum cost is taken for each pixel p.

Multiple variants have been proposed to further improve the performance of SGM [28, 11, 1].
In this work, the MGM variant is taken as a reference for classic stereo matching. MGM or More
Global Matching [11] improves SGM by injecting information from the perpendicular direction r⊥
to each cost along the direction r. In particular, MGM modifies (5) as

Lr(p, d) = C(p, d) +
∑

x∈(r,r⊥)

1
2 min
d′∈D

(Lr(p− x, d′) + V (d, d′)) . (7)

Expression (7) preserves its recursive nature and requires only minor adjustments in the paralleliza-
tion process [11]. The difference is that the cost Lr(p, d) not only considers the preceding points in
a single scan line, but also uses the points of the preceding scan line (i.e. the pixel above). Such
strategy improves the predicted disparities and prevents streaking artifacts, which are characteristic
of SGM due to the 1D nature of the method.

2.2 Deep Stereo Matching
Like classic methods, deep learning architectures for disparity estimation also aim to obtain a good
compromise between local and global matching costs. Feature extraction and the construction of
cost volumes also constitute the usual steps in this branch of methods [21].

Convolutional neural networks (CNN) with encoder-decoder architectures, which had already
proven successful in aggregating coarse-to-fine features for semantic segmentation (e.g. UNet), served
as inspiration for the first end-to-end models for disparity regression. For example, DispNet [23] and
CRL [27] reused hierarchical information by concatenating features from the encoder layers with
those from the decoder layers. In these earlier models, the features extracted from the left and right
image of an input pair were fused in the first layers of the contracting path, by building a correlation
volume. Given some left and right feature maps, fL and fR, the correlation volume Ccorr is commonly
computed as the normalized inner product at each disparity level d

Ccorr(x, y, d) = 1
F
〈fL(x− d, y), fR(x, y)〉, (8)
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where F is the number of channels in the feature maps fL and fR. The operation is done for each
2D position (x, y), resulting in an output volume of size H ×W ×D where H and W are the height
and width of the feature maps, and D is the disparity range. The resulting correlation volume can
be forwarded as another feature map of D channels. The DispNet authors demonstrated that such
strategy outperforms directly feeding the CNN with a stack containing both input images [23].

GC-Net [20] proposed a different strategy to merge the information from the input pair, by
building a cost volume of features learned using a series of residual blocks [17]. Given the feature
maps fL and fR, the cost volume Ccost is built by concatenating the feature vectors at each disparity
level d

Ccost(x, y, d) = concat (fL(x− d, y), fR(x, y)) , (9)
where concat is the concatenation operation. Following the notation in (8) this strategy produces a
4D volume with size H×W ×D×2F . The feature dimension F is preserved in this way, allowing the
network to exploit contextual information in the later stages. The GC-Net then uses a 3D convolution
encoder-decoder structure to regularize the cost volume at multiple scales, followed by a differentiable
soft argmin operation to predict the disparity values.

GC-Net inspired the PSM [4] and HSM [33] networks that this article reviews in detail. Such
models brought significant accuracy improvements by explicitly employing multi-scale features to
construct the cost volume Ccost. Subsequent deep stereo matching models have also addressed other
interesting issues. For instance, DeepPruner [9] does not require a predefined disparity range to
search for matches. The architecture is similar to that of PSM [4] but a differentiable PatchMatch
algorithm is introduced to obtain a sparse cost volume, where the disparity search range is learned
and adapted to each pixel. Pruning unlikely disparities provides a significant gain in efficiency. An
image guided refinement module is also added to reduce noise and improve sharp boundaries: the
disparity map predicted after cost regularization is coupled with features learned from the reference
view, and used to feed a lightweight CNN that refines the disparity values.

GA-Net [35, 15] is another interesting method. It replaces some of the 3D convolutional layers
used for cost regularization, which are computationally costly and memory-consuming, by using a
Semi-global Guided Aggregation layer (SGA) which is a differentiable approximation of SGM, i.e. (5).
The SGA layers are followed by a Local Guided Aggregation layer (LGA) to refine thin structures
and object edges. The LGA filtering uses the cost values of adjacent disparity levels (d− 1, d, d+ 1)
in a K ×K spatial window to refine the cost of disparity d at the central point of the window.

It is common in end-to-end models for disparity and depth estimation [4, 33, 34] that the final
predicted values are regressed by means of a differentiable soft argmin operation, as originally pro-
posed in GC-Net [20]. In the last layer of such networks, the regularized costs Ccost are compressed
from a 4D volume to a 3D volume by means of a single-channel 3D convolutional layer that reduces
the feature dimension to a single value. The depth of the 3D volume Ccost is then equal to D, the
disparity range. The predicted disparity d̂ at a 2D point (x, y) is obtained as

d̂(x, y) =
D∑
d=0

d× softmax(−Ccost(x, y, d)). (10)

All possible disparity levels d ∈ D contribute to the prediction (10) according to a weight equal to
the softmax function applied to the negative cost at position (x, y, d), to give higher weights to lower
costs. Each weight represents the normalized probability of the corresponding disparity level.

3 Methodology
This work reviews Pyramid Stereo Matching (PSM) [4] and Hierarchical Stereo Matching (HSM) [33],
two deep learning architectures for disparity estimation from an input rectified stereo pair of images.
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Both models follow a structure that can be divided into a first part dedicated to feature extraction
and a second part dedicated to the regularization of a cost volume constructed with the previously
extracted features. Disparity values are then regressed based on the regularized costs as in (10).

3.1 Pyramid Stereo Matching network (PSM)
The PSM network [4] architecture is summarized in Figure 2(a). This model is inspired by GC-Net [20]
but adds a major ingredient: a Spatial Pyramid Pooling (SPP) module at the end of the feature ex-
traction path to further exploit the global information. This idea was motivated by the effectiveness
of the SPP modules, originally introduced for semantic segmentation [36], to expand the receptive
field and capture context information.

Feature extraction. Illustrated in Figure 2(b), this part consists of a CNN followed by a SPP
module. The CNN is a contracting path consisting of 2D convolutional layers and a series of residual
blocks. Downsampling takes place due to the use of a stride of 2 in certain layers. Some residual
blocks use dilated convolutions to help increase the receptive field.

Given an input feature map fi, the SPP module of PSM applies an average pooling operation with
four different kernel sizes, to explicitly generate features at different spatial scales. The multi-scale
feature maps then undergo a 1 × 1 convolutional layer to compress the feature dimension, followed
by an upsampling step employing bilinear interpolation, in such a way that their final height and
width is the same as that of the input fi. The different levels of feature maps output by the SPP
module are concatenated with fi and fused using further convolutional layers (fusion block).

Cost regularization. Feature maps learned by the feature extraction part are used to build a
4D cost volume as explained in Section 2. This is done by concatenating the feature vectors of the
two images at each disparity level, as in (9). The cost volume is regularized using a stacked hourglass
architecture, detailed in Figure 2(c), that consists of a chain of three encoder-decoder modules of
3D convolutional and deconvolution layers. Each hourglass or encoder-decoder module generates a
disparity map that contributes to the loss function, in what is referred to as intermediate supervision.
The highest resolution is achieved in the last output, i.e. the third disparity map.

