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Abstract

For dealing with uncertainty in Remaining Useful Life (RUL) predictions, numerous studies in literature use stochas-

tic models to characterize the degradation process and predict the RUL distribution. However, in practice, it is

di�cult to derive stochastic models to capture degradation mechanisms of complex physical systems. Besides, the

outstanding achievements in sensing technologies have facilitated the development of data-driven methods. Among

them, deep learning methods become one of the most popular trends in recent studies; but they usually provide point

predictions without quantifying the output uncertainties. In this paper, we present a new probabilistic deep leaning

methodology for uncertainty quanti�cation of multi-component systems’ RUL. It is a combination of a probabilistic

model and a deep recurrent neural network to predict the components’ RUL distributions. Then, using the informa-

tion about the system’s architecture, the formulas to quantify system reliability or system-level-RUL uncertainty are

derived. The performance of the proposed methodology is investigated through the benchmark data provided by

NASA. The obtained results highlight the point prediction accuracy and the uncertainty management capacity of the

proposed methodology. In addition, thanks to the explicit RUL distributions of components, the system reliability

for di�erent structures is obtained with high accuracy, especially for series structures.

Keywords: Prognostics, uncertainty management, remaining useful life time, system reliability, LSTM, lognormal

distribution, multi-component systems.

1. Introduction

Prognostics and health management (PHM) of complex industrial systems is increasingly a key challenge for guar-

anteeing system reliability and reducing lifetime operational cost. Accurate predictions of remaining useful life time
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(RUL) of equipment provide valuable information for maintenance organization, thus avoiding systems breakdowns

and improving their overall performance. However, as prognostics deals with prediction of future system behav-

ior, several sources of uncertainties exist in RUL predictions. The main types of uncertainty that a�ect prognostics

results are usually: 1) variability of process behavior due to di�erent operating and environmental conditions, 2)

inaccuracy of prediction models, 3) measurement noise from sensors, and 4) imperfect information of current sys-

tem state [1]. Therefore, uncertainty management in prognostics is vital to ensure accurate RUL predictions for

industrial systems.

In the literature, model-based prognostic approaches use explicit mathematical models or stochastic processes to

characterize the degradation mechanisms, predict their future evolution and estimate the RUL of the system and

its uncertainty [2, 3]. However, it is challenging for complex systems to obtain models of their degradation. Al-

ternatively, data-driven methods, which mainly rely on historical monitoring data to learn degradation trends and

to discover the system’s behavior, allow overcoming this drawback of model-based methods but require su�cient

statistical data. Given the large amounts of data that are increasingly available in industry, data-driven approaches

currently hold a lot of promise for e�ciently exploiting the available data and leading to accurate prognostics models

even for complex systems.

Among the large variety of data-driven approaches, deep learning (DL) based methods have attracted a lot of at-

tention in recent years, particularly in prognostics context [4]. However, most of DL based methods only provide

point-wise estimates of the RUL while the multiple uncertainties in prognostics makes it di�cult to provide abso-

lutely accurate values. Therefore, decision-making based on point-wise estimations can be error-prone, even put the

system, its operators, and the environment at risk. Consequently, handling prognostics uncertainty is crucial in RUL

prediction. Recent studies on DL based methods attempted to quantify prognostics uncertainty. For illustration, the

authors in [5] proposed a hybrid approach, using a long short-term memory (LSTM) network as an expressive black-

box predictor and the Wiener process as a surrogate to model the propagation of prediction uncertainty. Besides,

combining DL based methods with particle �ltering (PF) techniques can provide empirical probability distribution

functions (pdf) of RUL. Particularly, PF uses a set of weighted particles to represent uncertainty propagation in time,

based on an underlying deterioration model, which could be a DL model [6]. Given noisy and/or partial observa-

tions, the particles’ weights are updated using Bayes rule to sequentially approximate the posterior pdf of system

states [7]. In [8], the authors proposed a hybrid approach, combining a deep belief network, which is used to extract

hidden degradation features from monitoring data, with a particle �lter approach for quantifying the RUL uncer-

tainty. The above studies allow addressing aleatoric uncertainty due to measurement errors or operating conditions

variability but require a statistically su�cient number of particles to obtain a reasonable empirical RUL distribution.

In addition to aleatoric uncertainty, epistemic uncertainty caused by model capacity was addressed by re-sampling

ensemble methods. For instance, Vishnu et al. [9] used the ensembling technique with deep ordinal regression
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models to calculate the predictive uncertainty. Echo state Gaussian processes were used in [10], while Liao et al. [11]

obtained the prediction uncertainty based on a classical bootstrapping approach with a long short term memory

network (LSTM). The uncertainty treatment capability of bootstrapped ensemble techniques have been compared

to a particle �ltering method in [12]. Using the re-sampling ensemble method, the entire training and prediction

process must be iterated many times to obtain enough samples for the construction of con�dence intervals. This

requires large computational resources and thus it is not suitable for real-time applications and high-dimensional

datasets.

Besides, various Bayesian deep learning (BDL) frameworks were proposed in [13, 14] to determine the epistemic

uncertainty in the RUL prediction. Recently, Biggio et al. [15] compared various BDL formulations for uncertainty

aware RUL predictors. In BDL frameworks, network’s parameters are treated as random variables presented by

a probability distribution. Their prior distributions are updated with Bayesian inference given the observed data.

Although BDL is robust for epistemic uncertainty quanti�cation, its computational cost is heavier, including the

training phase, i.e. updating the posterior distribution of all parameters, as well as the inference phase, i.e. sampling

su�cient observations of the parameters from their posterior distribution to get the proper output distribution.

Unlike the previous mentioned studies, an explicit predicted RUL distribution at component level is directly obtained

through recurrent neural networks and convolutional neural networks in papers [16, 17]. This can open a promising

perspective to facilitate the uncertainty inference when evaluating RUL distribution at system level. However, the

methods presented in [16, 17] are based on the assumption that the equipment’s RUL follows a Gaussian distribution

which can get negative values while RUL is always positive. In addition, the works presented in [16, 17] only

consider the uncertainty of RUL prediction at component level while the study of prognostic uncertainty inference

and propagation at system level is still a relatively unexplored area.

Considering studies on system reliability, there are many publications that investigate the uncertainty of system

reliability taking into account the dependence among di�erent components [18, 19]. However, based on a com-

prehensive review on prognostic approaches [20], we �nd that the prognostics has often been approached from a

component view without considering interactions between components. A few rare studies, which consider the

dependencies between components when estimating system RUL, are based on the assumption about probabilistic

and stochastic models of the component degradation and lack the evidence to show that these assumptions are in-

deed consistent with real monitoring data [21]. Hence, the practical application of these methods in industry is still

limited. Besides, the analysis and uncertainty quanti�cation of system RUL as well as system reliability, based on

data-driven methods, is still an unexplored research area.

