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Most of the Supervisory Control and Data Acquisition (SCADA) fault indicators proposed in the literature to detect
a fault that induces a temperature increase of the physical components of a wind turbine are temperature residuals.
Temperature residuals measure the difference between the current value of the temperature of a component and
its prediction by a normal behavior model. In the literature, normal behavior models built from variable selection
algorithms are ad-hoc models, designed to correctly predict the temperature of a specific component of a specific
turbine of a specific wind farm. In practice, these models cannot be used to predict the temperature of a component of
another turbine, let alone a turbine in a different wind farm, because the sensors used by wind turbine manufacturers
are not the same. It is therefore impossible for an industrial wind farm manager to deploy a residual-based fault
detection system on a wind farm scale. In order to make it possible to deploy these methods in an industrial context,
we propose in this paper a methodology to automatically build linear models capable of predicting all temperatures of
any component of any turbine of a given wind farm. The method is designed to be easy to implement, interpretable
by the operator, and fast to execute to meet industrial constraints. The set of models obtained allows to build a
network of thermal state indicators, which can be used for fault isolation. The method is applied to the monitoring
of the thermal condition of a real French wind farm for illustration.

Keywords: Model validation, linear multi-variable systems, health monitoring, data-driven decision making, sensor
data fusion, estimation and fault detection.

1. Introduction

A wind turbine is a complicated system which is
exposed to many disturbances that can damage the
machine components and generate faults. These
faults, if left unattended, can lead to the failure of
major components and result in high production
losses. To address this concern, new maintenance
strategies are being developed and implemented,
based on condition monitoring. These strategies
aim at monitoring the health status of compo-
nents by analyzing synthetic condition indicators.
Residuals built from the supervisory control and

data acquisition (SCADA) data are often used
as fault indicators. They measure the difference
between the on-line value of a variable recorded
by the SCADA and its prediction by a model
learned during a period when the machine oper-
ates in normal conditions (normal behavior mod-
eling (NBM) strategy).

Developing models for wind turbine condition
monitoring is a blooming field of research and
some of the solutions proposed in the literature
have already proved their potential on concrete
scenarios like Schlechtingen and Santos (2014)
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using normal behavior modeling strategy or the
intelligent system presented in Garcia et al. (2006)
(see Isermann (2005) for an introduction to fault-
diagnosis theory). Yet, the latest researches in
wind turbine condition monitoring are usually fo-
cused on one major component - e.g., Yuan et al.
(2019) focus on the gearbox while Lebranchu
et al. (2019) studied the bearings of the generator
-, or a small subset of them. No study focuses on
the monitoring of the whole wind turbine system.

In this paper, a generic wind farm health mon-
itoring method is proposed, which can be applied
to all the main components of the wind turbine
nacelle, whatever the technology used by the man-
ufacturers. To do so, a method to generate in an
automatic way normal behavior models for any
component of a wind turbine nacelle of any tech-
nology is developed.

A literature review shows that statistical mod-
eling of the most at-risk components can be done
according to two main approaches: (i) by mixing
general and expert knowledge to build physics-
based models, (ii) by using algorithms that allow
automated selection of all potential explanatory
variables to build data-driven models.

The physic-based models require in-depth
knowledge of the internal dynamic relationships
between variables measured on the component,
which is not always available. As a consequence,
the latest researches have focused on the modeling
of some major components only, such as the gear-
box, as can be seen on Bie et al. (2021). Yet, all
the components of a wind turbine can be exposed
to more or less critical failure. This is why many
authors use a data driven modeling approach, by
implementing an automatic selection of variables
for a given variable to be estimated. This enables
a generally large number of variables available in
the SCADA system to be exploited.

Many algorithms can perform variable selec-
tion. Let us mention those that select the variables
of the model by iteratively ranking the variables
according to a given performance criterion (Poh-
jankukka et al. (2018)), and those that allow the
model to be modified during its construction in
order to avoid any risk of sub optimality (Nguyen
et al. (2021)). However, in the literature, variable

selection algorithms are generally made to model
specific components of a wind turbine from a
given manufacturer with the aim of generating
efficient health indicators for these components.
Consequently, the generalization of the algorithms
to other components or to turbines of other farms
with different technologies is not assured, which
strongly limits their industrial interest. Indeed,
each wind turbine manufacturer provides its own
network of sensors, and consequently its own
database. This is why the variable selection al-
gorithms must be as insensitive as possible to the
data.

