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Abstract 

The main purpose of this paper is to analyze the sensitivity of tropospheric ozone and 

particulate matter concentrations to changes in local scale meteorology with the aid of 

meteorological variables (wind speed, wind direction, relative humidity, solar radiation and 

temperature) and intensity of traffic using hourly concentration of NOX, which are measured 

in three different locations in Tunis, (i.e. Gazela, Mannouba and Bab Aliwa). In order to 

quantify the impact of meteorological conditions and precursor concentrations on air 

pollution, a general model was developed where the logarithm of the hourly concentrations of 

O3 and PM10 were modeled as a sum of non-linear functions using the framework of 

Generalized Additive Models (GAMs). Partial effects of each predictor are presented. We 

obtain a good fit with R² = 85% for the response variable O3 at Bab Aliwa station. Results 

show the aggregate impact of meteorological variables in the models explained 29 % of the 

variance in PM10 and 41% in O3. This indicates that local meteorological condition is an 

active driver of air quality in Tunis. The time variables (hour of the day, day of the week and 

month) also have an effect. This is especially true for the time variable “month” that 

contributes significantly to the description of the study area. 
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Introduction 

    Nowadays, it is well known that air pollution and its impact on human health have become 

a primary topic in atmosphere research. A good number of epidemiological studies have 

demonstrated the strong link between atmospheric pollution and daily deaths and 

hospitalizations of pulmonary and cardiac diseases (Sinharay et al., 2017; Bourdrel et al., 

2017). Tunisia is a beautiful country with diverse, complex geography and is located between 

the Mediterranean coast and the Saharan region. This location together with a diversity of air 

pollution sources (e.g. traffic, industrial, dust) leads to exceedances of air quality guideline 

values recommended by the World Health Organization (WHO, 2016). Tunisia reports high 

annual mean concentrations of PM2.5 and PM10, which should not exceed 10 and 20 μg.m-3, 

respectively (WHO, 2016).  Accelerated growth in emission sources of air pollutants in most 

important Tunisian cities like Tunis, Sfax and Gabes (Melki, 2007; Bouchlaghem and Nsom, 

2012) now cause an urgent need to adopt specific policies in managing air pollution.  

Air pollution modeling is an integral part of air-pollution management and policy (Karaca et 

al., 2006; Saffarini and Odat, 2008). Previous air quality studies conducted in Tunisia mainly 

focused on the physical characteristics, correlations between pollutants, the sources of PM10 

and forecasting air quality (Melki, 2007; Bouchlaghem et al., 2009; Ayari, Nouira and 

Trabelsi, 2012; Calzolai et al., 2015). A few investigations focusing on the interplay between 

meteorology and air quality has been done in Tunisia. The study conducted in Tunis (Melki, 

2007) presents the role of the temperature inversions, which determine the majority of the 

highest pollution levels in the north of the country. They used multiple linear regressions to 

evaluate the statistic dependence between the ozone concentrations and the weather 

conditions. According to Bouchlaghem et al. (2009), some sea breeze events are responsible 

for air quality. Their result shows that under these circumstances, the nearby power plant is 

responsible for air quality degradation in the region of Sousse (the East central part of 

Tunisia). Bouchlaghem and Nsom (2012) highlighted the influence of the Saharan dust on 

PM10 concentrations. They concluded that PM10 concentrations on days with Saharan dust 

contributions are higher than the average daily value with the absence of this phenomenon. 

In sum, no study has as yet dealt with the relationship between particulate matter and ozone 

concentrations and meteorological conditions in Tunisia based on the use of a non-linear 

statistical approach. 
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Generalized Additive Model, as an extension of Generalized Linear Model, has been 

employed in few studies for modeling pollutant concentrations, especially PM10 (Taheri 

Shahraiyni et al., 2015) and O3 (Ma et al., 2020). As a statistical tool that is able to simulate 

non-linear relationships by smoothing input variables (Hastie and Tibshirani, 1990), 

Generalized Additive Models (GAM) have been used in many environmental issues and 

recent studies (Ma et al., 2020; Yang et al., 2020). In the last two decades, this statistical 

approach has been used as a standard analytic tool in time-series studies of air pollution and 

human health (He, Mazumdar and Arena, 2005; Dehghan et al., 2018; Ravindra et al., 2019) 

GAM models delivered good performance and can be equivalent to those of other methods 

such as neural networks (Schlink et al., 2003). Aldrin and Haff (2005) used meteorological 

predictors in order to model PM10, PM2.5 and the difference between PM10 and PM2.5 mass 

concentrations, and their models gave a reasonably good fit in terms of the squared 

correlation coefficient with 72% and 80% for PM10 and NOX, respectively. Pearce et al. 

(2011) noted the influence of local-scale meteorological conditions on air quality in 

Melbourne (Australia). Munir et al. (2013) offered a new GAM to predict daily concentrations 

of PM10 in Makkah using lag PM10 concentrations. This model showed the vital role of 

meteorological variables and traffic related air pollutants in describing the variations of the 

PM10 concentrations. Again based on GAM analysis, Belušić, Herceg-Bulić and Bencetić 

Klaić (2015) employed the novel GAM approach to quantify the influence of local 

meteorology on air quality in Zagreb, Croatia. This study confirmed the well-known impact of 

wind direction and speed in variations of air pollution.   

The objective of this study is to investigate the magnitude in which pollutant concentrations 

respond to measures of local meteorology and temporal variables in Tunis. Statistical models 

were developed for hourly mean PM10 and O3 concentrations for three sites of Tunis in order 

to quantify the impact of meteorology on PM10 and O3 levels. The paper is organized as 

follows: The Materials and Methods section provides information on our data sources and 

data-handling methodology. Then it presents the description of the proposed methods and a 

brief introduction to Generalized Additive Models. The Results and discussion section 

discusses the findings, highlights the most important results and details a statistical 

evaluation of the model. Finally, we conclude the work in the Conclusions. 