In summary, the above survey of prognostics uncertainty management studies in the literature allows us to identify

the following two challenges that we will seek to address:

1. most existing probabilistic deep learning based prognostics approaches require high computational resources
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and are not suitable for real-time applications. Furthermore, they only provide the component’s empirical

RUL distribution, that is di�cult or ine�cient to propagate for quantifying RUL of multi-component systems.

2. most existing data-driven approaches only consider the prognostics of individual components but not that

of the entire system. Yet, predicting the SRUL and its uncertainty is also essential for developing the most

appropriate maintenance strategy.

Accordingly, this paper aims to simultaneously address these two challenges by developing a new methodology for

quantifying the prognostics uncertainty of multi-independent-component systems. In terms of the �rst challenge,

we seek to develop an e�cient approach able to provide the pdf of the RUL and outperform existing methods for

both point-wise and probabilistic RUL predictions with a reasonable computational cost. The proposed approach

is a combination between a probabilistic model, i.e. lognormal distribution, and a recurrent neural network, i.e.

LSTM model, to directly predict component’s RUL distribution from condition monitoring data. The �exibility of

the lognormal distribution allows adapting di�erent characteristics of modeling data that can be roughly symmetric

or skewed to the right, while satisfying the physical constraint of RUL positivity. In terms of the second challenge,

we derive analytical formulations to evaluate the system reliability and SRUL probability according to its structure.

To our humble knowledge, this is the �rst data-driven model that allows handling uncertainty propagation of RUL

predictions from the component level to the system level, taking into account di�erent system architectures. Our

proposed methodology could be seen as a bridge between two �elds of research: traditional system reliability and

data-driven prognostics. Although the proposed methodology can be still further improved (e.g., regarding the

assumption of independence between components), we believe that it is an essential premise for the development

of further studies in the �elds of system reliability as well as prognostics and health management.

The rest of the paper is organized as follows. Section 2 presents the proposed methodology. First the proposed

model, called Lognorm-LSTM, for predicting the component’s RUL distribution is described, followed by the models

for calculating the system RUL and its uncertainty. Section 3 presents numerical experiments on a NASA turbofan

engine degradation dataset. On a component level, both the point-wise estimates and the RUL distribution pre-

dictions are benchmarked against existing approaches using multiple evaluation metrics. On a systems level, the

system’s RUL and its uncertainty are estimated and their quality are assessed using two di�erent evaluation metrics.

Finally, section 4 provides concluding remarks and outlines further possible works.

2. Proposed methodology

Figure 1 presents an overview of the proposed methodology that consists of online and o�ine phases. The o�ine

phase is dedicated to the training of a Lognorm-LSTM model, using run-to-failure data, allowing to map a RUL

distribution to corresponding historical condition monitoring (CM) data. Without loss of generality, let us assume

N components of the same type are monitored during their operation by m sensors for each component. Then,
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the monitoring data acquired for each component i, i = 1, 2, ..., N, during its life time Ti can be expressed in a

matrix form: Xi = [x1, x2, ..., xTi ], Xi ∈ Rm×Ti , where xt = [xt1, x
t
2, . . . , x

t
m] is a vector of sensor measurements

at time t. During the training stage, the proposed Lognorm-LSTM model takes the sensor measurement sequences

Xi, i = 1, 2, ..., N , to learn the parameter vector Θi, where Θi = [θ1i , θ
2
i , ..., θ

Ti
i ] characterizes the RUL distribution

of component i during its life time Ti. If the RUL distribution follows a lognormal distribution, then the vector of

parameters θti , characterizing RUL distribution of component i at time t, includes 2 values of (µti, σ
t
i). Note that µti

and σti are the mean value and the standard deviation of the natural logarithm of the RUL at time t of component i.

For an e�cient training, the CM data require an appropriate preprocessing step, while the RUL labels need to be

veri�ed and recti�ed. The details of this step are described in subsection 2.1. The construction of the proposed

Lognorm-LSTM model for prediction of component’s RUL distribution is then presented in subsection 2.2. Next,

during the online phase, at time t, the trained Lognorm-LSTM model will take N vectors of sensor measurements

xt as input and then outputN vectors of Θi. These results serve to infer the system reliability and SRUL probability

according to di�erent system structures. The details of the latter step are described in subsection 2.3.

.... . .

Run-to-failure
data acquisition

Input data
preprocessing

RUL label
rectification

Training Lognorm-LSTM model

CM training data
Find to maximize log-likelihood

function of RUL

X

y*

Offline phase

Evaluation of system's
RUL probability 

System reliability

CM data
acquisition

Trained Lognorm-LSTM model

Prediction of component's RUL

distribution characterized by 

Online phase

.... . ....

Input data
preprocessing

X

Figure 1: Overview of the proposed methodology

2.1. Data preprocessing

Feature selection (FS): It aims to identify a subset of features which allows identifying signi�cant e�ects from

irrelevant ones, and therefore providing good prediction results. Based on the evaluation criteria, the FS techniques

can be classi�ed into three groups: (1) �lter methods, (2) wrapper methods, and (3) embedded methods [22]. The

�lter approaches are suitable for unlabeled data or when there is no correlation between features and labeled data.

Otherwise, the embedded approaches are the best candidates for the cases that require high accuracy and non-
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expensive computation. However, these approaches are not suitable for high dimensional data case which can be

overcome by using wrapper methods based on heuristic search algorithms. In a recent study [23], the authors

proposed an automated health indicator construction methodology that allows automatically choosing the relevant

measurements among various sources and also handling raw data from high-frequency sensors to extract the useful

low-level features. The results obtained by the feature engineering phase of that work are inherited and exploited

in this manuscript.

Normalization: It serves to transform the data within a speci�c scale to enhance its consistency. Among the most

popular normalization techniques, the Z-transform technique is chosen in this paper. Given xlk , where k is k-th

observation of the l-th sensor, µl and σl are the mean and variance of all observation values from the l-th sensor,

then the normalized k-th observation value from the l-th sensor is given by:

xlknorm
=
xlk − µl

σl
(1)

Right padding: In this paper, a component’s life cycle is considered as a sample. As individual components have

di�erent life cycles, samples lengths are not equal. However, the input data for a LSTM model must be a 3D tensor

having a �xed dimension (samples (ns), time steps (nt), and features (m)). Hence, it is necessary to pad samples that

are shorter than the longest item with some placeholder values. In this paper, we perform right padding by adding

zeros value at the end of shorter sequences.