This paper presents a method to automatically
generate normal behavior linear models using all
the operational data at disposal. The method is
made to be easy to implement, interpretable for
the operator, and fast to execute for industrial con-
straints. These models can be used to predict the
temperature of any component of all the turbines
of the same farm. The models generated can then
be used to build residuals, with the aim to monitor
the thermal state of the main wind turbine nacelle
components (rotor, slow shaft, gearbox, generator,
converter, transformer) and isolate the fault. The
residuals are built in a multi turbine approach, to
be less sensitive to operational and environmental
variations. While this paper focuses on turbines
from a single manufacturer, the next step of the
study will be to increase the generalization of the
process by extending it and applying it to the
entire fleet of wind farms to validate its industrial
interest.

The outline of this paper is as follows. The
method proposed to generate the models and to
build the residuals is detailed in Section 2. Section
3 presents the database used in this study and
Section 4 presents the results obtained on a case
of converter cooling system failure.

2. Proposed methodology

2.1. Framework and assumptions

The study is divided into two parts: (i) the auto-
matic selection of the variables of the model, (ii)
the computation of a thermal state indicator (TSI),
from the model generated in the first part.

Let y be a variable to model (output) and V the
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set of eligible variables to be used in the model
(inputs). The model generation process aims at
building linear models by selecting variables ν
belonging to V to predict the variable y, based on
a defined criterion. The generated model is a linear
model of size L of the following form:

ŷ = a1 ∗ ν1 + ...+ aL ∗ νL, a1...aL ∈ R (1)

In this paper, only thermal failures such as
component overheating caused by bearing wear
or by ventilation defect are considered. Thus, the
variables y to be predicted are temperatures. The
variables ν may be any of the V variables recorded
by the SCADA system of the farm. The choice
of the linear model structure is made to improve
the interpretability of the generated models, in ad-
dition to strongly improving the execution speed
of the algorithm, at the expense of the estimation
performance.

The goal is to generate linear models that can be
used on any temperature recorded on any turbine
of a wind farm. We suppose that such models
can be found because (i) wind turbines of the
same farm are geographically close and are thus
submitted to the same environmental conditions,
and (ii) they are of the same manufacturer.

It is important to emphasize that the goal of
this process is to generate relevant linear models
for any temperature measured on the wind tur-
bine. Indeed, in this study, all the components
of the turbine are considered equally important
to monitor and not just one major component. A
normal behavior modeling strategy is used (Tautz-
Weinert and Watson (2016)): only data from a
period where the wind turbine is assumed to be
working in normal conditions is used to train the
models.

At the end of the model generation process, one
model is assigned to one component to estimate
its temperature. The same model is used to predict
the component temperature of all the turbines of
a wind farm: the selected variables ν are the same
but the coefficients of the model a are different for
each turbine (Eq.(1)). Each model can thus pro-
vide a residual that forms a thermal state indicator
(TSI). Let c be a component of the nacelle of the
turbine. TSIc is then the thermal state indicator for

the component c, and ΩTSI the bank of TSI to be
used for the detection and isolation of faults.

2.2. Model generation process
2.2.1. Presentation of the algorithm

The proposed automatic selection of variables
follows a Greedy Forward Selection (GFS) ap-
proach: from an empty model and given an output
y, the eligible variables (inputs) are sorted accord-
ing to a ranking function fr which will be de-
veloped in the following section. The variable ν∗
which obtains the best fr value is then selected as
the first element of the model under construction.
The process is then repeated for the model con-
taining ν∗ until the stopping criteria is achieved.
The GFS algorithm is chosen for its simplicity
of implementation, for the strong controllability
offered by the choice of the ranking function, and
because it can provide equivalent performances to
more complex feature selection algorithm such as
genetic algorithm, as showed in Pohjankukka et al.
(2018). The ranking function fr, which selects the
best variable, uses the Mean Absolute Error, re-
ferred as MAE. It measures the average deviation
between the estimated value ŷ and the measured
one y on a given period of N samples (3).