 
Materials and methods 
 

Site description and sample collection 
 

The study area is located in the metropolis of the Greater Tunis region, which consists of four 

governorates: Tunis, Ariana, Manouba and Ben Arous. The area of the Greater Tunis is 

https://en.wikipedia.org/wiki/Tunis_Governorate
https://en.wikipedia.org/wiki/Ariana_Governorate
https://en.wikipedia.org/wiki/Manouba_Governorate
https://en.wikipedia.org/wiki/Ben_Arous_Governorate
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300,000 hectares, with a population of 2.5 million. This city contributes 30% to the total 

pollution of the country (INS, 2014) (Fig. 1).Three urban and suburban monitoring stations 

(i.e. Bab Aliwa, Gazela and Mannouba) were selected for this study (Fig. 2).These stations 

are located in three governorates: Tunis, Ariana and Mannouba. 

 

Tunis City (capital of Tunisia) is located in the North part of Tunisia (36°49’ N, 10°11’ E). The 

urban area (1 056 247 inhabitants) is about 346 km2 surface. The sampling site “Bab Aliwa” 

is classified as urban, is located in the vicinity of one of Tunis’s major traffic avenues and is 

near to central bus station and the largest cemetery in the country. 

 

Ariana is also located in the North part of Tunisia (36° 51' N 10° 11' E). Its urban area 

accounts about 576 088 inhabitants. The measurement station sample “Gazela” is classified 

as urban and is mainly influenced by residential, traffic, and commercial activities. 

 

Mannouba is located in the center of the northern governorates (36° 48' N 10° 5' E).The 

urban area (379 518 inhabitants) is about 1 137 km² surface. The sampling site “Mannouba” 

is suburban and it is known for its typically agricultural and industrial character. 

 

The data set used consists of pollution data for the period from 01/01/2008 to 31/12/2009, 

with corresponding measurements of meteorological conditions provided by "Agence 

Nationale de Protection de l'Environnement" (ANPE). This period was chosen because it is 

the only one with few missing values (< 7%). At each site, air pollution is measured with 

standards methods used in Tunisia. PM10 and O3 instruments are designed by Teledyne 

Advanced Pollution Instrumentation Company (http://www.teledyneapi.com/). Levels of PM10 

were calculated by means of automatic beta radiation attenuation monitors. For O3, the 

Teledyne model used is 400A. Data processing techniques and standard methods are 

described in the analyser instruction manuals. Additionally, all stations were equipped with 

automatic weather monitoring. All data series were collected hourly. Due to measurement 

errors, a few negative pollutant concentration values occasionally appeared in the raw data. 

These values cause problems because pollution data are modelled at log-scale (Aldrin and 

Haff, 2005) and have been replaced by the minimum observation in the data (1 ppb for  NOX 

and O3 and 1 μg.m⁻³ for PM10).The limited sensitivity of the measurement instruments 

caused many observed zero values (about 0.05% on average), which were considered as 

erroneous data. 

 

http://www.teledyneapi.com/
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  Fig. 1 North African map displaying Tunisia and Tunis City 

 

Fig. 2  Map of study area showing the location of monitoring stations 
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Table 1: Summary statistics of data used for model development, showing the mean, 
median, standard deviation, minimal and maximal values of the data collected over the 3 

studied stations (01/01/2008 to 31/12/2009). 

 

Table 1 presents a basic statistical overview of air pollution and meteorological variable 

values after the application of the data quality control process. Fig. 3 shows the average 

seasonal evolution of PM10 (from January 2008 to December 2009) in the studied regions. 

We note different behavior at the various sites with very high levels compared to the PM10 

annual limit of the 2008 EU Air Quality Directive (40 μg.m⁻³). The right-hand plot indicates 

that average seasonal evolution of O3 is around the O3 maximum daily 8-hour mean limit (60 

ppb) of the 2008 EU Air Quality Directive (Directive, 2008), except for Gazela site, an 

overshoot was observed. So, pollution levels can be differentiated by geographical area. In 

Algeria, the north African country like Tunisia, the modeling results of Belhout et al. (2018) 

show that the Algerian annual average limit for PM10 (80 μg.m⁻³) has been exceeded in some 

Algiers areas; by consequence, air quality guidelines fixed by the WHO (20 μg.m⁻³), (WHO, 

2006) and the European Union (EU) (40 μg.m⁻³) for PM10 are also exceeded. Rahal et al. 

(2014) found that significant pollutant releases in the study area are located at hyper-centre 

and at centre of the Wilaya of Algiers. Many sites in Greater Agadir Area, Morocco, have 

high levels of ozone and other pollutants that meet national air quality standards. The annual 

average of PM10 is largely below the limit value on Agadir city (Chirmata, Leghrib and Ichou, 

2017) . All countries of the North Africa sub-region do not have specific legislation on air 

quality. 

Variable Units Mean Median Min Max SD 

O3 (O3) ppb 54.25 60 1 257 23.38 

PM10 (PM10) μg.m⁻³ 68.26 52 1 801 59.92 

NOX (NOX) ppb 25.96 15 1 395 28.15 

Temperature (TT) °C 18 18 3 43 6.99 

Wind speed (WS) m.s⁻¹ 1.70 1 0 8 1.19 

Wind direction (WD) deg 201.8 249 0 360 115.50 

Solar radiation (SR) W.m⁻² 177.8 44 0 927 235.51 

Relative humidity (RH) % 61.83 63 11 100 16.83 

Day of the week (DW) Days - - 1 7 - 

Hour of the day (HD) Hours - - 1 24 - 

Month (Month) - - - 1 12 - 
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Fig. 3 PM10 and O3 monthly averaged concentration recorded at all monitoring sites from 
January 2008 to December 2009.The horizontal red line indicates PM10 and O3 annual limit 
of the 2008 EU Air Quality Directive 

 
Fig. 4 Pearson correlations matrix of all variables. The strikethrough coefficients were 

insignificant at the 0.05 significance level.  