RUL label recti�cation: RUL labels in the training set have a signi�cant impact on the model performance. Without

recti�cation, the system RUL is represented by a linear decreasing function over time: it equals to the maximum life

time at the beginning and decreases linearly to reach zero at the end. However, in practice, when the system is in

a healthy state at the early operating stage, RUL is usually considered as a constant value. After the �rst anomaly

signs, the system’s health state gradually deteriorates and its RUL decreases overtime. To better simulate this RUL

change process, the piecewise linear function is widely used in prognostics studies [17, 24].

2.2. Prediction of component’s RUL distribution

In this subsection, we introduce the Lognorm-LSTM model to predict the lognormal distribution parameters (µti, σ
t
i)

that characterize the RUL distribution at time t of component i. Particularly, instead of predicting a target RUL

value, y∗, the Lognorm-LSTM will provide a couple of parameters (µti, σ
t
i) that maximizes the probability when

RULti = y∗. To do this, we �rstly recall the properties of lognormal distribution, and then describe how to construct

the proposed Lognorm-LSTM model.
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2.2.1. Properties of lognormal distribution

In this manuscript, the lognormal distribution is chosen to manage the uncertainty in component’s RUL prediction

for the following reasons:

1. It is one of the most common continuous probability distributions used to model the lifetimes of units;

2. It can only take positive values, which is consistent with the physical constraint that RUL can only be postivie;

3. It is based on the multiplicative growth model and is therefore suitable for diverse components that fail pri-

marily due to fatigue-stress nature, e.g., semiconductor failure or time to fracture in metallic structures;

4. It is a �exible distribution, particularly useful for modeling data that are roughly symmetric or skewed to the

right. Depending on its scale parameter, this distribution can have di�erent shapes as illustrated in Figure 2.
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(a) Statistical values of lognormal distribution
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(b) Di�erent shapes of lognormal distribution

Figure 2: Illustration for lognormal distribution

Given a positive random variable X following a lognormal distribution with two parameters µ and σ, its statistical

characteristics are evaluated by the formulas in Table 1.

Table 1: Statistical characteristics of lognormal distribution

Probability distribution function Mean value Median value Mode value
1

xσ
√
2π

exp
(
− (ln x−µ)2

2σ2

)
exp

(
µ+ σ2

2

)
exp (µ) exp

(
µ− σ2

)
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2.2.2. Lognorm-LSTM model

Figure 3: Architecture of Lognorm-LSTM model for prediction of components’ RUL distributions.

Recall that θti is the output vector characterizing RUL distribution of component i at time t, including 2 values of lorgnormal distribution’s

parameters, µti and σti .

Figure 3 presents the architecture of the Lognorm-LSTM model for the prediction of the component’s RUL distribu-

tion. It consists of the following layers:

1. Input layer: It serves as a prototype bringing the data, which are formalized as a 3D tensor with the shape

number of samples (ns), time steps (nt), and number of features (m) into the network for further processing.

To avoid bias errors caused by the input data’s right padding part, a masking layer is used for skipping this

informal part when training the model.

2. Hidden layer: It is the principal part of the network, seeking to construct the relationship between the input

and the output. In this paper, two LSTM layers and one time distributed layer are sequentially stacked into

the hidden layer.

LSTM layer is a particular architecture of recurrent neural networks (RNN), �rstly proposed in [25] to

solve the vanishing gradient problem of RNN when learning long-term dependencies. Each LSTM unit

has three gates (forget, input and output gates) which provide them the ability to selectively learn, retain

important information or throw away unnecessary one, see Figure 4. The LSTM core is the cell state,

considered as “memory” of the network, that transfers relative information throughout the sequence’s

processing. An LSTM network is well suited to time series problems but it can easily over-�t training data.

Therefore, the “Dropout” regularization technique is added to every LSTM layer for improving the model’s

performance [26]. It involves randomly removing some hidden units in a neural network during training

by a de�ned probability. Therefore, each hidden unit in the network trained with a dropout can adapt to

random cooperations and therefore becomes more robust. This should drive the network towards more

generalization and avoid the over-�tting issue.

Time distributed layer is a wrapper layer used to design a many-to-many LSTM for the prediction of the

sequence output. It applies a same fully-connected operation (i.e. dense operation with same weights) to

every time step of the LSTM outputs and generates an output vector per time step input. The dimension
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of this output vector depends on the number of RUL distribution’s parameters in the output layer. For

example, assuming that the RUL follows a lognormal distribution. Then, the time distributed layer will be

de�ned by a dense operation with 2 units (representing the 2 parameters of a lognormal distribution, µ and

σ). If this time distributed layer gets data of shape (None, nt, n2) from the output of the last LSTM layer,

then the time distributed layer’s output takes the shape of (None, nt, 2). Note that None corresponds to

samples/batch size while nt and n2 are respectively time steps and number of the last LSTM hidden unit.

3. Output layer: A new layer, namely lognormal layer, is de�ned in this manuscript to take into account partic-

ular characteristics of RUL distribution parameters when training the model. It serves as a prototype between

the network and the output to provide the proper parameters representing the RUL distribution instead of

a point-wise RUL prediction. Particularly, it includes speci�c activation functions that are suitable to the

characteristics of the two lognormal parameters. For illustration, an e�cient management of the prognostic

uncertainty requires a small enough positive value of standard deviation σ, while a normal dense layer cannot

satisfy this requirement. Hence, it is necessary to de�ne a speci�c function in the lognormal layer to capture

these characteristics of σ as follows:

σ =


ex, if x ≤ 0

x+ 1, if 0 < x < b

b+ 1, if x > b

(2)

where x is one of two values in the time distributed layer output vector. The result of this operation is

illustrated in Figure 5.

Eq.(2) is used as a bounded constraint function for the standard deviation value. It is inspired from the idea of

ELU (Exponential Linear Unit) activation function, and is de�ned as:

ELU(x) =

e
x − 1, if x ≤ 0

x if x > 0

As the standard deviation, σ, is not negative, Eq.(2) added one to the ELU function, ELU(x) + 1, to ensure

positive values are always outputs. Inheriting the advantage of ELU function, Eq.(2) smoothly tends towards

zero when x < 0. In addition, we used an extra constant b to overcome one of the drawbacks of the ELU

function, that is for x > 0, it can blow up the activation with the output range of [0,∞]. Particularly, b is the

bounded constraint value of σ, which is expected to be small enough.

