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On Designing an Optimal SPRT Control Chart with Estimated Process Parameters under 

Guaranteed In-control Performance 

Abstract 

Being one of the most sophisticated control charts, the sequential probability ratio test (SPRT) chart 

possesses fast detection ability across a broad range of process shifts. The SPRT chart has the 

advantage of sampling only a modest number of observations. Thus far, the SPRT chart has been 

developed under the assumption that the process parameters are known. As process parameters are 

often unknown in practice, this article reveals that parameter estimation from a limited amount of 

Phase-I data, leads to excessive false alarms and unstable chart’s performances. To counter these 

problems, this article advocates the use of adjusted control limits to ensure that a sufficiently high 

proportion of the in-control conditional average time to signal value, is greater than a pre-specified 

level. This increasingly prevalent design of control charts is known as Guaranteed In-Control 

Performance (GICP). In this article, we propose an optimization design for the SPRT chart with 

estimated process parameters, by minimizing the expected value of the average extra quadratic loss 

under the GICP framework. Theoretical derivations by means of the Markov chain approach are 

developed in this article to evaluate the run-length properties of the SPRT chart with estimated 

process parameters. Results show that the overall performance of the proposed optimal SPRT chart is 

almost twice as good as the optimal CUSUM chart over a given range of process mean shifts. Finally, 

an implementation of the proposed optimal SPRT chart is demonstrated with real industrial data 

obtained from an epitaxial process. 

Keywords: Average extra quadratic loss; Guaranteed in-control performance; Markov chain; 

Parameter estimation; SPRT control chart; Statistical process control. 

 

1. Introduction 

 One might wonder how control charts have emerged as the go-to tool in many endeavors related 

to statistical process monitoring. Indubitably, the control charting method has received plenty of 

spotlight over the past few decades, owing to its powerful ability to reveal useful information about a 

process of interest. Anwar et al. (2021), Weiß et al. (2021), and Mehmood et al. (2022), to name a few, 

devoted substantial efforts in research work aimed at improving the control charts’ performances. To 

date, there has been a growing emphasis on the importance of developing control charts with both 

high detection speed and stable in-control performance. There has also been strong consensus on the 

consideration of economic factors and productive efficiencies in the design of control charts, see, for 

example, Salmasnia et al. (2017), and Tran et al. (2021). A great deal of process monitoring literature 

focuses on the exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) 

control charts (see, for example, Jones et al., 2004; Castagliola et al., 2016). These control charts are 

generally favored over the traditional Shewhart 𝑋̅ chart due to their sensitivities towards small 

departures in the process quality characteristic (Montgomery, 2009). In this article, we navigate our 
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research around a powerful yet under-explored parametric control chart known as the sequential 

probability ratio test (SPRT) control chart. 

 The SPRT was first formulated by Abraham Wald for the purpose of statistical hypothesis testing 

(Wald, 1945). According to Wald (1947), the SPRT proves to yield around 50% reduction in the 

number of observations required on average compared to other test procedures based on fixed 

subgroups. This makes Wald’s SPRT especially desirable for applications whereby data are inherently 

limited. Subsequently, Stoumbos and Reynolds (1997) developed the SPRT control chart applying 

Wald’s SPRT at a fixed sampling interval (FSI). They successively showed that the proposed SPRT 

chart has superior performance over the variable sample size and sampling interval (VSSI) 𝑋̅ and 

CUSUM charts. This remarkable performance of the SPRT chart has received recognition and 

appreciation from many researchers, see, for example, Ou et al. (2011a, b), Willis (2011), Zhang et al. 

(2014), and Mahadik et al. (2021). The SPRT control chart has since been deployed in numerous 

quality control applications, such as those in the manufacturing industries (Stoumbos & Reynolds, 

1999; Ou et al., 2011c). Since the SPRT chart expects observations to be taken in negligible time, it is 

very well-suited for productions in which sampling procedures can be conducted within a relatively 

short time. For example, Stoumbos and Reynolds (1997) employed the SPRT control chart in 

monitoring the thickness of thrust washers used in the transmissions of automobiles. Ou et al. (2011c) 

studied the FSI and variable sampling interval (VSI) SPRT charts on three different applications, i.e., 

monitoring the thickness of the silicon dioxide layer of a semiconductor component, the breaking 

strength of nylon fibers, and the diameter of a special drill. To date, all existing work related to the 

SPRT chart have been developed under the assumption that the mean and dispersion of the process 

quality characteristic are known. However, practitioners reveal that this assumption is frequently 

violated in quality control setting. Some baseline information about the underlying process is usually 

needed to implement the control chart (Chakraborti, 2006; Saleh et al., 2015a). 

 In manufacturing environment, true process parameters are rarely known, and any attempt to 

estimate them from historical data may result in extremely volatile outcomes. This issue was 

discussed by Jensen et al. (2006) and was subsequently addressed by several researchers, such as 

Chakraborti et al. (2008) and Jones-Farmer et al. (2014). Generally, they suggested to estimate 

process parameters from a set of in-control Phase-I samples. These Phase-I samples are used in the 

calibration of control charts before proceeding to Phase-II process monitoring. Many researchers have 

advocated the use of large Phase-I samples (see, for example, Zhang et al., 2014; Saleh et al., 2015a) 

to reduce practitioner-to-practitioner variability in control charts’ performances. All researchers agree 

that, when a small number of Phase-I samples is used, the conditional average run length (CARL) 

obtained through different practitioners can vary by an alarmingly large degree. Zhang et al. (2014) 

suggested increasing the number of Phase-I samples, so that the standard deviation of the CARL falls 

below 10% of the desired average run length (ARL). Nonetheless, Saleh et al. (2015a) argued that 
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such a recommendation may be unrealistic to be implemented in practice, since the collection of a 

large dataset can be time consuming and expensive.  

 Another issue arising from the use of estimated process parameters in traditional control charts is 

the strikingly massive false alarms obtained by practitioners. This calls for the innovation of control 

charts with adjusted control limits, which was initially pioneered by Albers et al. (2005), to guarantee 

satisfactorily low false alarm rates among practitioners. This ideology is known as Guaranteed In-

Control Performance (GICP). Particularly, Albers et al. (2005) and Gandy and Kvaløy (2013) 

proposed the use of the Exceedance Probability Criterion (EPC) and the bootstrap approach, 

respectively, to ensure that the in-control CARL of a control chart is at least equal to a pre-specified 

level with a high probability. As the ideology grows in popularity, many researchers have endorsed 

the use of GICP in the design of control charts with estimated process parameters (see, for example, 

Goedhart et al., 2017; Capizzi & Masarotto, 2020; Jardim et al., 2020). Capizzi and Masarotto (2020) 

even provided a compelling statement in their article, calling GICP the “de facto standard design of 

control charts”. However, Diko et al. (2019b) discovered that adjusted control limits under the GICP 

framework may lead to reduced sensitivity in control charts, especially when the process shifts are 

small. To address the trade-off between the in-control and out-of-control performances, they 

suggested to increase the error probability (p) and/or to introduce a tolerance term (ɛ) in the 

formulation of the EPC. Nevertheless, the proposed method has not solved the problem at its root. 

The chart’s performances usually only stabilize when mean shifts (𝛿) are greater than or equal to one. 

Motivated by the need to devise a better solution, we carry through our attempt in combining the 

optimal design of a control chart with the GICP framework. We show that, without compromising the 

in-control performance further, the out-of-control performance of our proposed SPRT chart with 

estimated process parameters can be improved even for mean shifts as small as 0.6. 

 To the best of our knowledge, none of the existing literature has investigated the SPRT chart 

with estimated process parameters. Therefore, in this article, we fill the gap by assessing the impact of 

Phase-I parameter estimation on the performances of the SPRT chart. We also derive the conditional 

run-length properties of the SPRT chart with estimated process parameters, i.e., the conditional 

average sample number (CASN), the conditional average time to signal (CATS), and the conditional 

standard deviation of the time to signal (CSDTS), by means of the Markov chain approach. It is 

important to note that these properties are expressed as random variables of the Phase-I data set. 

Hence, to accurately represent these metrics, we provide their unconditional measures, i.e., the 

expected value of the CASN (AASN), the expected value of the CATS (AATS), the standard 

deviation of the CATS (SDATS), and the average of the CSDTS (ASDTS). It has been brought to our 

attention that the standard deviation of the time to signal (SDTS) has yet to be studied in any literature 

related to the SPRT chart with known process parameters. For completeness, we provide full 

derivations of the SDTS, CSDTS, and ASDTS formulae for both the cases of known and estimated 

process parameters in this article. Throughout this article, we consider the steady-state performance of 
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the SPRT chart with estimated process parameters. This is consistent with the anticipation that, in real 

situations, a sustained shift occurs after a process remains in-control for a sufficiently long duration. 

 In the design of control charts, it is especially crucial to consider the effectiveness of the chart in 

detecting multiple unknown shift sizes, rather than a single deterministic shift size. Control charts that 

are optimally designed to safeguard against a range of process shifts are proven to be more robust 

towards uncertain shift distributions. Contemporarily, the average extra quadratic loss (AEQL) 

criterion has been widely used in the design of control charts with known process parameters (see, for 

example, Ou et al., 2011b; Adeoti & Malela-Majika, 2020). Hence, we adopt the expected value of 

the AEQL (AAEQL) criterion in the optimization design of the SPRT chart with estimated process 

parameters. Furthermore, we apply the GICP framework alongside the optimization design to tackle 

the issue of high false alarms. With an extensive literature review, we found that this concept has yet 

to be proposed by any researcher. Hence, by combining both the optimization design and the GICP 

framework, we develop a new optimization algorithm for the SPRT chart with estimated process 

parameters in this article. The proposed algorithm does not only render the best overall out-of-control 

performance in terms of the AAEQL, but also promises a satisfactory in-control performance that is 

customizable based on the needs of a practitioner. 

 The organization of this article is as follows. In the next section, we visit the SPRT chart with 

both known and unknown process parameters. We derive theoretical formulae for the conditional and 

unconditional run-length properties of the SPRT chart with estimated process parameters by means of 

the Markov chain approach. In Section 3, we argue that the SPRT chart with traditional control limits 

developed by Ou et al. (2011b) produces large numbers of false alarms when process parameters are 

estimated. We then present two optimization models for the SPRT chart with estimated parameters in 

Section 4 based on two approaches, i.e., the (i) AATS-matching and (ii) GICP approaches. Section 4 

first highlights the drawback of the first approach. It is then followed by a description of how GICP 

solves the problem from a conditional perspective, and how the optimization design leads to 

neutralized out-of-control performances even for relatively small mean shifts. To demonstrate the 

implementation of our proposed optimal SPRT chart with estimated process parameters, we include 

an application on real manufacturing data in Section 5. Concluding remarks are provided in the final 

section.  

 

2. A thorough look at the SPRT chart 

2.1. The SPRT chart with known process parameters 

 Suppose that a process quality characteristic 𝑋 comes from a normal distribution with known 

mean 𝜇0 and standard deviation 𝜎0. Suppose further that we are interested in testing the null 

hypothesis 𝐻0:  𝜇 = 𝜇0 against the alternative hypothesis 𝐻1:  𝜇 = 𝜇0 + 𝛿𝜎0 from a sequence of 

monitoring data, where 𝜇 represents the mean of the ongoing process. Note that 𝛿 > 0 is a pre-

specified upper-sided shift in units of standard deviation. When the process is in-control, we set 𝛿 = 0 
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which coincides with 𝐻0. At the outset (time t = 0), just after the SPRT chart is initiated, a “window 

period” of length d > 0 is allocated for potential startup intermission, such as machinery warm up, 

initialization of statistical software, etc. At time t = d, a sample of random size (𝑋1,1, 𝑋1,2, …, 𝑋1,𝑛) is 

taken from the process to formulate the very first SPRT, where n represents the total sample number 

until the termination of each SPRT (i.e., acceptance or rejection of 𝐻0). Assume that each observation 

in the sample is obtained in negligible time, and each of them is sampled independently from an 

identical distribution.  

 In the upper one-sided SPRT chart, the jth control statistic of the ith SPRT, 𝑈𝑖,𝑗, is computed 

recursively as follows: 

 𝑈𝑖,𝑗 = 𝑈𝑖,𝑗−1 + 𝑍𝑖,𝑗 − 𝛾, (1) 

where 

 𝑍𝑖,𝑗 = 𝑋𝑖,𝑗−𝜇0𝜎0 , (2) 

for i = 1, 2, …, j = 1, 2, …, n and 𝛾 > 0 is a reference parameter. Here, the starting value of each 

SPRT, 𝑈𝑖,0, is set to be equal to 0. In a SPRT, a decision is reviewed at the end of the jth sampling 

unit. In particular, 

 if 𝑈𝑖,𝑗 > ℎ, the ith SPRT is terminated, and an out-of-control signal is emitted,  

 if 𝑔 ≤ 𝑈𝑖,𝑗 ≤ ℎ, the ith SPRT resumes sampling sequentially, and 

 if 𝑈𝑖,𝑗 < 𝑔, the ith SPRT is terminated, and the process is indicated as in-control. 

Here, 𝑔 and ℎ are the lower and upper control limits of the upper one-sided SPRT chart. Note that in 

this article, our discussion focuses mainly on the properties of an upper one-sided SPRT chart. A 

lower one-sided SPRT chart can be designed in a similar way by replacing 𝑍𝑖,𝑗 with −𝑍𝑖,𝑗 in Equation 

(1). This is done to facilitate the detection of a downward mean shift, since a lower one-sided SPRT 

chart is symmetric to its upper one-sided counterpart. 