Generalized additive models 

Generalized Additive Models (Hastie and Tibshirani, 1990) are used to assess the 

relationship between air pollution concentrations and different factors. GAMs are regression 

models in which linear predictor j jx  is replaced by a sum of smooth functions of 

covariates ( )js x . Additive models are considered as a semi-parametric extension of the 

generalized linear model (GLM) which automatically estimate the optimal degree of non-

linearity of the model. The additive model in general form can be written as:                         
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where g  is a link function that links the expected value to the predictor variables , i  is the 

expectation of the response variable iy , 0s  is the overall means of the response , ( )k kis x is 

the smooth function of ith value of covariate k, p is the total number of covariates, and i is 

the ith residual which is assumed to be normally distributed: 𝜀𝑖~𝑁(0, 𝜎2). The smooth function 

was used to minimize the penalized residual sum of squares (shown in equation 2): 

2 " 2
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=

= − +                                                                                  2 

The term   2

1

( ( ))
n

j j

j

y s x
=

−  evaluates the closeness to the data and  
" 2( )s t dt  penalizes 

curvature in the function. 𝜆 is a fixed smoothing parameter. The increase of the value of 

𝜆 provides a smoother function. The choice of this parameter becomes critical given the 

flexibility of the GAM model and the risk of over-fitting. Generalized Cross Validation (GCV) 

is the most used method to fix the smoothing parameter 𝜆. In this paper, the main purpose is 

to find the combination of explanatory variables which can describe a high degree of the 

pollutant concentration variability (R²) in Tunis. In order to analyze the seasonality of O3 and 

PM10 concentrations that exist in this data, we started by fitting a preliminary base model with 

time variables only (equation 3):  

0log( ( )) ( , 7) ( , 24) ( , 6)i iE y s s DW k s HD k s Month k = + = + = + = +   (Model with time variables 

only)                                                                                                                                        3 

  

The variable day of the week (DW) was used to account for weekly variations. Also, the 

predictor hour of the day (HD) was employed with values ranging from 1 to 24.  This variable 

is meant to take care of diurnal variation that is not explained by the other variables. 

Additionally, since air pollution data are known to be seasonal, k  which is the maximum 

number of knots for each smoother. The smoothing spline for HD had 24 knots and was 

employed to account for processes on time scales larger than one hour. The variable DW 

had 7 knots one for each day. Finally, the variable Month was employed with 6k =  . Both 

residuals histograms and scatter plots confirmed the adequacy of this choice of k  values 

(see the section “Assessment of the model performance”).  

Tropospheric ozone O3 and particulate matter PM10 concentrations were modeled separately 

using the model given by (equation 4), with five meteorological variables, temperature (TT°), 
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Relative Humidity (RH %), Solar Radiation (SR W.m-2), Wind Speed (WS m.s⁻¹),Wind 

Direction (WD degree from the north) applied via the GAM modeling function in the R 

environment for statistical computing inside the “mgcv” package (Wood, 2006). Traffic data 

and precipitation data were not available in the study areas. Therefore, three temporal 

variables and some traffic related air pollutant data were included to roughly account for 

traffic density and industrial emissions. Nitrogen oxides (NOX μg.m⁻³) was used as 

explanatory variables instead traffic flow data (Pont and Fontan, 2000) and to represent a 

source for secondary particle matter. The predictor variables are slightly correlated (Fig. 4). 

For example, the correlation between the wind speed and the solar radiation is 0.26, 

between the temperature and hour of the day, it is 0.2. A strong negative linear relationship 

was detected between relative humidity and temperature (-0.66) and between relative 

humidity and solar radiation (-0.6). Most other correlation coefficients are 0.50 or less in 

absolute values. Based on these moderate correlations, we do not expect any serious 

problems with confounding effects between predictor variables. In this study, the Variance 

Inflation Factor: (VIF definition in Appendix A) was used to detect the multicollinearity of 

variables (Belušić, Herceg-Bulić and Bencetić Klaić, 2015) and the multicollinearity is 

considered very important when VIF values are higher than 10 (Graham, 2003). For all 

variables, VIF values were lower and ranged from 1.001 for the day of the week (DW) to 

2.934 for the temperature. Thus, we assumed that all variables are not collinear, and a 

regression method could be applied. In order to select the final model, meteorological 

variables were added to the base model (equation 3) upon which Akaike's Information 

Criteria (AIC) was calculated. A variable remained in the final model if the fit yielded a lower 

AIC. Finally, the model for each pollutant can be written as: 

0 1 2 3 4 5 6 7

8 9

log( ( )) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 

( , ) ( , )  

i

X i

E y s s HD k s DW k s Month k s TT k s WS k s WD k s RH k

s SR k s NO k 

= + + + + + + +

+ + +

(Model with all variables)                                                                                                       4 

The maximum number of knots for each smoother k  must be chosen before the smoothing 

function is estimated. It controlled the smoothness of each function ( )k kis x in the final model. 

