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SURFACE BOUNDARY LAYERS THROUGH A SCALAR EQUATION WITH AN
EDDY VISCOSITY VANISHING AT THE GROUND

Luigi C. Berselli1 , François Legeais2 and Roger Lewandowski2,*

Abstract. We introduce a scalar elliptic equation defined on a boundary layer given by Π2× [0, 𝑧top],
where Π2 is a two dimensional torus, with an eddy vertical viscosity of order 𝑧𝛼, 𝛼 ∈ [0, 1], an homoge-
neous boundary condition at 𝑧 = 0, and a Robin condition at 𝑧 = 𝑧top. We show the existence of weak
solutions to this boundary problem, distinguishing the cases 0 ≤ 𝛼 < 1 and 𝛼 = 1. Then we carry out
several numerical simulations, showing the ability of our model to accurately reproduce profiles close
to those predicted by the Monin–Obukhov theory, by calculating stabilizing functions.
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1. Introduction

This paper is devoted to study a scalar elliptic equation which parameterize the mean velocity of the air
in the atmospheric Surface Boundary Layer (SBL), where the turbulent stresses are balanced with the friction
forces on the ground. This is part of the more general framework of the turbulent boundary layers, initially
developed by Prandtl [19], then by von Kármán [26], who highlighted the role of logarithmic profiles relative to
the height in such layers (see also in [13, 24, 25]), called the log-law, which was validated by several numerical
simulations, for instance by using turbulence models such as the 𝑘 − 𝜀 model (see [18] and further references
inside) and-or by stochastic models [17].

The Monin–Obukhov theory [14] states that under non-neutral conditions, the mean velocity profile differs
slightly from the log-law, the difference being determined by stabilization functions. This theory is used in much
more general (SBL) regimes [16], and is the basis of most atmospheric flow simulations near the ground, which
raises the question of the determination of the stabilization functions.

The starting point is the 1D differential equation that yields the log-law from a theoretical point of view [24],
namely

𝑢⋆𝜅
d
d𝑧

(︂
𝑧

d𝑢
d𝑧

)︂
= 0,

together with appropriate boundary conditions, where 𝑢 = 𝑢(𝑧) denotes the mean horizontal velocity component
that is supposed to only depend on the height 𝑧 > 0; in this framework, 𝑢⋆ is the friction velocity and 𝜅 the
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von Kármán constant. We wonder if a similar simple multi dimensional PDE satisfied by 𝑢 = 𝑢(xℎ, 𝑧), xℎ ∈ IR𝑑

(𝑑 = 1, 2), is able to yield Monin–Obukhov profiles type, which suggests to introduce the equation,

−𝜈ℎ∆ℎ𝑢− 𝜕𝑧(𝜈turb(𝑧)𝜕𝑧𝑢) = 𝑓, (1.1)

where 𝑓 is the Boussinesq force specified by a temperature supposed to be constant in this paper, 𝜈turb = 𝜈turb(𝑧)
is an eddy viscosity and 𝜈ℎ > 0 an horizontal viscosity coefficient. According to standard assumptions and
dimensional analysis [5, 10,15], we should have

𝜈turb(𝑧) = 𝜅𝑢⋆𝑧, (1.2)

in the domain 0 < 𝑧 < 𝑧top, where 𝑧top denotes the height of the (SBL). However, we know that eddy viscosities
that vanish at the boundary are source of serious mathematical issues [2–4] and are often studied by means of
weighted Sobolev spaces [8]. Moreover, the case given by (1.2) is critical as we will see later in this article, giving
very weak solutions with only 𝐻1/2 regularity, which does not allow to set a boundary condition at 𝑧 = 0. This
is why in many models, 𝜈turb is taken to be constant in a viscous sublayer [0, 𝑧0]. The same issue occurs in the
case of the Smagorinsky model [23], where the eddy viscosity denoted by 𝜈smag is given by 𝜈smag = 𝜅𝑧2|𝜕𝑧𝑢| near
the ground 𝑧 = 0. This is why in the Smagorinsky case, several authors have suggested to replace the physical
𝜈smag by 𝜈smag = 𝜅𝑧

2(1−𝛼)
0 𝑧2𝛼|𝜕𝑧𝑢| for some 0 < 𝛼 < 1 [4, 20–22], to obtain more regular solutions and to be

able to take into account appropriate boundary conditions. This suggests to consider in our case general eddy
viscosities of the form

𝜈turb(𝑧) = 𝜅𝑧1−𝛼
0 𝑢⋆𝑧

𝛼. (1.3)

There is the question of the boundary conditions. It is natural to set 𝑢 = 0 at the ground 𝑧 = 0. Following [9],
we take a Navier friction condition at the top of the boundary layer 𝑧 = 𝑧top (also named Robin law), which is
a fairly transparent condition, easy to deal with in a variational formulation. In order to be consistent with the
numerical simulations, we take periodic boundary conditions in the horizontal directions. Therefore, the PDE
problem we consider in this paper is the following1,⎧⎪⎪⎨⎪⎪⎩

𝜆𝑢− 𝜈ℎ∆ℎ𝑢− 𝜇𝜕𝑧(𝑧𝛼𝜕𝑧𝑢) = 𝑓 in BL,

𝜇𝑧𝛼
top

𝜕𝑢(xℎ, 𝑧)
𝜕𝑧

= 𝐶𝐷(𝑉 (xℎ)− 𝑢(xℎ, 𝑧top)) on Γtop,

𝑢 = 0 on Γ𝑏,

(1.4)

where xℎ = (𝑥, 𝑦) and

BL = Π2 × [0, 𝑧top], Γ𝑏 = Π2 × {𝑧 = 0}, Γtop = Π2 × {𝑧 = 𝑧top}, (1.5)

0 < 𝛼 ≤ 1, for a given 2D torus denoted by Π2, where the term 𝜆𝑢, 𝜆 ≥ 0, is a stabilizing term, useful only in
the case 𝛼 = 1, 𝜇 > 0 and 𝐶𝐷 > 0 are given coefficients that will be calibrated by numerical experiments.

In this paper we prove the existence of a weak solution to problem (1.4) in an appropriate weighted space for
0 ≤ 𝛼 < 1, see Theorem 3.1 below. Then for 𝛼 = 1, we prove the existence of a very weak solution 𝑢 ∈ 𝐻1/2(BL)
for 𝜆 > 0, in Theorem 4.1, which is the main result of this paper. In this result, we do not impose 𝑢 = 0 at
𝑧 = 0. It is based on a Neças lemma type (also known as Lions Lemma), Lemma 4.1. In this case, the difficulty
is due to the mixed boundary condition and we cannot directly apply the results of [1, 6]. We had to make
many efforts to prove this essential result in this problem, based on the interpolation theorem [12]. Finally we
carry out several numerical simulations based on a Freefem++ code [7], which allows to evaluate the difference
between the solution and the log-law. In particular we observe that, despite the lack of theoretical regularity,
the physical case 𝛼 = 1 remains the most accurate to parameterize the SBL, and we are able to calculate

1The acronym SBL has been replaced by BL for simplicity.
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numerically in several different regimes the stabilizing functions, given by formula (5.8) below, which validates
model (1.4) in terms of the Monin–Obukhov theory.

The paper is organized as follows. In a first part we develop the modeling sketched in the introduction,
and we set the physical constants involved in the simulation. Then we study the case 0 ≤ 𝛼 < 1, by viscous
regularization and proving that the natural weighted space related to the problem is embedded in a standard
Sobolev space 𝑊 1,𝛾(BL). Then we focus on the case 𝛼 = 1. A large part of the paper is devoted to the study
of the function spaces and Neças Lemma by means of Fourier series, which allows to prove that the natural
weighted space related to the problem is embedded in 𝐻1/2(BL). The last section of the paper is devoted to the
numerical results.

2. Modeling

This section is devoted to recall some basic elements of the theory of turbulent boundary layers, and to fix
the general framework of the model which one studies. The steady mean fluid velocity in such boundary layer,
denoted (BL), is denoted by

u = u(xℎ, 𝑧) = (uℎ(xℎ, 𝑧), 𝑤(xℎ, 𝑧)),

instead of u for the simplicity, where
uℎ = (𝑢, 𝑣), 𝑧 ∈ ]0, 𝑧top[,

𝑧top > 0 being the bottom of (BL). For instance, if (BL) models the surface boundary layer, 𝑧top ≈ 100 m. We
also will need to consider the roughness length 𝑧0, which depends on the nature of the ground, and varies from
0.0002 m in open sea, to 1 m for city centre with high- and low-rise buildings.

Note that we are in a flat domain and the splitting of both variables and unknowns into horizontal and
vertical will be of particular use to identify the problem and give a clear formulation.

2.1. Assumptions, general equation and issues

Let 𝜈 > 0 denotes the kinematic viscosity of the fluid. It is commonly supposed that in standard (statistical)
steady BL it hold the following:

– the pressure is constant and the vertical part of the mean velocity vanishes, that is 𝑤 = 0 and, even if it
means making a change of coordinates, we can assume 𝑣 = 0;

– the mean velocity u = (𝑢, 0, 0) depends only on the altitude, that is 𝑢 = 𝑢(𝑧);
– the eddy viscosity 𝜈turb depends on 𝑧 and 𝑢⋆ =

√︀
𝜈|𝜕𝑧𝑢(0)|, the so-called frictional velocity, which is the

tuning parameter of the system (see [18,24]), which yields

𝜈turb = 𝜈turb(𝑧) = 𝐶𝜈𝐶⋆𝑢
⋆𝑧, (2.1)

where 𝐶𝜈 ≈ 15, 𝐶⋆ ≈ 10 are non dimensional constants, that we have calibrated by numerical simulations.
Typical values of 𝑢⋆ range from 2 to 10 ms−1.

– all terms in the fluid equation are negligible compared to the turbulent diffusion term.

These assumptions lead to the following equation for the mean velocity u = (𝑢, 0, 0),

− d
d𝑧

(︂
𝜈turb(𝑧)

d𝑢
d𝑧

)︂
= 0, (2.2)

which formula, once integrated between a given 𝑧0 and 𝑧top with appropriate boundary conditions, yields the
well known log-law, uniform in xℎ, using the calibration constants 𝐶𝜈 and 𝐶⋆:

𝑢(𝑧) =
𝐶⋆𝑢

⋆

𝐶𝜈

(︂
log

(︂
𝑧

𝑧0

)︂
+ 1

)︂
, 𝑧 ∈ [𝑧0, 𝑧top]. (2.3)
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Generally, for 𝑧 ∈ [0, 𝑧0], called the viscous sub-layer, a linear profile is considered such that 𝑢 = 𝑢(𝑧) is
continuous over ]0, 𝑧top[, and 𝑢(0) = 0, which means

𝑢(𝑧) =
𝐶⋆𝑢⋆

𝐶𝜈
𝑧, 𝑧 ∈ [0, 𝑧0]. (2.4)

Let 𝑢Log denotes the function defined over ]0, 𝑧top[ by (2.3) and (2.4). When the stability of the atmosphere
is non-neutral and due to the effect of convection, which means that there is a non zero source term in (2.2),
stabilizing functions must added to 𝑢Log to get the right velocity profile, according to the Monin–Obukhov
theory [14], which means that

𝑢(𝑧) = 𝑢Log(𝑧) + Ψ(xℎ, 𝑧), (2.5)

where the function Ψ(xℎ, 𝑧) is deduced from similarity arguments or from experimental data. Examples of such
stabilizing functions can be found in [16].