The variable selection process proposed in this
paper aims at generating relevant and efficient
models whatever the output is. The MAE is a
good choice to achieve that goal because of its
easy implementation, its high interpretability and
because it is less sensitive to outliers that may
remain on the training data and have impact on the
feature selection result than other classical metrics
such as the Root Mean Squared Error or RMSE.
Chai and Draxler (2014). Moreover, performance
stabilization can be rapidly achieved with very
simple models of less than five variables using this
performance criterion.

2.2.2. Complete GFS algorithm development

For a given temperature variable of a component
to be estimated yc, the GFS algorithm aims to find
a set of L variables out of the V eligible one to
predict yTj

c where j ∈ [[1;NT ]]. The estimated
variable is then called ŷTj

c , and is described by the
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following equation.

ŷTi
c = f(νTi

∗1 , ..., ν
Ti

∗L) (2)

Let NT be the number of wind turbines in the
wind farm considered, Ti a wind turbine of the
farm, s the step of the GFS algorithm such that
s > 1 and ν∗s−1 the variable selected at the
previous step.

For a given variable to be ranked νks (k ∈
[[1;NVs

]]) in Vs, the set of eligible variables at
step s, we first train NT linear models (one per
turbine) composed of the s − 1 last selected vari-
ables and νks (ŷνks,c), using the N values of the
variables on the training period of the correspond-
ing wind turbine. The models are trained using a
linear regression following an L1 regularization
(or Lasso). This regularization is chosen for its
high selectivity, which allows to exclude the non
relevant variables for the estimation of the out-
put Greenwood et al. (2020). Their corresponding
MAE is then computed following Eq.(3).

MAETi
νks

=

N∑
n=1

|yTi
c (n)− ŷTi

νks,c
(n)|

N
(3)

The goal is to build models that can be used on
every wind turbine of the farm. Thus, we further
compute the median of theseNT MAE to evaluate
the performance of the given model on the whole
farm. The median is preferred to the mean because
it is less sensitive to possible outliers affecting the
data of a machine in the farm.

The difference between the resulting MAEνks

and the best performance MAEν∗
s−1

obtained at
the previous step s− 1 forms the ranking function
fr(νks) (see Lines 6 to 10 of Algorithm 1).

The process is repeated for every variable of Vs.
Then, the variable ν∗s that gets the highest ranking
function fr is added to the model (for s = 1 the
variable that gives the minimum MAE is added).
The corresponding MAEν∗

s
is stored for the next

step and ν∗s is removed from the eligible variable
set Vs. Models composed of three variables are
generated (L = 3). The complete variable selec-
tion process is detailed in Algorithm 1.

Algorithm 1 Variable selection process
1: for νks ∈ Vs do
2: for j ∈ [1;NT ] do
3: MAETj

νks
← (3)

4: end for
5: MAEνks

← medianj∈[[1;NT ]](MAETj
νks

)

6: if s = 1 then
7: fr(νks)← MAEνks

8: else if s > 1 then
9: fr(νks)← MAEν∗

s−1
−MAEνks

10: end if
11: end for
12: if s = 1 then
13: ν∗s ← argminνks∈Vs

(fr(νks))

14: else if s > 1 then
15: ν∗s ← argmaxνks∈Vs(fr(νks))

16: end if

2.3. Thermal State Indicator (TSI)
2.3.1. Step by step building

Once the model is generated by the GFS algo-
rithm to predict a variable yc, the corresponding
thermal state indicator, named TSI, is computed
as follows.

For a given component c, a residual is computed
for each of the NT turbines of the farm. A farm
reference is then calculated as the median of the
residual indicators of the NT wind turbines of
the farm. Finally, the TSI is calculated for each
turbine as the difference between the residual of
the turbine considered and the farm reference.

This indicator evaluates the thermal state of a
component according to the data from the consid-
ered machine and according to the median thermal
state of the wind farm. This multi-turbine ap-
proach was introduced in Lebranchu et al. (2019)
to make the TSI both robust to production mode
and to cyclic phenomena such as seasonality.