This particular parameter should be large enough so that the main process which governs 

concentrations values are included in the model. Many studies were employed forward 

validation which is a special form of cross-validation and is considered as the easiest method 

to choose optimal knots (Aldrin and Haff, 2005; Belušić, Herceg-Bulić and Bencetić Klaić, 

2015). So, in this work, forward validation for each pollutant was based on hourly predictions 

of concentrations for Tunis, one day in advance. For each day and for the maximum number 

of knots, the model was re-estimated using the data up to the day before. Then, the hourly 

log PM10 and log O3 concentrations for the next day are predicted. The prediction is 
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compared to the logarithm of the observed value and the hourly prediction errors calculated. 

For each day and for each of the two pollutants, this procedure was repeated. The root mean 

square (RMSE) of the prediction was finally calculated (RMSE definition in Appendix A). The 

minimum RMSE for each pollutant corresponded to 15k =  for (Temperature (TT°), nitrogen 

oxides (NOX μg.m⁻³)) and  10k =  for (relative humidity (RH %), solar radiation (SR W.m⁻²)). 

The value of 8k =  was large enough only for wind variables. 

 

Results and Discussion 

Based on the data described in Section “Site description and sample collection”, the additive 

model with all variables was estimated for the two pollution variables PM10 and O3 recorded 

at three different stations in Tunis.  

 

The first two columns of Table 2 show the explained variation (squared correlation 

coefficients R²) for the entire model (equation 4). The second part of the table presents the 

explained variation for meteorological variables only (R²m.v) which measured the aggregate 

impacts of local meteorology on each pollutant. R²m.v corresponds to the explained variation 

of a new model given by the difference of the models with only time variables and with all 

variables. The highest values of R² were obtained for O3 at Bab Aliwa station. We found that 

the explained variance for the entire model is between 0.56 and 0.85, indicating that the 

models explain most of the variation in pollutant concentrations, but a considerable amount 

of variation is still unexplained. The aggregate impact of meteorological variables was 

measured between 0.21 and 0.42 

 

R² R² m.v 

Measurement 
site 

PM10 
 

O3 PM10 
 

O3 

Gazela 0.58 0.72 0.40 0.42 

Mannouba 0.56 0.73 0.21 0.36 

Bab Aliwa 0.59 0.85 0.29 0.41 

 

Table 2: The second and third columns present the squared correlation coefficient (R² ) for 
each pollutant concentration modelled on log-scale with all variables (the final model).The 
fourth and fifth columns (R²m.v) show the squared correlation coefficient for only 
meteorological variables for each model on log-scale 

 

Ozone 
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(a) 

 

 

 

 

 

(b) 
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(c) 

 

Fig. 5 GAM estimated relationships for temporal, meteorological and traffic variables on O3 
concentration for (a) Gazela, (b) Mannouba and  (c) Bab Aliwa. The x-axis represents 
increasing variations. The y-axis indicates the contribution of the smoother to the fitted 
values. The region between the dashed lines represents the 95% confidence interval. 
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Table 3: Model estimates of the effects of predictors on O3 (all sites). edf =effective degrees 
of freedom of the smooth function terms (edf>1 indicate non-linear relationships); F value is 
an approximate F-test,SE=asymptotic standard error. *** Significant at the 0.000 level 

 

Tropospheric ozone is considered a secondary pollutant which is formed by photochemical 

reactions involving the oxides of nitrogen NO and NO2 (summed as NOX), hydrocarbons and 

sunlight, particularly ultraviolet light. In urban areas, high ozone levels are observed during 

warm summer months when the temperature is high and the wind velocity is low. In Tunis, 

we found that the final model explained 85% (site of Bab Aliwa) of the variance of log-

transformed O3 concentrations (Table 2). The aggregate impact of meteorological variables 

explained 41% of the variance in O3 for the same site (Bab Aliwa). The estimated effects of 

meteorological and temporal variables on O3 are shown in Fig. 5 (a), (b) and (c) for three 

stations in Tunis. Most meteorological, traffic and temporal factors were statistically 

significant in a highly non-linear way. 

The influence of local meteorology on O3 

Temperature effect 

 For all three measurement stations, temperature (TT) was an important meteorological 

variable for O3.The effect of temperature on O3 is similar at Gazela and Bab Aliwa sites. A 

positive effect is seen for temperatures ranging between 5°C-20°C across only these two 

sites. A negative effect is noted for temperatures ranging between 20°C and 40°C for all 

three sites. So, if temperature increases, ozone concentrations are seen to decrease. This 

disagrees with common understanding of this relationship (Cheng et al., 2007; Polinsky and 

Shavell, 2010; Pearce et al., 2011; Ma et al., 2020), but can due to correlations of 

temperature with other variables like wind direction. The formation and concentration of 

Gazela Site Mannouba Site Bab Aliwa Site 

Smooth terms edf F edf F edf F 

s(Hour of the Day) 11.5 30.00*** 9.43 4.93*** 10.91 14.20*** 

s(Day of the Week) 5.27 3.81** 2.97 3.27*** 5.68 4.80** 

s(Temperature) 10.75 66.02*** 13.74 16.27*** 7.01 9.51*** 

s(Wind Speed) 4.42 59.11*** 2.66 6.23 4.45 77.38*** 

s(Wind Direction) 6.51 118.14*** 6.22 9.07*** 6.15 35.89*** 

s(Relative Humidity) 8.72 106.6*** 8.00 33.34*** 8.02 63.76*** 

s(Month) 4.87 436.78*** 3.98 442.03*** 4.70 535.48*** 

s(NOX) 7.40 588.97*** 13.63 72.83*** 8.94 476.36*** 

s(Solar Radiation) 6.47 33.25*** 2.75 3.94 6.25 8.42*** 

Linear terms Estimate SE Estimate SE Estimate SE 

Intercept 4.2 0.001 3.94 0.004 2.95 0.004 

Explained Deviance 73% - 61.5% - 85.6% - 

GCV score 0.01 - 0.12 - 0.08 - 
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ground level O3 depends on the concentrations of NOX and VOCs, and the ratio of NOX and 

VOCs. Ozone levels do not always increase with increases in temperature, such as when the 

ratio of VOCs to NOX is low. As study area was surrounded by reliefs, the speeds of surface 

winds are low. It may be more thermal breezes than synoptic-scale winds (Melki, 2007). The 

high frequency of thermal breezes and calm periods may indicate stable atmospheric 

conditions and thus O3 concentrations are higher during such episodes.  