Stacked hourglass architectures with intermediate supervision exploit the possibility to reevaluate
initial estimates [25]. The idea is to give multiple opportunities to the network to produce coherent
results at both local and global contexts. For example, if the first hourglass module focuses on very
local neighborhoods, subsequent modules will explore higher order spatial relationships.

Loss function. The PSM network is supervised using a smooth L1 loss function, chosen for its
higher robustness to outliers with respect to the L2 loss.

L(dGT, d̂) = 1
N

N∑
i=1

smoothL1(dGT − d̂), where smoothL1(x) =
0.5x2 if |x| < 1
|x| − 0.5 otherwise,

(11)

where N is the number of pixels and dGT and d̂ are the ground truth and predicted disparities,
respectively. Following the strategy of intermediate supervision of the stacked hourglass architecture,
the loss terms obtained at each of the three hourglass modules are added to compute the final cost
at each training iteration (12). The weight of each term is fixed, with increasing value according to
the number of hourglass modules already covered

LPSM = 0.5L1 + 0.7L2 + L3, (12)

where each Li takes the form of (11) and the subscript i = {1, 2, 3} refers to the index of the hourglass
modules in Figure 2(c).
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(a)

(b)

(c)

Figure 2: PSM network: (a) Overview. (b) Feature extraction path. The number of channels of each convolutional
layer is shown below its rectangle. Circles indicate the number of residual blocks: e.g. residual block 1 is repeated
3 times. Bilinear interpolation is used for upsampling. The 2D conv layers are used with batch normalization, to
gain stability, and ReLU activation to introduce non-linearities. Colored arrows represent additive skip connections.
(c) Cost volume regularization path. This 3D CNN consists of three hourglass modules of 3D conv layers, which
are used to aggregate the feature information along the disparity dimension. Trilinear interpolation is used for
upsampling. Colored arrows represent additive skip connections. Each hourglass module predicts a disparity map,
with increasing detail definition.
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3.2 Hierarchical Stereo Matching Network (HSM)
After the breakthrough of the GC-Net and PSM architectures, HSM [33] was developed with the
purpose of gaining efficiency and accuracy when handling high-resolution image pairs, with a larger
input image size. The HSM architecture is summarized in Figure 3(a).

Feature extraction. Like PSM, the feature extraction part of HSM starts with a CNN followed
by a SPP module. The CNN also consists of an encoder structure of 2D convolutional layers and
residual blocks. However, the number of residual blocks is significantly decreased with respect to
PSM and max pooling and convolutions with a stride of 2 are used to further compress the spatial
scale of the feature maps. Similarly to PSM, the SPP module of HSM applies average pooling with
four different kernel sizes, but resulting features are merged by addition.

Instead of directly using the SPP output, denoted fSPP , to construct the cost volume, HSM
reprocesses fSPP by means of a decoder structure. This is shown in Figure 3(b). In particular,
the decoder fuses features before and after SPP by concatenation and gradually upsamples the
result using up-convolutions (convolution after upsampling), to produce coarse-to-fine feature maps
that reach higher spatial resolutions. Four feature maps are obtained in the end, {f (k)

SPP}, where
k = {0, 2, 4, 8} is the upsampling factor with respect to the features provided by SPP. The four final
feature maps {f (k)

SPP} are compressed to 32 or 16 channels using 1× 1 convolutional layers.
Cost regularization. Instead of building a single cost volume, HSM builds a multi-scale pyra-

mid of four cost volumes using the four multi-scale {f (k)
SPP} feature maps produced in the feature

extraction part (see Figure 3(c)). Each cost volume of the pyramid has increasing spatial and dispar-
ity resolution. To control the size of the cost volumes, these are constructed in a different way with
respect to PSM and GC-Net. Instead of concatenating the left fL and right fR features, as in (9),
each Ccost volume is constructed using absolute differences

Ccost(x, y, d) = |fL(x− d, y)− fR(x, y)|. (13)

The set of multi-scale cost volumes is then regularized using a chain of 4 decoders, each devoted
to one of the volumes, as shown in Figure 3(c). The decoders employ 3D convolutional layers and
trilinear upsampling. Larger scale decoders take as input their corresponding cost volume concate-
nated with the filtered costs provided by the previous decoder. The first two decoders also contain a
Volumetric Pyramid Pooling (VPP), which is the exact equivalent of the SPP module, but extended
for 4D feature volumes, i.e. using 3D convolutional layers and 3D kernels for average pooling.

Four different disparity maps are regressed using the regularized costs output by the chain of
decoders. The highest resolution is achieved in the last output, i.e. the fourth disparity map.

Loss function. The HSM network is supervised in a very similar way to the PSM architecture,
i.e. using a sum of smooth L1 losses between the predicted and ground truth disparities. The weights
assigned to the contribution of each disparity map increase exponentially according to the spatial
resolution of the corresponding input cost volume

LHSM = 1
26L1 + 1

24L2 + 1
22L3 + L4, (14)

where each Li takes the form of (11) and the subscript i = {1, 2, 3, 4} refers to the index of the
decoder modules in Figure 3(c).
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(a)

(b)

(c)

Figure 3: HSM network: (a) Overview. (b) Feature extraction path. The number of channels of each convolutional
layer is shown below its rectangle. Bilinear interpolation is used for upsampling. The 2D conv layers are used
with batch normalization, to gain stability, and ReLU activation to introduce non-linearities. (c) Cost volume
regularization path. A chain of decoders, consisting of 3D convs and Volumetric Pyramid Pooling (VPP) blocks,
are used to regularize a multi-scale pyramid of cost volumes. Trilinear interpolation is used for upsampling. Circles
indicate how many times the preceding layer is repeated.
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4 Experiments

The objective of this work is to evaluate the performance of PSM and HSM in the context of satellite
imagery. We focus on urban areas, observed at viewing angles not far from nadir. Instead of training
the deep learning models from scratch, we use pre-trained weights provided by the 2021 open-source
stereo matching benchmark for aerial imagery [32]. This ensures that the networks are already
familiar with the usual elements of Earth observation images: building roofs, tilted facades, roads,
trees, etc. Our experiments aim to assess the generalizability of the models and establish which
architecture offers higher robustness to different input specificities.

4.1 Aerial Stereo Matching Benchmark

The aerial stereo matching benchmark introduced in [32] was built using the ISPRS Vaihingen dataset
for urban classification and 3D building reconstruction [12, 29].

The ISPRS Vaihingen dataset consists of 20 large-scale aerial images taken with an Intergraph/ZI
digital mapping camera DMC [29]. The aerial images are 16 bit pansharpened color-infrared4 (CIR)
images with a resolution of about 8 cm per pixel. A lidar point cloud of the Vaihingen area (Germany)
is also available, with a point density varying between 4 and 7 points/m2.