Remark 2.1. Normally in usual industrial models, 𝐶𝜈 stands for the von Kármán constant, the value of which
being equal to 0.4, and 𝐶⋆ = 1. However, due to the scales of our simulations, we have to take other values of
these constants to get numerical results related to the physical data in the atmospheric SBL.

Our aim is to find a comprehensive PDE model, such that:
(1) is defined over ]0, 𝑧top[;
(2) includes an eddy viscosity of the same form as that given by (2.1), where the profile 𝑢 = 𝑢(xℎ, 0) also

depends on the horizontal variable;
(3) is able to calculate stabilizing functions such as in (2.5) in various atmospheric regimes.

Before embarking on nonlinear complicated 3D equations of fluid mechanics, we consider as a first step the
following elliptic toy-model in BL = IR2 × (0, 𝑧top):

𝜆𝑢− 𝜈ℎ∆ℎ𝑢− 𝜕𝑧(𝜈turb(𝑧)𝜕𝑧𝑢) = 𝑓, (2.6)

for some 𝜆 > 0, 𝜈ℎ > 0, ∆ℎ = 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 . The term 𝜆𝑢 in (2.6) stands for a numerical artefact of an evolutionary
term 𝜕𝑡𝑢, and serves as a system stabilizer, especially in the case 𝛼 = 1. It can be taken equal to zero in the
finite element simulation thanks to the numerical dissipation, due to the discretization.

In physical applications, the source term 𝑓 is the Boussinesq force, namely

𝑓 = 𝑔𝛽(𝑇0 − 𝑇 ), (2.7)

where 𝑇 is the temperature of the fluid, 𝑇0 its value at the ground, 𝑔 ≈ 10 ms−1 is the gravity coefficient, 𝛽
is the coefficient of thermal expansion, a typical value of which for dry air is varies between 0.002 K−1 and
0.003 K−1.

2.2. Boundary conditions

The choice of the boundary conditions may be an issue, and there are many options. We consider the case
of a BL that flows over a rigid wall, which means that we take an homogeneous boundary condition on the
bottom Γ𝑏, 𝑢(xℎ, 0) = 0. Moreover, we consider that this BL is coupled on top with a layer of fluid which exerts
a frictional force on it. Therefore, as in [9] one can can take a linear Navier-Boundary condition like

𝐶𝜈𝑢
⋆𝑧top

d𝑢
d𝑧

(xℎ, 𝑧top) = 𝐶𝐷(𝑉 (xℎ)− 𝑢(xℎ, 𝑧top)), (2.8)

where 𝐶𝐷 > 0 is a frictional coefficient and 𝑉 = 𝑉 (xℎ) is the velocity of the top layer. In the numerical
simulations we have taken 𝑉 (xℎ) = 𝑢Log(𝑧top)(1 + 𝜀(xℎ)), where 𝑢Log is that given by (2.3) and (2.4). The
coefficient 𝐶𝐷 will be numerically optimized in function of 𝑢⋆, 𝜀(xℎ) is a small perturbation term.

Remark 2.2. According to the results of [9], we expect that for large values of 𝐶𝐷, the boundary condition
(2.8) converges (in some sense) to the continuity condition 𝑢(xℎ) = 𝑉 (xℎ) at Γtop, which is well confirmed in
this framework by the numerical simulations.
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2.3. Alternatives and general framework

As we will see in the following, the eddy viscosity given by (2.1) yields variational (or weak) solutions to
problem (2.6) that are in 𝐻1/2, and not much more. In particular the homogeneous Dirichlet boundary condition
at the bottom cannot be checked, which is consistent with the log-law. This is why we ask the question whether
or not it is possible to identify alternate eddy viscosities, close to (2.1) but giving more regularity to the system,
being not critical for the notion of trace, and so on. We wonder if that gives good approximations of the usual
BL profiles. In this way, it is natural to consider 𝜈turb of the form

𝜈turb = 𝜈turb(𝑧) = 𝑧1−𝛼
0 𝐶𝜈𝑢

⋆𝑧𝛼, 𝛼 ∈]0, 1], (2.9)

the main feature of which is that it degenerates at the ground, but with a different velocity. The parameter
𝑧0 has the dimensions of a length and it is needed to have a consistent expression for the viscosity. We take
as boundary conditions on the bottom and on the top, we write the friction law (2.8) like a standard Robin
condition in the form: ⎧⎨⎩𝐶𝐷𝑢(xℎ, 𝑧top) + 𝜇𝑧𝛼

top

𝜕𝑢

𝜕𝑧
(xℎ, 𝑧top) = 𝐺(xℎ)

𝑢(𝑥ℎ, 0) = 0,
(2.10)

for 𝜇 = 𝑧1−𝛼
0 𝐶𝜈𝑢

⋆ and where 𝐺 = 𝐶𝐷𝑉 .
It remains to clarify the boundary conditions in the xℎ-axis. For practical numerical simulations, we have to

limit ourselves to a finite computational box [0, 𝐿𝑥] × [0, 𝐿𝑦]×]0, 𝑧top[ for given scales 𝐿𝑥 and 𝐿𝑦, which raises
the question of the boundary conditions at the entrance, exit and sides of the computational box, namely

Γin = {0} × [0, 𝐿𝑦]× [0, 𝑧top], Γout = {𝐿𝑥} × [0, 𝐿𝑦]× [0, 𝑧top],
Γ𝑠,1 = [0, 𝐿𝑥]× {0}×]0, 𝑧top[, Γ𝑠,2 = [0, 𝐿𝑥]× {𝐿𝑦} × [0, 𝑧top].

In [11] we have considered at Γin a fixed given field in 𝐻1/2
00 (Γin) and nonlinear Neumann transparent boundary

conditions at Γ0 which yields serious technical issues, both theoretically and numerically. In this paper, we opt
for horizontal periodic boundary conditions, which means that 𝑢 must satisfy for all formal derivative operator
𝐷𝑛, 𝑛 ≥ 0,

𝐷𝑛𝑢(𝑥+ 𝐿𝑥, 𝑦 + 𝐿𝑦, 𝑧) = 𝐷𝑛𝑢(𝑥, 𝑦, 𝑧), ∀xℎ = (𝑥, 𝑦) ∈ IR2, ∀𝑧 ∈ [0, 𝑧top], (2.11)

and imposing the invariance for translations implies working with the torus Π2 given by

Π2 = ([0, 𝐿𝑥]× [0, 𝐿𝑦])/𝒯2, (2.12)

where 𝒯2 denotes the set of wave vectors given by:

𝒯2 =
2𝜋
𝐿𝑥

Z× 2𝜋
𝐿𝑦

Z. (2.13)

This setting is usual in practical numerical simulations for technical convenience but not only since also it
eliminates the problem of an infinite domain in the analytical studies. For instance, it was used in [18] for
simulating a boundary layer by a RANS turbulent model.

3. The 0 < 𝛼 < 1 case

Throughout this section, we assume that 0 < 𝛼 < 1 and 𝜆 > 0 is fixed and we study the problem in a simpler
setting. In fact, in this case one can reduce the problem to another one in a setting of unweighted Sobolev
spaces for which both existence and interpretation of the solution are standard. Later on we will see the possible
treatment of the limiting case.
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We will use standard Lebesgue and Sobolev spaces and from now on

BL = Π2 × [0, 𝑧top], Γ𝑏 = Π2 × {𝑧 = 0}, Γtop = Π2 × {𝑧 = 𝑧top}. (3.1)

We specify the function spaces we are working with, and then we prove the existence of a solution by a
viscous regularization. To start with, we observe that any strong solution to problem (1.4) satisfies the energy
balance:

𝜆

∫︁
BL

𝑢2 + 𝜈ℎ

∫︁
BL

|∇ℎ𝑢|2 + 𝜇

∫︁
BL

𝑧𝛼(𝜕𝑧𝑢)2 + 𝐶𝐷

∫︁
Γtop

|𝑢|2 −
∫︁

Γtop

𝑢𝐺 =
∫︁

BL

𝑓𝑢. (3.2)

3.1. Function spaces

In this section, we define the function spaces to be utilized throughout the paper. We employ the conventional
notations within the framework of distributions, adapted to accommodate the mixed boundary conditions under
consideration.
– Let 𝒟𝑏(BL) denote the space of functions 𝑢 ∈ 𝐶∞(BL) such that there exists 𝛿 = 𝛿(𝑢) ∈ ]0, 1[, ensuring

that the support of 𝑢 is contained within Π2 × [𝛿(𝑢), 1]. This space is endowed with the standard Schwartz
topology, characterized by the semi-norms ‖𝐷𝑛𝑢‖∞. In simpler terms, 𝒟𝑏(BL) consists of 𝐶∞ functions that
vanish in a neighborhood of the bottom Γ𝑏 of the boundary layer.

– Let 𝒟′𝑏(BL) denote the topological dual of 𝒟𝑏(BL), a sort of distributional space that inspires our chosen
notation.

– 𝑊 1,𝛾
0,𝑏 (BL) (𝛾 > 1) denotes the closure of 𝒟𝑏(BL) for the norm ‖∇ℎ𝑢‖0,𝛾 + ‖𝜕𝑧𝑢‖0,𝛾 , where ‖ · ‖𝑠,𝑝 stands for

the usual 𝑊 𝑠,𝑝 norm.
In particular,

𝑊 1,𝛾
0,𝑏 (BL) =

{︀
𝑢 ∈𝑊 1,𝛾(BL), 𝑢 = 0 on Γ𝑏

}︀
. (3.3)

According to the energy balance (3.2), we are led to consider the natural weighted space 𝑉𝛼 defined as the
closure of 𝒟𝑏(BL) equipped with the norm

∀𝑢 ∈ 𝒟𝑏(BL), ‖𝑢‖𝑉𝛼
=

(︁
‖∇ℎ𝑢‖20,2 + ‖𝑧𝛼/2𝜕𝑧𝑢‖20,2

)︁1/2

. (3.4)

Proposition 3.1. For all 𝛼 ∈ [0, 1[ we have the embedding,

∀ 𝛾 ∈
]︂
1,

2
𝛼+ 1

[︂
, 𝑉𝛼 ⊂𝑊 1,𝛾

0,𝑏 (BL),

and the following inequality holds ∀𝑢 ∈ 𝑉𝛼,

‖𝑢‖1,𝛾 ≤ 𝐶

(︂
2− 𝛾

2− (1 + 𝛼)𝛾)

)︂ 2
𝛾−1

‖𝑢‖𝑉𝛼 , (3.5)

for some constant 𝐶 > 0.