 After the first SPRT is concluded, sequences of SPRT’s are conducted at fixed time intervals d 

until an out-of-control event is signaled. In other words, the first SPRT is initiated at time t = d, the 

second SPRT at t = 2d, the third SPRT at t = 3d, and so on until the chart ceases. Each SPRT 

computes its control statistic 𝑈𝑖,𝑗 using the recursive formulae in Equations (1) and (2), with a starting 

value of 𝑈𝑖,0 = 0. When an SPRT is terminated (i.e., 𝑈𝑖,𝑗 < 𝑔 or 𝑈𝑖,𝑗 > ℎ), the contemporary sampling 

unit, j, is recorded as the sample number. Depending upon the process data, each SPRT is composed 

of a random number of observations. Hence, the average sample number (ASN) is used to effectively 

represent the average of these sample numbers in the long run.  

 The ASN, average time to signal (ATS), and SDTS of the SPRT chart with known process 

parameters can be formulated by means of the Markov chain approach (Stoumbos and Reynolds, 

1997). Suppose that the region [𝑔, ℎ] is partitioned into 𝜂 subintervals, where each subinterval is a 
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transient state 𝑆𝑘, for 𝑘 = 1, 2, …, 𝜂, of the Markov chain. Meanwhile, let the regions (−∞, 𝑔) and (ℎ, ∞) represent the absorbing states of the Markov chain. We define the width of each subinterval as 

 ∆= ℎ−𝑔𝜂 , (3) 

and the midpoint of state 𝑆𝑘 as 

 𝑂𝑘 = 𝑔 + ∆ ⋅ (𝑘 − 0.5). (4)  

 Note that the ASN can be interpreted as the expected number of visits between transient states 

before 𝑈𝑖,𝑗 is absorbed by the Markov chain. To determine the ASN, one needs to first construct a 

transition probability matrix 𝐑 = {𝑟𝑘,ℓ}𝜂×𝜂. Define 𝑟𝑘,ℓ as the one-step transition probability that the 

control statistic 𝑈𝑖,𝑗 moves from state 𝑆𝑘 to state 𝑆ℓ, for 𝑘, ℓ = 1, 2, …, 𝜂. Then, 𝑟𝑘,ℓ is evaluated as 

 𝑟𝑘,ℓ = Φ(∆ ⋅ (ℓ − 𝑘 + 0.5) + 𝛾 − 𝛿) − Φ(∆ ⋅ (ℓ − 𝑘 − 0.5) + 𝛾 − 𝛿), (5) 

where Φ(⋅) represents the cumulative distribution function of the standard normal distribution. Define 

the initial transition probability vector 𝐁 = {𝑏𝑘}𝜂×1, where 𝑏𝑘 represents the one-step transition 

probability that the initial control statistic 𝑈𝑖,0 transits to state 𝑆𝑘. The formula is given as 

 𝑏𝑘 = Φ(𝑔 + ∆ ⋅ 𝑘 + 𝛾 − 𝛿) − Φ(𝑔 + ∆ ⋅ (𝑘 − 1) + 𝛾 − 𝛿). (6) 

Hence, the ASN can be found by the following formula: 

 ASN = 1 + 𝐁T(𝐈 − 𝐑)−1𝟏, (7) 

where 𝐈 is the identity matrix of size 𝜂 × 𝜂, and 𝟏 is an 𝜂 × 1 vector filled with ones. 

 Stoumbos and Reynolds (1997) ascertained that the run length (RL) of the SPRT chart with 

known process parameters has a geometric distribution with probability 1 – OC(𝛿). Here, the 

operating characteristic function OC(𝛿) is the probability that the SPRT accepts 𝐻0, conditional on 

the mean shift 𝛿. Define the acceptance transition probability vector 𝐐 = {𝑞𝑘}𝜂×1, where 𝑞𝑘 gives the 

one-step transition probability from state 𝑆𝑘 to the acceptance state (−∞, 𝑔). Then 

 𝑞𝑘 = Φ(∆ ⋅ (0.5 − 𝑘) + 𝛾 − 𝛿). (8) 

Let 𝑃0 be the probability that the SPRT accepts the null hypothesis, conditional on the first 

observation, i.e., 

 𝑃0 = Φ(𝑔 + 𝛾 − 𝛿). (9) 

Then, OC(𝛿) is obtained as 

 OC(𝛿) = 𝑃0 + 𝐁T(𝐈 − 𝐑)−1𝐐. (10) 

It is customary to compute the ATS in performance evaluation. The in-control ATS (ATS0) is given 

by 

 ATS0 = 𝑑1−OC(0), (11) 

where OC(0) is computed from Equation (10) by setting 𝛿 = 0. For the steady-state out-of-control 

ATS (ATS𝛿), assume that the mean shift occurs uniformly over any sampling interval d, and that the 

control statistic has reached its stationary distribution at the time when the process shifts. It follows 

that the steady-state ATS𝛿 can be expressed as 
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 ATS𝛿 = 𝑑 × ( 11−OC(𝛿) − 12). (12) 

It is important to note that the formula in Equation (12) should only be used in cases where 𝛿 > 0. 

 Apart from the ATS, practitioners might be interested in understanding the variability of the time 

to signal of the SPRT chart. To the best of our knowledge, none of the literature has provided 

theoretical formulae for the in-control SDTS (SDTS0) and steady-state out-of-control SDTS (SDTS𝛿) 
of the SPRT chart with known process parameters. Therefore, we derive the formulae for SDTS in 

this article. The in-control time to signal of an SPRT chart can be expressed as d × RL, where RL ~ 

Geometric (1 – OC(𝛿)). Then, the SDTS0 is 

 SDTS0 = 𝑑√Var [RL] = 𝑑√ OC(0)[1−OC(0)]2. (13) 

On the other hand, the steady-state out-of-control time to signal of the SPRT chart can be expressed as 

d × (T + RL – 1), where T is a uniform random variable from 0 to 1. Assuming independence between 

run lengths and uniformly distributed time of process shift, we evaluate the SDTS𝛿 as 

 SDTS𝛿 = 𝑑√Var[𝑇] + Var[RL − 1]  

 = 𝑑√ 112 + OC(𝛿)[1−OC(𝛿)]2 . (14) 

The accuracy of both Equations (13) and (14), has been verified with Monte Carlo simulations. 

 Another credible measure of the overall performance for a control chart is the AEQL (Reynolds 

& Stoumbos, 2004; Ou et al, 2009, 2011a, b). The formula for the steady-state AEQL is provided as 

 AEQL = 1𝛿max−𝛿min ∫ 𝛿2 ATS𝛿 𝑑𝛿𝛿max𝛿min , (15) 

where ATS𝛿 can be computed from Equation (12), while 𝛿min and 𝛿max are pre-defined minimum 

and maximum allowable shift sizes, respectively. The use of quadratic weights 𝛿2 in Equation (15) 

signifies disproportionate weights distributed among ATSs at various mean shifts. In particular, the 

AEQL amplifies the ATSs at large mean shifts, while depreciating those evaluated at small mean 

shifts. This is sensible as practitioners are often more interested in understanding how control charts 

perform in relatively extreme situations, rather than situations where the process shifts are small. This 

rationale was also justified by Montgomery (2009), who claimed that quality is inversely proportional 

to the square of deviations from the true mean. 

2.2. The SPRT chart with estimated process parameters 

 In practice, the process parameters 𝜇0 and 𝜎0 are rarely known, and they need to be estimated 

from a verified in-control Phase-I data set. Assume that a Phase-I data set of size m is available, and 

the observations (𝑌1, 𝑌2, …, 𝑌𝑚) are independent and normally distributed with mean 𝜇0 and standard 

deviation 𝜎0. We estimate 𝜇0 using the sample mean 

 𝜇̂0 = 1𝑚 ∑ 𝑌𝜃𝑚𝜃=1 , (16) 

and estimate 𝜎0 using the sample standard deviation 
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 𝜎̂0 = √ 1𝑚−1 ∑ (𝑌𝜃 − 𝜇̂0)2𝑚𝜃=1 . (17) 

It is well-known that the estimators 𝜇̂0 and 𝜎̂0 can be transformed to construct pivotal quantities 

whose distributions do not depend on the true parameters 𝜇0 and 𝜎0.  

 The control statistic 𝑈̂𝑖,𝑗 of the upper one-sided SPRT chart with estimated process parameters is 

revised with 𝑍̂𝑖,𝑗, 𝜇̂0, and 𝜎̂0 in place of 𝑍𝑖,𝑗, 𝜇0, and 𝜎0, respectively, in Equations (1) and (2). Then 𝑈̂𝑖,𝑗 becomes 

  𝑈̂𝑖,𝑗 = 𝑈̂𝑖,𝑗−1 + 𝑍̂𝑖,𝑗 − 𝛾, (18) 

where 

 𝑍̂𝑖,𝑗 = 𝑋𝑖,𝑗−𝜇̂0𝜎̂0 . (19) 

To evaluate the performances of the SPRT chart with estimated process parameters, we derive a new 

expression for the transition probability matrix 𝐑̂ = {𝑟̂𝑘,ℓ}𝜂×𝜂. Note that the matrix 𝐑̂ now depends 

upon the pivotal quantities that involve 𝜇̂0 and 𝜎̂0. The transition probability 𝑟̂𝑘,ℓ from state 𝑆𝑘 to 𝑆ℓ is 

 𝑟̂𝑘,ℓ = Φ [𝑉(∆ ⋅ (ℓ − 𝑘 + 0.5) + 𝛾) + 𝑊√𝑚 − 𝛿] − Φ [𝑉(∆ ⋅ (ℓ − 𝑘 − 0.5) + 𝛾) + 𝑊√𝑚 − 𝛿], (20) 

where the random variables 𝑉 = 𝜎̂0/𝜎0 and 𝑊 = (𝜇̂0 − 𝜇0)/(𝜎0/√𝑚) are pivotal quantities. The 

detailed derivations of 𝑟̂𝑘,ℓ can be found in Appendix A.  

 The pivotal quantity 𝑊 is the well-known z-transform of the sample mean of a normally 

distributed random variable. Hence, 𝑊 follows the standard normal distribution 𝑁(0,1). Also, it can 

be shown that (𝑚 − 1)𝑉2 follows a chi-squared distribution with 𝑚 − 1 degrees of freedom. 

Therefore, the probability density function (pdf) of the pivotal quantity 𝑉 can be derived by 

transformation of variables, and is given as 

 𝑓𝑉(𝑣) = 2(𝑚 − 1)𝑣 𝑓𝜒2((𝑚 − 1)𝑣2|𝑚 − 1), (21) 

where 𝑓𝜒2(⋅ |𝑚 − 1) is the pdf of the chi-squared distribution with 𝑚 − 1 degrees of freedom. 

 The expression for the CASN of the SPRT chart with estimated process parameters can be 

determined in a similar fashion as in Equation (7), i.e., 

 CASN = 1 + 𝐁̂T(𝐈 − 𝐑̂)−1𝟏. (22) 

Here, 𝐁̂ is the 𝜂 × 1 vector whose entry 𝑏̂𝑘 is revised as 

 𝑏̂𝑘 = Φ [𝑉(𝑔 + ∆ ⋅ 𝑘 + 𝛾) + 𝑊√𝑚 − 𝛿] − Φ [𝑉(𝑔 + ∆ ⋅ (𝑘 − 1) + 𝛾) + 𝑊√𝑚 − 𝛿]. (23) 

The in-control CATS (CATS0), steady-state out-of-control CATS (CATS𝛿), in-control CSDTS 

(CSDTS0), and steady-state out-of-control CSDTS (CSDTS𝛿) can then be obtained as 

 CATS0 = 𝑑1−OĈ(0), (24) 

 CATS𝛿 = 𝑑 × ( 11−OĈ(𝛿) − 12), (25) 
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 CSDTS0 = 𝑑√ 1+OĈ(0)[1−OĈ(0)]2 − ( 11−OĈ(0))2
, (26) 

and 

 CSDTS𝛿 = 𝑑√ 1+OĈ2(𝛿)[1−OĈ(𝛿)]2 − 23 − ( 11−OĈ(𝛿) − 12)2
, (27) 

respectively. The CATS0 and CATS𝛿 are deduced using a similar method as in Equations (11) and 

(12), respectively. The detailed derivations of CSDTS0 and CSDTS𝛿 are available in Appendix B. The 

OĈ(𝛿) in Equations (24) - (27) can be modified from Equation (10) as 

 OĈ(𝛿) = 𝑃̂0 + 𝐁̂T(𝐈 − 𝐑̂)−1𝐐̂, (28) 

where 𝐐̂ is the 𝜂 × 1 vector whose entry 𝑞̂𝑘 is given as 

 𝑞̂𝑘 = Φ [𝑉(∆ ⋅ (0.5 − 𝑘) + 𝛾) + 𝑊√𝑚 − 𝛿], (29) 

and 𝑃̂0 can be written as  

 𝑃̂0 = Φ [𝑉(𝑔 + 𝛾) + 𝑊√𝑚 − 𝛿]. (30) 

The OĈ(0) in Equations (24) and (26) can be computed from Equation (28) by substituting 𝛿 = 0. 

Note that all derivations of 𝑏̂𝑘, 𝑞̂𝑘, and 𝑃̂0 are provided in Appendix A. 

 It is important to note that the CASN, CATS and CSDTS are evaluated as functions of the 

random variables 𝜇̂0 and 𝜎̂0, or equivalently, the random variables W and V. In this respect, it is 

possible to derive the unconditional measures of these properties to facilitate better understanding of 

the chart’s performances across practitioners. The unconditional measures are computed by averaging 

all the possible values of parameter estimates, i.e., the values of V and W. A common measure used to 

represent the CASN of the SPRT chart with estimated process parameters is the unconditional AASN. 

The expression for AASN is given as 

 AASN = E[CASN] = ∫ ∫ CASN 𝑓𝑉(𝑣)𝑓𝑊(𝑤) 𝑑𝑣 𝑑𝑤∞0∞−∞ , (31) 

where 𝑓𝑉(⋅) and 𝑓𝑊(⋅) are the pdfs of the pivotal quantities V and W, respectively, and CASN can be 

quoted directly from Equation (22).  