The 2021 aerial stereo matching benchmark [32] provides 1092 pairs of 1024×1024 pixels, cropped
from the CIR images and rectified using the MicMac library [28]. Examples are shown in Figure 4.
The corresponding ground truth disparity maps were generated from the lidar point cloud and are
stored on 16 bits with the disparity value scaled by 256. Since the lidar data is very sparse, a density-
based filter was used to account for occlusions. The authors of the benchmark used 585 training pairs
to fine tune the PSM and HSM networks, originally trained on the KITTI dataset [14, 24].

4.2 Altitude-based Evaluation using Satellite Images

For our experiments, we selected four areas of interest (AOIs) of 256 × 256 m from the 2019 IEEE
GRSS Data Fusion Contest (DFC2019) [3], shown in Figure 12. The DFC2019 dataset provides,
among others, 26 WorldView-3 images, with a resolution of about 30 cm per pixel, acquired between
2014 and 2016 over the city of Jacksonville (Florida, US). We take image crops of varying size, around
800× 800 pixels, covering each target AOI. The resulting images are used to form stereo pairs.

We select suitable stereo pairs according to the criterion of [10], with the objective of maximizing
the accuracy of output disparities. The selection criterion prioritizes pairs with an angle between
views from 5 to 45 degrees and a maximum incidence angle of 40 degrees for each view. From this
set, we take the 30 pairs with closest acquisition dates and use them as input. The lists of pairs
selected for each AOI, as well as some example views, are included in the Appendix A.

As a substitute for ground truth disparities, our assessment is based on a digital surface model
(DSM) of each AOI, derived from lidar and part of the DFC2019 data. The resolution of the
lidar DSMs is 0.5 m per pixel. To convert disparity values to altitude, we take the satellite stereo
reconstruction pipeline S2P [6] and replace the matching algorithm with each deep learning model.
The S2P tools are also used to rectify each input pair of images.

The altitude errors resulting from the disparity maps provided by the deep learning methods are
compared with those achieved using the S2P baseline classic matching algorithms, i.e. MGM and an
improved multi-scale version of MGM, both using the census transform [11, 10, 13].

4The blue channel of each image in the dataset has been replaced by the response of an infrared camera.
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Stereo pair 1 Stereo pair 2

Figure 4: Example stereo pairs from the 2021 aerial stereo benchmark [32], used to fine tune the PSM and HSM networks.

4.3 Evaluation Metrics
The evaluation metrics are the following:

• MAE. Mean Absolute Error, in meters of altitude, between a photogrammetric DSM and the
ground truth lidar DSM.

• Completeness. Percentage of non-water points in a photogrammetric DSM where error is less
than 1 meter with respect to the lidar DSM, with undefined values counted as larger errors.

• NaNs. Percentage of undefined values (Not a Number) in a photogrammetric DSM.
• Successful pairs. Number of stereo pairs, out of N originally given as input to a matching

algorithm, that resulted in DSMs with less than 50% of undefined values.

4.4 Results
Using S2P, we compute (1) single-pair DSMs, i.e. the set of DSMs that result from each independent
stereo pair of the 30 selected; and (2) multi-pair DSMs, which are denser and result from fusing
all the successful single-pair DSMs using a median filter as in [22]. The camera models given to
S2P have been previously bundle adjusted [22]. We distinguish between two types of experiments,
according to the color space of the input images. Other subsections are devoted to complementary
experiments in which we study the performance of each method as a function of the distance between
the acquisition dates and the baseline of the input pairs.

4.4.1 Panchromatic Inputs

In these experiments, we use the panchromatic version of the DFC2019 images as input. Panchro-
matic images have a single channel with a wide range of intensity values, which allows them to be
highly textured. This makes them well suited for classic matching algorithms. The numerical results
are reported in Table 1. Qualitative results are shown in Figure 5.

Table 1 introduces some custom parameters, s and lr, which we observe to significantly affect
the accuracy of the disparity maps generated with PSM and HSM (based on the subsequent altitude
values). Otherwise, the default parameters of S2P are used, with the exception of the SIFT matching
threshold, which is set to 0.5 to aim for very reliable matches for the rectification step.

The following paragraphs discuss some of the main ideas reflected in Table 1.
On the left-right consistency check. The left-right consistency check is a good practice

to refine disparity maps: it filters disparity values that are not consistent when the left and right
images of the stereo pair are exchanged [18]. This step uses a consistency distance threshold lr,
which strongly affects the percentage of NaN values in the disparity map and the subsequent DSM.
Larger lr produces more complete DSMs in exchange of small inaccuracies.
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Panchromatic inputs

Single pair MAE [m] / NaNs [%] / Successful pairs
Area index 004 068 214 260

MGM s = 1, lr = 1 1.863 / 32.01 / 24 0.919 / 23.63 / 29 1.457 / 31.23 / 24 1.668 / 33.30 / 24

MGM multi s = 1, lr = 1 1.531 / 34.63 / 18 0.886 / 25.74 / 28 1.288 / 31.95 / 23 1.663 / 34.48 / 21

PSM s = 1, lr = 1 0.933 / 33.17 / 12 0.645 / 25.00 / 28 0.985 / 34.23 / 23 1.279 / 33.94 / 16

HSM s = 1, lr = 1 1.545 / 34.64 / 20 0.838 / 28.90 / 28 1.229 / 34.89 / 23 1.580 / 31.72 / 24

PSM s = 2, lr = 2 0.886 / 38.61 / 12 0.511 / 28.34 / 28 0.809 / 36.88 / 23 1.002 / 38.33 / 14

HSM s = 2, lr = 2 1.110 / 37.63 / 16 0.605 / 28.09 / 28 0.911 / 35.40 / 23 1.189 / 32.98 / 19

PSM s = 3, lr = 3 0.620 / 37.87 / 12 0.755 / 30.33 / 26 1.051 / 36.89 / 18 1.006 / 38.37 / 11

HSM s = 3, lr = 3 0.885 / 37.15 / 12 0.635 / 28.88 / 28 0.972 / 36.14 / 23 1.163 / 34.49 / 18

Multi-pair MAE [m] / NaNs [%]
Area index 004 068 214 260

MGM s = 1, lr = 1 1.806 / 0.65 1.030 / 0.62 1.627 / 0.39 1.474 / 0.69

MGM multi s = 1, lr = 1 1.512 / 0.90 1.026 / 0.68 1.585 / 0.55 1.472 / 0.78

PSM s = 1, lr = 1 1.327 / 2.59 0.813 / 0.06 1.453 / 0.28 1.297 / 1.08

HSM s = 1, lr = 1 1.941 / 1.38 1.072 / 0.11 1.838 / 0.34 1.708 / 1.04

PSM s = 2, lr = 2 1.401 / 6.13 0.780 / 0.25 1.347 / 1.10 1.154 / 3.39

HSM s = 2, lr = 2 1.405 / 1.52 0.862 / 0.13 1.579 / 0.48 1.293 / 1.16

PSM s = 3, lr = 3 1.115 / 7.08 0.838 / 0.22 1.677 / 1.26 1.155 / 4.72

HSM s = 3, lr = 3 1.314 / 3.13 0.893 / 0.48 1.653 / 0.65 1.285 / 0.77

Table 1: Quantitative results using panchromatic images as input. The accuracy of the single pair (top) and multi-pair
DSMs (bottom) is directly related to the accuracy of the disparity maps. For single-pair DSMs, all metrics are averaged
across the successful pairs. Customized parameters: s, upsampling factor applied to the rectified images input to the
matching algorithm; lr, left-right consistency check threshold in pixel units. The best altitude MAE values are highlighted
in yellow.