For µ value, we directly use the remaining value in the output vector of the time distributed layer. However,

it is easy to limit the range of µ value, if necessary, by de�ning an appropriate piece-wise linear function. For

example, given RULmax be the RUL maximum value, a bounded value of µ can be approximately estimated

as: µmax = ln(RULmax).

9



δ δ ѡ ю ћ Ď δ

ѥ ѡ

Ď ѡ

ѐ ѡ

Ď ѡ

ѐ ѡ Ȓ 1

Ď ѡ Ȓ 1

ѡ ю ћ Ď

cell state

forget gate
input gate

output gate

Figure 4: Architecture of LSTM unit

b

b+1

x

Figure 5: Illustration of the result given by Eq.2

De�nition of loss function. The Lognorm-LSTM model has now been constructed to predict sets of parame-

ters (µti, σ
t
i), where (µti, σ

t
i) describe the RUL probability distribution for component i at time t. Note that i ∈

{1, 2, ..., ns} and t ∈ {1, 2, ..., nt}. When training, the weights and bias of the Lognorm-LSTM model will be tuned

to get the sets of (µti, σ
t
i) values that maximize the likelihood function, i.e. probability across the values of the RUL

of component i from the beginning to the time until which the observations from the component i were recorded,

given as follows:

ns∏
i=1

nt∏
t=1

L(µti, σ
t
i |RUL∗

(0:t)

i ) =

ns∏
i=1

nt∏
t=1

t∏
j=0

1

RUL∗
j

i · σti
√

2π
exp

(
− (lnRUL∗

j

i − µti)2

2(σti)
2

)
(3)

Note that RUL∗
(0:t)

i = [RUL∗
0

i , RUL
∗1
i , ..., RUL

∗t
i ].

However, at the beginning of the training process when the parameters are far from their optimal values, the likeli-

hood function is relatively unchanging, and the updates to the network will be small. Hence, the logarithm likelihood

function is used to accelerate the model converge rate to the optimal values. In fact, after taking the logarithm, the

rate of change is small nearby the optimal value and large far away from it. Besides, the logarithm of the likelihood

function gives a sum of individual and statistically independent observation factors, which facilitates the derivative

operation to �nd the optimal values. Next, as a traditional training process usually minimizes a loss function (rather

than maximizing an objective function), so we de�ne here the loss function as the negative logarithm likelihood

function, given by the following equation:

NLL =

ns∑
i=1

nt∑
t=1

− logL(µti, σ
t
i |RUL∗

(0:t)

i ) (4)

Finally, the adaptive moment estimation algorithm (ADAM) is used for the optimization of the Lognorm-LSTM’s

weights. Note that the initial values of network weights are randomly drawn from a uniform distribution within

[−l, l], where l =
√

6/(nin + nout) with nin and nout being the number of input units and the number of output

units, respectively.
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2.3. Analysis and uncertainty quanti�cation of system RUL

The component’s RUL distribution obtained in Section 2.2, i.e. the proposed LogNorm-LSTM’s output, can be used to

evaluate the reliability and the remaining useful life of systems of multi-independent-components under di�erent

structures. In practice, there are diversities of structures. However, in the scope of this paper, we only consider

some common structures, such as series, parallel, combinations between them, and bridge-type (see Figure 6 for

illustration). Furthermore, we discuss the applicability of the proposed methodology for large complex systems.

2.3.1. Ground truth SRUL analysis

Without loss of generality, we assume that at time tp, the system ofN survival independent components still works.

The ground truth RUL of these components are denoted by RULi, with i ∈ {1, 2, ..., N}. Then, the ground truth

SRUL is evaluated according to the system structure as follows,

1. Series system (see the �rst image of Figure 6 for illustration):

SRUL = min(RULi); i ∈ {1, 2, ..., N} (5)

2. Parallel system (see the last image of Figure 6 for illustration):

SRUL = max(RULi); i ∈ {1, 2, ..., N} (6)

Let us assume that the components’ RULs are given as illustrated in Figure 7, the SRUL in series and parallel cases

are equal to the RUL of component 3, RUL3, and the RUL of component 2, RUL2, respectively.

C1 C2 C3 C4

Series 

C1

C2

C3

C4

Combined 2

C3 C4
C1

C2

Combined 1

C1 C2

C3 C4

C5

Bridge-type

C1

C2

C3

C4

Parallel

Figure 6: Illustration of SRUL evaluation for multi-composant systems with di�erent structures
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Parallel:

Series:

Combined 1:

Combined 2:

Figure 7: Illustration for multi-composant systems with di�erent structures

In the case of a combined system with simple topology, we �rstly decompose its entire structure by combinations

of serial or parallel blocks of elementary components. Then, the RUL of each block is evaluated according to the

equation corresponding to its architecture (Eq.5 for serial blocks and Eq.6 for parallel blocks). Finally, the SRUL is

evaluated according to the connexion type between these blocks. For example, the combined system (combined 1)

represented by the second image of Figure 6, is composed of a parallel block (of component 1 and 2) connected in

series with components 3 and 4. Then, its SRUL is given by:

SRUL = min(max(RUL1, RUL2), RUL3, RUL4) (7)

Given the components RULs as shown in Figure 7, the SRUL in this case is equal to the RUL of component 3, RUL3.

Besides, the SRUL of the combined-2 structure is evaluated by:

SRUL = min(max(RUL1, RUL2),max(RUL3, RUL4)) (8)

With the components RULs assumed as shown in Figure 7, the SRUL in this case is equal to the RUL of component 4,

RUL4.

However, the above method is only suitable for systems whose structure is presented by simple topology networks

(series-parallel ones). Systems with complex topology can be handled by other decomposition methods, such as

minimal cut sets. Particularly, through the analysis of the system’s behavior, we identify the minimal cut sets such

that the system will fail if at least a single cut set is present [27]. The details of minimal-cut-set analysis method can

be consulted in [28]. For illustration, considering the bride-type structure shown in Figure 6, the minimal cut sets

are: (C1, C3), (C2, C4), (C1, C5, C4), (C3, C5, C2). Then, its SRUL is given by:

SRUL = min(max(RUL1, RUL3),max(RUL2, RUL4),max(RUL1, RUL4, RUL5),max(RUL2, RUL3, RUL5))

(9)
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2.3.2. Uncertainty quanti�cation for the predicted SRUL

As the system of N survival independent components still works at time tp (Figure 7), the monitoring data of

component i, with i ∈ {1, 2, ..., N}, from the initial moment t0 until tp are used as the input of the proposed

Lognorm-LSTM model to predict its RUL distributions. The Lognorm-LSTM outputs a set of parameters (µtpi , σ
tp
i )

characterizing the RUL distribution of component i from the prediction time tp. To simplify our analysis, without

loss of generality, let’s set tp be the current time origin, the reliability of component i at time t (from the time origin

tp) is given by:

Ri(t) = P (RULi > t) = 1− P (RULi ≤ t) = 1− CDF (t, µ
tp
i , σ

tp
i ) (10)

where CDF (t, µ
tp
i , σ

tp
i ) is the cumulative log-normal distribution function at t given two estimated parameters

(µtpi , σ
tp
i ) characterizing the predicted RUL distribution of component i from the origin time tp. We have:

CDF (t, µ
tp
i , σ

tp
i ) = Φ

(
ln t− µtpi
σ
tp
i

)
(11)

where Φ is the cumulative distribution function of the standard normal distribution.