 There are two commonly used measures for the CATS of the control charts with estimated 

parameters, i.e., the AATS and SDATS. The expression for the unconditional AATS is  

 AATS = E[CATS] = ∫ ∫ CATS 𝑓𝑉(𝑣)𝑓𝑊(𝑤) 𝑑𝑣 𝑑𝑤∞0∞−∞ . (32) 

The in-control AATS (AATS0) and steady-state out-of-control AATS (AATS𝛿) can be computed 

from Equation (32), by using CATS0 and CATS𝛿 in Equations (24) and (25), respectively. The 

expression for the unconditional SDATS is given as 

 SDATS = √E[CATS2] − (E[CATS])2 = √∫ ∫ CATS2 𝑓𝑉(𝑣)𝑓𝑊(𝑤) 𝑑𝑣 𝑑𝑤∞0∞−∞ − AATS2. (33) 
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Note that the AATS provides an average value of all the CATSs realized by practitioners, whereas the 

SDATS captures the practitioner-to-practitioner variability in the CATS performance.  

 Another meaningful performance metric is the unconditional ASDTS. The formulae for both in-

control ASDTS (ASDTS0) and steady-state out-of-control ASDTS (ASDTS𝛿) are presented as  

 ASDTS0 = 𝑑√∫ ∫ 1+OĈ(0)[1−OĈ(0)]2  𝑓𝑉(𝑣)𝑓𝑊(𝑤) 𝑑𝑣 𝑑𝑤∞0∞−∞ − (AATS0𝑑 )2
, (34) 

and 

 ASDTS𝛿 = 𝑑√∫ ∫ 1+OĈ2(𝛿)[1−OĈ(𝛿)]2  𝑓𝑉(𝑣)𝑓𝑊(𝑤) 𝑑𝑣 𝑑𝑤∞0∞−∞ − 23 − (AATS𝛿𝑑 )2
, (35) 

where AATS0 and AATS𝛿 can be computed from Equation (32). Detailed derivations of the formulae 

for ASDTS can be found in Appendix B. Similarly, the unconditional steady-state AAEQL becomes 

 AAEQL = 1𝛿max−𝛿min ∫ ∫ ∫ 𝛿2 CATS𝛿𝛿max𝛿min 𝑓𝑉(𝑣)𝑓𝑊(𝑤) 𝑑𝛿 𝑑𝑣 𝑑𝑤∞0∞−∞ . (36) 

The integrations in Equations (31) - (36) are approximated with the Gauss-Legendre Quadrature 

method. One key difference between the SDATS and ASDTS is their functionalities. The SDATS 

measures the variability of the CATS values obtained across different practitioners, whereas the 

ASDTS measures the average variability of the time to signal acquired by the same practitioner over 

an infinite time horizon. Both measures deliver different information to a practitioner, and they can be 

used simultaneously in performance evaluations to aid multi-factor decision making. 

 

3. Effects of parameter estimation of the SPRT chart under traditional control limits 

 In this section, we study the effects of parameter estimation on the performances of the SPRT 

chart with optimal charting parameters corresponding to the case of known process parameters. Note 

that the main goals of this article include investigating the impact of Phase-I parameter estimation on 

the performance of the SPRT chart and developing the optimal AEQL-based SPRT chart under the 

GICP framework when the process parameters are estimated. This article should, by no means, be 

interpreted as providing an analysis and comparison of the performances of various control charts 

with estimated process parameters in literature (see, for example, Saleh et al., 2015; Teoh et al, 2019; 

Jardim et al., 2020). However, to add a value to this article, we present a comparison between the 

performances of the SPRT and CUSUM charts with estimated process parameters in Section 4.2, as 

both control charts possess very similar architectures. 

 Generally, an effective control chart serves two main objectives in statistical process monitoring 

(Montgomery, 2009): 

 -  Emit an out-of-control signal as soon as a change in the process mean takes place (i.e., 𝛿 > 0), 

and at the same time, 

 - Refrain from emitting excessive false signals when the process is in-control (i.e., 𝛿 = 0) 
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The common practice for designing control charts, assuming that the process parameters are known, is 

to fix a suitably large ATS0 before tuning the charting parameters to achieve an optimum out-of-

control chart’s performance. Since process shifts tend to occur sparsely and randomly over time, it is 

extremely difficult to predict the size of a specific mean shift that may occur in the future. To address 

the lack of knowledge of shift size, this article proposes an optimization procedure that considers the 

out-of-control performances of the control chart over a range of mean shifts. See Ryu et al. (2010) and 

Celano et al. (2013) for discussions of the practical considerations of an unknown shift size in control 

chart’s applications. 

 The optimal SPRT chart with known process parameters is developed by minimizing the AEQL 

over a chosen range of mean shifts, 𝛿 ∈ [𝛿min, 𝛿max] (Ou et al., 2011b). In the optimization design, 

Ou et al. (2011b) advised setting 𝛿min as a small value to prevent the introduction of additional 

variability into the process. Also, they suggested setting 𝛿max as the maximum possible mean shift 

based on the practitioners’ knowledge of the underlying process. To achieve the best overall results, 

we choose 𝛿min = 0.1 and 𝛿max = 2.0 in our optimization model throughout this article. 

 The SPRT chart has 5 charting parameters, i.e., the in-control ASN (ASN0), 𝛾, d, g, and h. 

Throughout the optimization design, all five charting parameters need to be adjusted to yield a 

minimum AEQL, while conforming to the user-defined specifications, i.e., the recommended value of 

ATS0 (𝜏), the desired inspection rate (𝑅 = ASN0/𝑑), and the minimum allowable sampling interval 

(𝑑min). The inspection rate R imposes a natural restriction on the relationship between the sample 

number and the sampling interval. In other words, with a fixed R, it is impossible to increase ASN0 

without having to decrease d, and vice versa. See Ou et al. (2011b) for the optimization algorithm of 

the SPRT chart with known process parameters. 

 The optimal SPRT chart with known process parameters used throughout this section is 

constructed upon the following specifications: 

 𝜏 = 370.40, R = 5, 𝑑min = 0.25, 𝛿min = 0.1, 𝛿max = 2.0. (37) 𝜏 = 370.40 is chosen to yield a false alarm rate of 0.27%. The inspection rate R is set as 5 

measurements per unit of sampling interval, and 𝑑min is a quarter of the standard time unit adopted in 

an operation. By implementing the optimization algorithm in Ou et al. (2011b) and the formulae in 

Section 2.1, we obtain the following design parameters for the optimal SPRT chart with known 

process parameters: 

ASN0 = 2.132, 𝛾 = 0.306, d = 0.426, g = 0.317, h = 8.388, 

which yield a minimum AEQL of 0.694. These charting parameters are used to evaluate the 

performances of the SPRT chart with known and estimated process parameters, which are tabulated in 

Table 1. Note that no further adjustments have been made to the control limits of the Phase-II control 

chart, hence this method is known as the traditional approach.  

[Insert Table 1 here.] 
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 Table 1 displays two critical information about the SPRT chart with known and estimated 

process parameters, i.e., the conditional in-control performances (Pr(CATS0 ≥ 370.40) and Pr(CATS0 ≥ 296.32)), as well as the unconditional in-control and out-of-control performances (AATS, ASDTS, 

and SDATS). Here, Pr(CATS0 ≥ 370.40) is known as the exceedance probability. It signifies the 

proportion of CATS0 exceeding the recommended level 𝜏 = 370.40. On the other hand, Pr(CATS0 ≥ 

296.32) is computed to provide an inflated value of the exceedance probability, where a 20% 

tolerance is applied to 𝜏, i.e., 370.40 × 0.8 = 296.32. Note that these exceedance probabilities can be 

well approximated by constructing empirical distributions of the CATS0 with 100,000 simulated 

values. In Table 1, the Phase-I sample sizes m ∈ {50, 100, 200, 400, 600, 1000, 2000, +∞} are given 

in the leading rows of each sub table, and the mean shifts 𝛿 ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0} are 

given in the leftmost column. Note that m = +∞ corresponds to the case of known process parameters.  

 As a numeric example, when 𝛿 = 1.0, the charting parameters (𝛾, d, g, h) = (0.306, 0.426, 0.317, 

8.388) are used to compute the ATS𝛿 (= 0.56) and SDTS𝛿 (= 0.53) of the SPRT chart with known 

process parameters (m = +∞). In the case where the process parameters are estimated, specifically 

when m = 1000, the (AATS𝛿, ASDTS𝛿, SDATS𝛿) values are computed as (0.56, 0.54, 0.03) when 𝛿 = 

1.0 using the same combination of charting parameters. All the values of AATS, ASDTS, and SDATS 

are computed using Equations (32) to (35). The accuracy of all results in this article has been verified 

using Monte Carlo simulation with 100,000 runs. Besides, using the same set of charting parameters, 

Table 1 gives the exceedance probabilities Pr(CATS0 ≥ 370.40) and Pr(CATS0 ≥ 296.32) as 49.59% 

and 66.12%, respectively, when m = 1000. When m = +∞ (i.e., process parameters are known), the 

ATS is a constant value, hence the SDATS is equal to zero. Both the exceedance probabilities 

(Pr(CATS0 ≥ 370.40) and Pr(CATS0 ≥ 296.32)) are equal to 100% since CATS0 = 𝜏. 

 From Table 1, it is observed that the Pr(CATS0 ≥ 370.40) remains below 50% for all the cases of 

estimated process parameters. This indicates that more than half of the practitioners are expected to 

suffer higher false alarm rates than the recommended level (0.27%). When the tolerance is increased 

by 20%, Pr(CATS0 ≥ 296.32) is still relatively low. For instance, when m = 600, Table 1 shows that 

Pr(CATS0 ≥ 296.32) = 62.41%, and this probability increases to 72.39% when m is raised to 2000. 

These probabilities imply that at least 37% and 27% of the attained CATS0 values are still lower than 

the discounted 𝜏, even when m = 600 and a large m = 2000 are used, respectively. From the 

unconditional perspective, the AATSs and ASDTSs obtained in cases of estimated process parameters 

are vastly different from the ATS and SDTS obtained in the case of known process parameters, 

especially when m and 𝛿 are small. As a general trend, the AATS and ASDTS values converge to the 

ATS and SDTS values as m increases. One might have noticed that, for m = 50 and 100, there exists 

considerable volatility in the values of the CATS when 𝛿 is either small or equal to zero. For example, 

the SDATS value for m = 50 is higher than 10,000 when 𝛿 = 0.2, and it exceeds 100,000 when the 
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process is IC. These strikingly large values of SDATS indicate that, in practice, the CATSs are often 

very far from the AATSs when the available Phase-I sample size is small. 

 From the unconditional perspective, Table 1 shows that the SPRT chart presents relatively good 

performance for a considerably large m. However, from the conditional perspective, the in-control 

performance is highly unsatisfactory due to large dropouts of CATS0 from the recommended region. 

Table 1 shows that the SPRT chart with unadjusted limits produce unpredictable results, especially 

when m and 𝛿 are small. Also, the traditional SPRT chart tends to generate false alarms with a high 

frequency. With excessive false alarms, it is very likely that businesses will suffer from enormous 

time and economic costs, due to unnecessary corrective actions and redirection of resources. 

 

4. Optimization framework of the SPRT chart with estimated process parameters 

In view of the undesirable in-control performance of the traditional SPRT chart, this section discusses 

two other approaches of designing the optimal SPRT chart when the process parameters are 

estimated, i.e., (1) the AATS-matching approach, and (2) the GICP approach. The control limits of 

the SPRT chart determined in Section 4.1 are denoted as adjusted limits 1, whereas those determined 

in Section 4.2 are identified as adjusted limits 2.  

4.1. Optimal design of the SPRT chart with estimated process parameters using the AATS-matching 

approach 

 In this section, we outline the procedure to construct the optimal SPRT chart with estimated 

process parameters using the AATS-matching approach. This approach has been used broadly in the 

design of control charts with estimated process parameters (see, for example, Chakraborti, 2006; 

Goedhart et al., 2016; Teoh et al., 2019) before the conditional perspective gains prevalence. The 

AATS-matching method is implemented simply by equating AATS0 to 𝜏. Note that any charting 

parameter and specification that are random variables of the Phase-I data must be represented by their 

unconditional measures. In particular, the optimization model of the SPRT chart with estimated 

process parameters is implemented as follows: 

 Minimize(AASN0,𝛾,𝑑,𝑔,ℎ) AAEQL, (38) 

subject to constraints 

 AATS0 = 𝜏, (39) 

 𝑅 = AASN0𝑑 , (40) 

 AASN0 > 1, (41) 

and 

 𝑑 > 𝑑min, (42) 

where AASN0 is the in-control AASN. Generally, these specifications are set by practitioners in 

advance by considering current work practice and employment capacity. The optimization algorithm 

of the SPRT chart with estimated process parameters is outlined as follows: 
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Step 1: Specify a fixed set of parameters: m, 𝜏, R, 𝑑min, 𝛿min, and 𝛿max. 

Step 2: Perform an exhaustive grid search over the two-dimensional parameter space (𝑛̅, 𝛾) to locate 

all the possible combinations of (𝑛̅, 𝛾). Here, 𝑛̅ is the value of AASN0 identified in the grid 

search. To satisfy constraints (41) and (42), 𝑛̅ is determined in the range of (max [1, 𝑑min ×𝑅], +∞), whereas 𝛾 is determined in the range of (0, +∞). Then, calculate the value of d = 𝑛̅ / 

R to attain constraint (40). 

Step 3: For each pair of the (𝑛̅, 𝛾) values obtained in Step 2, adjust the values of g and h 

simultaneously using the Newton-Raphson algorithm to fulfill both specifications on AATS0 

= 𝜏 (constraint (39)) and AASN0 = 𝑛̅ (constraint (40)). Note that AATS0 and AASN0 are 

computed from Equations (32) and (31), respectively. At the end of this step, all the possible 

combinations of (AASN0, 𝛾, d, g, h) satisfying constraints (39) - (42) are acquired when 𝛿 = 

0. 