On the scaling factor. The upsampling factor s is used to bring objects closer to the resolution
of the training set, since aerial images have approximately four times the resolution of satellite images
(8 cm vs. 30 cm per pixel). When s > 1, the lr threshold should be at least equal to s since the
increase of disparity values is proportional to the size of the images. In general, we observe that s = 2
works best across the different AOIs, as shown in Figure 6. Using s = 3 only provides better results
for both PSM and HSM in the AOI 004, a landscape of small houses. The rest of AOIs contain tall
buildings, and s > 2 causes certain disparities related to skyscrapers to be larger than the upper
limit of the disparity range set at training time (192 pixels). The latter downgrades the accuracy for
some of the input stereo pairs.

In addition to the resolution of the training set, the architecture of the networks is another
factor that could explain the improvement in performance after upsampling. Figure 7 shows that
the disparity map obtained with vanilla weights (trained on KITTI2015) also improves using s = 2.
Both PSM and HSM use non-learned upsampling operations before disparity regression, to reach
the original input size. Thus, the actual costs used to predict the disparity map have lower spatial
resolution, and upsampling the input pair could be seen as a bruteforce manner to increase it.

On the sensitivity to the rectification step. Deep learning methods are very sensitive to the
way in which input pairs are rectified. The rectification step must satisfy several conditions to obtain
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Figure 5: Visualization of the lidar DSMs, and the multi-pair photogrammetric DSMs obtained by merging the disparity maps
of multiple stereo pairs obtained with MGM multi-scale, PSM and HSM. Panchromatic images used as input. Undefined
values and water bodies are in black. Points corresponding to trees/vegetation in the lidar DSM are also masked in black
in the error images.

optimal disparity maps: (1) all disparity values have to fall within the disparity range defined at
training time; (2) all disparities from the reference image to the auxiliary image must point towards
the left, following a negative displacement along each epipolar line; (3) disparity values must be
proportional to the altitude level. The networks expect the ground/background to exhibit small
disparity, and the opposite for objects in the foreground or tall buildings.

All pairs considered in Table 1 were rectified by means of Algorithm 1, to ensure that conditions
(2) and (3) were satisfied. If one of the conditions is not met in a given region, the networks fill it
with NaN values or the accuracy is degraded (Figure 8). In contrast, classic methods such as SGM
or MGM do not depend on any priors and can adapt the search range of disparities for each pair.

On the trade-off between accuracy and efficiency. Both PSM and HSM consistently
achieve lower MAE than the standard MGM or its multi-scale version. Only HSM with s = 1 seems
to perform clearly worse, probably because it is more specific for large and very high resolution
inputs. The behavior is the same if we take completeness as the main metric (see Appendix B,
Table 7). As shown in Figure 5, the superior performance of deep learning methods can be explained
by their ability to produce better and sharper contours. Between the two networks, PSM achieves
better MAE and completeness than HSM, but the difference narrows as the scaling factor s increases.
Using s ≥ 2, HSM might be the better choice for certain applications, as it requires less memory and
is much faster for large inputs. For example, with s = 2, on a CPU, most stereo pairs are processed
within 5 seconds using HSM, while they take longer than 1 minute with PSM.
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Figure 6: The resolution of the input images plays an important role in deep learning methods. By upsampling the input
pair by a factor s, we simulate the resolution of the satellite images to be higher and closer to that of the aerial image
training set. We find that s = 2 works best, as s = 1 produces blurred edges and s = 3 introduces artifacts in tall buildings.
HSM is more sensitive to the resolution than PSM, as the difference in detail sharpness is stronger for different s values.
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Vanilla weights s = 1 Vanilla weights s = 2 Fine-tuned weights s = 1 Fine-tuned weights s = 2

DSM alt.MAE = 1.89m DSM alt.MAE = 1.24m DSM alt.MAE = 0.85m DSM alt.MAE = 0.58m
NaNs = 36.38% NaNs = 29.30% NaNs = 22.43% NaNs = 25.32%

Figure 7: PSM vanilla vs. fine-tuned weights, same input pair. Vanilla weights were trained on KITTI2015 [24], while
fine-tuned weights were refined using the 2021 aerial stereo matching benchmark [32]. Fine-tuned weights systematically
produce better disparities and fewer undefined (NaN) values after the left-right consistency check. However, upsampling the
input pair by a factor s = 2 improves details and accuracy in both cases. This suggests that, in addition to the resolution
of the training data, the architecture of the method may also be related to this behavior.

4.4.2 RGB Inputs

In these experiments, we use the RGB version of the DFC2019 images as input. RGB images have
three channels corresponding to red, green and blue values, which are compressed as integer values
in [0, 255]. The compressed dynamics leads to a loss of texture and appearance of saturated areas.
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Algorithm 1: Rectify satellite stereo pair for disparity estimation network
input : two satellite images I1 and I2 and their respective camera models
output : rectified stereo pair IR

1 and IR
2

1. Compute a set of pairwise matches between I1 and I2

2. Use pairwise matches to find the 3× 3 rectifying homographies H1 and H2 (Comment 1 )
3. Impose negative disparities by modifying H2 into H ′2

H ′2 =

1 0 −t
0 1 0
0 0 1

H2, where t ≥ max disparity observed in pairwise matches

4. Check that disparity values are proportional to altitude. To do so, localize a point from IR
1 at two

different altitudes: alt1 and alt2, such that alt1 < alt2. Then project the resulting locations onto IR
2

(Comment 2 ). The reprojection localized at alt1 must have smaller disparity because alt1 < alt2.
if step 4 is not satisfied then

5. Repeat step 3 imposing positive disparities, i.e. t ≤ min disparity in pairwise matches

6. Apply a horizontal flip to both rectifying homographies, e.g.

Hflipped =

−1 0 w

0 1 0
0 0 1

H, where w is the image width

7. Rectify I1 using H1 and I2 using H ′2.

Comment 1: Steps 1 and 2 can be covered using the stereo-rectification method for pushbroom images
described in [7].

Comment 2: Let the rectifying homographies be denoted {H1, H ′2} and the rectified images be denoted
{IR

1 , IR
2 }. Given the RPC camera models of the non-rectified satellite images {I1, I2}, which are

characterized by a localization L and a projection function P [22], a point (x, y) in IR
1 can be localized at

altitude alt and reprojected to IR
2 using (15), resulting in a disparity d = x′ − x.