Series systems

After predicting the RUL distributions and deriving the reliabilities of N components using their monitoring data,

the reliability of series system (which consists of N independent components) at time t is given by:

Rs(t) =

N∏
i=1

Ri(t) =

N∏
i=1

(
1− CDF (t, µ

tp
i , σ

tp
i )
)

(12)

Parallel systems

The reliability of parallel system (which consists of N independent components) at time t is given by:

Rs(t) = 1−
N∏
i=1

CDF (t, µ
tp
i , σ

tp
i ) (13)

Combined architecture systems

To evaluate the reliability of combined systems, their structure must be decomposed into serial or parallel connec-

tions of blocks of elementary components. Next, the reliability of each elementary component’s block is evaluated

by the equation corresponding to its architecture (Eq.12 for serial blocks and Eq.13 for parallel blocks). Finally, the

reliability is evaluated according to the connection type between these blocks. For example, considering the com-

bined system (combined-1) shown in Figure 6, it includes a parallel block (of component 1 and 2) connected in series

with components 3 and 4. Then, its reliability is given by:

Rs(t) =

(
1−

2∏
i=1

Ri(t)

)
4∏
j=3

Rj(t)

=

(
1−

2∏
i=1

CDF (t, µ
tp
i , σ

tp
i )

)
4∏
j=3

(
1− CDF (t, µ

tp
j , σ

tp
j )
)

(14)
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Similarly, the reliability of the system with structure combined-2, see Figure 6, is given by:

Rs(t) =

(
1−

2∏
i=1

Ri(t)

)1−
4∏
j=3

Ri(t)


=

(
1−

2∏
i=1

CDF (t, µ
tp
i , σ

tp
i )

)1−
4∏
j=3

CDF (t, µ
tp
j , σ

tp
j )

 (15)

Complex topology systems

The reliability of systems with complex topology can be evaluated through the union of all minimal cut sets in

the reliability network [27]. For illustration, considering the bridge-type structure, shown in Figure 6, the system

reliability is given by: Rs(t) = 1− P (F ), where P (F ) is the probability of system failure.

P (F ) = C1 · C3 + C2 · C4 + C1 · C5 · C4 + C3 · C5 · C2− C1 · C3 · C2 · C4− C1 · C3 · C5 · C4

−C1 · C3 · C5 · C2− C1 · C2 · C5 · C4− C2 · C3 · C5 · C4

+2C1 · C2 · C3 · C4 · C5 (16)

where Ci is the failure probability of component i, i ∈ {1, 2, ..., 5} given by CDF (t, µ
tp
i , σ

tp
i ).

However, the number of minimal cut sets exponentially increases with the size of the system. This combinatorial

explosion could lead to the numerous di�culties in manipulation of a huge number of cut sets as well as storage

problems. Hence, an e�cient algorithm based on adjacency arrays could be deployed for determining the reliability

of complex systems including a large number of components [27].

Probability of the predicted SRUL

After evaluating the system reliability at time t1 and t2 according to their structures, the probability that the SRUL

falls within the interval [t1, t2] can be easily derived as follows:

P (t1 ≤ SRUL ≤ t2) = P (SRUL ≤ t2)− P (SRUL ≤ t1)

= (1−Rs(t2))− (1−Rs(t1)) = Rs(t1)−Rs(t2) (17)

Discussion on the practical applicability of the proposed methodology

The proposed methodology not only provides the pdf of the RUL of components but also o�ers other prognostics

information that can meet di�erent requirements of operation and maintenance planners. For instance, one can cite

its obtained useful results as follows:

1. point-wise prediction of components’ RUL as well as system’s RUL (RULi and SRUL) by using the mode,

mean or median value of the estimated RUL distribution and Eqs. 5-9. This information is widely used for plan-
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ing maintenance activities at tactical level, e.g integrating maintenance actions into the problem of production

scheduling [29].

2. component reliability (Ri(t)) by calculating the integral of components’ RUL pdfs as well as system reliability

(Rs(t)) by using Eqs. 12-16. This information is needed to optimize maintenance activities for high-reliability

systems such as nuclear power plants and transportation units [30].

3. probability that the system will fail into di�erent time intervals (P (t1 ≤ SRUL ≤ t2)). These time intervals

can be de�ned according to the requirements of the operation planner for better preparing and performing

maintenance activities, e.g. joint optimization of maintenance and inventory management [31].

In addition, the proposed methodology could be extended as a generic framework for handling the uncertainties in

RUL prediction by integrating the relevant RUL’s probability distribution according to di�erent characteristics of

degradation mechanisms. For illustration, the exponential distribution can be used to model the RUL distribution

of a component, whose failure rate is constant over time, while the Weibull distribution can adapt a variety of life

behaviors (increasing, decreasing or constant failure rate). To integrate the exponential distribution in our proposed

methodology, the output layer should be redesigned to generate only one parameter (the failure rate, λ), such that

λ > 0 and 1/λ is bounded by theRULmin andRULmax of the component. For the Weibull distribution, the output

layer must provide 3 parameters: the shape parameter (β), the scale parameter (η) and the location parameter (γ),

such that: γ, η > 0, 0 < β < 1 for decreasing failure rates, β = 1 for constant failure rates, and β > 1 for increasing

failure rates. Accordingly, from a technical aspect, it is not di�cult to integrate the exponential distribution in the

proposed methodology but its practicability is limited to components whose failure rate is independent of its working

time. Furthermore, the Weibull distribution can be widely used for most situations but from a technical aspect, it is

not easy to take into account the mutual impact of three parameters when training the model (e.g., to reduce the RUL

prediction’s uncertainty, the value of η should be decreasing while keeping β and γ constant, but this will push the

RUL pdf in towards the left, hence accelerate the failure probability in early time). To trade-o� the practicability and

the technical di�culty, this work has considered the lognormal distribution. However, the proposed methodology is

only suitable for systems of independent components whose states can be monitored through sensing technologies.