Step 4: For a specific range of mean shifts [𝛿min, 𝛿max], determine the optimal charting parameters 

(AASN0, 𝛾, d, g, h) that yield the smallest steady-state AAEQL from all the combinations of 

charting parameters found in Steps 2 and 3. Note that the AAEQL is computed from Equation 

(36) using the Gauss-Legendre Quadrature procedure. 

 Table 2 presents the values of AATS, ASDTS, SDATS, Pr(CATS0 ≥ 370.40), and Pr(CATS0 ≥ 

296.32) for the optimal SPRT chart with estimated process parameters. As opposed to the traditional 

approach in Table 1, a customized optimal SPRT chart is designed for each m ∈ {50, 100, 200, 400, 

600, 1000, 2000} under the AATS-matching approach in Table 2. The first row of each sub table 

showcases the set of optimal charting parameters (AASN0, γ, d, g, h) and optimal AAEQL obtained 

through the optimization model in (38) - (42) and the formulae from Section 2.2. The specifications 

for the optimal SPRT chart with estimated process parameters in Table 2 are the same as those in 

(37). As a numeric example, when m = 100, the optimal charting parameters (AASN0, γ, d, g, h) are 

determined as (2.241, 0.289, 0.448, 0.324, 6.896), while the corresponding optimal AAEQL is given 

as 0.763 (see Table 2). These optimal charting parameters are then used to evaluate the unconditional 

performance measures for each 𝛿 when m = 100. Note that with m = 100, the relatively small AASN0 

(= 2.241) highlights the main advantage of the optimal SPRT chart in terms of the reduced number of 

observations compared to other optimal control charts whose subgroups are moderate and large. To 

facilitate comparison, the results for the case of known process parameters (m = +∞) are also included 

in Table 2.  

[Insert Table 2 here.] 

 From Table 2, it is noticed that the unconditional metrics (AATS, ASDTS, SDATS) have 

improved substantially compared with those shown in Table 1, especially when m and 𝛿 are small. 

The values of AATS for each shift size are quite stable across the values of m. All the AATS𝛿 values 

expectedly approach the ATS𝛿 values in the case of known process parameters as m increases. In 



15 

 

addition, both the within-practitioner (ASDTS) and between-practitioner (SDATS) variabilities 

decrease compared to those in Table 1 due to tighter control limits in Table 2. For example, when m = 

100, the ASDTS0 and SDATS0 in Table 2 are equal to 2,156.02 and 1,501.89, respectively. Both 

variabilities are significantly lower than those shown in Table 1. In fact, these differences are 

especially pronounced when m and 𝛿 are both small. Note also that the values of AAEQL approach 

the value of AEQL in the case of known process parameters as m increases.  

 On the other hand, the conditional in-control performances in all cases of estimated process 

parameters have worsen compared to those shown in Table 1. The values of Pr(CATS0 ≥ 370.40) and 

Pr(CATS0 ≥ 296.32) tabulated in Table 2 are lower than those in Table 1 for all values of m. The 

worst performance is reported when m is the smallest. In particular, when m = 50, Pr(CATS0 ≥ 

370.40) falls from a modest 48.35% (see Table 1) to an alarming 14.01% (see Table 2). In fact, the 

deterioration of in-control performance is due to the progressively low upper control limit h 

associated with a decrease in m. As m decreases, h is lowered to ensure that AATS0 = 𝜏 (constraint 

(39)) is satisfied, hence provoking high frequency of unwanted false alarms even though the process 

is stable. This inevitable sacrifice of the in-control performance due to adjusted limits is often referred 

to as the trade-off between in-control and out-of-control performances. 

4.2. Optimal design of the SPRT chart with estimated process parameters using the GICP approach 

 In the recent decade, an increasingly popular design framework, known as the GICP framework, 

has been used extensively by researchers. The main difference between the GICP and the AATS-

matching approach is, the former ensures that the CATS0 exceeds a pre-specified level (say 𝜏) with a 

high probability 1 – p, whereas the latter does not. The formulation of the GICP based on the EPC is 

given as 

 Pr(CATS0 ≥ 𝜏) = 1 − 𝑝, (43) 

where p is a user-defined error probability. 

 Diko et al. (2019a, b) introduced a tolerance term 0 ≤ 𝜀 < 1, so that Equation (43) becomes 

 Pr(CATS0 ≥ (1 − 𝜀)𝜏) = 1 − 𝑝. (44) 

The tolerance term 𝜀 is also known as the nominal percentage difference value. It serves the purpose 

of providing greater flexibility to the GICP design of control charts with estimated process 

parameters. By increasing the value of 𝜀 or p, it is possible to degrade the in-control performance 

slightly in contemplation of a better out-of-control performance, and vice versa. 

 Diko et al. (2019a, b) argued that the analytical solution for Equation (44) is difficult to obtain 

for control charts with correlated charting statistics, such as the EWMA and CUSUM charts. 

Therefore, they suggested constructing an empirical distribution for the CATS0 or CARL0 using the 

Markov chain approach, and then adjusting the charting parameters to satisfy constraint (44). 

Alternatively, Capizzi and Masarotto (2020) recommended a stochastic approximation algorithm to 

approximate the root of Equation (44) with simulated run lengths. In this article, we employ the 
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algorithm recommended by Capizzi and Masarotto (2020). However, we replace the simulated run 

lengths by exact run lengths obtained using the Markov chain approach, i.e., from Equation (24).  

 Table 3 presents the results of the SPRT chart with estimated process parameters for m ∈ {50, 

100, 200, 400, 600, 1000, 2000}, which is designed with the GICP approach based on the EPC 

formulated in Equation (44). The error probability p is set as 5% and the tolerance 𝜀 as 0%. The 

specifications 𝜏 and 𝑅 are fixed at 370.40 and 5, respectively, whereas the design parameters (AASN0, 𝛾, d) are chosen as (2.5, 0.3, 0.5). The second column of Table 3 displays the adjusted control limits 

(g, h), which are computed using a stochastic approximation algorithm for each value of m. 

Meanwhile, the unconditional metrics (AATS, ASDTS, SDATS) are evaluated for 𝛿 ∈ {0.0, 0.1, 0.2, 

0.3, 0.5, 0.7, 1.0, 1.5, 2.0} and are tabulated in subsequent columns of Table 3. As an example, for m 

= 200, the adjusted control limits (g, h) are (0.211, 13.498), whereas the corresponding values of 

(AATS𝛿, ASDTS𝛿, SDATS𝛿) are (0.60, 0.57, 0.07) when 𝛿 = 1.0. 

[Insert Table 3 here.] 

 From Table 3, it is observed that the values of the upper control limit h are significantly higher 

compared to those in Tables 1 and 2, even though there is a trend of decreasing control limits as m 

increases. This is intuitive since the chart is designed to ensure that, 95% of the times, a practitioner 

would obtain a CATS0 greater than 𝜏 = 370.40 for a specific m. Nonetheless, an unsurprising 

drawback of such a design is the extremely huge and volatile CATS values obtained in cases where 

both m and 𝛿 are small. It is noticed that when m = 50, the values of AATS𝛿 for 𝛿 ≤ 0.7 are at least 

10,000; whereas the SDATS𝛿 values exceed a striking value of 100,000. When m is increased from 50 

to 100, the out-of-control performances improve slightly for moderate 𝛿 (= 0.5). Even so, the chart 

still exhibits poor performance for relatively small values of 𝛿 (≤ 0.3). The performances become 

better when m ≥ 200. In fact, similar conclusions were obtained for other control charts with estimated 

process parameters (see Saleh et al., 2015b; Jardim et al., 2020; Weiß et al., 2021). Based on the 

results in Table 3, we argue that the optimization procedure based on the GICP approach may not be 

suitable for m ∈ {50, 100}, since the CATS values are too volatile even at 𝛿 = 0.5. This might lead to 

dubious charting constants being generated. When m = 200, there still exists some instabilities in the 

out-of-control performances over 𝛿 ∈ (0, 0.2]. However, we are less concerned about the chart’s 

behavior around 𝛿 < 0.1, since our optimization procedure only accounts for mean shifts in the range 

of 𝛿 ∈ [0.1, 2.0]. Besides, we can further improve the out-of-control performances around 𝛿 = 0.2 

using the AAEQL optimization procedure outlined in the subsequent paragraph. Therefore, it is 

sensible to consider a bare minimum of m = 200 in the optimization design of the SPRT chart with 

estimated process parameters under the GICP framework. 

 The optimization model for the SPRT chart with estimated process parameters under the GICP 

framework is the same as the optimization model in (38) - (42), except that constraint (39) is replaced 
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by constraint (44). The steps for obtaining the optimal charting parameters under the GICP framework 

are given as follows:  

Steps 1:  Specify a fixed set of parameters: m, 𝜏, p, 𝜀, R, 𝑑min, 𝛿min, and 𝛿max. 

Step 2:  This step is very similar to Step 2 from the optimization model in (38) - (42). 

Step 3: This step is very similar to Step 3 from the optimization model in (38) - (42). In this step, 

the value of h is adjusted to satisfy constraint (44) using a stochastic approximation 

algorithm, together with Equation (24). Given the adjusted value of h, the value of g is 

adjusted using the Newton-Raphson algorithm to meet the specification on AASN0 = 𝑛̅ 

(constraint (40)).  

Step 4:  This step is very similar to Step 4 from the optimization model in (38) - (42).  

 Tables 4 and 5 tabulate the charting parameters together with the minimum AAEQL of the 

optimal SPRT chart with estimated process parameters under the GICP framework for m ∈ {200, 400, 

600, 1000, 2000}. Their corresponding values of AATS, ASDTS and SDATS for 𝛿 ∈ {0.0, 0.2, 0.4, 

0.6, 0.8, 1.0, 1.5, 2.0} are also presented in Tables 4 and 5. Note that all the optimal charting 

parameters are obtained with the specifications in (37). The optimal chart in Tables 4 and 5 is 

designed with p = 0.05 and 0.10, respectively. In both tables, the EPC is implemented on two 

tolerance levels, i.e., 𝜀 = 0 (no tolerance) and 𝜀 = 0.2 (20% tolerance). The cells highlighted in gray 

represent results of the optimal SPRT chart with tolerance 𝜀 = 0.2. As an example, when p = 0.05, 𝜀 = 

0.2, and m = 400, the optimal charting parameters (AASN0, 𝛾, d, g, h) = (2.251, 0.280, 0.450, 0.375, 

11.780) and the optimal AAEQL = 0.928, whereas the corresponding values of (AATS𝛿, ASDTS𝛿, 
SDATS𝛿) evaluated at 𝛿 = 0.6 are computed as (1.47, 1.50, 0.27) (see Table 4). 

[Insert Table 4 and 5 here.] 

 Based on the results in Tables 4 and 5, we highlight three key points and trends as follows: 

(i)  First, introducing a small tolerance 𝜀 or increasing the value of p leads to better out-of-control 

performances. This can be observed through a general reduction in the values of the 

unconditional metrics. For instance, in Table 4, when m = 400, the value of AAEQL drops by 

approximately 5.6% after a tolerance of 0.2 is introduced, whereas the values of (AATS𝛿, 
ASDTS𝛿, SDATS𝛿) evaluated at 𝛿 = 0.2 fall by (12.1%, 19.8%, 21.5%) following the changes. 

This improvement in performances is more visible when both 𝛿 and m are small.   

(ii)  Second, the upper control limit h of the optimal SPRT chart generally decreases as m increases. 

This is consistent with the fact that estimated process parameters eventually converge to the true 

process parameters as m increases. However, there is one notable exception. When m = 200, the 

resulting control limits are the lowest among all the cases. Also, the optimal 𝛾 values seem to 

steer away from the other cases. To illustrate the situation, we draw one’s attention to the optimal 𝛾 values obtained for m = 200 in both Tables 4 and 5. It can be observed that the optimal 𝛾 

values obtained when m = 200 range from 0.350 to 0.420, whereas the rest of the cases report 
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consistent values of 𝛾 lying between 0.260 and 0.290. Referring to this unusual pattern, we have 

explained using Table 3 that, for small values of m, the optimization process is likely to be 

distorted due to unstable conditional properties of the SPRT chart with estimated process 

parameters. This leads to slightly different optimal charting parameters obtained when m is 

small. After careful assessment of the reliability of the results, at much discretion, we decide that 

the optimization design is still feasible and meaningful when m = 200. 

(iii)  Third, the out-of-control performances in all cases of estimated process parameters are almost the 

same when 𝛿 ≥ 0.6 even with m = 200. For all values of m, the AATS𝛿 values drop well below 

twice the sampling interval (i.e., less than 2d) when 𝛿 ≥ 0.8. This indicates fast detection speed 

of the optimal SPRT chart designed under the GICP framework towards moderate and large 𝛿. 

These results are undoubtedly favorable to practitioners as they prevail almost the same detection 

speed as those cases with known process parameters, even for moderate values of 𝛿 and m. 

 Figure 1 displays the boxplots of CATS distributions obtained from the optimal SPRT chart with 

estimated process parameters developed in Sections 3, 4.1 and 4.2 for m = 200. We also include 

boxplots of CATS distributions obtained from the optimal upper one-sided CUSUM chart with 

estimated process parameters when m = 200 for comparison. In Figure 1, six boxplots are presented in 

each subfigure. The first four boxplots represent the CATS distributions obtained using the optimal 

SPRT chart, whereas the last two boxplots represent those obtained using the optimal CUSUM chart. 

Each boxplot is constructed from one of the following designs: 

(i)  the traditional approach from Section 3 (unadjusted),  

(ii)  the AATS-matching approach from Section 4.1 (adjusted 1), and 

(iii)  the GICP approach from Section 4.2 (adjusted 2), with 𝜀 = 0 and p = {0.05, 0.10}. 