(x′, y) = H ′2P2(L1(H1(x, y), alt)) (15)

Reference image Secondary image Disparity map DSM

Failure example 1: The input pair is
rectified allowing disparities to follow a
negative or positive direction,
indifferently. As a result, the network only
works in areas with negative displacement,
making the disparity map and the derived
DSM largely incomplete.

Failure example 2: The input pair is
rectified forcing all disparities to follow a
negative direction, but allowing the
background to have a higher disparity
than the foreground. As a result, the
accuracy of the disparity map and the
derived DSM decreases, particularly in
foreground objects (e.g. tall buildings).

Success example: The input pair is
rectified as expected by the network. All
disparities follow a negative direction, the
background has lower disparity than the
foreground, and all disparities fall within
the expected range (e.g. up to 192 pixels).
As a result, the accuracy of the disparity
map and the derived DSM are maximized.

altitude [m] maxmindisparity [px] maxmin

Figure 8: Deep learning methods are very sensitive to the way in which input pairs are rectified. Using the same pair and the
PSM model, the top rows show results obtained with suboptimal rectification. The bottom row shows the result obtained
when the rectification follows the learned format. Undefined values are white in the disparity maps and black in the DSM.
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RGB inputs

Single pair MAE (error increase) [m] / NaNs [%]
Area index 004 068 214 260

MGM multi s = 1, lr = 1 2.020 (+0.489) / 11.19 1.196 (+0.309) / 14.11 2.388 (+1.100) / 20.04 2.064 (+0.401) / 15.85

PSM s = 2, lr = 2 1.358 (+0.472) / 27.69 0.601 (+0.089) / 26.25 1.128 (+0.318) / 36.12 1.297 (+0.294) / 30.81

HSM s = 2, lr = 2 1.314 (+0.203) / 31.66 0.607 (+0.002) / 28.42 0.983 (+0.071) / 35.67 1.280 (+0.091) / 32.10

Multi-pair MAE (error increase) [m] / NaNs [%]
Area index 004 068 214 260

MGM multi s = 1, lr = 1 2.132 (+0.620) / 0.68 1.297 (+0.270) / 0.58 2.445 (+0.860) / 0.21 1.728 (+0.256) / 0.59

PSM s = 2, lr = 2 1.764 (+0.363) / 1.36 0.881 (+0.101) / 0.33 1.810 (+0.463) / 1.22 1.426 (+0.272) / 1.76

HSM s = 2, lr = 2 1.606 (+0.201) / 0.71 0.857 (−0.005) / 0.11 1.631 (+0.052) / 0.62 1.440 (+0.147) / 0.88

Table 2: Quantitative results for single pair (top) and multi-pair DSMs (bottom), using RGB input images. The error
increase refers to the increase in altitude MAE with respect to the MAE obtained with panchromatic images (Table 1).
Customized parameters s and lr are the same as in Table 1.

Lidar DSM MGM multi-scale PSM s = 2, lr = 2 HSM s = 2, lr = 2

06
8

26
0

err. increase [m] 1.5≤ 0altitude [m] maxmin

Figure 9: Examples of multi-pair photogrammetric DSMs obtained using RGB images as input instead of panchromatic as
in Figure 5. The yellow-red images show the increase in altitude error with respect to the equivalent result obtained with
panchromatic images. Masked points in black represent undefined points and water bodies.

The compressed dynamics makes RGB images more challenging than the panchromatic equivalent
for matching purposes. The numerical results obtained with RGB images are reported in Table 2.
For each row in Table 2, we used the successful pairs from the equivalent row in Table 1 as input, with
the same rectifying homographies. This ensures that any difference in the resulting disparity maps
and DSMs is exclusively due to the change of color space. Example results are shown in Figure 9.

As expected, the accuracy of the disparity maps decreases across all methods, inducing larger
altitude MAE in the subsequent DSMs. However, the increase in error is much larger for the classic
algorithm (multi-scale MGM), as it cannot compensate for the loss of information with contextual
semantic cues in the same way as deep learning networks do.

Differently from the panchromatic scenario, MAE and completeness behave in a different way
for RGB inputs. MGM multi-scale provided better completeness in the single pair disparity maps
(Appendix B, Table 8), but higher inaccuracy too (higher MAE). RGB compression also eliminates
fine-scale noise, which reduces the amount of NaN values provided by MGM in some of the pairs.

For panchromatic inputs and s = 2, PSM was the best performing model both in terms of MAE
(Table 1) and completeness (Table 7). Using RGB inputs and s = 2, the performance of HSM
and PSM seems to be more or less equal, with HSM being slightly more accurate in terms of MAE
(Table 2) but also providing slightly lower completeness (Table 8).
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Panchromatic inputs RGB inputs

Figure 10: Average evaluation metrics as a function of the distance between the acquisition dates of each pair of images.
Only successful pairs taken into account, i.e. those resulting in less than 50% of undefined altitude values. For better
visualization, the opaque lines represent a smoothed version of the real dashed functions. Each smoothed value x′i is
obtained as x′i = 0.7xi−1 + 0.3xi.

4.4.3 Multi-date Inputs

Figure 10 shows the altitude MAE values reported in Table 1 and Table 2 plotted as a function of
the distance between the acquisition dates of each pair of images. The same is also shown using the
completeness values (Tables 7 and 8). The more distant the dates are, the less radiometric correlation
is expected (e.g. due to seasonal changes) and the more difficult it is to find correspondences.

For all methods, the disparity maps lose accuracy as the time distance increases, causing an
increase in altitude error and a decrease in completeness. Using panchromatic inputs, the decline in
performance seems to be slightly more pronounced for deep learning methods, as the gap between
MGM multi-scale and the networks narrows towards the end of the plots. For RGB, the decline
in performance of deep learning methods is more evident, especially in terms of completeness. In
particular, PSM did not produce any successful pairs for time distances over 60 days.

To better understand Figure 10, note that the number of pairs with a given distance between
acquisition dates is not uniformly distributed. In 90% of cases the distance is less than 30 days.

4.4.4 Small Baseline Inputs

Figure 11 shows multi-scale MGM, PSM and HSM tested on two additional panchromatic input
pairs. The Basilique Saint-Sernin and Prison Saint-Michel (both in Toulouse, France) are not part
of the DFC2019 data. We selected these input pairs because of the small baseline between the two
cameras, which is a challenging factor for stereo vision [8, 19]5. Small baseline inputs are a common
source of errors, because small changes in disparity can induce a large variation in the resulting depth
(Equation (1)). At the same time, excessively large baselines reduce the amount of correspondences

5The two pairs exhibit a B/H factor between 0.05 and 0.10, where B is the baseline and H is the distance between
the scene and the camera system.
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Figure 11: Small baseline experiments. Left to right: input pairs and output disparity. Moderate shading is applied to the
disparity maps for better visualization. Undefined values are in white.

between the images, due to occlusions, and objects that appear and disappear from the scene. An
adequate baseline must result from a compromise between these factors.