Proof. Let 𝛾 > 0 and 𝜌 > 0 that will be fixed later. Let 𝑢 ∈ 𝒟0,𝑏(BL). The Hölder inequality yields:∫︁ 1

0

|𝜕𝑧𝑢|𝛾 d𝑧 =
∫︁ 1

0

𝑧𝜌|𝜕𝑧𝑢|𝛾
1
𝑧𝜌

d𝑧 ≤
(︂∫︁ 1

0

𝑧2𝜌/𝛾 |𝜕𝑧𝑢|2 d𝑧
)︂𝛾/2(︂∫︁ 1

0

d𝑧
𝑧2𝜌/2−𝛾

)︂ 2−𝛾
2

,

with 𝛾
2 + 2−𝛾

2 = 1. The second integral is well-defined if and only if 2𝜌
2−𝛾 < 1. Then, choosing 𝜌 such that

2𝜌
𝛾 = 𝛼 yields the condition 𝛾 < 2

𝛼+1 . Inequality (3.5) follows after an elementary calculation and integration
with respect to the dxℎ variables. �

It follows from Proposition 3.1 and standard reasoning on Sobolev spaces, that functions in 𝑉𝛼 have a trace
at 𝑧 = 0 equal to zero, and also we have the following characterization

𝑉𝛼 =
{︁
𝑢 ∈ 𝒟′𝑏(BL) s.t. ∇ℎ𝑢 ∈ 𝐿2(BL), 𝑧𝛼/2𝜕𝑧𝑢 ∈ 𝐿2(BL), 𝑢 = 0 on Γ𝑏

}︁
. (3.6)
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3.2. Weak formulation

Proposition 3.1 can be rephrased, to work in standard (unweighted) Sobolev spaces, as follows

𝑉𝛼 ⊂𝑊
1,( 2

1+𝛼 )−
0,𝑏 :=

⋂︁
1<𝛾< 2

1+𝛼

𝑊 1,𝛾
0,𝑏 (BL), (3.7)

which is put in duality with the set

𝑊
1,( 2

1−𝛼 )+

0,𝑏 =
⋃︁

𝜂> 2
1−𝛼

𝑊 1,𝜂
0,𝑏 (BL). (3.8)

Throughout the section, we assume that

𝑓 ∈ 𝐿2(BL), (3.9)
𝐺 ∈ 𝐿2(Γtop). (3.10)

The following definition of a weak solution to problem (1.4) is motivated by standard rules about integration
by parts, combined with the boundary conditions under consideration.

Definition 3.1. For 𝛼 ∈ [0, 1[ we say that 𝑢 ∈ 𝑉𝛼 is a weak solution to problem (1.4), if ∀𝑣 ∈𝑊 1,( 2
1−𝛼 )+

0 ,

𝜆

∫︁
BL

𝑢 𝑣 + 𝜈ℎ

∫︁
BL

∇ℎ𝑢 · ∇ℎ𝑣 + 𝜇

∫︁
BL

𝑧𝛼𝜕𝑧𝑢 𝜕𝑧𝑣 +
∫︁

Γtop

(𝐶𝐷𝑢−𝐺)𝑣 =
∫︁

BL

𝑓 𝑣. (3.11)

Remark 3.1. Note that all the terms in the integrals written in (3.11) are well-defined. However, the solution
𝑢 cannot be a priori taken as test function, which is an issue. As a consequence, we are not able to prove the
uniqueness of this solution, even if the problem is linear.

Before all, we notice that combining the energy balance (3.2) and (3.5) with standard calculus inequalities,
yields for any 1 < 𝛾 < 2

1+𝛼 the following estimate in 𝑊 1,𝛾
0,𝑏 (BL), satisfied by any given regular solution 𝑢 to the

variational problem (3.11):

‖𝑢‖0;1,𝛾 ≤
𝐶𝛾

inf{𝜈ℎ, 𝜇}

(︁
‖𝑓‖0,2 + ‖𝐺‖1− 1

𝛾 ,𝛾;Γtop

)︁
, (3.12)

where 𝐶𝛾 →∞ as 𝛾 → 2
1+𝛼 .

The aim of the rest of this section is proving the following existence result.

Theorem 3.1. Problem (1.4) admits a weak solution 𝑢 ∈ 𝑉𝛼. Moreover, the solution satisfies the energy inequal-
ity

𝜆

∫︁
BL

𝑢2 + 𝜈ℎ

∫︁
BL

|∇ℎ𝑢|2 + 𝜇

∫︁
BL

𝑧𝛼|𝜕𝑧𝑢|2 + 𝐶𝐷

∫︁
Γtop

|𝑢|2 −
∫︁

Γtop

𝐺𝑢 ≤
∫︁

BL

𝑓𝑢. (3.13)

Remark 3.2. The existence of a solution still holds when 𝜆 = 0.

Remark 3.3. Assumption (3.10) about 𝐺 is not optimal and could be weakened by taking for instance 𝐺 ∈
𝑊−𝑠,𝑝(Γtop) for some 𝑠 > 0, 𝑝 > 1 depending on 𝛼, so that it is put in duality with traces on Γtop of test

functions in 𝑊
1,( 2

1−𝛼 )+

0,𝑏 .
If we still get in this case the existence of a weak solution, we do not know whether the energy inequality (3.13)

still holds, or even if it makes sense because of the boundary term
∫︀
Γtop

𝑢𝐺. It seems that there is an interesting
theoretical issue at this point.

Remark 3.4. The result still holds if one takes the Navier law (2.8) for a given 𝑉 ∈ 𝐿2(Γtop), 𝛼 > 0.
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3.3. Viscous regularization and proof of the existence result

From now we set
𝛾⋆ =

2
1 + 𝛼

, (3.14)

since this value is the critical one for the embedding of weighted Sobolev spaces.
As a technical tool to prove existence of weak solutions, we regularize problem (1.4) by adding a viscous term

in the 𝑧-direction, which means that we consider the following problem, for a given 𝜀 > 0:⎧⎪⎪⎨⎪⎪⎩
𝜆𝑢− 𝜈ℎ∆ℎ𝑢− 𝜇𝜕𝑧(𝑧𝛼𝜕𝑧𝑢)− 𝜖 𝜕2

𝑧𝑧𝑢 = 𝑓,

𝐶𝐷𝑢+ 𝜇𝑧𝛼
top

𝜕𝑢

𝜕𝑧
= 𝐺 on Γtop,

𝑢 = 0 on Γ𝑏.

(3.15)

Definition 3.2. Let 𝜀 > 0. We say that 𝑢𝜀 ∈𝑊 1,2
0,𝑏 (BL) is a weak solution to problem (3.15), if ∀𝑣 ∈𝑊 1,2

0,𝑏 (BL),

𝜆

∫︁
BL

𝑢𝜀𝑣 + 𝜈ℎ

∫︁
BL

∇ℎ𝑢𝜀 · ∇ℎ𝑣 + 𝜇

∫︁
BL

𝑧𝛼𝜕𝑧𝑢𝜀𝜕𝑧𝑣

+ 𝜀

∫︁
BL

𝜕𝑧𝑢𝜀𝜕𝑧𝑣 + 𝐶𝐷

∫︁
Γtop

𝑢𝜀𝑣 −
∫︁

Γtop

𝐺𝑣 =
∫︁

BL

𝑓𝑣. (3.16)

The existence and uniqueness of a weak solution to problem (3.16) is straightforward by the Lax–Milgram
theorem. Moreover, as 𝑢𝜀 can be taken as test function, it satisfies the following energy balance (equality):

𝜆

∫︁
BL

𝑢2
𝜀⏟  ⏞  

𝐼1,𝜀

+ 𝜈ℎ

∫︁
BL

|∇ℎ𝑢𝜀|2 +
∫︁

BL

(𝜀+ 𝜇𝑧𝛼)|𝜕𝑧𝑢𝜀|2⏟  ⏞  
𝐼2,𝜀

+𝐶𝐷

∫︁
Γtop

|𝑢𝜀|2⏟  ⏞  
𝐼3,𝜀

−
∫︁

Γtop

𝐺𝑢𝜀⏟  ⏞  
𝐼4,𝜀

=
∫︁

BL

𝑓 𝑢𝜀⏟  ⏞  
𝐼5,𝜀

. (3.17)

From this, we are able to finish the proof of Theorem 3.1 by taking the limit in (3.16) when 𝜀→ 0.
We deduce from (3.17) and standard calculus inequalities that the family (𝑢𝜖)𝜖>0 is uniformly bounded in

𝑉𝛼, as well as in 𝑊 1,𝛾
0,𝑏 (BL) for any 1 < 𝛾 < 𝛾⋆ say

‖𝑢𝜀‖0;1,𝛾 ≤ 𝐶(𝛾,𝐺, 𝑓, 𝜈ℎ, 𝜇). (3.18)

Arguing as in Chapter 7 of [24], we can extract a (sub)sequence (𝑢𝜖𝑛
)𝑛∈IN that weakly converges to some 𝑢 ∈ 𝑉𝛼,

which is also weakly converging in 𝑊 1,𝛾
0,𝑏 (BL) for all 1 < 𝛾 < 𝛾⋆, and which is strongly converging in 𝐿2(BL).

Moreover, by the trace theorem and the Sobolev theorem, the sequence (𝜀𝑛) can be chosen such that in
addition (𝑡𝑟[𝑢𝜀𝑛

])𝑛∈IN strongly converges to 𝑡𝑟[𝑢] in 𝐿2(Γtop). Let 1 < 𝛾 < 𝛾⋆ and take as test function

𝑣 ∈𝑊 1,𝛾′

0,𝑏 (BL) ⊂𝑊
1,( 2

1−𝛼 )+

0,𝑏 ⊂𝑊 1,2
0,𝑏 (BL),

in formulation (3.16). We have to take the limit in the various terms of (3.16), which we do step by step, starting
with the diffusion term.

Let 𝑤 ∈ 𝑉𝛼, and let the linear form Ψ𝑣 given by

⟨Ψ𝑣, 𝑤⟩ = 𝜈ℎ

∫︁
BL

∇ℎ𝑤 · ∇ℎ𝑣 d𝑥+ 𝜇

∫︁
BL

𝑧𝛼𝜕𝑧𝑤 𝜕𝑧𝑣 d𝑥.