The charting parameters of the optimal SPRT chart, designed under (i), (ii), and (iii) can be found 

from Tables 1, 2, and 4, respectively. It is important to note that the optimal CUSUM chart are 

designed only under (i) and (iii), since the primary focus of this article encompasses the GICP 

framework. To ensure fairness across comparison, we adopt the same specification as in (37), i.e., 𝜏 = 

370.40, R = 5, 𝑑min = 0.25, 𝛿min = 0.1, and 𝛿max = 2.0 when designing the optimal CUSUM chart 

under designs (i) and (iii). The charting parameters and the resulting AEQL or AAEQL of the optimal 

CUSUM chart with subgroup equal to one are determined as: 

 unadjusted  :         d = 0.2, β = 0.400, UCLCUSUM = 6.859, AEQL = 2.290. 

 adjusted 2, p = 0.05  :         d = 0.2, β = 0.416, UCLCUSUM = 9.023, AAEQL = 4.412. 

Here, UCLCUSUM is the upper control limit and β is the reference parameter of the upper one-sided 

CUSUM chart with estimated process parameters. Ou et al. (2011a, b) suggested that the subgroup of 

the CUSUM chart is chosen as one to achieve the best performance over a wide range of mean shifts. 

 The traditional optimal upper-sided CUSUM chart (design (i)) can be obtained directly from Ou 

et al. (2011b), whereas the optimal upper-sided CUSUM chart under GICP (design (iii)) can be 



19 

 

developed by modifying the framework provided by Diko et al. (2019a). Specifically, under design 

(iii), the CATS0 values are calculated by considering only the upper one-sided counterpart of the 

optimal CUSUM chart with GICP-adjusted limits. Since the SPRT and CUSUM charts with estimated 

process parameters possess similar working mechanisms, we omit full descriptions of the 

optimization algorithm for the CUSUM chart under design (iii). 

[Insert Figure 1 here.] 

 To illustrate the relationship between the in-control and out-of-control performances, the 

boxplots of CATS distributions are given for the in-control case (𝛿 = 0.0) and two out-of-control 

cases (𝛿 ∈ {0.3, 0.6}) in Figure 1. The vertical dotted line in Figure 1(a) indicates the recommended 

level 𝜏 = 370.40. All the boxplots should be interpreted as showing the 5th, 25th, 50th, 75th and 95th 

quantiles of the CATS distribution. From Figure 1(a), the control charts designed under GICP 

outperform those designed under the traditional and AATS-matching approaches in terms of the in-

control performance. It is obvious that from Figure 1(a), all the boxplots with unadjusted limits and 

adjusted limits 1 show that approximately 50% of the CATS0 fall below the recommended level of 

370.4, whereas a satisfactorily high percentage of CATS0 = 95% (or 90%) is achieved after the 

control limits have been adjusted to satisfy the EPC with p = 0.05 (or 0.10) (i.e., adjusted limits 2). It 

is important to note that, under design (iii), the percentage of harmful false alarms has been reduced 

from approximately 50% (i.e., in designs (i) and (ii)) to only 5% or 10%. As expected, one also 

notices the prominently large variability present in the CATS0 distribution associated with adjusted 

limits 2. This is due to an increase in the values of the upper control limits under the GICP design. 

Nonetheless, this is far less concerning, since we are assured that majority (> 90%) of the control 

charts with estimated process parameters perform as good as the baseline 𝜏, even though the in-

control performances are quite dispersed. As a result, the out-of-control performances of the control 

charts with adjusted limits 2 are worse than those of the other charts with unadjusted limits and 

adjusted limits 1, especially for small 𝛿 (≤ 0.3). It is interesting to note that the optimal SPRT chart 

shows better out-of-control performance than the optimal CUSUM chart for all 𝛿 (see Figures 1(b) 

and 1(c)). In fact, similar conclusions for the in-control and out-of-control performances were also 

found by Saleh et al. (2015a), Goedhart et al. (2017), and Diko et al. (2019b) for other control charts 

with estimated process parameters. The loss in out-of-control performance can be thought of as the 

necessary price to pay for the “guaranteed” in-control performance under the GICP framework. To 

restore the out-of-control performance, one is recommended to exercise a more relaxed in-control 

policy, i.e., by using a large value of p and/or introducing a small tolerance term 𝜀 in the formulation 

of the EPC. This approach has been discussed and implemented by numerous researchers, such as 

Goedhart et al. (2017), Diko et al. (2019a, b), and Jardim et al. (2020). By meticulously tuning the 

value of p and/or 𝜀, one can probe the “nice spot” between satisfactory in-control and out-of-control 

performances of the control chart with estimated process parameters. In the article, we have provided 
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ready-to-use optimal charting parameters of the SPRT chart with GICP-adjusted limits in Tables 4 

and 5, for p ∈ {0.05, 0.10} and 𝜀 ∈ {0, 0.2}. In case a practitioner would like to design the SPRT 

chart using other values of p and/or 𝜀, we direct them to the optimization algorithm outlined in 

Section 4.2. 

 One relieving fact to note here is that the conditional out-of-control performance of the SPRT 

chart with estimated process parameters, under all four control limits, are not significantly different 

from one another when 𝛿 = 0.6 (see Figure 1(c)), even with 𝜀 = 0. This is by virtue of the optimization 

design, which greatly reduces CATS𝛿 at moderate and large mean shifts, as proposed in Section 4.2. 

On the other hand, the CATS distributions of the CUSUM chart with estimated process parameters for 

unadjusted and adjusted limits 2 still present considerable differences when 𝛿 = 0.6. In fact, both Diko 

et al. (2019a) and Saleh et al. (2015a) found that the CUSUM and EWMA control charts with GICP-

adjusted limits, respectively, only perform as good as their corresponding charts with known process 

parameters when 𝛿 ≥ 1.0. Hence, we deduce that our SPRT chart with GICP-adjusted limits is a 

better performer, since its out-of-control performances closely resemble those of the known-parameter 

case when 𝛿 ≥ 0.6.  It is also unsurprising to note that the AAEQL of the optimal CUSUM chart with 

adjusted limits 2 (p = 0.05) is at least twice as large as that of the corresponding optimal SPRT chart. 

Ultimately, we conclude that the optimal SPRT chart with adjusted limits 2 renders the best overall 

performance in both the in-control (i.e., 90% or 95% good false alarm rates) and out-of-control (i.e., 

short CATS𝛿 even when 𝛿 is relatively small (𝛿 = 0.6)) situations.  

 

5. An application on real data 

In this section, we present an application of the SPRT chart with estimated process parameters in 

monitoring real process data obtained from a wafer substrate manufacturing company. Prior to the 

illustrative example, we outline a general procedure for implementing the proposed optimal SPRT 

chart under the GICP framework. This step-by-step procedure is devised carefully to ensure the 

comprehensibility of the instructions, and ease of implementation for industrial practitioners. In the 

following, we outline the general steps for implementing the optimal SPRT chart with estimated 

process parameters: 

(1) Collect m Phase-I observations. We recommend choosing m ≥ 200. 

(2) Calculate the estimated mean 𝜇̂0 and standard deviation 𝜎̂0 from the Phase-I samples obtained in 

Step 1, using Equations (16) and (17), respectively. 

(3) Verify that the m Phase-I observations indeed come from an in-control source. See Chakraborti 

et al. (2008) for an overview of Phase-I parametric control charts.  

(4) Define the chart’s specifications required to design the optimal SPRT chart with GICP-adjusted 

control limits:  

(i) General: the recommended ATS0 (𝜏), the inspection rate (R), the minimum allowable 

sampling interval (𝑑min), 
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(ii)   AAEQL Optimization: the minimum allowable mean shift (𝛿min), the maximum tolerable 

mean shift (𝛿max), and 

(iii)  GICP: the error probability (p), the tolerance level (𝜀). 

 Run the optimization program in Section 4.2 using specifications (i)~(iii) to build a customized 

optimal SPRT chart with GICP-adjusted limits. Alternatively, practitioners may select ready-to-

apply optimal charting parameters (AASN0, 𝛾, d, g, h) from Tables 4 and 5 for various Phase-I 

sample sizes m. 

(5) Sometimes, the optimal sampling interval d obtained in Step 4 may be awkward to be 

implemented in industrial settings. Therefore, it is possible to adjust d slightly as long as the 

chart’s performance is not substantially compromised (see, for example, Ou et al, 2011a). Note 

that this step is optional. 

(6) Initialize the SPRT chart for Phase-II process monitoring using the optimal charting parameters 

(AASN0, 𝛾, d, g, h) determined in Step 4. In the ith SPRT, compute the recursive control statistic 𝑈̂𝑖,𝑗 from a sequence of observations using Equations (18) and (19). If, at any time point, 

(i) the control statistic 𝑈̂𝑖,𝑗 rises above h,  

 -   an out-of-control signal is produced, and the production line is suspended immediately. An 

out-of-control action plan is to be carried out to identify and eliminate the root cause.  

(ii)  the control statistic 𝑈̂𝑖,𝑗 lies in the region between g and h, 

 -   another observation is taken to compute the (j + 1)th control statistic. The status of the SPRT 

chart is then re-evaluated using the new control statistic 𝑈̂𝑖,𝑗+1. 

(iii) the control statistic 𝑈̂𝑖,𝑗 falls below g,  

 -   sampling terminates and the process is accepted as in-control. The (i + 1)th SPRT will be 

initiated after d time units, and the control statistic 𝑈̂𝑖+1,0 is reset to zero.  

To demonstrate the execution of the optimal SPRT chart with estimated process parameters, we 

acquire real manufacturing data from an epitaxial process of silicon wafers. In manufacturing industry, 

silicon epitaxial wafers are widely used as semiconductors for the fabrication of integrated circuits. 

Particularly, epitaxial wafers are made of monocrystalline layers deposited on wafer substrates. 

Epitaxial layers are manufactured in a range of thicknesses and resistivities. In commercial epitaxial 

wafers, layer thickness is measured in micrometer (μm), whereas resistivity is measured with the unit 

ohm-centimeter (ohm-cm). Epitaxial resistivity is often the key quality characteristic to be monitored 

and controlled in epitaxial wafer production. Proper control of epitaxial resistivity is vital to produce 

devices with desired performance and high-quality integrated circuits. 

The raw data provided in this study are obtained from an N-type epitaxy. Based on the 

experience of a process engineer, epitaxial resistivity is likely to increase due to insufficient dopant 

during the doping process, and vice versa. A low N-type dopant deposition will lead to layers with 

high resistivity, while a high N-type dopant deposition will lead to layers with low resistivity. For 
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illustration purposes, we demonstrate the detection of an upward mean shift in the N-type epitaxial 

resistivity by employing an upper one-sided SPRT control chart with estimated process parameters.  

The following steps demonstrate the implementation of the upper one-sided SPRT chart with 

estimated process parameters for monitoring N-type epitaxial resistivity: 

(1) In the Phase-I process, a set of data comprising m = 200 individual resistivity measurements (𝑌1, 𝑌2, …, 𝑌200) are collected. 

(2) The estimated sample mean and standard deviation of the Phase-I measurements are computed as 𝜇̂0 = 4.310 ohm-cm and 𝜎̂0 = 0.061 ohm-cm, respectively, using Equations (16) and (17). 

(3) The stability of the Phase-I samples is assessed using a classical control chart for individual 

observations based on the average moving range (AMR). The AMR control chart has been 

extensively discussed in several literatures (see Roes et al., 1993; Vermaat et al., 2003; 

Montgomery, 2009). This stems from the fact that the AMR chart is one of the simplest and most 

effective individuals control charts in process monitoring. Roes et al. (1993) advised against the 

use of a moving range chart in conjunction with the AMR individuals control chart. They 

claimed that the interpretation of the moving range chart can be confusing to practitioners due to 

the presence of serial correlation between moving ranges. Therefore, in this illustration, only the 

AMR control chart for individual observations is used in Phase-I chart calibration. 

 Figure 2(a) displays the AMR control chart for monitoring the Phase-I observations. The lower 

(LCL) and upper (UCL) control limits of the AMR chart are determined by 𝑌̅ ± 𝑍𝛼/2(√𝜋/2) 𝑀𝑅̅̅̅̅̅ 

= (4.165, 4.455), where 𝑌̅ = ∑ 𝑌𝜃200𝜃=1 /200 = 4.310 ohm-cm and 𝑀𝑅̅̅̅̅̅ = ∑ |𝑌𝜃 − 𝑌𝜃−1|200𝜃=2 /199 = 

0.055 ohm-cm. Here, 𝑍𝛼/2 is chosen as 3 to provide a false alarm probability of 0.0027. Figure 

2(a) displays the AMR control chart for 200 Phase-I observations (𝑌1, 𝑌2, …, 𝑌200). It is verified 

from Figure 2(a) that the 200 Phase-I samples indeed come from an in-control process. 

[Insert Figure 2 here.] 

(4) The wafer company is currently inspecting five silicon wafers every three hours. This choice is 

elicited since from previous experience, the process has exhibited a rather stable nature. Each 

epitaxial wafer can be sampled and measured for its resistivity in a short time using a resistivity 

meter. Considering the current sampling interval (i.e., three hours) as one time unit, we design 

the optimal SPRT control chart with estimated process parameters based on the in-control 

specification, 𝜏 = 370.40. We also adopt an inspection rate R equal to five, i.e., five wafers on 

average per time unit, where one time unit corresponds to three hours. Furthermore, we set 𝑑min 

= 0.25, 𝛿min = 0.1 and 𝛿max = 2.0. Given these specifications, we decide to employ the optimal 

SPRT chart with estimated process parameters designed under the GICP framework using an 

error probability p = 0.05 and 𝜀 = 0 as detailed in Section 4.2. From Table 4, the optimal charting 

parameters (AASN0, 𝛾, d, g, h) and the resulting AAEQL are (2.250, 0.420, 0.450, –0.034, 9.283) 

and 2.111, respectively. 
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(5) The optimal sampling interval of the SPRT chart with estimated process parameters is d = 0.450, 

or in calendar time, 81 minutes. For the convenience of implementation, we take the new 

sampling interval as 80 minutes (i.e., d = 0.444). The charting parameters are adjusted 

accordingly to satisfy Pr(CATS ≥ 370.40) = 0.95 and R = 5. The new charting parameters 

(AASN0, 𝛾, d, g, h) and AAEQL are found as (2.219, 0.430, 0.444, –0.042, 9.069) and 2.137, 

respectively. Note that the AAEQL increases by only 1.23% following these new adjustments. 