Wind effect 

The curves in the center of Fig. 5 (a), (b) and (c) show the results obtained regarding the 

impact of wind direction. The estimated response for the wind direction is different for the 

various locations. This is as normal, since the effect of wind direction is strongly correlated 

on the emission locations. A non-linear relationship is observed for all stations: edf=6.51, 

edf=6.22 and edf=6.15 at Gazela, Mannouba and Bab Aliwa, respectively (Table 3). At the 

first site, O3 exhibits maximum concentration for E-NE wind (70°-100°) and minimum 

concentration at around 200°. However, by examining the wind speed-direction frequencies 

graph of this site (Fig.6), there is a very remarkable effect of this variable on ozone 

concentration. A possible explanation is the location of this measuring site which is subject to 

northern European pollution (i.e. O3 is transported from Italy to Tunis). While crossing the city 

towards Mannouba site, the effect of wind decreases. In this station, O3 shows secondary 

maxima for S-W wind (250°). The wind direction at the Bab Aliwa site seems to have a 

different effect on O3 concentration. Wind direction has a positive effect on O3 concentration 

for directions between 100° and 250°.This is probably associated with the cemetery effect 

which promotes ozone's transport. A light minimum is then observed at 270°. The effect of 

road traffic can explain this. In this study, increasing wind speed was found to correspond to 

increasing O3 concentrations. This tendency is particularly marked for the Bab Aliwa station 

(Figure 5c). This agrees with previous findings of Melki, (2007). At the Gazela site, the effect 

of this variable is very local, so, difficult to explain. It may be possible to understand this 

effect on a scale larger than a city.  

Solar radiation and relative humidity effects 

Solar radiation had a non-linear association: edf=6.47, edf=2.75 and edf= 6.25 at Gazela, 

Mannouba and Bab Aliwa, respectively, (Table 3) with O3 concentrations. These results are 

very clear, higher solar radiation corresponds to higher concentrations of O3.This positive 

effect was found to be strongest after values surpassed 400 W.m⁻² (Gazela and Bab Aliwa 

station). This relationship is consistent with the literature (Pearce et al., 2011) as radiation 

plays a significant role in photochemistry of ozone production (Dawson, Adams and Pandis, 

2007). The nature of response of O3 to the RH showed a 10% under low RH, and then 
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exhibited a modest negative relationship where high levels resulted in a regional decrease of 

up to 10% for Gazela and Mannouba, and 5% for Bab Aliwa. So, the curves go downward for 

increasing humidity. Generally, the results obtained in this analysis of meteorological 

parameters were expected, i.e. that higher ozone concentrations were associated with high 

temperature, low relative humidity and prolonged sunshine (Lacour et al., 2006). In this 

coastal region of the northern Mediterranean, at night the relative humidity of the air is 

important (96% on average), combined with a decline in temperature (18°C on average). 

This conjunction will reduce O3 concentrations. 

The impact of time and traffic variables on O3 

The upper left panel of Fig. 5 (a),(b) and (c) show how the concentrations of O3 varies as the 

hour of the day (HD) changes. Each curve corresponds to one of the measurements stations. 

Since this variable describes the diurnal variation of O3 in three locations, different curves are 

observed. The diurnal variation for Mannouba and Bab Aliwa sites shows a similar pattern 

with O3 concentrations reaching the peak at around 9:00 at the Mannouba site and at around 

14:00 at the Bab Aliwa site. The increase in O3 concentrations during day time is due to the 

increase in solar radiation, which powers the photochemical reactions and consequently O3 

concentration (Khoder, 2009).The hour's period of negative effect is presumably due to high 

emissions of NOX caused by the intensity of traffic. Monks et al. (2015) highlighted the non-

linearity of the O3–VOC–NOX system. VOC-limited refers to the fact that the production of O3 

is limited by the input of VOC. Indeed, high NOX lead to lower O3 because O3 directly react 

with NO. The local production of ozone is less reduced because the NOX react with hydroxyl 

radical species formed in the atmosphere. When these hydroxyl radicals do not react with 

NOX (example: low emission of  NOX), they contribute to the VOC degradation and the ozone 

production. Unlike other sites, Gazela is considered a residential site which is characterized 

by the domination of NOX emissions (at this site, VOCs are only due to traffic, and not as 

much emitted as by factories like the other sites). In fact, a minimum of O3 concentration is 

observed at around 8:00 and a maximum at around 19:00 when traffic is an important source 

of emissions and the vertical mixing is reduced .Influenced by transport of O3 from other 

regions and local NOX concentrations at night, the increase of the surface O3 concentration 

during the night time was larger than that during the daytime (Lei and Wang, 2014). Day of 

the week at Gazela and Mannouba (Table 3) was found to have little influence on ozone, 

(F=3.81, F=3.27. respectively). For Monday to Wednesday the ozone concentrations remain 

more or less unchanged (Figure 5). The rise in ozone concentrations is observed on 

Thursday and Friday but is followed by a drop as of Saturday. This continues on Sunday 

when the levels of ozone then join those on Monday. This result was also found by Pont and 

Fontan (2000) for five large French cities: This study does not show any significant variation 