3. Numerical experiments

This section aims to evaluate the proposed methodology’s performance on a well known engeineering benchmark

problem. For this purpose, we �rstly describe the considered benchmarking dataset in subsection 3.1. Then, the per-

formance evaluation metrics for point-wise prediction and uncertainty quanti�cation are proposed in subsection 3.2.

Subsection 3.3 is dedicated to discussing the prognostics results for individual components. Finally, uncertainty

management for prognostics of systems of multi-independent-components is investigated in subsection 3.4.
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3.1. Case study description

In this section, the benchmarking data set, Turbofan Engine Degradation Simulation provided by NASA Ames Prog-

nostics Data Repository, is used to evaluate the proposed methodology’s performance. Among 4 subsets: FD001,

FD002, FD003 and FD004, the �rst case FD001 is the most used in PHM �eld [1, 11, 16, 32, 33]. It is generated by the

C-MAPSS tool that simulates various degradation scenarios of a �eet of engines of the same type, subject to a single

fault mode under same operating conditions. The details of this dataset can be consulted in paper [34].

Among 21 sensor measurements, some sensors provides useless information that are constant throughout the en-

gine’s life time. The use of these measurements can reduce the e�ciency of the prediction model. Therefore, it is

necessary to correctly chose the relevant measurements according to the feature performance criteria [23]. As a

result, 14 features corresponding to the outputs of 14 sensors with indexes 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20, and

21, and one feature corresponding to the life cycle are selected. The selected features are then normalized, padded

and masked as described in section 2.1. For RUL label recti�cation, a piece-wise linear function with the maximum

RUL value of 130 is used [24].

Next, the Lognorm-LSTM model presented in subsection 2.2 is constructed using the Keras and TensorFlow prob-

ability libraries of Python. Its architecture is summarized in Table 2. The parameters’ values presented in Table 2

are manually optimized through an analysis of multiple numerical experiments feedback. Although the maximum

number of epochs is set to 500, an early stopping mechanism is implemented to end the training process if the

loss function is not improved after 50 consecutive epochs. During this training process, we use ModelCheckPoint to

monitor the loss function and then output the model weights each time an improvement is recognized.

Table 2: Con�guration parameters of the proposed Lognorm-LSTM

1st LSTM units 2nd LSTM units Dropout b Learning rate Epochs

100 50 0.2 0.5 0.001 500

3.2. Performance evaluation metrics

This section aims to presents the metrics for performance evaluation of the proposed Lognorm-LSTM on both as-

pects: point-wise prediction and uncertainty management.

3.2.1. Point prediction accuracy metrics

Given M the total number of prediction points and dk be the di�erence between the k-th estimated and actual RUL

values, the performance of prognostic models can be evaluated by the following point prediction accuracy metrics.
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Mean squared error (MSE): MSE is a widely used metric to evaluate the point prediction accuracy [32, 35, 36, 37].

It equally penalizes both late and early predictions by the following formulation:

MSE =
1

M

M∑
k=1

d2k (18)

Scoring function (SF): SF, which is a popular metric used to evaluate the performance of prognostics algorithms

on the C-MAPSS dataset [1, 32, 33, 35, 36], allows punishing late prediction more heavily than an early prediction.

SF =

M∑
k=1

sk; sk =

e
− dk

13−1, if dk < 0

e−
dk
10−1, if dk ≥ 0

(19)

Accuracy (A): Accuracy is a metric to measure the percentage of prediction errors that fall within a tolerance

interval. For the C-MAPSS dataset, the tolerance interval is de�ned as [-13, 10] [33, 37, 38, 39], then it is given by:

A =
100

M

M∑
k=1

I(dk); I(dk) =

1, if dk ∈ [−13, 10]

0 if dk /∈ [−13, 10]

(20)

3.2.2. Uncertain prediction evaluation metrics

Uncertain evaluation metrics for prognostics at component level

In addition to measuring the accuracy of point-wise estimates, it is necessary to evaluate the uncertainty manage-

ment performance of the proposed methodology. Particularly, the prediction interval coverage probability (PICP)

and the normalized mean prediction interval width (NMPIW) metrics, that can properly resume the prediction un-

certainty, are widely used in literature [11, 1, 16].

Prediction interval coverage percentage (PICP): represents the probability that the true targets (RUL∗k) fall

within the lower and upper bounds ([Lα(RULk), Uα(RULk)]) of predictions, RULk , with a prescribed con�dence

level (1− α). It is given by:

PICP =
1

M

M∑
k=1

I(RUL∗k); I(RUL∗k) =

1, if RUL∗k ∈ [Lα(RULk), Uα(RULk)]

0 if RUL∗k /∈ [Lα(RULk), Uα(RULk)]

(21)

Normalizedmean prediction interval width (NMPIW): is used to evaluate the width of prediction intervals and

is de�ned as:

NMPIW =
1

M.(RULmax −RULmin)

M∑
k=1

(Uα(RULk)− Lα(RULk)) (22)

where RULmin and RULmax are the minimum and maximum values of the target RUL respectively.
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Uncertain evaluation metrics for prognostics at system level

Besides, givenMs the total prediction points at system level, we propose to use the two following metrics to measure

the uncertainty management capacity for system prognostics:

Mean accuracy probability (MAP). MAP is used to evaluate the proper level of the system RUL (SRUL) probability

function. It represents the probability that the estimated SRULs falls within a tolerance interval around the target

values. For the C-MAPSS dataset, the tolerance interval is de�ned as [SRUL∗k − 13, SRUL∗k + 10], with k ∈

1, 2, ...,Ms.

MAP =
1

Ms

Ms∑
k=1

P (SRULk ∈ [SRUL∗k − 13, SRUL∗k + 10]) (23)

Mean normalized prognostics horizon (MNPH). Prognostic horizon (PH) is de�ned by the di�erence between

the system’s end-of-life time (tSEOL) and the prognostic moment (tp), i.e. the current time starting RUL prediction,

see Figure 7. MNPH is then used to measure the PH width compared to the system life time.

MNPH =
1

Ms

Ms∑
k=1

tSEOLk
− tpk

tSEOLk

(24)

3.3. Discussion of prognostics results for components

Using the metrics presented in subsection 3.2, the performance of the proposed Lognorm-LSTM model is investigated

in terms of both point prediction accuracy and uncertainty management capacity. Since the Lognormal-LSTM output

provides 2 parameters characterizing components RUL distributions instead of a single predicted RUL value, the

mean, median or mode values of these RUL distributions will be calculated by equations given in Table 1 to assess

the model’s point prediction accuracy.