(6) The optimal SPRT chart with estimated process parameters for monitoring the Phase-II epitaxial 

resistivity process is displayed both in tabular form (see Table 6) and graphical form (see Figure 

2(b)). Table 6 contains the summary statistics of the Phase-II SPRT chart, including the timeline, 

individual measurements, standardized measurements, control statistics, and decision at each 

sampling point. Figure 2(b) presents a simple visualization of the SPRT chart in action, with the 

horizontal and vertical axes revealing precise timestamps and control statistics, respectively. 

Note that the first dot in each SPRT shown in Figure 2(b) represents the initial value 𝑈̂𝑖,0 = 0, 

whereas the subsequent dots in each SPRT represent the recursively computed chart statistic, 𝑈̂𝑖,𝑗 

in Equation (18), for i = 1, 2, … and j = 1, 2, …, n. It is important to note that the resistivity 

measurements are taken sequentially from the second dot onwards in each SPRT. Referring to 

Table 6 and Figures 2(b), the following observations are obtained. 

(i)  At time 08:00, the SPRT control chart with estimated process parameters is initiated with an 

80-minute time-period allocated for machinery start-up. 

(ii)  At time 09:20, the first SPRT is computed by taking the first resistivity measurement, i.e., 𝑋1,1 = 4.285. Using Equations (19) and (18), the standardized measurement 𝑍̂1,1 and the first 

control statistic 𝑈̂1,1 are computed as –0.407 and –0.837, respectively. Since the chart 

statistic 𝑈̂1,1 < –0.042 = g, the process is declared as in-control and the second SPRT is to be 

initiated 80 minutes later.  

(iii) At time 10:40, four new observations are taken sequentially to calculate the second SPRT. 

The SPRT chart indicates that the process is still IC.  

(iv) At 12:00, the third SPRT samples a total of 12 observations before an out-of-control signal 

is given. The signal is emitted since the chart statistic 𝑈̂3,12 lies above the upper control limit 

h. The assignable causes leading to the process shift are immediately investigated, and the 

time to signal is reported to be less than four hours. 

 

6. Conclusions 

 In this article, we improve the architecture of the SPRT chart by considering the estimation errors 

of the process parameters. By deriving the SDTS formula, we fill a gap in the run-length distribution 

of the SPRT chart with known process parameters. We also extend the optimization design of the 

SPRT chart to a more realistic ground, i.e., when the process parameters are estimated. In our 
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endeavor, we devise an optimal SPRT chart with GICP-adjusted limits that not only guarantees a 

satisfactory level of in-control performances across practitioners, but also warrants little to no 

compromise in the out-of-control performances.  

 In this section, we provide a list of contributions established throughout the article and highlight 

some key remarks that are worth revisiting.  

1. New theoretical formulae for the SPRT chart with estimated process parameters: 

 The theoretical formulae for the conditional and unconditional properties are derived using the 

Markov chain approach. By evaluating the unconditional properties (AATS, ASDTS, SDATS), it 

is possible to assess the expected chart’s performances across practitioners. From the conditional 

viewpoint, we suggest drawing inferences based on the exceedance probabilities computed using 

the empirical distributions of the CATS0. 

2. Negative impacts of using traditional and AATS-matching control limits for the SPRT chart 

when the process parameters are estimated:  

 We discover that the traditional SPRT chart has a 50% chance of yielding unfavorable false 

alarm rates, even when m = 2000. This condition worsens when the SPRT chart is designed using 

the AATS-matching approach. We argue that the SPRT chart with unadjusted and AATS-

matching control limits may not be suitable for industrial applications, since the massive number 

of false signals can endanger the efficiency of a production line. 

3. AAEQL optimization design for the SPRT chart with estimated process parameters based on the 

GICP framework: 

 By coupling the GICP framework with the AAEQL optimization design, we develop an optimal 

SPRT chart that is very robust towards parameter estimation. Particularly, the GICP design 

ensures that the conditional in-control performance is met with a very high probability (90% or 

95%), whereas the AAEQL optimal design improves the out-of-control performances for 𝛿 ≥ 

0.6. Since this concept has been proposed for the first time in literature, we provide a 

comprehensive optimization algorithm in Section 4.2 to encourage repeatability and 

reproducibility of the research work. Besides, we recommend using at least m = 200 Phase-I 

samples to ensure the reliability of the results generated.  

4. Advantages of adopting AAEQL in the proposed optimization model: 

 Since process shifts tend to occur sparsely in practice, the AAEQL makes a useful criterion as it 

averages the out-of-control performances of the SPRT chart over a pre-specified range of mean 

shifts. Moreover, from an economic point of view, the AAEQL optimization minimizes the 

average detection time based on the severity of mean shifts. This is a desirable property for 

industrial quality control since economic costs are often vital considerations in the design of 

control charts.  

5. Ready-to-use optimal SPRT charting parameters for various Phase-I sample sizes: 
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 The results tabulated in Tables 4 and 5 allow practitioners to select the most suitable set of 

optimal charting parameters based on their preferences and available resources. Furthermore, we 

offer flexibility to industrial practitioners, who might prefer to adopt a more relaxed control 

policy, by providing several chart designs based on different error rates (p ∈ {0.05, 0.10}) and 

tolerance levels (𝜀 ∈ {0, 0.2}). This should accelerate successful implementation of our proposed 

chart to a myriad of industrial applications, including the ones in the conventional manufacturing 

environment (for example, monitoring the quality characteristics of thrust washers, nylon fibers, 

and airbag in factories) and smart control systems (for example, cloud computing infrastructure 

to maintain quality checks or vital processes in aerospace, and pharmaceutical companies). 

 Considering the widespread influence of the GICP in the development of statistical control charts, 

future research may explore the SPRT chart with estimated process parameters under a cautious 

parameter learning framework proposed by Capizzi and Masarotto (2020). The cautious parameter 

learning framework can be used in conjunction with GICP to alleviate the huge variability present in 

the CATS distribution. We are embarking upon this extension of the SPRT control chart with 

estimated process parameters in our future research. 
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Appendix A: Derivations of 𝒓̂𝒌,𝓵, 𝒃̂𝒌, 𝒒̂𝒌, and 𝑷̂𝟎 to evaluate the performances of the SPRT chart 

with estimated process parameters 

In this appendix, we provide the derivations of 𝑟̂𝑘,ℓ, 𝑏̂𝑘, 𝑞̂𝑘, and 𝑃̂0, which are used in Section 2.2 

to evaluate the performances of the SPRT chart with estimated process parameters. Let 𝑟̂𝑘,ℓ in 

Equation (20) denote the transition probability from state 𝑆𝑘 to 𝑆ℓ. We have 

 𝑟̂𝑘,ℓ = Pr(𝑈̂𝑖,𝑗 ∈ 𝑆ℓ|𝑈̂𝑖,𝑗−1 ∈ 𝑆𝑘) = Pr(𝑔 + ∆ ⋅ (ℓ − 1) ≤ 𝑂𝑘 + 𝑍̂𝑖,𝑗 − 𝛾 ≤ 𝑔 + ∆ ⋅ ℓ), (A.1)  

where 𝑂𝑘 is the midpoint of state 𝑆𝑘 as in Equation (4). Substituting 𝑂𝑘 into Equation (A.1) and with 

some rearrangements, we obtain 

 𝑟̂𝑘,ℓ = Pr(∆ ⋅ (ℓ − 𝑘 − 0.5) + 𝛾 ≤ 𝑍̂𝑖,𝑗 ≤ ∆ ⋅ (ℓ − 𝑘 + 0.5) + 𝛾). (A.2) 

Substituting 𝑍̂𝑖,𝑗 from Equation (19) into Equation (A.2) and with some rearrangements, we obtain 𝑟̂𝑘,ℓ = Pr (𝑉(∆ ⋅ (ℓ − 𝑘 − 0.5) + 𝛾) + 𝑊√𝑚 − 𝛿 ≤ 𝑋𝑖,𝑗−(𝜇0+𝛿𝜎0) 𝜎0 ≤ 𝑉(∆ ⋅ (ℓ − 𝑘 + 0.5) + 𝛾) + 𝑊√𝑚 − 𝛿), 

where 𝑉 = 𝜎̂0/𝜎0 and 𝑊 = (𝜇̂0 − 𝜇0)/(𝜎0/√𝑚). Since 𝑋𝑖,𝑗 ∼ 𝑁(𝜇0 + 𝛿𝜎0, 𝜎02), we have [𝑋𝑖,𝑗 −(𝜇0 + 𝛿𝜎0)]/𝜎0 ∼ 𝑁(0,1). It follows that 

 𝑟̂𝑘,ℓ = Φ [𝑉(∆ ⋅ (ℓ − 𝑘 + 0.5) + 𝛾) + 𝑊√𝑚 − 𝛿] − Φ [𝑉(∆ ⋅ (ℓ − 𝑘 − 0.5) + 𝛾) + 𝑊√𝑚 − 𝛿]. (A.3)  

 Let 𝑏̂𝑘 in Equation (23) denote the one-step transition probability that the initial control statistic 𝑈̂𝑖,0 = 0 transits to state 𝑆𝑘, i.e., 𝑏̂𝑘 = Pr(𝑈̂𝑖,1 ∈ 𝑆𝑘|𝑈̂𝑖,0 = 0) = Pr(𝑔 + ∆ ⋅ (𝑘 − 1) ≤ 𝑍̂𝑖,1 − 𝛾 ≤ 𝑔 + ∆ ⋅ 𝑘). 

Using the same approach as in the derivation of 𝑟̂𝑘,ℓ, the formula 𝑏̂𝑘 can be derived as 

 𝑏̂𝑘 = Φ [𝑉(𝑔 + ∆ ⋅ 𝑘 + 𝛾) + 𝑊√𝑚 − 𝛿] − Φ [𝑉(𝑔 + ∆ ⋅ (𝑘 − 1) + 𝛾) + 𝑊√𝑚 − 𝛿]. (A.4)  

 Let 𝑞̂𝑘 in Equation (29) denote the one-step transition probability from state 𝑆𝑘 to the acceptance 

state, i.e., 

 𝑞̂𝑘 = Pr(𝑈̂𝑖,𝑗 ≤ 𝑔|𝑈̂𝑖,𝑗−1 ∈ 𝑆𝑘) = Pr(𝑂𝑘 + 𝑍̂𝑖,𝑗 − 𝛾 ≤ 𝑔).  𝑞̂𝑘 can be deduced using the same method of derivation as in 𝑟̂𝑘,ℓ, i.e., 

 𝑞̂𝑘 = Φ [𝑉(∆ ⋅ (0.5 − 𝑘) + 𝛾) + 𝑊√𝑚 − 𝛿]. (A.5)  

 Let 𝑃̂0 in Equation (30) denote the one-step transition probability that the initial control statistic 𝑈̂𝑖,0 = 0 transits to the acceptance state, i.e., 𝑃̂0 = Pr(𝑈̂𝑖,1 ≤ 𝑔|𝑈̂𝑖,0 = 0) =  Pr(𝑍̂𝑖,1 − 𝛾 ≤ 𝑔). 
Then, 𝑃̂0 is attained using the same method of derivation as in 𝑟̂𝑘,ℓ, i.e., 

 𝑃̂0 = Φ [𝑉(𝑔 + 𝛾) + 𝑊√𝑚 − 𝛿]. (A.6)  
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Appendix B: Derivations of the CSDTS and ASDTS of the SPRT chart with estimated process 

parameters 

In this appendix, we provide derivations for the CSDTS0, steady-state CSDTS𝛿, ASDTS0 and 

steady-state ASDTS𝛿 from Equations (26), (27), (34) and (35), respectively. Note that ASDTS 

measures the overall standard deviation of the time to signal across all possible values of 𝑉 and 𝑊. In 

the case of an in-control process, let RL be a geometric random variable with the probability 

1−OĈ(0), where OĈ(0) can be computed from Equation (28) by setting 𝛿 = 0. The first (E[RL]) and 

second (E[RL2]) moments of RL can be easily obtained as 

 E[RL] = 11−OĈ(0) (B.1) 

and 

 E[RL2] = 2−[1−OĈ(0)][1−OĈ(0)]2 = 1+OĈ(0)[1−OĈ(0)]2, (B.2) 

respectively. The CSDTS0 can be derived using Equations (B.1) and (B.2) as follows 

 CSDTS0 = 𝑑√E[RL2] − (E[RL])2 = 𝑑√ 1+OĈ(0)[1−OĈ(0)]2 − ( 11−OĈ(0))2
, (B.3) 

and the unconditional ASDTS0 is obtained by averaging all the possible values of V and W, i.e., 

ASDTS0 = 𝑑√∫ ∫ 1+OĈ(0)[1−OĈ(0)]2  𝑓𝑉(𝑣)𝑓𝑊(𝑤) 𝑑𝑣 𝑑𝑤∞0∞−∞ − (∫ ∫ 11−OĈ(0)  𝑓𝑉(𝑣)𝑓𝑊(𝑤) 𝑑𝑣 𝑑𝑤∞0∞−∞ )2
  

 = 𝑑√∫ ∫ 1+OĈ(0)[1−OĈ(0)]2  𝑓𝑉(𝑣)𝑓𝑊(𝑤) 𝑑𝑣 𝑑𝑤∞0∞−∞ − (AATS0𝑑 )2
, (B.4) 

where 𝑓𝑉(𝑣) can be found in Equation (21), 𝑓𝑊(𝑤) represents the pdf of a standard normal 

distribution, and AATS0 can be computed from Equation (32). 