By the Hölder inequality we obtain

|⟨Ψ𝑣, 𝑤⟩| ≤ sup
{︀
𝜈ℎ, 𝜇𝑧

𝛼
top

}︀
‖𝑤‖0;1,𝛾‖𝑣‖0;1,𝛾′ ,
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therefore Ψ𝑣 ∈𝑊 1,𝛾
0,𝑏 (BL)′, which leads to

lim
𝑛→∞

⟨Ψ𝑣, 𝑢𝜀𝑛
⟩ = ⟨Ψ𝑣, 𝑢⟩ = 𝜈ℎ

∫︁
BL

∇ℎ𝑢 · ∇ℎ𝑣 + 𝜇

∫︁
BL

𝑧𝛼𝜕𝑧𝑢𝜕𝑧𝑣.

Moreover, ⃒⃒⃒⃒
𝜀𝑛

∫︁
BL

𝜕𝑧𝑢𝜀𝑛
𝜕𝑧𝑣

⃒⃒⃒⃒
≤ 𝜀𝑛‖𝑢𝜀𝑛

‖0;1,𝛾‖𝑣‖0;1,𝛾′ ≤ 𝐶(𝛾,𝐺, 𝑓, 𝜈ℎ, 𝜇)𝜀𝑛‖𝑣‖0;1,𝛾′ ,

giving

lim
𝑛→∞

𝜀𝑛

∫︁
BL

𝜕𝑧𝑢𝜀𝑛
𝜕𝑧𝑣 = 0.

In addition, considering the properties of the sequence (𝑢𝜖𝑛)𝑛∈IN, we have

lim
𝑛→∞

𝜆

∫︁
BL

𝑢𝜀𝑛𝑣 = 𝜆

∫︁
BL

𝑢𝑣, lim
𝑛→∞

𝐶𝐷

∫︁
Γtop

𝑢𝜀𝑛𝑣 = 𝐶𝐷

∫︁
Γtop

𝑢𝑣.

Therefore 𝑢 satisfies (3.11).
It remains to show that the energy inequality (3.13) holds. Starting from (3.17), we have on one hand

lim
𝑛→∞

𝐼1,𝜀𝑛
= 𝜆

∫︁
BL

|𝑢|2, lim
𝑛→∞

𝐼3,𝜀𝑛
= 𝐶𝐷

∫︁
Γtop

|𝑢|2,

lim
𝑛→∞

𝐼4,𝜀𝑛 =
∫︁

Γtop

𝑢𝐺, lim
𝑛→∞

𝐼5,𝜀𝑛 =
∫︁

BL

𝑓 𝑢,

and on the other hand by lower semi-continuity

𝜈ℎ

∫︁
BL

|∇ℎ𝑢|2 + 𝜇

∫︁
BL

𝑧𝛼|𝜕𝑧𝑢|2 ≤ lim inf
𝑛→∞

𝐼2,𝜀𝑛 ,

hence the energy balance (3.13), which concludes the proof.

Remark 3.5. The solution we exhibit is obtained by viscous regularization. We also can think to directly get
a solution by applying the Lax–Milgram theorem in the space 𝑉𝛼, which requires a different approach that
we have voluntarily skipped here. As already stressed in Remark 3.1, we do not know if they are completely
equivalent; we conjecture that this is the case.

4. The case 𝛼 = 1

We now consider the system: ⎧⎨⎩𝜆𝑢− 𝜈ℎ∆ℎ𝑢− 𝜇𝜕𝑧(𝑧𝜕𝑧𝑢) = 𝑓 in BL,

𝐶𝐷𝑢+ 𝜇𝑧top
𝜕𝑢

𝜕𝑧
= 𝐺 on Γtop.

(4.1)

As we shall see, the best we can get is an estimate in an 𝐻1/2-like space near the bottom Γ𝑏. Therefore, we
are not able to define the trace of such functions at Γ𝑏. This is why we do not impose any boundary condition
there, contrary to what we did for the case 0 < 𝛼 < 1. Nevertheless, we still impose 𝑢|Γ𝑏

= 0 in the numerical
code, since the finite element formulation yields additional numerical dissipation that sufficiently regularizes the
system.

In order to derive this 𝐻1/2 estimate, in the same spirit as in [2], we first need the following version of Neças
lemma, the proof of which will be complete by the end of this section. To define the function spaces we will



498 L.C. BERSELLI ET AL.

utilize, let 𝒟(BL) denote the space of functions 𝑢 ∈ 𝐶∞(BL) such that there exists 𝛿 = 𝛿(𝑢) ∈ ]0, 1[, ensuring
that the support of 𝑢 is contained within Π2× [𝛿(𝑢), 1−𝛿(𝑢)]. This space is endowed with the standard Schwartz
topology, characterized by the semi-norms ‖𝐷𝑛𝑢‖∞. In simpler terms, 𝒟(BL) consists of 𝐶∞ functions that
vanish in the vicinity of both the bottom and the top of the boundary layer. We use 𝒟′(BL) to denote the
corresponding space of distributions. Additionally, so far no risk of confusion arises, we still set

𝐻1
0 (BL) =

{︀
𝑢 ∈ 𝐻1(BL), 𝑢 = 0 on Γ𝑏 ∪ Γtop

}︀
, (4.2)

and 𝐻−1(BL) ⊂ 𝒟′(BL) is the topological dual of 𝐻1
0 (BL).

Lemma 4.1. Let 𝑣 ∈ 𝒟′(BL) such that 𝑣 ∈ 𝐻−1(BL) and also ∇𝑣 ∈ 𝐻−1(BL). Then 𝑣 ∈ 𝐿2(BL) and one has:

‖𝑣‖𝐿2(BL) ≤ ‖∇𝑣‖𝐻−1(BL) + ‖𝑣‖𝐻−1(BL). (4.3)

The main consequence of Lemma 4.1 is the following.

Corollary 4.1. Let 𝑉1 denotes the space:

𝑉1 =
{︁
𝑢 ∈ 𝒟′𝑏(BL) s.t. 𝑢 ∈ 𝐿2(BL), ∇ℎ𝑢 ∈ 𝐿2(BL), 𝑧1/2𝜕𝑧𝑢 ∈ 𝐿2(BL)

}︁
. (4.4)

Then

𝑉1 ⊂ 𝐻1/2(BL). (4.5)

The space 𝑉1 is the space that naturally suits problem (4.1) according to the energy balance (3.2) that still
holds when 𝛼 = 1. It must be stressed that:

– showing that any solution of problem (4.1) is well-defined in 𝑉1 by using (3.2) requires 𝜆 > 0;
– we have

𝑉1 ⊂ 𝐻1(Π2 × [𝛿, 𝑧top]) (4.6)

for any 𝛿 > 0, which makes consistent the boundary condition at Γtop.

Definition 4.1. We say that 𝑢 ∈ 𝑉1 is a very weak solution to (4.1) if for all 𝑣 ∈ 𝑉1,

𝜆

∫︁
BL

𝑢 𝑣 + 𝜈ℎ

∫︁
BL

∇ℎ𝑢 · ∇ℎ𝑣 + 𝜇

∫︁
BL

𝑧𝜕𝑧𝑢 𝜕𝑧𝑣 +
∫︁

Γtop

(𝐶𝐷𝑢−𝐺)𝑣 =
∫︁

BL

𝑓 𝑣. (4.7)

The main result of this section is the following.

Theorem 4.1. Let 𝑓 ∈ 𝐿2 and 𝐺 ∈ 𝐿2. Then, there exists a very weak solution 𝑢 ∈ 𝑉1 ⊂ 𝐻1/2(BL) of problem
(4.1), which satisfies

‖𝑣‖𝑉1 ≤ 𝐶
(︀
‖𝑓‖2,BL + ‖𝐺‖2,Γtop

)︀
.

We argue by approximation by using Fourier series expansions which allows for some explicit and direct
computations. This is the reason why, before proving Lemma 4.1 and Theorem 4.1, we need to prove a bunch of
convergence results about Fourier series in this context of mixed boundary conditions, periodic in the xℎ-axis
but not in the 𝑧-axis. This will be the purpose of the next sections.
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4.1. Framework

Let 𝒯2 = 2𝜋
𝐿𝑥

Z× 2𝜋
𝐿𝑦

Z and let k = (𝑘𝑥, 𝑘𝑦) ∈ 𝒯2 any wave vector. In the following, we set

𝒯2,𝑛 :=
{︁
k = (𝑘𝑥, 𝑘𝑦) ∈ 𝒯2, |k| ≤ 2𝜋𝑛

√︁
1/𝐿2

𝑥 + 1/𝐿2
𝑦

}︁
.

Let 𝑢 ∈ 𝐿1(BL) and let 𝑐k = 𝑐k(𝑢; 𝑧) denotes the “horizontal” Fourier’s coefficient at the wave vector k, namely

𝑐k(𝑢; 𝑧) :=
1
𝜌

∫︁
Π2

𝑢(xℎ, 𝑧)𝑒−𝑖k·xℎ dxℎ,

where 𝜌 =
√︁
𝐿2

𝑥 + 𝐿2
𝑦. Let 𝑢𝑛 be its partial sum of the Fourier series defined by

𝑢𝑛(xℎ, 𝑧) :=
∑︁

k∈𝒯2,𝑛

𝑐k(𝑧)𝑒𝑖k·xℎ . (4.8)

A natural question is what assumptions are needed about 𝑢 to prove the convergence of the sequence (𝑢𝑛)𝑛∈IN

toward 𝑢 (in some given topology). Before tackling this question, we consider the following spaces 𝒟(]0, 𝑧top[) :=
𝐶∞0 (]0, 𝑧top[) and

𝒟𝑛(BL) =

⎧⎨⎩𝑢 = 𝑢𝑛(xℎ, 𝑧) =
∑︁

k∈𝒯2,𝑛

𝑐k(𝑧)𝑒𝑖k·xℎ , 𝑐k ∈ 𝒟(]0, 𝑧top[)

⎫⎬⎭, (4.9)

𝑉𝑛 =

⎧⎨⎩𝑢 = 𝑢𝑛(xℎ, 𝑧) =
∑︁

k∈𝒯2,𝑛

𝑐k(𝑧)𝑒𝑖k·xℎ , 𝑐k ∈ 𝐻1
0 (]0, 𝑧top[)

⎫⎬⎭, (4.10)

𝑉 −1
𝑛 =

⎧⎨⎩𝑣 =
∑︁

k∈𝒯2,𝑛

𝜓k(𝑧)𝑒𝑖k·xℎ , 𝜓k ∈ 𝐻−1(]0, 𝑧top[)

⎫⎬⎭. (4.11)

We will prove the following result.

Lemma 4.2. Let 𝑢 ∈ 𝐻1
0 (BL) and 𝑢𝑛 be given by (4.8). Then, for all 𝑛, 𝑢𝑛 ∈ 𝑉𝑛 and (𝑢𝑛)𝑛∈IN converges to 𝑢

in 𝐻1
0 (BL).