As shown in Figure 11, the disparity maps produced by multi-scale MGM are more complete.
The PSM output appears less noisy, but some areas are affected by fine-scale checkerboard artifacts
(see the detail in Figure 11). These fine-scale checkerboard artifacts are probably explained by the
use of deconvolution layers in PSM [26, 31] and have no connection with small baseline inputs. The
HSM result is significantly worse with respect to the two previous methods: much less detailed, with
large-scale artifacts and visibly smoothed contours, especially in Prison Saint-Michel.

5 Conclusion
This paper reviewed the PSM and HSM architectures for disparity estimation from an input stereo
pair and investigated their applicability for satellite stereo reconstruction. The two methods were
compared with a variant of the SGM algorithm, which is a classic matching strategy widely used for
satellite images. We used pre-trained weights, fine-tuned using an aerial stereo matching benchmark.
The quality of the disparity maps output by each method is assessed based on the subsequent surface
models, which are evaluated using a lidar reference model.

The conducted experiments show that the deep learning methods provide higher accuracy than
classic concurrent algorithms, and should therefore be preferred for satellite 3D stereo reconstruction
under ideal conditions. However, these networks require additional effort to adjust the format of the
input pairs and may produce more incomplete results in difficult/unusual scenarios (e.g. very distant
acquisition dates or small baselines). It is critical that the rectified images emulate the training
conditions. For optimal results, it is also best to adapt the size of the input images.

PSM provides remarkable robustness to image resolution and accuracy, especially for highly
textured inputs like panchromatic images, but becomes impractical as the input size increases. Al-
ternatively, HSM is much faster but loses detail sharpness depending on the input resolution. One
network or the other may be more convenient depending on the application and type of input.
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004 068

214 260

Figure 12: DFC2019 dataset, Jacksonville areas 004, 068, 214 and 260. Example RGB views.

A List of DFC2019 Selected Stereo Pairs
Tables 3 to 6 list the image pairs of the DFC2019 dataset [3] used to test the matching algorithms
compared in this work. All distances between acquisition dates are expressed in days modulo one year.
Figure 12 shows different RGB views of the four areas of interest that were used in the experiments
in Section 4.

B Completeness Values
Table 7 and Table 8 show the completeness percentage associated with the experiments in Sec-
tion 4.4.1 (panchromatic inputs) and 4.4.2 (RGB inputs), respectively. The definition of complete-
ness is given in Section 4.3. Water bodies are not taken into account to compute the completeness
percentage.
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JAX 004
pair image id 1 image id 2 intersect. angle [deg] date dist. [days]
01 21JAN15WV031100015JAN21161253 21JAN15WV031100015JAN21161308 8.3 0.00
02 02MAY15WV031100015MAY02161943 01MAY15WV031200015MAY01160357 43.1 1.01
03 02MAY15WV031100015MAY02161943 26APR15WV031200015APR26162435 15.3 6.00
04 19APR15WV031100015APR19161439 26APR15WV031200015APR26162435 24.9 7.01
05 19APR15WV031100015APR19161439 01MAY15WV031200015MAY01160357 36.1 11.99
06 19APR15WV031100015APR19161439 02MAY15WV031100015MAY02161943 10.4 13.00
07 27DEC14WV031100014DEC27161109 14DEC14WV031100014DEC14160402 28.7 13.00
08 15FEB15WV031200015FEB15161208 21JAN15WV031100015JAN21161253 40.9 25.00
09 27DEC14WV031100014DEC27161109 21JAN15WV031100015JAN21161253 11.8 25.00
10 27DEC14WV031100014DEC27161109 21JAN15WV031100015JAN21161308 20.1 25.00
11 14DEC14WV031100014DEC14160402 21JAN15WV031100015JAN21161253 39.4 38.01
12 15JUN15WV031100015JUN15161248 02MAY15WV031100015MAY02161943 26.6 44.00
13 15JUN15WV031100015JUN15161248 01MAY15WV031200015MAY01160357 16.5 45.01
14 15JUN15WV031100015JUN15161248 26APR15WV031200015APR26162435 34.0 49.99
15 27DEC14WV031100014DEC27161109 15FEB15WV031200015FEB15161208 29.1 50.00
16 01NOV15WV031100015NOV01161954 27DEC14WV031100014DEC27161109 25.2 55.99
17 15JUN15WV031100015JUN15161248 19APR15WV031100015APR19161439 20.5 57.00
18 15FEB15WV031200015FEB15161208 19APR15WV031100015APR19161439 37.2 63.00
19 14DEC14WV031100014DEC14160402 15FEB15WV031200015FEB15161208 11.1 63.01
20 15FEB15WV031200015FEB15161208 26APR15WV031200015APR26162435 31.8 70.01
21 15FEB15WV031200015FEB15161208 01MAY15WV031200015MAY01160357 29.4 74.99
22 15FEB15WV031200015FEB15161208 02MAY15WV031100015MAY02161943 36.1 76.01
23 01NOV15WV031100015NOV01161954 21JAN15WV031100015JAN21161253 35.5 81.00
24 01NOV15WV031100015NOV01161954 21JAN15WV031100015JAN21161308 43.2 81.00
25 19APR15WV031100015APR19161439 21JAN15WV031100015JAN21161308 13.9 88.00
26 19APR15WV031100015APR19161439 21JAN15WV031100015JAN21161253 7.9 88.00
27 26APR15WV031200015APR26162435 21JAN15WV031100015JAN21161308 27.3 95.01
28 26APR15WV031200015APR26162435 21JAN15WV031100015JAN21161253 21.1 95.01
29 21JAN15WV031100015JAN21161253 01MAY15WV031200015MAY01160357 43.7 99.99
30 02MAY15WV031100015MAY02161943 21JAN15WV031100015JAN21161308 13.8 101.00

Table 3: List of 30 stereo pairs used in DFC2019 Jacksonville area 004.