16 
 

in ozone concentrations between weekend and week except for the strongest values where a 

40% reduction in precursors would lead to a 20% increase in ozone. The weekend effect 

would be reversed. Due to constant of road traffic during all the days of the week in Bab 

Aliwa, no effect of the variable DW was observed. NOX  also has a non-linear association with 

O3 concentration , with edf=7.40 and edf=8.94 at Gazela and Bab Aliwa, respectively (Table 

3). Increased NOX for these two sites was found to have a negative effect on O3.This finding 

is in agreement with other work since the chemical coupling of O3 and NOX make levels of O3 

inextricably linked: Ozone production is dependent on the state of NOX, as NO2 and NO 

increase the production and dissociation of O3, respectively. Consequently, an increased 

NO/NO2 ratio reduces the ozone concentration (Melkonyan and Kuttler, 2012). Analysis the 

results of Mannouba station reveals a different NOX effect, when the NOX concentrations is 

over 200 ppb, an increase of NOX concentrations leads to a lower decrease of O3 

concentrations than at the other stations. An increase in O3 concentrations is seen above 

280 ppb of NOx concentrations. This is presumably due to the location of this station, which 

includes small forests in the west and chemical plants in the south which promote VOCs 

emissions, then the increase of both O3 and NOX concentrations. A positive effect is detected 

for the variable Month on O3 concentration in warm months (spring and summer). In this 

period, there is an increase in temperatures and in the intensity of solar radiation. These 

meteorological conditions promote the mixing process of pollutants and O3 formation. The 

ozone evolution is controlled not only by the influence of climate but also by the movement of 

pollutants. In fact, the same result was found in two regions: Spain and Italy which belong to 

the Mediterranean climate (Domínguez-López et al., 2014; Myriokefalitakis et al., 2016) 

 

Fig.6 Wind speed-direction frequencies for three Meteorological Stations (from left to the 
right) Gazela, Mannouba and Bab Aliwa. Each cell gives the total number of hours the wind 
was from that wind speed/direction (period of 2008-2009). The number of hours is coded as 
a color scale shown to the right. The dashed circular grey lines show the wind speed scale. 
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(c) 

 

Fig. 7 GAM estimated relationships for temporal, meteorological and traffic variables on PM10 
concentration for (a) Gazela, (b) Mannouba and (c) Bab Aliwa. The x-axis represents 
increasing variations. The y-axis indicates the contribution of the smoother to the fitted 
values . The region between the dashed lines represents the 95% confidence interval. 
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Table 4: Model estimates of the effects of predictors on PM10 (all sites). edf=effective 
degrees of freedom of the smooth function terms (edf>1 indicate non-linear relationships); F 
value is an approximate F-test, SE=asymptotic standard error.***Significant at the 0.000 level 

  

The impact of traffic and site location on PM10 

    Atmospheric PM10 are multicomponent aerosols. They originate from a variety of mobile, 

stationary and other natural sources, and are also formed in the atmosphere through 

chemical and physical processes. SO2 (mainly issued from industrial sector) and NOX (mainly 

issued from transport sector) are two precursors of secondary particulate matter (Harrison, 

Jones and Lawrence, 2004). Their chemical and physical compositions vary widely. Many 

studies showed that the PM10 yearly, daily and hourly average concentration exceeds the 

Tunisian and the European standard limits at all the sampling stations (Bouchlaghem et al., 

2009). A significant proportion of PM10 in Tunis has many sources like sea salt, mineral dust 

(Calzolai et al., 2015). In the Mediterranean Tunisian regions, the average seasonal 

evolution of PM10 is characterized by a winter maximum (November and December) 

(Bouchlaghem and Nsom, 2012). On the other hand, ozone concentration reaches its 

maximum values during summer period under the great photochemical activity and the effect 

of land-sea breeze. This difference has been highlighted in many studies and has been 

explained by the formation of PM10 as a complex mixture of many chemical species. Indeed, 

both the proximity to traffic sources and the different types of air mass scenarios make PM10 

formation rather complex and associated with geographic, temporal and meteorological 

conditions. In Tunis, we found that the final model explained between 56% and 59% of the 

variance of log-transformed PM10. The highest value of R² was found at Bab Aliwa station 

and the aggregate impact of meteorological variables accounting for 29%. The estimated 

effects of independent variables of the model are shown in Fig. 7 (a) ,(b) and (c) for three 

Gazela Site Mannouba Site Bab Aliwa Site 

Smooth terms edf F edf F edf F 

s(Hour of the Day) 10.29 18.56*** 12.75 11.91*** 13.10 25.12*** 

 s(Day of the Week) 4.68 2.44* 2.03 2.31 2.53 14.90*** 

s(Temperature) 9.64 175.75*** 10.98 31.93*** 4.09 179.51*** 

s(Wind Speed) 4.93 54.24*** 6.78 9.86*** 5.66 44.19*** 

s(Wind Direction) 6.93 77.03*** 6.56 22.76*** 6.88 20.84*** 

s(Relative Humidity) 6.44 31.08*** 3.84 40.03*** 7.66 7.21*** 

s(Month) 4.95 333.96*** 3.89 353.675
*** 

4.70 326.94*** 

s(NOX) 8.41 137.12*** 8.48 120.59*** 8.12 51.35*** 

s(Solar Radiation) 5.00 4.76*** 7.64 9.27*** 1.31 6.54** 

Linear terms Estimate SE Estimate SE Estimate SE 

Intercept 3.72 0.005 3.9 0.007 4.26 0.006 

Explained Deviance 58.5% - 54.5% - 60.1% - 

GCV score 0.27 - 0.36 - 0.18 - 
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stations in Tunis. The model shows how the association of PM10 concentrations varies with 

the levels of other variables. The association between NOX concentrations and PM10 

concentrations was non-linear with edf=8.41,edf=8.48 and edf=8.12 at Gazela, Mannouba 

and Bab Aliwa respectively (Table 4) and is characterized by a general positive effect. It is 

reasonable and also found in Munir et al. (2013). Actually both NOX and PM10 are largely 

issued from road traffic. The curve for Bab Aliwa is the one going farthest to the right 

meaning that it is the location where the highest number of vehicles was observed. This 

might be logically explained by the fact that in this location, we found the biggest bus station 

and the most popular cemetery in the country. SO2 and NOX are the two sources of 

secondary particulate matter and have mostly a positive effect on PM10 (Harrison, Jones and 