 In the case of an out-of-control process, recall that the time to signal can be expressed as d × (T + 

RL – 1) (see Section 2.1), where T is a uniform random variable with range [0, 1]. Assuming 

independence between run lengths and uniformly distributed time of process shift, the first (E[𝑇 +RL − 1]) and second (E[(𝑇 + RL − 1)2]) moments of (T + RL – 1) are evaluated as 

 E[𝑇 + RL − 1] = 11−OĈ(𝛿) − 12  (B.5) 

and 

 E[(𝑇 + RL − 1)2] = E[𝑇2 + 2𝑇(RL − 1) + (RL − 1)2]  
 = E[𝑇2] + 2 ⋅ E[𝑇] ⋅ E[RL − 1] + E[(RL − 1)2]  
 = 13 + 2 ⋅ 12 ⋅ ( 11−OĈ(𝛿) − 1) + OĈ(𝛿)[1+OĈ(𝛿)][1−OĈ(𝛿)]2   

 = 1+OĈ2(𝛿)[1−OĈ(𝛿)]2 − 23,  (B.6) 



29 

 

respectively, where RL ~ Geometric (1 − OĈ(𝛿)) and OĈ(𝛿) can be obtained from Equation (28). 

The steady-state CSDTS𝛿 is derived using Equations (B.5) and (B.6) as follows 

 CSDTS𝛿 = 𝑑√E[(𝑇 + RL − 1)2] − (E[𝑇 + RL − 1])2 = 𝑑√ 1+OĈ2(𝛿)[1−OĈ(𝛿)]2 − 23 − ( 11−OĈ(𝛿) − 12)2
, (B.7) 

and the unconditional steady-state ASDTS𝛿 is obtained by 

ASDTS𝛿 = 𝑑√∫ ∫ ( 1+OĈ2(𝛿)[1−OĈ(𝛿)]2 − 23) 𝑓𝑉(𝑣)𝑓𝑊(𝑤) 𝑑𝑣 𝑑𝑤∞0∞−∞ − [∫ ∫ ( 11−OĈ(𝛿) − 12) 𝑓𝑉(𝑣)𝑓𝑊(𝑤) 𝑑𝑣 𝑑𝑤∞0∞−∞ ]2
  

  = 𝑑√∫ ∫ 1+OĈ2(𝛿)[1−OĈ(𝛿)]2  𝑓𝑉(𝑣)𝑓𝑊(𝑤) 𝑑𝑣 𝑑𝑤∞0∞−∞ − 23 − (AATS𝛿𝑑 )2
, (B.8) 

where AATS𝛿 can be computed from Equation (32). 

Appendix C: Glossary of acronyms and notations 

AEQL Average extra quadratic loss 

AMR Average moving range 

ARL Average run length 

ASN Average sample number 

ASDTS Average standard deviation of the time to signal 

ATS Average time to signal 

CARL Conditional average run length 

CASN Conditional average sample number 

CATS Conditional average time to signal 

CSDTS Conditional standard deviation of the time to signal 𝑈𝑖,𝑗, 𝑈̂𝑖,𝑗 Control statistic of the upper one-sided SPRT chart with known or estimated 

process parameters 

CUSUM Cumulative sum chart 

p Error probability in EPC 𝜇̂0, 𝜎̂0 Estimated in-control mean and standard deviation of a quality characteristic 

EPC Expected probability criterion 

AAEQL Expected value of the average extra quadratic loss 

AASN Expected value of the average sample number 

AATS Expected value of the average time to signal 

EWMA Exponentially weighted moving average chart 

FSI Fixed sampling interval 

GICP Guaranteed in-control performance 𝜇0, 𝜎0 In-control mean and standard deviation of a quality characteristic 

R Inspection rate 

g, h Lower and upper control limits of the SPRT chart 

LCL Lower control limit 𝛿  Mean shift in numbers of standard deviation 

dmin  Minimum allowable sampling interval 𝛿min, 𝛿max Minimum and maximum allowable mean shifts 𝑌𝜃 Phase-I observation 

m Phase-I sample size 

Xi,j Phase-II observation 𝜏  Recommended in-control ATS 𝛾  Reference parameter of the SPRT chart 

RL Run length 



30 

 

d Sampling interval 

SPRT Sequential probability ratio test chart 

SDATS Standard deviation of the average time to signal 

SDTS Standard deviation of the time to signal 𝑍𝑖,𝑗, 𝑍̂𝑖,𝑗 Standardized observation of the SPRT chart with known or estimated process 

parameters 

TS Time to signal 𝜀  Tolerance term in EPC 

UCL Upper control limit 

VSSI Variable sample size and sampling interval 

VSI Variable sampling interval 

 



 

 

Table 1: The values of AATS, ASDTS, SDATS, Pr(CATS0 ≥ 370.40), and Pr(CATS0 ≥ 296.32) of 

the SPRT chart, together with the optimal charting parameters (ASN0, γ, d, g, h) = (2.132, 0.306, 0.426, 

0.317, 8.388) obtained from minimizing the AEQL corresponding to the case of known process 

parameters, when ATS0 = 𝜏 = 370.40, dmin = 0.25, δmin = 0.1, δmax = 2.0, R = 5, and m{50, 100, 200, 

400, 600, 1000, 2000, +∞}. 

 
 m = 50  m = 100 

 Pr(CATS0 ≥ 370.40) Pr(CATS0 ≥ 296.32)  Pr(CATS0 ≥ 370.40) Pr(CATS0 ≥ 296.32) 
δ AATS ASDTS SDATS  AATS ASDTS SDATS 

 48.35% 52.18%  48.85% 54.15% 

0.0 > 20,000 > 200,000 > 100,000  2,061.40 > 20,000 > 10,000 

0.2 525.23 > 20,000 > 10,000  77.88 660.10 463.50 

0.4 17.57 1,728.41 1,222.11  6.14 20.24 13.64 

0.6 2.12 21.88 15.40  1.59 2.07 0.95 

0.8 0.90 1.20 0.57  0.84 0.88 0.22 

1.0 0.59 0.61 0.16  0.57 0.57 0.10 

1.5 0.34 0.29 0.04  0.33 0.29 0.03 

2.0 0.26 0.19 0.01  0.26 0.19 0.01 

 m = 200  m = 400 

 Pr(CATS0 ≥ 370.40) Pr(CATS0 ≥ 296.32)  Pr(CATS0 ≥ 370.40) Pr(CATS0 ≥ 296.32) 
δ AATS ASDTS SDATS  AATS ASDTS SDATS 

 49.20% 56.69%  49.37% 60.01% 

0.0 809.10 2,746.86 1,856.20  538.29 997.19 593.66 

0.2 40.20 97.43 62.76  30.49 46.20 24.54 

0.4 4.55 6.61 3.40  4.05 4.71 1.70 

0.6 1.47 1.59 0.45  1.42 1.46 0.28 

0.8 0.82 0.83 0.14  0.81 0.80 0.09 

1.0 0.57 0.55 0.07  0.56 0.54 0.05 

1.5 0.33 0.28 0.02  0.33 0.28 0.01 

2.0 0.26 0.19 0.01  0.25 0.19 0.00 

 m = 600  m = 1000 

 Pr(CATS0 ≥ 370.40) Pr(CATS0 ≥ 296.32)  Pr(CATS0 ≥ 370.40) Pr(CATS0 ≥ 296.32) 
δ AATS ASDTS SDATS  AATS ASDTS SDATS 

 49.50% 62.41%  49.59% 66.12% 

0.0 473.56 720.82 384.40  428.54 555.21 249.79 

0.2 28.00 36.79 16.87  26.22 30.84 11.48 

0.4 3.91 4.29 1.26  3.81 4.01 0.91 

0.6 1.40 1.43 0.22  1.39 1.40 0.16 

0.8 0.81 0.80 0.08  0.80 0.79 0.06 

1.0 0.56 0.54 0.04  0.56 0.54 0.03 

1.5 0.33 0.28 0.01  0.33 0.28 0.01 

2.0 0.25 0.19 0.00  0.25 0.19 0.00 

 m = 2000  m = +∞ 

 Pr(CATS0 ≥ 370.40) Pr(CATS0 ≥ 296.32)  Pr(CATS0 ≥ 370.40) Pr(CATS0 ≥ 296.32) 
δ AATS ASDTS SDATS  ATS SDTS 

 49.70% 72.39%  100.00% 100.00% 

0.0 398.19 454.80 155.65  370.46 370.24 

0.2 24.99 27.09 7.40  23.85 23.85 

0.4 3.73 3.83 0.61  3.66 3.66 

0.6 1.38 1.38 0.11  1.38 1.37 

0.8 0.80 0.79 0.04  0.80 0.78 

1.0 0.56 0.53 0.02  0.56 0.53 

1.5 0.33 0.28 0.01  0.33 0.28 

2.0 0.25 0.19 0.00  0.25 0.19 

 



 

 

Table 2: The values of AATS, ASDTS, SDATS, Pr(CATS0 ≥ 370.40), and Pr(CATS0 ≥ 296.32) of 

the SPRT  chart with estimated process parameters, together with the optimal charting parameters 

(AASN0, γ, d, g, h) and optimal AAEQL values, when AATS0 = 𝜏 = 370.40, dmin = 0.25, δmin = 0.1, δmax 

= 2.0, R = 5, and m{50, 100, 200, 400, 600, 1000, 2000, +∞}.  
 

 m = 50  m = 100 

 (AASN0, γ, d, g, h, AAEQL)  (AASN0, γ, d, g, h, AAEQL) 

 Pr(CATS0 ≥ 370.40) Pr(CATS0 ≥ 296.32)  Pr(CATS0 ≥ 370.40) Pr(CATS0 ≥ 296.32) 
δ AATS ASDTS SDATS  AATS ASDTS SDATS 

 (2.289, 0.250, 0.458, 0.388, 6.207, 0.805)  (2.241, 0.289, 0.448, 0.324, 6.896, 0.763) 

 14.01% 16.89%  21.02% 25.98% 

0.0 369.41 > 10,000 7,906.74  370.50 2,156.02 1,501.89 

0.2 32.17 433.49 305.68  29.77 108.47 73.75 

0.4 4.97 23.31 16.11  4.52 8.66 5.23 

0.6 1.64 2.70 1.52  1.54 1.84 0.72 

0.8 0.90 1.01 0.35  0.86 0.89 0.21 

1.0 0.62 0.63 0.15  0.59 0.58 0.10 

1.5 0.36 0.31 0.04  0.35 0.30 0.03 

2.0 0.28 0.21 0.02  0.27 0.20 0.01 

 m = 200  m = 400 

 (AASN0, γ, d, g, h, AAEQL)  (AASN0, γ, d, g, h, AAEQL) 

 Pr(CATS0 ≥ 370.40) Pr(CATS0 ≥ 296.32)  Pr(CATS0 ≥ 370.40) Pr(CATS0 ≥ 296.32) 
δ AATS ASDTS SDATS  AATS ASDTS SDATS 

 (2.211, 0.303, 0.442, 0.296, 7.446, 0.733)  (2.180, 0.303, 0.436, 0.308, 7.899, 0.715) 

 27.75% 35.25%  33.25% 44.02% 

0.0 370.32 975.21 637.99  370.23 639.99 369.25 

0.2 27.48 54.29 33.11  25.60 36.79 18.69 

0.4 4.15 5.56 2.62  3.90 4.45 1.53 

0.6 1.46 1.57 0.43  1.42 1.46 0.27 

0.8 0.83 0.83 0.14  0.82 0.81 0.09 

1.0 0.58 0.55 0.07  0.57 0.55 0.05 

1.5 0.34 0.29 0.02  0.34 0.29 0.01 

2.0 0.26 0.19 0.01  0.26 0.19 0.00 

 m = 600  m = 1000 

 (AASN0, γ, d, g, h, AAEQL)  (AASN0, γ, d, g, h, AAEQL) 

 Pr(CATS0 ≥ 370.40) Pr(CATS0 ≥ 296.32)  Pr(CATS0 ≥ 370.40) Pr(CATS0 ≥ 296.32) 
δ AATS ASDTS SDATS  AATS ASDTS SDATS 

 (2.170, 0.304, 0.434, 0.308, 8.050, 0.708)  (2.180, 0.304, 0.436, 0.299, 8.199, 0.703) 

 36.04% 49.34%  38.99% 56.03% 

0.0 369.83 544.42 282.65  370.28 473.86 209.28 

0.2 25.01 32.07 14.19  24.40 28.45 10.34 

0.4 3.82 4.16 1.18  3.73 3.92 0.87 

0.6 1.40 1.43 0.22  1.39 1.39 0.16 

0.8 0.81 0.80 0.08  0.81 0.79 0.06 

1.0 0.57 0.54 0.04  0.56 0.54 0.03 

1.5 0.33 0.28 0.01  0.33 0.28 0.01 

2.0 0.26 0.19 0.00  0.26 0.19 0.00 

 m = 2000  m = +∞ 

 (AASN0, γ, d, g, h, AAEQL)  (ASN0, γ, d, g, h, AEQL) 

 Pr(CATS0 ≥ 370.40) Pr(CATS0 ≥ 296.32)  Pr(CATS0 ≥ 370.40) Pr(CATS0 ≥ 296.32) 
δ AATS ASDTS SDATS  ATS SDTS 

 (2.179, 0.305, 0.436, 0.294, 8.292, 0.699)  (2.132, 0.306, 0.426, 0.317, 8.388, 0.694) 

 42.04% 65.69%  100.00% 100.00% 

0.0 369.88 421.08 142.58  370.46 370.24 

0.2 24.04 26.01 7.01  23.85 23.85 

0.4 3.68 3.77 0.59  3.66 3.66 

0.6 1.38 1.37 0.11  1.38 1.37 

0.8 0.80 0.78 0.04  0.80 0.78 

1.0 0.56 0.53 0.02  0.56 0.53 

1.5 0.33 0.28 0.01  0.33 0.28 

2.0 0.26 0.19 0.00  0.25 0.19 

 



 

 

Table 3: AATS, ASDTS, and SDATS values of the SPRT chart with estimated process parameters, together with the adjusted chart’s control limits (g, h) 

under the EPC constraint, when p = 0.05, ε = 0, 𝜏 = 370.40, AASN0 = 2.5, γ = 0.3, R = 5, d = 0.5, and m{50, 100, 200, 400, 600, 1000, 2000}. 