JAX 068
pair image id 1 image id 2 intersect. angle [deg] date dist. [days]
01 05OCT14WV031100014OCT05160149 05OCT14WV031100014OCT05160138 7.2 0.00
02 21JAN15WV031100015JAN21161253 21JAN15WV031100015JAN21161308 8.3 0.00
03 02MAY15WV031100015MAY02161943 01MAY15WV031200015MAY01160357 43.1 1.01
04 01NOV15WV031100015NOV01161954 30OCT14WV031100014OCT30155732 15.3 2.02
05 02MAY15WV031100015MAY02161943 26APR15WV031200015APR26162435 15.3 6.00
06 05OCT14WV031100014OCT05160149 11OCT14WV031100014OCT11155720 27.5 6.00
07 27JAN15WV031100015JAN27160845 21JAN15WV031100015JAN21161308 29.6 6.00
08 11OCT14WV031100014OCT11155720 05OCT14WV031100014OCT05160138 34.0 6.00
09 27JAN15WV031100015JAN27160845 21JAN15WV031100015JAN21161253 21.9 6.00
10 19APR15WV031100015APR19161439 26APR15WV031200015APR26162435 24.9 7.01
11 18OCT14WV031100014OCT18160722 11OCT14WV031100014OCT11155720 25.1 7.01
12 19APR15WV031100015APR19161439 01MAY15WV031200015MAY01160357 36.1 11.99
13 18OCT14WV031100014OCT18160722 30OCT14WV031100014OCT30155732 25.3 11.99
14 19APR15WV031100015APR19161439 02MAY15WV031100015MAY02161943 10.4 13.00
15 18OCT14WV031100014OCT18160722 05OCT14WV031100014OCT05160149 18.6 13.00
16 18OCT14WV031100014OCT18160722 05OCT14WV031100014OCT05160138 24.8 13.00
17 27DEC14WV031100014DEC27161109 14DEC14WV031100014DEC14160402 28.7 13.00
18 18OCT14WV031100014OCT18160722 01NOV15WV031100015NOV01161954 19.6 14.01
19 21MAY15WV031200015MAY21161849 02MAY15WV031100015MAY02161943 15.0 19.00
20 30OCT14WV031100014OCT30155732 11OCT14WV031100014OCT11155720 8.4 19.00
21 27JAN15WV031100015JAN27160845 15FEB15WV031200015FEB15161208 22.0 19.00
22 21MAY15WV031200015MAY21161849 01MAY15WV031200015MAY01160357 33.0 20.01
23 15JUN15WV031100015JUN15161248 05JUL15WV031100015JUL05162954 37.8 20.01
24 01NOV15WV031100015NOV01161954 11OCT14WV031100014OCT11155720 21.8 21.02
25 21MAY15WV031200015MAY21161849 15JUN15WV031100015JUN15161248 17.6 25.00
26 21MAY15WV031200015MAY21161849 26APR15WV031200015APR26162435 16.6 25.00
27 05OCT14WV031100014OCT05160149 30OCT14WV031100014OCT30155732 21.8 25.00
28 30OCT14WV031100014OCT30155732 05OCT14WV031100014OCT05160138 27.4 25.00
29 15FEB15WV031200015FEB15161208 21JAN15WV031100015JAN21161253 40.9 25.00
30 27DEC14WV031100014DEC27161109 21JAN15WV031100015JAN21161253 11.8 25.00

Table 4: List of 30 stereo pairs used in DFC2019 Jacksonville area 068.
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JAX 214
pair image id 1 image id 2 intersect. angle [deg] date dist. [days]
01 21JAN15WV031100015JAN21161243 21JAN15WV031100015JAN21161253 8.2 0.00
02 05OCT14WV031100014OCT05160149 05OCT14WV031100014OCT05160138 7.2 0.00
03 21JAN15WV031100015JAN21161253 21JAN15WV031100015JAN21161308 8.3 0.00
04 21JAN15WV031100015JAN21161243 21JAN15WV031100015JAN21161308 16.5 0.00
05 01NOV15WV031100015NOV01161954 01NOV15WV031100015NOV01162034 27.1 0.00
06 02MAY15WV031100015MAY02161943 01MAY15WV031200015MAY01160357 43.1 1.01
07 01NOV15WV031100015NOV01161954 30OCT14WV031100014OCT30155732 15.3 2.02
08 30OCT14WV031100014OCT30155732 01NOV15WV031100015NOV01162034 17.4 2.02
09 15FEB15WV031200015FEB15161208 18FEB16WV031200016FEB18164007 35.5 3.02
10 15FEB15WV031200015FEB15161208 11FEB16WV031100016FEB11163042 38.7 3.99
11 02MAY15WV031100015MAY02161943 26APR15WV031200015APR26162435 15.3 6.00
12 05OCT14WV031100014OCT05160149 11OCT14WV031100014OCT11155720 27.5 6.00
13 27JAN15WV031100015JAN27160845 21JAN15WV031100015JAN21161308 29.6 6.00
14 11OCT14WV031100014OCT11155720 05OCT14WV031100014OCT05160138 34.0 6.00
15 27JAN15WV031100015JAN27160845 21JAN15WV031100015JAN21161253 21.9 6.00
16 27JAN15WV031100015JAN27160845 21JAN15WV031100015JAN21161243 15.1 6.00
17 11FEB16WV031100016FEB11163042 18FEB16WV031200016FEB18164007 24.5 7.01
18 19APR15WV031100015APR19161439 26APR15WV031200015APR26162435 24.9 7.01
19 18OCT14WV031100014OCT18160722 11OCT14WV031100014OCT11155720 25.1 7.01
20 05OCT14WV031100014OCT05160149 25SEP15WV031100015SEP25163525 42.2 9.98
21 19APR15WV031100015APR19161439 01MAY15WV031200015MAY01160357 36.1 11.99
22 18OCT14WV031100014OCT18160722 30OCT14WV031100014OCT30155732 25.3 11.99
23 19APR15WV031100015APR19161439 02MAY15WV031100015MAY02161943 10.4 13.00
24 18OCT14WV031100014OCT18160722 05OCT14WV031100014OCT05160149 18.6 13.00
25 18OCT14WV031100014OCT18160722 05OCT14WV031100014OCT05160138 24.8 13.00
26 27DEC14WV031100014DEC27161109 14DEC14WV031100014DEC14160402 28.7 13.00
27 18OCT14WV031100014OCT18160722 01NOV15WV031100015NOV01161954 19.6 14.01
28 18OCT14WV031100014OCT18160722 01NOV15WV031100015NOV01162034 22.3 14.01
29 27JAN15WV031100015JAN27160845 11FEB16WV031100016FEB11163042 21.0 15.02
30 11OCT14WV031100014OCT11155720 25SEP15WV031100015SEP25163525 43.9 15.97

Table 5: List of 30 stereo pairs used in DFC2019 Jacksonville area 214.