We first notice that the following isometries hold:

𝒟𝑛(BL) ≃ 𝒟(]0, 𝑧top[)𝑛, 𝑉𝑛 ≃ 𝐻1
0 (]0, 𝑧top[)𝑛, 𝑉 −1

𝑛 ≃ 𝐻−1([0, 𝑧top])𝑛. (4.12)

Therefore, from the standard Neças inequality (see [6]), we easily get the following result. Notice that the explicit
computations allow us to prove that the right hand side bounds the left hand side with multiplicative coefficient
equal to one, independently of 𝑛 ∈ IN.

Lemma 4.3. Let 𝑢𝑛 ∈ 𝒟′𝑛(BL) such that 𝑢𝑛,∇𝑢𝑛 ∈ 𝑉 −1
𝑛 . Then 𝑢𝑛 ∈ 𝐿2(BL) and one has

‖𝑢𝑛‖0,2 ≤ ‖𝑢𝑛‖1,−1 + ‖∇𝑢𝑛‖1,−1. (4.13)

It remains to pass to the limit in (4.13) when 𝑛→∞ to prove Lemma 4.1. We first must prove Lemma 4.2,
which will be done step by step in the following subsections.
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4.2. 𝐿2 convergence

We prove in this section the following convergence result, which is well-known but we give a self-contained
treatment of all the results in this section.

Lemma 4.4. Let 𝑢 ∈ 𝐻2(BL), 𝑢𝑛 its Fourier’s series expansion as given by (4.8). Then 𝑢𝑛 → 𝑢 in 𝐿2(BL) as
𝑛→∞.

Proof. Step 1: Estimate of the 𝑐k. Let k ∈ 𝒯2,𝑛 ∖ {0}. By Fubini’s Theorem and two integration by parts, we
get

𝑐k(𝑢; 𝑧) =
1
𝜌𝑘2

𝑥

∫︁
Π2

𝜕2𝑢

𝜕𝑥2
(xℎ, 𝑧)𝑒−𝑖k·xℎ dxℎ, if 𝑘𝑥 ̸= 0,

𝑐k(𝑢; 𝑧) = − 1
𝜌𝑘2

𝑦

∫︁
Π2

𝜕2𝑢

𝜕𝑦2
(xℎ, 𝑧)𝑒−𝑖k·xℎ dxℎ, if 𝑘𝑦 ̸= 0. (4.14)

Consequently, we get

|𝑐k(𝑢; 𝑧)| ≤ 1
𝜌

inf
{︂

1
𝑘2

𝑥

,
1
𝑘2

𝑦

}︂ ∫︁
Π2

|∇ℎ𝑢(xℎ, 𝑧)|2 dxℎ ≤
𝐶

𝜌|k|2
‖∇ℎ𝑢(·, 𝑧)‖2𝐿2(Π2)

. (4.15)

Therefore, as 𝑢 ∈ 𝐻1(BL), 𝑧 → 𝑐k(𝑢; 𝑧) ∈ 𝐿2([0, 𝑧top] and is finite almost everywhere.
Step 2: Convergence. We deduce from classical results that for almost all 𝑧 ∈ ]0, 𝑧top[,

𝑢𝑛(·, 𝑧) → 𝑢(·, 𝑧) in 𝐿2(Π2). (4.16)

Put another way:

𝜀𝑛(𝑧) =
∫︁

Π2

|𝑢𝑛(xℎ, 𝑧)− 𝑢(xℎ, 𝑧)|2 dxℎ → 0 as 𝑛→∞. (4.17)

Moreover, by the previous step,

0 ≤ 𝜀𝑛 ≤
∑︁
|k|≥𝜆𝑛

|𝑐k(𝑢; 𝑧)|2 ≤ 𝐶

𝜌
‖∇ℎ𝑢‖2𝐿2(Π2)

⎛⎝ ∑︁
|k|≥𝜆𝑛

1
|k|4

⎞⎠ = 𝑅𝑛‖∇ℎ𝑢‖2𝐿2(Π2)
, (4.18)

giving

‖𝑢− 𝑢𝑛‖20,2 =
∫︁ 𝑧top

0

𝜀𝑛(𝑧) d𝑧 ≤ 𝑅𝑛‖∇ℎ𝑢‖20,2 → 0 as 𝑛→∞, (4.19)

which concludes the proof.
�

4.3. Differentiability of the coefficient 𝑐k(𝑢; 𝑧)

Lemma 4.5. Let 𝑢 ∈ 𝐻1(BL) such that 𝜕𝑢
𝜕𝑧 ∈ 𝐻

1(BL). Then 𝑐k(𝑢; ·) ∈ 𝐻1(]0, 𝑧top[) and one has for almost all
𝑧 ∈ ]0, 𝑧top[,

d
d𝑧
𝑐k(𝑢; 𝑧) =

∫︁
Π2

𝜕𝑢

𝜕𝑧
(xℎ, 𝑧)𝑒−𝑖k·xℎ dxℎ. (4.20)

Proof. Let us write
𝜕𝑢

𝜕𝑧
(xℎ, 𝑧) =

𝜕𝑢

𝜕𝑧
(xℎ, 0) +

∫︁ 𝑧top

0

𝜕2𝑢

𝜕𝑧2
(xℎ, 𝑧

′) d𝑧′. (4.21)
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By the trace theorem,
𝜕𝑢

𝜕𝑧
(xℎ, 0) ∈ 𝐻 1

2 (Γ𝑏) →˓ 𝐿2(Γ𝑏) ≃ 𝐿2(Π2)

hence, ∀ 𝑧 ∈]0, 𝑧top[, ⃒⃒⃒⃒
𝜕𝑢

𝜕𝑧
(xℎ, 𝑧)

⃒⃒⃒⃒
≤

⃒⃒⃒⃒
𝜕𝑢

𝜕𝑧
(xℎ, 0)

⃒⃒⃒⃒
+

∫︁ 𝑧top

0

⃒⃒⃒⃒
𝜕2𝑢

𝜕𝑧2
(xℎ, 𝑧

′)
⃒⃒⃒⃒
d𝑧′ ∈ 𝐿1(Π2).

Therefore, formula (4.20) is a classical consequence of the Lebesgue Theorem. �

Lemma 4.6. Let 𝑢 ∈ 𝐻1
0 (BL). Then 𝑐k(𝑢; ·) ∈ 𝐻1

0 (]0, 𝑧top[) and (4.20) holds 𝑎.𝑒 in ]0, 𝑧top[.

Proof. Step 1: Approximations. Let 𝜀 > 0, and 𝑢𝜀 ∈ 𝐻1
0 (BL) ∩𝐻2(BL) such that

−𝜀∆𝑢𝜀 + 𝑢𝜀 = 𝑢. (4.22)

According to standard results about the Helmholtz equation, we know that that 𝑢𝜀 → 𝑢 as 𝜀→ 0, strongly
in 𝐿2(BL), weakly in 𝐻1

0 (BL). Moreover, by Lemma 4.5, we also know that

d
d𝑧
𝑐k(𝑢𝜀; 𝑧) =

∫︁
Π2

𝜕𝑢𝜀

𝜕𝑧
(xℎ, 𝑧)𝑒−𝑖k·xℎ dxℎ (4.23)

as well as 𝑐k(𝑢𝜀; 𝑧) → 𝑐k(𝑢; 𝑧) in 𝐿2(]0, 𝑧top[).
Step 2: Derivative in the sense of the distributions. Let 𝜙 ∈ 𝒟(]0, 𝑧top[). The starting point is the identity

−
∫︁ 𝑧top

0

d𝜙
d𝑧

(𝑧)𝑐k(𝑢𝜀; 𝑧) d𝑧 =
∫︁ 𝑧top

0

d
d𝑧
𝑐k(𝑢𝜀; 𝑧)𝜙(𝑧) d𝑧. (4.24)

From the results of step 1, we already know that∫︁ 𝑧top

0

d𝜙
d𝑧

(𝑧)𝑐k(𝑢𝜀; 𝑧) d𝑧 −−−→
𝜀→0

∫︁ 𝑧top

0

d𝜙
d𝑧

(𝑧)𝑐k(𝑢; 𝑧) d𝑧. (4.25)

We must pass to the limit in the r.h.s of (4.24). By (4.20), we have∫︁ 𝑧top

0

d
d𝑧
𝑐k(𝑢𝜀; 𝑧)𝜙(𝑧) d𝑧 =

∫︁
BL

𝜕𝑢𝜀

𝜕𝑧
(xℎ, 𝑧)𝜙(𝑧)𝑒−𝑖k·xℎ dxℎ d𝑧.

Therefore, as 𝑢𝜀 → 𝑢 weakly in 𝐻1
0 (BL),∫︁

BL

𝜕𝑢𝜀

𝜕𝑧
(xℎ, 𝑧)𝜙(𝑧)𝑒−𝑖k·xℎ dxℎ d𝑧 −−−→

𝜀→0

∫︁
BL

𝜕𝑢

𝜕𝑧
(xℎ, 𝑧)𝜙(𝑧)𝑒−𝑖k·xℎ dxℎ d𝑧

=
∫︁ 𝑧top

0

𝜙(𝑧)
∫︁

Π2

𝜕𝑢

𝜕𝑧
(xℎ, 𝑧)𝑒−𝑖k·xℎ dxℎ d𝑧. (4.26)

By combining (4.24)–(4.26), we see that (4.20) holds in the sense of the distribution, which concludes the
proof because

𝑧 →
∫︁

Π2

𝜕𝑢

𝜕𝑧
(xℎ, 𝑧)𝑒𝑖−k·xℎ dxℎ ∈ 𝐿2(]0, 𝑧top[.

�

By using the same argument, we also have the following, where we note 𝑃𝑛𝑢 = 𝑢𝑛.

Lemma 4.7. Let 𝑢 ∈ 𝐿2(BL). Then 𝑃𝑛𝑢 converges to 𝑢 in 𝐿2(BL) as 𝑛→∞.
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Proof. Let 𝑢 ∈ 𝐿2(BL) and 𝑢𝜀 ∈ 𝐻2(BL) given by (4.22). Then, we know from Lemma 4.4 that for any 𝜀 > 0
be fixed, 𝑃𝑛𝑢𝜀 converges to 𝑢𝜀 in 𝐿2(BL). We write

𝑃𝑛𝑢− 𝑢 = 𝑃𝑛(𝑢− 𝑢𝜀) + (𝑃𝑛𝑢𝜀 − 𝑢𝜀) + (𝑢− 𝑢𝜀).

Then, since ‖𝑃𝑛‖ ≤ 1, we get

‖𝑃𝑛𝑢− 𝑢‖0,2 ≤ 2‖𝑢− 𝑢𝜀‖0,2 + ‖𝑃𝑛𝑢𝜀 − 𝑢𝜀‖0,2.