 
  δ = 0.0 δ = 0.1 δ = 0.2 δ = 0.3 δ = 0.5 δ = 0.7 δ = 1.0 δ = 1.5 δ = 2.0 

  AATS AATS AATS AATS AATS AATS AATS AATS AATS 

  ASDTS ASDTS ASDTS ASDTS ASDTS ASDTS ASDTS ASDTS ASDTS 

m (g, h) SDATS SDATS SDATS SDATS SDATS SDATS SDATS SDATS SDATS 

50 (0.577, 29.695) > 10,000,000 > 5,000,000 > 1,000,000 > 500,000 > 100,000 > 10,000 0.89 0.47 0.33 

> 200,000,000 > 100,000,000 > 20,000,000 > 10,000,000 > 2,000,000 > 200,000 0.96 0.43 0.27 

> 100,000,000 > 50,000,000 > 10,000,000 > 5,000,000 > 1,000,000 > 100,000 0.27 0.07 0.03 

           

100 (0.299, 17.450) > 1,000,000 > 500,000 > 100,000 4,408.78 6.36 1.26 0.66 0.39 0.30 

> 20,000,000 > 10,000,000 > 2,000,000 > 200,000 1,386.21 1.56 0.64 0.33 0.22 

> 10,000,000 > 5,000,000 > 1,000,000 > 100,000 980.19 0.67 0.11 0.03 0.01 

           

200 (0.211, 13.498) > 60,000 4,536.58 343.02 34.69 2.53 1.09 0.60 0.37 0.29 

> 1,000,000 > 60,000 3,922.32 242.92 3.50 1.12 0.57 0.30 0.21 

> 600,000 > 45,000 2,762.88 170.01 1.72 0.23 0.07 0.02 0.01 

           

400 (0.174, 11.609) 5,072.37 570.99 76.54 14.37 2.20 1.03 0.58 0.36 0.29 

> 14,000 1,539.21 172.40 24.54 2.38 1.03 0.55 0.29 0.20 

> 10,000 1,010.73 109.23 14.07 0.67 0.14 0.04 0.01 0.00 

           

600 (0.161, 10.885) 2,363.06 319.44 51.78 11.63 2.11 1.02 0.57 0.36 0.29 

4,672.44 578.43 82.53 15.51 2.21 1.01 0.54 0.29 0.20 

2,850.34 340.99 45.44 7.26 0.48 0.11 0.03 0.01 0.00 

           

1000 (0.151, 10.263) 1,317.70 206.84 38.99 10.01 2.04 1.00 0.57 0.35 0.28 

1,930.80 286.41 49.83 11.57 2.09 0.99 0.53 0.29 0.20 

998.08 140.08 21.94 4.11 0.34 0.08 0.03 0.01 0.00 

           

2000 (0.143, 9.712) 830.70 147.77 31.48 8.96 2.00 0.99 0.56 0.35 0.28 

993.27 171.52 35.10 9.54 2.01 0.97 0.53 0.29 0.20 

385.31 61.57 10.97 2.32 0.23 0.06 0.02 0.01 0.00 

  



 

 

Table 4: AATS, ASDTS, and SDATS values of the SPRT chart with estimated process parameters, 

together with the optimal charting parameters (AASN0, γ, d, g, h) and optimal AAEQL values under 

the EPC constraint, when p = 0.05, ε = {0.0, 0.2}, 𝜏 = 370.40, dmin = 0.25, δmin = 0.1, δmax = 2.0, R = 5, 

and m{200, 400, 600, 1000, 2000}. 

 
   δ = 0.0 δ = 0.2 δ = 0.4 δ = 0.6 δ = 0.8 δ = 1.0 δ = 1.5 δ = 2.0 

   AATS AATS AATS AATS AATS AATS AATS AATS 

  (AASN0, γ, d, ASDTS ASDTS ASDTS ASDTS ASDTS ASDTS ASDTS ASDTS 

m ε g, h, AAEQL) SDATS SDATS SDATS SDATS SDATS SDATS SDATS SDATS 

200 0.0 (2.250, 0.420, 0.450, 

–0.034, 9.283, 2.111) 
> 10,000 309.66 12.91 1.90 0.83 0.54 0.31 0.25 

 > 75,000 1,362.56 33.33 2.41 0.85 0.51 0.26 0.17 

 > 50,000 938.27 21.72 1.06 0.18 0.07 0.02 0.00 

 0.2 (2.250, 0.420, 0.450, 

–0.035, 8.920, 1.784) 
8,484.38 243.13 11.82 1.88 0.83 0.54 0.31 0.25 

  > 45,000 954.38 28.05 2.35 0.84 0.51 0.26 0.17 

  > 30,000 652.58 17.99 1.01 0.18 0.07 0.02 0.00 

           

400 0.0 (2.251, 0.275, 0.450, 

0.395, 12.519, 0.983) 
5,914.80 70.30 4.27 1.47 0.87 0.61 0.36 0.27 

 > 15,000 166.94 5.24 1.51 0.86 0.59 0.31 0.20 

 > 10,000 107.06 2.15 0.27 0.10 0.05 0.01 0.01 

 0.2 (2.251, 0.280, 0.450, 

0.375, 11.780, 0.928) 
3,913.96 61.77 4.27 1.47 0.86 0.60 0.36 0.27 

  > 10,000 133.91 5.21 1.50 0.85 0.58 0.30 0.20 

  7,881.59 84.01 2.11 0.27 0.10 0.05 0.01 0.01 

           

600 0.0 (2.250, 0.275, 0.450, 

0.382, 11.721, 0.852) 
2,634.73 47.63 3.95 1.44 0.85 0.60 0.36 0.27 

 5,538.31 77.53 4.40 1.46 0.84 0.58 0.30 0.20 

 3,444.72 43.26 1.38 0.21 0.08 0.04 0.01 0.00 

 0.2 (2.250, 0.280, 0.450, 

0.362, 11.015, 0.821) 
1,833.65 42.83 3.95 1.43 0.84 0.60 0.35 0.27 

  3,578.25 66.27 4.39 1.45 0.83 0.57 0.30 0.20 

  2,172.83 35.75 1.37 0.21 0.08 0.04 0.01 0.00 

           

1000 0.0 (2.250, 0.279, 0.450, 

0.357, 10.876, 0.785) 
1,387.01 36.50 3.76 1.41 0.84 0.59 0.35 0.27 

 2,084.03 46.87 3.98 1.41 0.82 0.56 0.30 0.20 

 1,100.01 20.78 0.93 0.16 0.06 0.03 0.01 0.00 

 0.2 (2.250, 0.275, 0.450, 

0.368, 10.532, 0.765) 
1,054.39 32.30 3.68 1.40 0.84 0.59 0.35 0.27 

  1,541.39 40.60 3.88 1.41 0.82 0.57 0.30 0.20 

  795.19 17.39 0.88 0.15 0.06 0.03 0.01 0.00 

           

2000 0.0 (2.249, 0.275, 0.450, 

0.362, 10.379, 0.745) 
858.80 29.04 3.57 1.39 0.83 0.59 0.35 0.27 

 1,040.87 32.41 3.65 1.38 0.81 0.56 0.30 0.20 

 416.08 10.17 0.57 0.11 0.04 0.02 0.01 0.00 

 0.2 (2.188, 0.290, 0.438, 

0.345, 9.495, 0.730) 
641.58 28.30 3.70 1.39 0.82 0.58 0.34 0.26 

  757.13 31.20 3.79 1.39 0.80 0.55 0.29 0.19 

  284.51 9.29 0.61 0.11 0.04 0.02 0.01 0.00 

 

  



 

 

Table 5: AATS, ASDTS, and SDATS values of the SPRT chart with estimated process parameters, 

together with the optimal charting parameters (AASN0, γ, d, g, h) and optimal AAEQL values under 

the EPC constraint, when p = 0.10, ε = {0.0, 0.2}, 𝜏 = 370.40, dmin = 0.25, δmin = 0.1, δmax = 2.0, R = 5, 

and m{200, 400, 600, 1000, 2000}. 

 
   δ = 0.0 δ = 0.2 δ = 0.4 δ = 0.6 δ = 0.8 δ = 1.0 δ = 1.5 δ = 2.0 

   AATS AATS AATS AATS AATS AATS AATS AATS 

  (AASN0, γ, d, ASDTS ASDTS ASDTS ASDTS ASDTS ASDTS ASDTS ASDTS 

m ε g, h, AAEQL) SDATS SDATS SDATS SDATS SDATS SDATS SDATS SDATS 

200 0.0 (2.250, 0.380, 0.450, 

0.080, 9.430, 1.476) 
7,169.16 180.04 8.86 1.70 0.82 0.55 0.32 0.26 

 > 38,000 725.78 19.63 2.00 0.83 0.53 0.27 0.18 

 > 25,000 497.16 12.39 0.76 0.16 0.07 0.02 0.01 

 0.2 (2.124, 0.350, 0.425, 

0.249, 9.753, 1.277) 
5,773.75 138.32 7.38 1.66 0.85 0.57 0.33 0.25 

  > 30,000 550.74 15.04 1.88 0.86 0.55 0.28 0.18 

  > 20,000 376.95 9.26 0.65 0.16 0.07 0.02 0.01 

           

400 0.0 (2.250, 0.275, 0.450, 

0.391, 11.555, 0.890) 
3,044.05 54.09 4.16 1.47 0.86 0.61 0.36 0.27 

 8,758.32 111.99 5.00 1.50 0.85 0.58 0.31 0.20 

 5,807.03 69.34 1.96 0.27 0.10 0.05 0.01 0.01 

 0.2 (2.250, 0.280, 0.450, 

0.370, 10.871, 0.851) 
2,085.48 47.92 4.14 1.46 0.85 0.60 0.35 0.27 

  5,407.37 91.93 4.95 1.49 0.84 0.58 0.30 0.20 

  3,527.84 55.48 1.91 0.27 0.10 0.05 0.01 0.01 

           

600 0.0 (2.250, 0.260, 0.450, 

0.430, 11.538, 0.810) 
1,780.31 37.56 3.74 1.44 0.87 0.62 0.36 0.28 

 3,592.42 58.25 4.10 1.46 0.86 0.59 0.31 0.20 

 2,206.44 31.48 1.20 0.20 0.08 0.04 0.01 0.00 

 0.2 (2.250, 0.280, 0.450, 

0.358, 10.362, 0.786) 
1,204.54 36.42 3.87 1.42 0.84 0.59 0.35 0.27 

  2,187.60 53.42 4.27 1.44 0.83 0.57 0.30 0.20 

  1,291.36 27.63 1.29 0.21 0.08 0.04 0.01 0.00 

           

1000 0.0 (2.250, 0.279, 0.450, 

0.354, 10.408, 0.765) 
1,042.82 32.84 3.71 1.40 0.83 0.59 0.35 0.27 

 1,516.08 41.23 3.92 1.41 0.82 0.56 0.30 0.20 

 778.29 17.62 0.90 0.16 0.06 0.03 0.01 0.00 

 0.2 (2.250, 0.282, 0.450, 

0.341, 9.860, 0.747) 
781.90 29.91 3.68 1.39 0.83 0.59 0.35 0.27 

  1,097.47 36.74 3.88 1.40 0.81 0.56 0.30 0.20 

  544.71 15.09 0.88 0.16 0.06 0.03 0.01 0.00 

           

2000 0.0 (2.250, 0.275, 0.450, 

0.359, 10.056, 0.735) 
711.97 27.14 3.53 1.38 0.83 0.59 0.35 0.27 

 852.64 30.06 3.61 1.38 0.81 0.56 0.30 0.20 

 331.97 9.15 0.56 0.11 0.04 0.02 0.01 0.00 

 0.2 (2.188, 0.290, 0.438, 

0.342, 9.213, 0.720) 
540.10 26.44 3.65 1.39 0.82 0.58 0.34 0.26 

  631.08 28.98 3.74 1.38 0.80 0.55 0.29 0.19 

  231.07 8.38 0.59 0.11 0.04 0.02 0.01 0.00 

 

  



 

 

Table 6: Phase-II data set for the illustrative example using the optimal SPRT chart with GICP-

adjusted control limits 

  

Sampling 

time 

Number of 

SPRT, i 

Number of 

sample, j 

Observation, 

Xi,j Standardized 

observation, 𝑍̂𝑖,𝑗 

Control 

statistic, Û𝑖,𝑗 
Conclusion 

08:00 – – – – – – 

09:20 1 1 4.285 –0.407 –0.837 In-control 

10:40 2 1 4.389 1.292 0.862 * 

  2 4.334 0.390 0.821 * 

  3 4.302 –0.131 0.260 * 

  4 4.289 –0.344 –0.513 In-control 

12:00 3 1 4.349 0.638 0.208 * 

  2 4.393 1.363 1.141 * 

  3 4.459 2.448 3.159 * 

  4 4.311 0.027 2.755 * 

  5 4.457 2.406 4.731 * 

  6 4.288 –0.358 3.943 * 

  7 4.399 1.457 4.970 * 

  8 4.515 3.349 7.889 * 

  9 4.357 0.765 8.224 * 

  10 4.318 0.130 7.925 * 

  11 4.358 0.792 8.287 * 

  12 4.467 2.577 10.434 Out-of-control 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Boxplots of the CATS distributions evaluated at (a) 𝛿 = 0.0, (b) 𝛿 = 0.3, and (c) 𝛿 = 0.6 for 

the SPRT and CUSUM charts with estimated process parameters when 𝜏 = 370.40, R = 5, and m = 

200. 

 

 

 

 

 

 

 

 

 

 

Figure 2: (a) The Phase-I AMR chart for m = 200 individual observations and (b) the Phase-II optimal 

SPRT chart with estimated process parameters for monitoring industrial data obtained from the N-

type epitaxial process. 
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