JAX 260
pair image id 1 image id 2 intersect. angle [deg] date dist. [days]
01 21JAN15WV031100015JAN21161243 21JAN15WV031100015JAN21161253 8.2 0.00
02 02MAY15WV031100015MAY02161943 01MAY15WV031200015MAY01160357 43.1 1.01
03 01NOV15WV031100015NOV01161954 30OCT14WV031100014OCT30155732 15.3 2.02
04 15FEB15WV031200015FEB15161208 18FEB16WV031200016FEB18164007 35.5 3.02
05 15FEB15WV031200015FEB15161208 11FEB16WV031100016FEB11163042 38.7 3.99
06 02MAY15WV031100015MAY02161943 26APR15WV031200015APR26162435 15.3 6.00
07 27JAN15WV031100015JAN27160845 21JAN15WV031100015JAN21161253 21.9 6.00
08 27JAN15WV031100015JAN27160845 21JAN15WV031100015JAN21161243 15.1 6.00
09 11FEB16WV031100016FEB11163042 18FEB16WV031200016FEB18164007 24.5 7.01
10 19APR15WV031100015APR19161439 26APR15WV031200015APR26162435 24.9 7.01
11 19APR15WV031100015APR19161439 01MAY15WV031200015MAY01160357 36.1 11.99
12 18OCT14WV031100014OCT18160722 30OCT14WV031100014OCT30155732 25.3 11.99
13 19APR15WV031100015APR19161439 02MAY15WV031100015MAY02161943 10.4 13.00
14 18OCT14WV031100014OCT18160722 05OCT14WV031100014OCT05160138 24.8 13.00
15 27DEC14WV031100014DEC27161109 14DEC14WV031100014DEC14160402 28.7 13.00
16 18OCT14WV031100014OCT18160722 01NOV15WV031100015NOV01161954 19.6 14.01
17 27JAN15WV031100015JAN27160845 11FEB16WV031100016FEB11163042 21.0 15.02
18 21MAY15WV031200015MAY21161849 02MAY15WV031100015MAY02161943 15.0 19.00
19 27JAN15WV031100015JAN27160845 15FEB15WV031200015FEB15161208 22.0 19.00
20 21MAY15WV031200015MAY21161849 01MAY15WV031200015MAY01160357 33.0 20.01
21 21JAN15WV031100015JAN21161243 11FEB16WV031100016FEB11163042 6.1 21.01
22 27JAN15WV031100015JAN27160845 18FEB16WV031200016FEB18164007 32.9 22.02
23 21MAY15WV031200015MAY21161849 26APR15WV031200015APR26162435 16.6 25.00
24 30OCT14WV031100014OCT30155732 05OCT14WV031100014OCT05160138 27.4 25.00
25 15FEB15WV031200015FEB15161208 21JAN15WV031100015JAN21161253 40.9 25.00
26 21JAN15WV031100015JAN21161243 15FEB15WV031200015FEB15161208 32.7 25.00
27 27DEC14WV031100014DEC27161109 21JAN15WV031100015JAN21161253 11.8 25.00
28 01NOV15WV031100015NOV01161954 05OCT14WV031100014OCT05160138 12.3 27.01
29 21JAN15WV031100015JAN21161253 18FEB16WV031200016FEB18164007 27.6 28.02
30 21JAN15WV031100015JAN21161243 18FEB16WV031200016FEB18164007 24.1 28.02

Table 6: List of 30 stereo pairs used in DFC2019 Jacksonville area 260.
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Roger Maŕı, Thibaud Ehret, Gabriele Facciolo

Panchromatic inputs

Single pair completeness [%] / NaNs [%] / Successful pairs
Area index 004 068 214 260

MGM s = 1, lr = 1 43.62 / 32.01 / 24 61.64 / 23.63 / 29 53.67 / 31.23 / 24 41.03 / 33.30 / 24

MGM multi s = 1, lr = 1 44.64 / 34.63 / 18 60.33 / 25.74 / 28 53.61 / 31.95 / 23 39.75 / 34.48 / 21

PSM s = 1, lr = 1 51.38 / 33.17 / 12 63.41 / 25.00 / 28 53.13 / 34.23 / 23 42.95 / 33.94 / 16

HSM s = 1, lr = 1 39.78 / 34.64 / 20 52.93 / 28.90 / 28 43.42 / 34.89 / 23 35.87 / 31.72 / 24

PSM s = 2, lr = 2 50.51 / 38.61 / 12 64.30 / 28.34 / 28 55.01 / 36.88 / 23 45.43 / 38.33 / 14

HSM s = 2, lr = 2 45.06 / 37.63 / 16 61.79 / 28.09 / 28 52.98 / 35.40 / 23 43.97 / 32.98 / 19

PSM s = 3, lr = 3 54.09 / 37.87 / 12 61.10 / 30.33 / 26 54.54 / 36.89 / 18 45.14 / 38.37 / 11

HSM s = 3, lr = 3 48.83 / 37.15 / 12 61.32 / 28.88 / 28 52.90 / 36.14 / 23 45.02 / 34.49 / 18

Multi-pair completeness [%] / NaNs [%]
Area index 004 068 214 260

MGM s = 1, lr = 1 67.06 / 0.65 78.65 / 0.62 74.28 / 0.39 64.59 / 0.69

MGM multi s = 1, lr = 1 67.11 / 0.90 78.47 / 0.68 74.43 / 0.55 64.23 / 0.78

PSM s = 1, lr = 1 67.71 / 2.59 82.14 / 0.06 74.00 / 0.28 65.38 / 1.08

HSM s = 1, lr = 1 54.39 / 1.38 73.64 / 0.11 61.56 / 0.34 50.19 / 1.04

PSM s = 2, lr = 2 65.30 / 6.13 83.50 / 0.25 77.95 / 1.10 68.52 / 3.39

HSM s = 2, lr = 2 67.53 / 1.52 81.89 / 0.13 73.39 / 0.48 65.53 / 1.16

PSM s = 3, lr = 3 70.15 / 7.08 83.11 / 0.22 76.50 / 1.26 67.26 / 4.72

HSM s = 3, lr = 3 68.36 / 3.13 81.01 / 0.48 74.62 / 0.65 68.02 / 0.77

Table 7: Quantitative results using panchromatic images as input. Equivalent to Table 1, with completeness in substitution
of altitude MAE. The best completeness values are highlighted in yellow.

RGB inputs

Single pair completeness (diff. w.r.t. PAN) [%] / NaNs [%]
Area index 004 068 214 260

MGM multi s = 1, lr = 1 58.11 (+13.47) / 11.19 68.34 (+8.01) / 14.11 56.90 (+3.29) / 20.04 48.61 (+8.86) / 15.85

PSM s = 2, lr = 2 53.32 (+2.81) / 27.69 64.89 (+0.59) / 26.25 52.50 (−2.50) / 36.12 47.20 (+1.77) / 30.81

HSM s = 2, lr = 2 46.48 (+1.42) / 31.66 61.50 (−0.29) / 28.42 51.38 (−1.60) / 35.67 43.23 (−0.74) / 32.10

Multi-pair completeness (diff. w.r.t. PAN) [%] / NaNs [%]
Area index 004 068 214 260

MGM multi s = 1, lr = 1 66.27 (−0.84) / 0.68 78.71 (+0.24) / 0.58 70.25 (−4.18) / 0.21 62.67 (−1.56) / 0.59

PSM s = 2, lr = 2 65.06 (−0.24) / 1.36 82.55 (−0.95) / 0.33 72.69 (−5.26) / 1.22 65.93 (−2.59) / 1.76

HSM s = 2, lr = 2 66.82 (−0.71) / 0.71 81.96 (+0.07) / 0.11 71.82 (−1.57) / 0.62 62.21 (−3.32) / 0.88

Table 8: Quantitative results using RGB images as input. Equivalent to Table 2, with completeness in substitution of altitude
MAE. The best completeness values are highlighted in yellow. The percentage difference with respect to the equivalent
PAN experiment is shown in parentheses.
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