The rest of the proof is straightforward. �

4.4. 𝐻1 Convergence

We are now able to prove Lemma 4.2, stating the convergence of the sequence (𝑢𝑛)𝑛∈IN to 𝑢 in 𝐻1(BL). We
already know from Lemma 4.7 that 𝑢𝑛 = 𝑃𝑛𝑢 −−−−→

𝑛→∞
𝑢 in 𝐿2(BL). Let ℱ𝑛 = ℱ𝑛(xℎ) denotes the Fejer kernel

over Π2. Then, for a.e 𝑧 ∈ ]0, 𝑧top[, 𝑢𝑛 is given by

𝑢𝑛(xℎ, 𝑧) =
∫︁

Π2

ℱ𝑛(yℎ)𝑢(xℎ + yℎ, 𝑧) dyℎ = ℱ𝑛(·) ⋆ 𝑢(·, 𝑧)(xℎ). (4.27)

As the Lebesgue measure over BL is 𝜎-finite, we deduce from the Lebesgue–Fubini theorem that for a.e 𝑧 ∈
]0, 𝑧top[, 𝑢(·, 𝑧) ∈ 𝐻1(Π2). Therefore, always a.e 𝑧 ∈ ]0, 𝑧top[,

∇ℎ𝑢𝑛(xℎ, 𝑧) = ℱ𝑛(·) ⋆∇ℎ𝑢(·, 𝑧)(xℎ), (4.28)

and by standard results,

𝜀𝑛(𝑧) =
∫︁

Π2

|∇ℎ𝑢𝑛(xℎ, 𝑧)−∇ℎ𝑢(xℎ, 𝑧)|2 dxℎ −−−−→
𝑛→∞

0. (4.29)

Moreover, by the Young inequality,

0 ≤ 𝜀𝑛(𝑧) ≤ (‖ℱ𝑛‖Π2;0,1‖∇ℎ𝑢(·, 𝑧)‖Π2;0,2 + ‖∇ℎ𝑢(·, 𝑧)‖Π2;0,2)2

≤ 4‖∇ℎ𝑢(·, 𝑧)‖2Π2;0,2 ∈ 𝐿1(]0, 𝑧top[), (4.30)

where ‖.‖Π2;𝑠,𝑝 denotes the usual norm of the Sobolev space 𝑊 𝑠,𝑝(Π2). Therefore, by the Lebesgue Theorem,
we get ∫︁ 𝑧top

0

𝜀𝑛(𝑧) =
∫︁

BL

|𝑢𝑛(xℎ, 𝑧)− 𝑢(xℎ, 𝑧)|2 dxℎ d𝑧 −−−−→
𝑛→∞

0, (4.31)

which, put in another way, yields ∇ℎ𝑢𝑛 −−−−→
𝑛→∞

∇ℎ𝑢 in 𝐿2(BL). Similarly, we deduce from Lemma 4.6 that

𝜕𝑢𝑛

𝜕𝑧
(xℎ, 𝑧) = ℱ𝑛(·) ⋆ 𝜕𝑢

𝜕𝑧
(·, 𝑧)(xℎ), (4.32)

and by an analysis similar to the previous one, we can conclude that

𝜕𝑢𝑛

𝜕𝑧
−−−−→
𝑛→∞

𝜕𝑢

𝜕𝑧
,

in 𝐿2(BL), which finishes the proof of Lemma 4.2.
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4.5. Interpolation spaces

As a consequence of Lemmas 4.2 and 4.7, combined with the interpolation theorem proved by Lions and
Magenes [12], we have the following.

Lemma 4.8. Let 𝑠 ∈ [0, 1], and let

𝐻𝑠(BL) =
[︀
𝐿2(BL), 𝐻1(BL)

]︀
𝑠

= D(∇𝑠).

Then, 𝑢 =
∑︀

k∈𝒯2
𝑐k(𝑧)𝑒𝑖k·xℎ ∈ 𝐻𝑠(BL) if and only if ∀k ∈ 𝒯2, 𝑐k ∈ 𝐻𝑠(]0, 𝑧top[) and

‖𝑢‖2𝑠,2 =
∑︁
k∈𝒯2

(︂
|k|2𝑠

∫︁ 𝑧top

0

|𝑐k(𝑧)|2 d𝑧 + ‖𝑐k‖2𝑠,2

)︂
<∞.

We now need the definition of the space 𝐻1/2
00 (BL) suited to our geometry, and its dual space. Let 𝜌 = 𝜌(𝑧)

be a 𝐶∞ non negative function on ]0, 𝑧top[, and such that

lim
𝑧→0

𝜌(𝑧)
𝑧

= lim
𝑧→𝑧top

𝜌(𝑧)
𝑧top − 𝑧

= 1.

Then in our case,
𝐻

1/2
00 (BL) =

{︁
𝑢 ∈ 𝐻1/2(BL) s.t. 𝜌−1/2𝑢 ∈ 𝐿2(BL)

}︁
,

equipped with the norm

‖𝑢‖
𝐻

1/2
00

=
(︁
‖𝑢‖21/2,2 + ‖𝜌−1/2𝑢‖20,2

)︁ 1
2
.

According to Lemma 4.8, we have the following.

Lemma 4.9. Let 𝑢 =
∑︀

k∈𝒯2
𝑐k(𝑧)𝑒𝑖k·xℎ . Then, 𝑢 ∈ 𝐻1/2

00 (BL) if and only if ∀k ∈ 𝒯2, 𝑐k ∈ 𝐻1/2
00 (]0, 𝑧top[) and

‖𝑢‖2
𝐻

1/2
00

= ‖𝑢‖21/2,2 +
∑︁
k∈𝒯2

∫︁ 𝑧top

0

|𝑐k(𝑧)|2

𝜌(𝑧)
d𝑧 <∞.

Now following [12], let us consider the linear operator Λ = ∇−1 : 𝐿2 → 𝐻−1, defined such that

∀𝑢, 𝑣 ∈ 𝐿2, (𝑢, 𝑣)2 = (Λ𝑢,Λ𝑣)−1, (4.33)

with natural notations to denote the various scalar products. Then, the space [𝐻−1, 𝐿2]1/2 is the domain of
Λ1/2, and one has, according to the above,

[𝐻−1, 𝐿2]1/2 =
(︁
𝐻

1/2
00 (BL)

)︁′
. (4.34)

In order to complete the interpolation tool box, let us consider 𝑊−1 as the closure of 𝐶∞(BL) subjected to the
norm

‖𝑣‖𝑊−1 = ‖∇𝑣‖𝐻−1(BL) + ‖𝑣‖𝐻−1(BL),

𝑊 0 is the closure with respect to the norm

‖∇𝑣‖𝐿2(BL) + ‖𝑣‖𝐿2(BL).

Note that 𝑊 0 ≈ 𝐻1(BL). The question is the characterization of the interpolation space [𝑊−1,𝑊 0]1/2. From
(4.33), we have

∀𝑢, 𝑣 ∈𝑊 0, (𝑢, 𝑣)2 + (∇𝑢,∇𝑣)2 = (Λ𝑢,Λ𝑣)−1 + (Λ∇𝑢,Λ∇𝑣)−1,

which allows to characterize the space [𝑊−1,𝑊 0]1/2 thanks to (4.34) by its norm given by:

‖𝑣‖[𝑊−1,𝑊 0]1/2
= ‖𝑣‖(︁

𝐻
1/2
00 (BL)

)︁′ + ‖∇𝑣‖(︁
𝐻

1/2
00 (BL)

)︁′ . (4.35)
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4.6. Neças Lemma and consequences

We are now able to prove in this section Lemma 4.1, which we recall that it states the following inequality,

‖𝑣‖𝐿2(BL) ≤ ‖∇𝑣‖𝐻−1(BL) + ‖𝑣‖𝐻−1(BL) (4.36)

satisfied by any distribution 𝑣 ∈ 𝒟′(BL) such that 𝑣,∇𝑣 ∈ 𝐻−1(BL), the dual of the space 𝐻1
0 (BL) as defined

by (4.2). Then, we will prove Corollary 4.1, namely

𝑉1 ⊂ 𝐻
1
2 (BL), (4.37)

with continuous injection, where 𝑉1 is defined by (4.4), equipped with the norm

‖𝑢‖𝑉 1 = ‖𝑢‖𝐿2(BL) + ‖∇ℎ𝑢‖𝐿2(BL) +
⃦⃦⃦
𝑧1/2𝜕𝑧𝑢

⃦⃦⃦
𝐿2(BL)

.

In particular, being 𝑉1 a closed subspace of 𝐻1/2(BL) turns out to be an Hilbert spaces, allowing to use all
the machinery of complete vector spaces, which makes possible the proof of Theorem 4.1.

Proof of Lemma 4.1. Let 𝑣 ∈ 𝒟′(BL) such that 𝑣,∇𝑣 ∈ 𝐻−1, and 𝑣𝑛,∇𝑣𝑛 ∈ 𝑉 −1
𝑛 be given by

∀𝑢 ∈ 𝑉𝑛, 𝑈 ∈ 𝑉 3
𝑛 , ⟨𝑣𝑛, 𝑢⟩ = ⟨𝑣, 𝑢⟩, ⟨∇𝑣𝑛, 𝑈⟩ = ⟨∇𝑣, 𝑈⟩,

where 𝑉 −1
𝑛 is defined by (4.11). We have, for all 𝑛 ∈ IN,

‖∇𝑣𝑛‖𝐻−1(BL) ≤ ‖∇𝑣‖𝐻−1(BL), ‖𝑣𝑛‖𝐻−1(BL) ≤ ‖𝑣‖𝐻−1(BL),

and note that (by explicit computation) it easily follows that the constants on the right-hand side are equal to
1, independently of 𝑛 ∈ IN. Therefore, according to inequality (4.13),

‖𝑣𝑛‖𝐿2(BL) ≤ ‖∇𝑣‖𝐻−1(BL) + ‖𝑣‖𝐻−1(BL). (4.38)

Then, the sequence (𝑣𝑛)𝑛∈IN is bounded in 𝐿2(BL), and we can extract a subsequence (still denoted by (𝑣𝑛)𝑛∈IN)
that weakly converges to some 𝑣, which is equal to 𝑣 in 𝐻−1(BL), therefore in 𝐿2(BL), which yields 𝑣 ∈ 𝐿2(BL)
and

‖𝑣‖𝐿2(BL) ≤ lim inf
𝑛→∞

‖𝑣𝑛‖𝐿2(BL) ≤ ‖∇𝑣‖𝐻−1(BL) + ‖𝑣‖𝐻−1(BL),

hence (4.36). �

Proof of (4.37). Note that a similar result was already obtained in [2], using a former result of [1] combined
with an interpolation argument. Going back to basics, we give here a self-contained and combined proof, by
using the Neças lemma and the interpolation theory. Indeed, From Neças inequality (4.36), we deduce that the
injection

𝐼𝑑 : 𝑊−1 → 𝐿2

is continuous. Moreover, 𝐼𝑑 : 𝑊 0 → 𝐻1 is also continuous. Therefore, by the interpolation theorem [12], also
the restriction of the identity (denoted still by 𝐼𝑑)

𝐼𝑑 :
[︀
𝑊−1,𝑊 0

]︀
1/2

→
[︀
𝐿2, 𝐻1

]︀
1/2

= 𝐻1/2,

is continuous. In particular, by (4.35), there exists 𝐶 > 0, such that

∀ 𝑣 ∈
[︀
𝑊−1,𝑊 0

]︀
1/2
, ‖𝑣‖𝐻1/2 ≤ 𝐶

(︂
‖𝑣‖(︁

𝐻
1/2
00 (BL)

)︁′ + ‖∇𝑣‖(︁
𝐻

1/2
00 (BL)

)︁′

)︂
. (4.39)
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Conclusion of the proof. Thanks to (4.39), in order to prove (4.37), all we have to do from now is proving that
the following inclusion holds true

𝑉 1 ⊂
[︀
𝑊−1,𝑊 0

]︀
1/2
, (4.40)

with continuous injection. In the case relevant for our problem, we have⃦⃦⃦
𝑧1/2𝜙

⃦⃦⃦
𝐿2
≤ 𝐶‖𝜙‖

𝐻
1/2
00
.