Lawrence, 2004). NOX concentration in Gazela station may be affected by Tunis airport 

located in the South east of the station.  

 

The influence of local meteorology on PM10 

A non-linear association was observed between PM10 and wind speed. This variable has a 

positive effect on PM10 concentration from 4 m.s⁻¹ to 8 m.s⁻¹ at Gazela site. The curves for 

Mannouba and Bab Aliwa (Fig. 7 (b) and Fig. 7 (c)) reached the peak at 5 m.s⁻¹  then 

decrease. The same wind behavior was observed in three sites and was found in Belušić, 

Herceg-Bulić and Bencetić Klaić (2015): For large wind speeds, PM10 concentration 

decrease. This result was as expected as low wind and stable atmospheric conditions 

support higher concentrations of PM10. We note however that the decrease in PM10 levels at 

higher winds observed in the present study is in contrast to the result found in Makkah by 

Munir et al., (2013) and in Maribor by Lešnik, Mongus and Jesenko (2019). Wind direction 

had variable association with PM10: edf=6.88 at Bab Aliwa site (Table 4). Several curves 

were observed for different sites. In the first station, Gazela, (center of Fig. 7 (a)), PM10 

exhibit a first maximum concentration for wind direction around 170°. This can be explained 

by localized effect of the road. The secondary maximum is observed around 320°, clearly 

reflecting the effect the small factory situated north of the study area. As Bab Aliwa is based 

next to taxi and bus stations, this particular measuring site is subject to PM10 transport by 

southeast winds. For relative humidity, the results are very clear especially for Gazela and 

Mannouba sites, which find that high humidity was associated to low PM10 concentration. So, 

the curves go downward for humidity better than 80%.This agrees with previous findings of 

Aldrin and Haff (2005) and Belušić, Herceg-Bulić and Bencetić Klaić, (2015). Particles are 

then removed from contaminated surface air by wet deposition in precipitation added to dry 

deposition (Giri, Murthy and Adhikary, 2008).The estimate curves of temperature have the 

same slope for the various locations. Temperature was named as the most significant 
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meteorological variable for Bab Aliwa (F=179.51, p-value <0.001) and Gazela (F=175.75, p-

value <0.001) sites. Interpretation of the curves (lower left of Fig. 7 (a), (b) and (c)) can be 

expressed as follows: increasing temperature corresponds with increasing PM10 with a 

notable positive effect for temperature above 20°C. It's important to note that this finding 

agrees the result from PM10 studies (Bouchlaghem and Nsom, 2012). However, the positive 

relationship between temperature and PM10 is probably explained by the dust layer created 

over three sites especially during peak hours.  

The impact of time variables on PM10 

The time variable hour of the day (HD) has a non-linear association with PM10 concentration. 

It was mainly used to account the effect of traffic. At the study stations, PM10 concentration 

fall to a minimum between 7:00-8:00 and increase until 10:00, this corresponds to the 

morning peak traffic flow. In Bab Aliwa site, an evening peak traffic flow was noted at around 

21:00.This second peak is probably due to people’s daily commuting between the capital and 

the suburbs. Curves of partial effect of the variable Month pointed out that in all measuring 

sites, PM10 is characterized by a winter maximum (December-January-February). This result 

is consistent with the data of Bouchlaghem and Nsom, (2012),who found a winter PM10 peak 

in five different stations (traffic, industrial and residential) in Tunisia. This is presumably due 

to the influence of low mixing in the atmosphere and the advection of Saharan plumes. We 

note the absence of the second peak observed during the summer in the previous works 

(Bouchlaghem and Nsom, 2012). The slight effect of Saharan dust can be explained by the 

temporal difference between the South and the North of Tunisia and the geographical 

locations of the monitoring stations far from the southwest origin of the Saharan event. Since 

the Mannouba station is placed close to agriculture fields, plowing during the autumn season 

(September-October) promotes increasing PM10 concentrations. 

Assessment of the model performance 

 

 

 

 

 

 

 

Table 5: Statistical evaluation of the model for all pollutants at Gazela site for the entire study 
period 

 O3 (ppb) PM10 (μg.m⁻³) 
IOA 0.91 0.77 

RMSE 6.46 38.21 

Modified RMSE 6.46 38.21 

Measurement standard deviation 12.11 51.81 

Model standard deviation 10.21 34.82 

Measurement mean 67.89 56.50 

Model mean 67.89 56.50 
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Fig. 8  Plot of response against fitted values O3 concentrations at Gazela shows a positive 
linear relationship with a good deal of scatter 

 

 

 

Fig. 9  Residual plots for O3 (ppb) at Gazela for the period 2008–2009. Left: histogram of 
residuals, exhibiting a normal distribution Right; the relationship between residuals and fitted 
values. The majority of residuals group around zero, as expected. The x-axis range on the 
left-hand plot and the y-axis range on the right-hand plot are the same. 