Figure 8 illustrates the prognostics results throughout lifetime observations of some engines in the test set FD001:

the longest lifetime engine (ID 12), the shortest lifetime engine (ID 41) and a random engine (ID 35). One can see

that for engine ID 12, although its monitoring data are collected until 217 life cycles, this engine is only in the �rst

deterioration stage and its true RUL is still large, i.e. 124 cycles. Therefore, the median value of the predicted RUL

(characterized by the continuous blue line in Figure 8.a) is close to the maximum value of the piecewise linear RUL

function (presented by the continuous red line in Figure 8.a). In addition, its 95% RUL prediction interval at cycle

217 (the end of the observation period) is quite large, from 86 until 148 (Figure 8.b).

For the shortest life time engine (ID 41), as its degradation process is particularly fast compared to other units, the

predicted RUL distribution at the early stage of the observation period is not good: the ground truth RUL is outside

of the 95% RUL prediction interval (Figure 8.c). However, as shown in Figure 8.c, the prediction results are improved
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(a) Point prediction throughout lifetime observations, engine ID 12
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(b) RUL pdf at the end of monitoring period, engine ID 12
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(c) Point prediction throughout lifetime observations of engine ID 41
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(d) RUL pdf at the end of monitoring period, engine ID 41

(e) Point prediction throughout lifetime observations of engine ID 35 (f) RUL pdf at the end of monitoring period, engine ID 35

Figure 8: Prediction results for engines in test set FD001

along the engine’s life time when collecting more monitoring data: the predicted RUL’s median value is getting

closer and closer to the ground truth RUL. And at the end of the observation period (cycle 123), its true RUL (18

cycles) falls within a narrow enough 95%-RUL-prediction interval [14.9, 29.8] (Figure 8.d).

The convergence of the predicted RUL distribution towards the ground truth RUL along the engine’s monitoring life

time is further illustrated when considering engine ID 35 (Figure 8.e), which leads to a particularly narrow prediction

interval. In fact, at the end of the observation period (cycle 198), its truth RUL (11 cycles) falls within a quite narrow
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interval [8.8, 17.6] representing the 95% RUL prediction con�dence interval (Figure 8.f).

Next, the Lognorm-LSTM model’s performance is comprehensively evaluated on the test set FD001. Table 3 presents

the point prediction accuracy at the end of the observation period for all engines. Considering the proposed model’s

results, due to the asymmetric property of the predicted RUL distribution, one can see that there exist slight dif-

ferences when using its mode, mean or median values for the evaluation of the point prediction accuracy metrics.

Among them, the use of mean value provides the best results for MSE and Accuracy metrics while the best score

function (SF) is attained with the mode value.

Compared to other state-of-the-art prognostics algorithms in the literature, although the proposed Lognorm-LSTM

model does not achieve the highest SF value (only 4% less than the best score provided by RULCLIPPER [32]), it is the

best one according to the MSE (149.5) and Accuracy metrics (72%) shown in Table 3. Note that the MSE and Accuracy

metric values given by RULCLIPPER are respectively 17.7% and 6.9%, which are worse than the ones obtained by

our model. Furthermore, RULCLIPPER only provides a single predicted RUL value instead of a RUL distribution that

allows quanti�cation of prognostics uncertainty.

Table 3: Accuracy comparison on point prediction of other state-of-the-art methods

MSE SF Accuracy

RULCLIPPER [32] 176.0 216.0 67%

MODBNE [35] 226.2 334.2 _

Embed-LR1 [40] 155.0 219.0 59%

LSTMBS [11] 209.7 481.1 _

IESGP [1] 216.7 331.9 _

DBNBP-IPF [38] _ 543.0 51%

DBN-IPF [38] _ 314.0 63%

BiLSTM-ED [39] 217.3 273.0 57%

M3-1 [17] 155.7 242.3 _

TSCG [36] 304.1 468.5 _

SBI-EN [37] 184.5 228 67%

MCLSTM [33] 188 315 _

Lognorm-LSTM (Mode) 161.3 225.5 69%

Lognorm-LSTM (Mean) 149.5 243.8 72%

Lognorm-LSTM (Median) 151.6 234.2 69%

Figure 9 presents the ability to capture the prognostics uncertainty of our Lognorm-LSTM model. One can see that

for the engines (in the test set FD001) whose truth RUL is lower than 40 cycles, the 95% RUL prediction interval

is narrow. In addition, the RUL distribution’s median value is close to the truth RUL. Compared to other existing

algorithms (Table 4), the proposed model provides the tightest width of 95% RUL prediction interval (NMPIW =

0.316) with a good enough score of the prediction interval coverage percentage (PICP = 0.95). Note that although
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Figure 9: Prognostics results of Lognorm-LSTM model on test set FD001 with PICP = 0.95, NMPIW = 0.316

the IESGP model [1] gets the best result according to the PICP metric, its mean prediction interval width is more than

a half of the target RUL’s range (NMPIW = 0.540). This large prediction interval width presents a high uncertainty

level in prognostics results and is problematic when needing to take a decision. Besides, the LSTMBS method [11]

has the same uncertainty management ability as our model (its PICP and NMPIW scores are close to the ones of our

model) but its point prediction accuracy metrics (MSE and SF) are much worse than ours, see Table 3.

Table 4: Performance comparison of uncertainty quanti�cation of other state-of-the-art methods

LSTMBS [11] IESGP [1] RNP [16] Lognorm-LSTM

PICP 0.960 0.995 0.870 0.950

NMPIW 0.377 0.540 _ 0.316

3.4. Discussion of uncertainty management for prognostics of multi-component systems

In the previous section, the performance of the proposed model for prognostics of turbofan engines (i.e. prognostics

at component level) was highlighted when compared to other advanced prognostics algorithms in the literature.

Now, based on the predicted RUL distributions (at component level), the prognostics uncertainty at system level will

be quanti�ed. To illustrate the wide applicability of the proposed methodology, four common structures: 1) series,

2) combined-1, 3) combined-2, and 4) parallel (cf. Figure 6) considered in this section.

In addition, to investigate the impact of monitoring data quantity on system prognostics uncertainty management,
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complete life cycles of engines are necessary. Then, di�erent amount of data collected during these complete life

time are used to evaluate the SRUL probability. To do this, the FD001 training set will be divided into two parts. The

�rst part, including 70 random engines, is used for training the Lognorm-LSTM to predict engine’s RUL distribution

while the second part, consisting of 30 remaining engines, called the validation set is used for quanti�cation of the

prognostics uncertainty at system level.