Let 𝑢 ∈ 𝑉1, and 𝜙 ∈ 𝐻1/2
00 (BL). Then,⃒⃒⃒⃒∫︁

BL

𝜕𝑧𝑢𝜙d𝑥
⃒⃒⃒⃒

=
⃒⃒⃒⃒∫︁

BL

√
𝑧𝜕𝑧𝑢

𝜙√
𝑧

d𝑥
⃒⃒⃒⃒
≤

⃦⃦√
𝑧𝜕𝑧𝑢

⃦⃦
𝐿2

⃦⃦⃦
𝑧−1/2𝜙

⃦⃦⃦
𝐿2
≤ 𝐶

⃦⃦√
𝑧𝜕𝑧𝑢

⃦⃦
𝐿2‖𝜙‖𝐻

1/2
00
,

hence 𝜕𝑧𝑢 ∈ (𝐻1/2
00 (BL))′, and

‖𝜕𝑧𝑢‖(𝐻1/2
00 (BL))′

≤ 𝐶
⃦⃦√

𝑧𝜕𝑧𝑢
⃦⃦

𝐿2 .

In the same way, we have also

‖𝑢‖(︁
𝐻

1/2
00 (BL)

)︁′ ≤ 𝐶
√
𝑧top‖𝑢‖𝐿2 , ‖∇ℎ𝑢‖(𝐻1/2

00 (BL))′
≤ 𝐶

√
𝑧top‖∇ℎ𝑢‖𝐿2 .

Combining all the previous inequalities yields

‖𝑢‖[𝑊−1,𝑊 0]1/2
≤ 𝐶‖𝑢‖𝑉1 ,

hence (4.40), which concludes the proof. �

The functional setting for the proof of Theorem 4.1 is more sophisticated than that used in the non-limiting
cases 0 ≤ 𝛼 < 1. Despite the proof being a rather standard application of the Lax–Milgram lemma, the choice
of the underlying function spaces is obliged by the nature of the problem and the fact that 𝛼 = 1 implies that
the function spaces do not embed in any standard Sobolev space with trace at the boundary. For this point
cf. Proposition 3.1, which we recall is false for 𝛼 = 1 and a counter-examples is easily built by means of a
double logarithmic function. This is why we resort to the space 𝑉1 and, despite the abstract simplicity of the
result, the interpretation of the notion of the solution is of particular difficulty, since the solution satisfies a
weak formulation which is not the same as the strong one. As we will discuss later, the obtained solution has
problem in the interpretation of the value at 𝑧 = 0, for which the functional setting is not proper. Nevertheless,
we cannot change it, since it is determined by the equations themselves, so we have to extract the maximum of
information possible from the solution.

Proof of Theorem 4.1. We are now ready for the proof of the main result of the paper, that is the proof of
existence of weak solutions in the limiting case 𝛼 = 1. In this case once we have the adapted functional setting
we can apply Lax–Milgram in the space 𝑉1 with the weak formulation defined by: ∀𝑣 ∈ 𝑉1,

𝜆

∫︁
BL

𝑢𝑣 + 𝜈ℎ

∫︁
BL

∇ℎ𝑢 · ∇ℎ𝑣 + 𝜇

∫︁
BL

𝑧 𝜕𝑧𝑢 𝜕𝑧𝑣 + 𝐶𝐷

∫︁
Γtop

𝑢𝑣 −
∫︁

Γtop

𝑣 𝐺 =
∫︁

BL

𝑓𝑣, (4.41)

and eventually observe that the proof can be made fully rigorous again by approximation obtained adding
−𝜖 𝜕2

𝑧𝑢 to the equations. �

Remark 4.1. Note that the trace of 𝑣 ∈ 𝑉1 is not defined at 𝑧 = 0, where the weight vanishes. On the other
hand 𝑣|𝑧=𝑧top is well defined in 𝐻1/2(Γtop) since the function 𝑣 belongs to 𝑊 1,2 in a neighborhood of the top
part of the boundary. Hence, the integrals

∫︀
Γtop

𝑣 𝐺 and
∫︀
Γtop

𝑢𝑣 are properly defined.
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Moreover, as is standard for these problems the function 𝑢 ∈ 𝑉1 can be taken as test function, proving the
energy equality

𝜆‖𝑢‖2 + 𝜈ℎ‖∇ℎ𝑢‖2 + 𝜇
⃦⃦√

𝑧𝜕𝑧𝑢
⃦⃦2 + 𝐶𝐷

∫︁
Γtop

|𝑢|2 −
∫︁

Γtop

𝐺𝑢 =
∫︁

BL

𝑓𝑢.

Moreover, this can be used also to shows uniqueness of the weak solution. The drawback is the impossibility of
controlling the trace.

The only missing point is to observe that we proved negative norm lemma for functions vanishing at {𝑧 =
0} ∪ {𝑧 = 𝑧top}, while now we have a friction law at the upper boundary. This can be easily overcome by using
the fact that the conditions are of Neumann (Navier) type at the top. Hence, considering the space

𝐻1
0,𝜏 (BL) =

{︀
𝑢 ∈ 𝐻1(BL); 𝑢 = 0 on Γ𝑏 and 𝜕𝑧𝑢 = 0 on Γtop

}︀
, (4.42)

instead of 𝐻1
0 (BL) as in (4.2), we can easily convert to the case of a Dirichlet problem in a doubled domain

Π × (0, 2𝑧top), with a reflection along the line 𝑧 = 𝑧top. Then, the proof remains the same as in the previous
case. Note that since we have 𝑉1 functions for which the trace is not well-defined, we cannot expect that our
weak solution satisfies 𝑢 = 0 at the bottom boundary. So in this case the weak and strong formulation are not
giving the same result and the same have been noted, in a slightly different setting, by Rappaz and Rochat [21],
for the von Kármán problem. They also noted as the trace evaluated numerically is strongly depending on the
mesh-size, as is expected, and that the value at the boundary is not under control.

5. Numerical experiments

In this part, we aim to check if the model gives a good approximation of the Monin–Obukhov law (2.3),
depending on the values of 𝛼. We solve the problem (1.4) in two dimensions, using the software Freefem++.
We consider a rectangular box [0, 𝐿] × [0, 𝑧top] with 𝑧top = 100, 𝐿 = 1000 and we add periodic conditions on
the left and right sides {0} × [0, 𝑧top] and {𝐿} × [0, 𝑧top].

The other boundary conditions are Dirichlet at the bottom, and a linear Navier condition at the top involving
the roughness coefficient 𝐶𝐷:⎧⎨⎩𝜅𝑢⋆𝑧top

d𝑢
d𝑧

(𝑥, 𝑧top) = 𝐶𝐷(𝑉 (𝑥)− 𝑢(𝑥, 𝑧top)), at 𝑧 = 𝑧top,

𝑢(𝑥, 0) = 0, at 𝑧 = 0,
(5.1)

where
𝑉 (𝑥) = 𝑢Log(𝑧top)(1 + 𝜖(𝑥)), (5.2)

and

𝑢Log(𝑧) =

⎧⎪⎪⎨⎪⎪⎩
𝐶⋆𝑢

⋆

𝐶𝜈
𝑧, 𝑧 ∈ [0, 𝑧0]

𝐶⋆𝑢
⋆

𝐶𝜈

(︂
log

(︂
𝑧

𝑧0

)︂
+ 1

)︂
, 𝑧 ∈ [𝑧0, 𝑧top].

(5.3)

The aim of this numerical study is to check if the numerical solution 𝑢 of the problem (1.4) approaches the
known log-law, in a sense we will develop below.

First we will explain in Section 5.3 how to get vertical velocities from the Freefem++ resolution of the problem
(1.4) and the tools to compare it with the log-law 𝑢Log.

Then, we will discuss the influence of the different parameters (𝛼 in Sect. 5.2), 𝐶𝐷 and 𝑢⋆ in the Section 5.3
and calculate the difference between the numerical solution and 𝑢Log, which allow us in Section 5.4 to derive
an analytical formula of the stabilization function Ψ deduced from the numerical results by interpolation.

Finally, we will consider the influence on the 𝑥-axis of a small perturbations 𝜖, as involved in the wind at the
top given by (5.2).

http://www3.freefem.org/
http://www3.freefem.org/
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Figure 1. log-law. (a) 𝑧0 = 0.1. (b) 𝑧0 = 1. (c) 𝑧0 = 10.

Remark 5.1. We use in the code the command 𝑢 = 0 at 𝑧 = 0, and we take 𝜆 = 0. Contrary to what the
analysis predicts, the case 𝛼 = 1 works very well, even at high resolutions. As Freefem++ is a finite element
software, we think that the numerical simulation involves a numerical dissipation which sufficiently regularizes
the equation, even in the case 𝛼 = 1. However, we did not have studied yet this numerical aspect of the problem.

5.1. Settings of the analysis

5.1.1. Parameters

Different parameters will have influence on the simulation: some will be fixed, and some will be specifically
studied. The size of the box will always be in the following [0, 𝐿]× [0, 𝑧top], where

𝐿 = 1000 m and 𝑧top = 100 m.