Various metrics (RMSE, modified RMSE, measurement standard deviation, model standard 

deviation and IOA (see Appendix A)) were used to assess the model performance. This 

statistical evaluation of the model on the original scale is presented in  

Table 5 is for all variables at Gazela site; other pollutants and measuring site data are not 

shown here as the results are similar to these. The first criterion for model evaluation was 

checked and both RMSE and Modified RMSE are less than measurement standard 

deviation. In addition, the index of agreement is 0.91 and 0.77 for O3 and PM10, respectively, 

which corresponds to a good compromise between modeled and measured values. Fig. 8 

shows the relationship between the response and fitted values of O3 concentration at Gazela 

site. PM10 and other measuring site data are not shown as they are similar to those 



23 
 

presented in this figure. This figure shows a positive linear relationship with a good deal of 

scattering. Residual plots are also used to characterize model efficacy. Fig. 9 clearly shows 

that the majority of residuals group around zero, as expected. The right-hand scatter plot 

which describes the relationship between residuals and fitted values suggest that variance is 

approximately constant as the mean increases. The left-hand plot, the residual histogram, 

exhibits a normal distribution for O3 at Gazela. 

Conclusions 

    The objective of this work was to estimate the relationship between each of two pollution 

variables, namely concentrations of PM10 and tropospheric ozone O3 and NOX concentrations 

(taking as a proxy of traffic) as well as a set of meteorological variables for the urban area of 

Tunis. To achieve this objective, a statistical methodology is used based on the Generalized 

Additive Model (GAM). We have shown that the GAM can model the non-linear effect of the 

covariates. The model is additive on the log scale and the estimates were made on hourly 

data collected during two years at three different locations in Tunis. The model provides a 

reasonably good fit in terms of the explained variance. For all stations, O3 was easier to 

model (i.e. with more explanatory power and higher values of R²). The most significant 

important variables for O3 are NOX, wind direction and relative humidity. The impact of 

temperature and NOX is the strongest for PM10, followed by relative humidity and wind 

variables. The time variables (hour of the day, day of the week and month) appear to have a 

particular impact on air quality. In this study, the variable Month plays a significant role in the 

characterization of the study area as a function of time. In fact, we note the seasonal 

behavior of O3 and PM10 pollutants, with the highest concentrations in summer and winter, 

respectively. These results allow a first and fast analysis of the air pollution due to O3 and 

PM10 in 3 locations in Tunis. It emphasizes the critical role of the local conditions on the air 

pollution, and especially the emissions and the weather as two main drivers of urban air 

pollution. Our findings suggest focusing on model improvement as future work. The addition 

of precipitation and traffic density (number of vehicles) variables could help to improve the 

model assessment. So, it is necessary to take into account all the sources of emissions 

exhaustively. In summary, the use of GAM in combination with partial residual plots offered 

an effective way to outline the relationships between temporal, meteorological and traffic 

variables and air pollution. Although our study did not detail chemical and physical aspects of 

air pollution, the results produced were reasonable and comparable to other studies. 

Furthermore, the results may be considered as relevant because research work on air 

pollution is insufficient in Tunisia. To this end, after quantifying the influence of all used 

variables, we plan to use GAM and GAMM (Hastie and Tibshirani, 1990; Wood, 2006) 

models to forecast pollutant concentrations. 
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Appendix A 

edf: The effective degrees of freedom (edf) estimated from generalized additive models were 

used as a proxy for the degree of non-linearity in stressor-response relationships. An edf of 1 

is equivalent to a linear relationship, an edf > 1 and ≤ 2 is a weakly non-linear relationship, 

and an edf > 2 indicates a highly non-linear relationship . 

 

GCV: generalized cross validation score can be taken as an estimate of the mean square 

prediction error based on a leave-one-out cross validation estimation process. We estimate 

the model for all observations except 𝑖, then note the squared residual predicting 

observation 𝑖 from the model. Then we do this for all observations. GCV criteria is 

numerically stable and efficient, but its computation become extensive especially when 

several smoothing parameters have to be estimated  

F-statistic: An F statistic is a value you get when you run an ANOVA test or a regression 

analysis to find out if the means between two populations are significantly different. In 

regression case, the F value is the result of a test where the null hypothesis is that all of the 

regression coefficients are equal to zero. In other words, the model has no predictive 

capability. Basically, the f-test compares your model with zero predictor variables (the 

intercept only model), and decides whether your added coefficients improved the model.  

 

Asymptotic Standard Error: Asymptotic standard error is an approximation to the standard 

error, based upon some mathematical simplification. In regression analysis, the term 

"standard error" refers either to the square root of the reduced chi-squared statistic, or the 

standard error for a particular regression coefficient (as used in, say, confidence intervals). 

VIF: Variance Inflation Factor detects multicollinearity in regression analysis. For an 

independent variable Xi, it can be calculated by the formula below using R-squared values: 

2

1

1
i

i

VIF
R

=
−

 

 

IOA: Index Of Agreement is a standardized measure of the degree of model prediction error 

which varies between 0 and 1.IOA=1 represents full agreement and IOA=0 indicates no 

agreement at all 

https://www.statisticshowto.com/probability-and-statistics/hypothesis-testing/anova/
https://www.statisticshowto.com/probability-and-statistics/regression-analysis/
https://www.statisticshowto.com/probability-and-statistics/regression-analysis/
https://www.statisticshowto.com/mean
https://www.statisticshowto.com/coefficient-definition/
https://www.statisticshowto.com/independent-variable-definition/#Predictor
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Reduced_chi-squared_statistic
https://en.wikipedia.org/wiki/Confidence_interval
https://www.statisticshowto.com/multicollinearity/
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RMSE: The Root Mean Square Error is used to measure the difference between values 

predicted and values observed 
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