Considering an aircraft having 4 turbofan engines, we assume that these engines are connected in 1) series, 2)

combined-1, 3) combined-2, and 4) parallel structures (cf. Figure 6) to ensure the aircraft operation. These cases can

be typical of various failure modes a�ecting di�erently the failure of the system (i.e. the entire aircraft). Each engine

is subject to its own degradation process and independently monitored. To investigate the ability of uncertainty

management for prognostics of aircraft failure due to turbofan engines, we randomly select 4 engines among 30

engines in the validation set. The monitoring data of each engine are used as the proposed model’s input to predict

its RUL lognormal distribution. Based on these predicted RUL distributions, the aircraft reliability or the SRUL

probability can by derived corresponding to the type of system using Eqs. 12, 13, 14, 16, or 17. This procedure

is repeated 1000 times to simulate 1000 scenarios of aircraft failures due to engine deteriorations. Given the truth

SRUL calculated by Eqs. 5, 6, 7 and 8 according to system structures, we evaluate system prognostics uncertainty

management metrics, i.e. mean accuracy probability (MAP) and mean normalized prognostics horizon (MNPH), at

70%, 80% and 90% of lifetime (pc = 0.7, 0.8, and 0.9) of the �rst failed engine in such aircraft, tp = pc ·min∀i(tEOLi
).

These results are presented in Table 5.

Table 5: Uncertainty management for prognostics of multi-component systems with di�erent structures, tp = pc ·min∀i(tEOLi
)

Series Combined 1 Combined 2 Parallel

pc = 0.7
MAP 0.821 0.739 0.526 0.543

MNPH 30.0% 33.4% 44.1% 51.0%

pc = 0.8
MAP 0.907 0.845 0.628 0.527

MNPH 20.0% 23.8% 36.4% 46.2%

pc = 0.9
MAP 0.991 0.943 0.733 0.580

MNPH 10.0% 14.3% 29.2% 41.1%

Table 6: Uncertainty management for prognostics of multi-component systems with di�erent structures, tp = pc · tSEOL

Series Combined 1 Combined 2 Parallel

pc = 0.7
MAP 0.822 0.782 0.675 0.591

SRUL∗ (cycles) 50.1 53.2 64.6 82.6

pc = 0.8
MAP 0.904 0.900 0.886 0.794

SRUL∗ (cycles) 32.4 35.7 45.3 53.0

pc = 0.9
MAP 0.989 0.988 0.974 0.942

SRUL∗ (cycles) 16.1 17.2 20.9 26.9
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Considering Table 5, we can note that the proposed method’s performance strictly depends on the monitoring data

quantity collected along the system’s lifetime. For series system, as the aircraft’s lifetime is also the one of the �rst

failed engine, when pc = 0.7, 0.8, or 0.9, the MNPH for aircraft are respectively 30%, 20% and 10%. In these cases,

the probability that the predicted aircraft RUL (SRUL) falls within the accuracy interval [SRUL∗−13, SRUL∗+10]

is great enough, e.g. MAP = 0.991 when pc = 0.9. Contrarily, the MAP in the case of parallel systems is not good

enough, e.g. MAP = 0.58 when pc = 0.9. In fact, the prognostic horizon in this case is quite large (MNPH = 41.1%)

and there is not enough monitoring data to reduce the prognostics uncertainty. Similar to the case of the combined-

1 and 2 structures, the method’s performance is decreasing when the prognostics horizon is increasing, e.g. for

combined-1 structure, MAP reduces from 0.943 to 0.739 when MNPH rises from 14.3% to 33.4%.

The signi�cant impact of the prognostics horizon on the uncertainty management of SRUL predictions is highlighted

one more time when considering Table 6, for which the prediction time tp is de�ned by a percentage of the system

life time, tp = pc · tSEOL. Although the mean normalized prognostics horizon’s value is the same when considering

di�erent system structures (MNPH is equal to 30%, 20% and 10% for pc = 0.7, 0.8, and 0.9 respectively), the mean

truth value of SRUL (SRUL∗) decreases according to the system architecture as follows: parallel, combined-2,

combined-1, and series. Besides, one can see that in Figure 9, the greater value of RUL is, the wider 95% prediction

interval is. Therefore, the MAP increases according to the system structures: parallel, combined-2, combined-1, and

series, for di�erent values of pc. However, when pc = 0.9, the MAP of the four systems are reliable enough for all

system con�gurations, including for the parallel system (MAP = 0.942), which is the toughest among the four cases.

4. Conclusion

In this paper, a new methodology to quantify prognostics uncertainty of a multi-independent-component system

was presented. It uses heterogeneous monitoring data of components as the Lognorm-LSTM’s input to predict the

RUL distribution. Then, the component’s RUL distribution is considered to derive the system reliability based on

mathematical formulas corresponding to the system’s architecture. It also provides the probabilities that the system

RUL will fall within di�erent time intervals, and therefore shows promising abilities for industry applications. In

fact, as the previous mentioned time intervals can be de�ned according to the requirements of the operation planner,

the proposed methodology’s result can be easily adapted to practical demands.

The performance and the e�ciency of the proposed Lognorm-LSTM model were highlighted when compared to

existing prognostics algorithms available in the literature for the benchmark dataset: the turbofan engines dataset

provided by the NASA Ames Prognostics Center of Excellence. Considering the point prediction accuracy aspect, the

proposed model o�ers the best results among the compared models, according to Mean squared error and Accuracy

metrics. In terms of uncertainty management aspect, it gives narrow RUL distributions with reasonable scores
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of prediction interval coverage percentage. Moreover, thanks to the component’s explicit RUL distributions, the

useful information of system reliability according to di�erent structures can be easily evaluated. Through numerical

experiments, one can see that the prognostics uncertainty management ability of the proposed method strictly

depends on the prognostic horizon. Its mean accuracy probability is decreasing when the prediction time is far from

the system end of life. Hence, it would be interesting to investigate the impact of di�erent quality and quantity

levels of monitoring data on the prognostic performance to optimize the inspection policy or the decision time.

Finally, the proposed methodology works under the assumption that the component’s RUL follows a lognormal dis-

tribution. Further works could consider di�erent probability distributions and allow to automatically select the best

suitable distribution according to the experimental data characteristics. Another relevant direction for future work

could be the extension of the methodology to take into account the statistical dependencies between components.
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