– After several simulations to get velocities that can be measured in situ, it looks like that the best values
for the calibration constants 𝐶* and 𝐶𝜈 were 𝐶* = 10 and 𝐶𝜈 = 15, as already mentioned in Section 2.1.
Examples of log profiles have been plotted in Figure 1 with these values, 𝑢⋆ = 10, 𝑧top = 100, and respectively
𝑧0 = 1 and 𝑧0 = 10.

– The height of the viscous sub-layer 𝑧0 in the following simulations will be very small compared to 𝑧top, with
a ratio smaller than 0.01. Besides, the viscous sub-layer height 𝑧0 will taken equal to 0.1, which respects a
ratio

𝑧0
𝑧top

= 10−3 < 0.01.

– The parameter 𝜆 is chosen equal to 0.
– The source 𝑓 will be considered as constant: 𝑓 = 5. According to formula (2.7), this means that 𝛿𝑇 ≈ −23 ∘C

for 𝛽 = 2× 10−3, for instance in the case where the ground is at 0 ∘C and the air is dry and and cold at a
constant temperature equal to −23 ∘C, a situation that can happen in the mountains.

– The perturbation 𝜖 which appears in the expression (5.2) of 𝑉 will be taken equal to 0 in the next subsections,
except in Section 5.5 (see (5.9)).

The velocity constant 𝑢* can be seen as a “wind regime switch” belonging to the speed range
[2 ms−1, 10 ms−1], which corresponds to what is generally measured for flows over rough grounds. This is
the main parameter of our simulations, the influence of which will be studied in the Section 5.3.

– Finally, the frictional coefficient 𝐶𝐷 will be chosen according to the 𝑢⋆. In the Section 5.3 we will show that
𝐶𝐷 ≃ 106 is giving convincing results.

5.1.2. Errors

Let 𝑢𝑘 denotes the vertical velocities at 𝑥𝑘 = 𝑘𝐿, given by, for every 𝑧 ∈ [0, 𝑧top]:

𝑢𝑘(𝑧) = 𝑢(𝑥𝑘, 𝑧), (5.4)



508 L.C. BERSELLI ET AL.

Figure 2. Velocity profiles for different horizontal values.

where 𝑘 ∈ {0, 1
10 ,

2
10 , . . . , 1}. These 𝑢𝑘 will be compared with the log profile 𝑢Log defined by (5.3). To achieve

these comparisons, we introduce the errors 𝑒𝑟𝑟 at a point 𝑥

𝑒𝑟𝑟(𝑥) =
1
𝑁

𝑁∑︁
𝑖=1

|𝑢(𝑥, 𝑧𝑖)− 𝑢Log(𝑧𝑖)|, (5.5)

and the relative error 𝑟𝑒𝑙𝑒𝑟𝑟 at 𝑥

𝑟𝑒𝑙𝑒𝑟𝑟(𝑥) =
𝑁∑︁

𝑖=1

|𝑢(𝑥, 𝑧𝑖)− 𝑢Log(𝑧𝑖)|
|𝑢(𝑥, 𝑧𝑖)|

, (5.6)

which will be more relevant than the error because of the importance of the velocities, when 𝑢⋆ > 7 ms−1 for
instance.

Without the perturbation 𝜖, the vertical velocities 𝑢𝑘 are very close each other, as we can see in Figure 2
and in the Table 1. Even if the difference between the vertical profiles is small, we consider the mean vertical
velocity

𝑢(𝑧) :=
1
𝑝

𝑝∑︁
𝑘=1

𝑢(𝑥𝑘, 𝑧), (5.7)

and we will use it instead of the 𝑢𝑘. To perform the simulations, 𝑝 = 11 and 𝑥𝑘 will belongs to
{0, 100, 200, . . . , 1000}.
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Table 1. Errors and relative errors between the vertical velocities 𝑢𝑘 and 𝑢Log. The parameters
taken are 𝐶𝐷 = 106, 𝛼 = 1, 𝑢⋆ = 4, 𝑥1 = 200, 𝑥2 = 400, 𝑥3 = 600, 𝑥4 = 800.

𝑢1 𝑢2 𝑢3 𝑢4

𝑒𝑟𝑟 𝑟𝑒𝑙𝑒𝑟𝑟 𝑒𝑟𝑟 𝑟𝑒𝑙𝑒𝑟𝑟 𝑒𝑟𝑟 𝑟𝑒𝑙𝑒𝑟𝑟 𝑒𝑟𝑟 𝑟𝑒𝑙𝑒𝑟𝑟

0.37 0.042 0.49 0.053 0.53 0.056 0.47 0.047

Figure 3. Vertical velocities. (a) 𝛼 = 0.3. (b) 𝛼 = 0.6. (c) 𝛼 = 0.8. (d) 𝛼 = 1.

5.2. Influence of alpha

We observe that the more 𝛼 is getting close to 1, the better the model is, as we can see in Figure 3: this is
correct in the sense that the difference between the calculated profile and the log profile is smaller. The blue
curves correspond here to the values 𝑢(𝑧), where 𝑧 ∈ {1, 2, . . . , 100}.

As a result, the model is relevant only for 𝛼 = 1. We will take 𝛼 = 1 in the next simulations.

5.3. The three different regimes: influence of 𝐶𝐷

We have calibrated the constant values to get wind velocities which are physically relevant (in ms−1). We
have observed three different regimes for 𝑢* respectively equal to 4 ms−1, 7 ms−1 and 10 ms−1 corresponding to
small wind, medium wind, and storm wind. We consider for each case the errors and relative errors we get in
function of the 𝐶𝐷 coefficients.
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Figure 4. Influence of 𝐶𝐷 for 𝑢⋆ = 10. (a) 𝐶𝐷 = 100. (b) 𝐶𝐷 = 1000. (c) 𝐶𝐷 = 106.

Table 2. CD calibration for the different regimes.

𝑢⋆ = 4 𝑢⋆ = 7 𝑢⋆ = 10
𝐶𝐷 𝑒𝑟𝑟 𝑟𝑒𝑙𝑒𝑟𝑟 𝑒𝑟𝑟 𝑟𝑒𝑙𝑒𝑟𝑟 𝑒𝑟𝑟 𝑟𝑒𝑙𝑒𝑟𝑟

102 7.58 0.73 19.59 1.59 32.21 2.42
103 1.79 0.13 5.50 0.24 10.34 0.32
104 0.63 0.061 1.68 0.083 2.85 0.094
105 0.50 0.054 1.23 0.067 1.90 0.071
106 0.48 0.053 1.18 0.066 1.81 0.069
109 0.48 0.053 1.18 0.065 1.79 0.069

Figure 5. Errors and relative errors dependence on 𝐶𝐷.

We can see in Figure 4 that the vertical velocity 𝑢 in blue is close to the log-law when 𝐶𝐷 is big and far when
𝐶𝐷 is small. To quantify this, the errors and relative errors corresponding in the Table 2 show that the bigger
𝐶𝐷 is, the smallest the errors are.

Nevertheless, it is getting steady at some point as we can see in Figure 5, where the errors and the relative
errors have been plotted for 𝑢⋆ = 4, 𝑢⋆ = 7 and 𝑢⋆ = 10. The value 106 seems to be the threshold value for the
coefficient 𝐶𝐷.



SBL WITH AN EDDY VISCOSITY VANISHING AT THE GROUND 511

Figure 6. Stabilization functions for different values of 𝑢⋆.

Table 3. Errors and relative errors between the stabilized/unstabilized velocities and the log-law.

𝑢⋆ 𝐶𝐷 𝑒𝑟𝑟 w/o stab 𝑒𝑟𝑟 with stab 𝑟𝑒𝑙𝑒𝑟𝑟 w/o stab 𝑟𝑒𝑙𝑒𝑟𝑟 with stab

4 106 0.49 0.30 0.053 0.026
7 106 1.18 0.35 0.066 0.021
10 106 1.81 0.47 0.069 0.020

5.4. Stabilization functions

From our numerical results, by an empirical method of extrapolation by successive approximations, we have
found the following stabilization function

Ψ(𝑧) = 2𝑢⋆
(︁
𝑒(𝑧0−𝑧) − 𝑒−2𝑧

)︁
− 𝑢⋆

200
𝑧 + 0.4𝑢⋆ (5.8)

so that, if 𝑢 denotes the numerical result,
𝑢+ 𝜓 ≈ 𝑢Log.

It gives for the different values of 𝑢⋆ the curves shown in Figure 6. The peak we can see corresponds to the the
height of the viscous sub-layer 𝑧0.

We can compare the errors and relative errors between the raw velocity 𝑢 and the log-law 𝑢Log on the one
hand, and between the stabilized velocity 𝑢+ Ψ and 𝑢Log on the other hand, for the different regimes given by
𝑢⋆. We can see in the Table 3 and in the Figure 7 that the stabilization is a better approximation of the log-law,
especially around the viscous sub-layer 𝑧0.

5.5. With horizontal perturbation

In this part we study the effect of a small oscillation in the horizontal direction, given by

𝜖(𝑥) = 0.01 sin
(︂

11
2𝜋𝑥
𝐿

)︂
, (5.9)

so that 𝑉 (𝑥) = 𝑢Log(𝑧top)(1 + 𝜖(𝑥)).
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Figure 7. Velocity profile with and without stabilization compared with the log-law. (a) 𝑢⋆ = 4.
(b) 𝑢⋆ = 7. (c) 𝑢⋆ = 10.

Table 4. Errors and relative errors between the velocities and the log-law.

𝑒𝑟𝑟 𝑟𝑒𝑙𝑒𝑟𝑟

𝑢⋆ w/o 𝜖 with 𝜖 with 𝜖 and Ψ w/o 𝜖 with 𝜖 with 𝜖 and Ψ

4 0.49 0.62 0.27 0.053 0.061 0.024
7 1.18 1.42 0.41 0.066 0.073 0.023
10 1.81 2.15 0.65 0.069 0.078 0.024

We keep the value 𝐶𝐷 = 106, 𝛼 = 1, and we will compare the vertical velocities 𝑢 we get with the ones we
had without this perturbation for the three different 𝑢⋆. We obtain the Table 4. This shows that even for a small
perturbation, the error variation is quite large compared to the values we have. When we add the stabilization
function Ψ, we can manage to keep the errors still small, even with the perturbation 𝜖. This opens an interesting
stability problem à la “Lyapunov”.

5.6. Conclusion and perspectives

We have shown numerically that the solution 𝑢 of the problem (1.4) is a very good approximation for the
known Monin–Obukhov log-law when 𝛼 = 1 for adiabatic flows, with a large calibration constant 𝐶𝐷, imposing
a Dirichlet condition at Γtop. This is valid for a large range of wind regimes. The numerical code seems to be a
good tool for calculating the stabilization function, which could be improved by using a formal mathematical
calculation tool, which we have not done yet.

The next step is to couple system (1.4) with the equation for the temperature 𝑇 , where the source term 𝑓 is
given by (2.7), which is a work under progress.
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