Fig. 1 illustrates the TSI computation process
for a given wind turbine Ti, where ŷ is the output
estimated by the GFS model.

To handle possible residual outliers, a daily
sliding average filter is applied on the TSI values
to smooth the signal. The filtered TSI will be
referred as TSIf . A TSIf is computed for each
component of a wind turbine of the wind farm.
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Fig. 1. TSI computation process

All the TSIf obtained form a network of health
indicators which can be used to detect and isolate
a fault.

3. Presentation of the data set

3.1. Wind farm test case

The method proposed is implemented on a wind
farm located in the south of France. It is a recent
one: only data from the second semester of 2020
are available. It contains 10 wind turbines (NT =

10) from the same manufacturer and with the same
technologies. It has suffered numerous converter
and transformer failures since its commissioning.

The bank of TSI is used to detect a converter
failure which impacted all the turbines of the farm
in the summer period of 2020. The cooling system
of the converters was disturbed mainly because
particles from a harvest in a field near the farm
clogged the fan grills. The cleaning of the fan
grills on T2 took place on August 12 for a duration
of two days. Section 4 will focus on two turbines
of the farm: T2, the machine the most impacted by
the cooling failure, and T9, the least impacted one.

3.2. SCADA data
3.2.1. Wind turbine manufacturer database

The SCADA variables available depends on the
wind turbine manufacturer. Indeed, the set of sen-
sors installed and the technology they use is dif-
ferent from one manufacturer to the other. More-
over, only a subset of the variables provided by
the manufacturer is transmitted to the company.

The fleet of wind farms operated by the company
is composed of wind turbines from six different
manufacturer. This reduction of the eligible vari-
able set can limit the modeling potential of the
GFS algorithm, as well as the efficiency of the
generated models. One of the next objectives of
the study will be to take into account all the data
provided by the manufacturer.

For the purpose of the study, a wind farm with a
set V of 42 eligible variables is considered. These
variables are provided by sensors located on the
different components of the wind turbine’s nacelle
(rotor, gearbox, generator, converter, transformer).
They are of different types: temperature, shaft
rotation speed, active power, angle. . . . The sensor
values are acquired every 40ms by the wind tur-
bine control system. The average of these values
over the last 10 minutes is then stored in the
SCADA. These average values are the ones used
for the study.

3.2.2. Output variables

One temperature for each of the six components is
selected as output variable to generate the bank of
linear models.

The oil temperature of the gearbox is known
to be a good output variable for the thermal state
estimation of the component, because it is the first
element to be impacted by an overheat (Bie et al.
(2021). Concerning the generator, less research
has been done, but the temperature of the front and
rear bearings are generally used (Lebranchu et al.
(2019)). As the thermal modeling of the four re-
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maining components (rotor, slow shaft, converter,
transformer) has not been the object of concrete
research, and as the study is limited by the set of
available variables, the variables physically clos-
est to the studied components have been chosen
as output.

3.2.3. Experimental data

Due to the lack of available data because of the
age of the studied wind farm, four months of data
from September 2020 to the end of December
2020 are used for model learning. The TSIs de-
rived from these models are applied on the data of
the validation period, which starts on June 1 and
ends on August 15, 2020. test During this period,
the converter failure described in Section 3.1 im-
pacted some turbines of the farm. All the data are
standardized, using the Z-score normalization, to
ensure convergence of the regression algorithm.

4. Results and discussions

4.1. Generation of the bank of TSI

Table 1 shows the variables selected by the GFS
algorithm for each of the six temperatures yc. To
evaluate the performances of the residuals built
from these models, the root mean squared values
of each filtered TSIf,c is calculated on the training
period for each of the turbine Ti (4). This value is
named PM (Performance Measurement). Table 1
shows the average of these NT PM calculated for
each model. This metric should be considered as
a score assigned to each model generated, and it
should be as close to zero as possible.

PM(TSITi

f,c) =

√√√√ N∑
n=1

TSITi

f,c(n)2

N
(4)

Table 1. Description and score of the models.

Output Variables Average PM

thub tinternal, papparent, tautomatism 0.046

tslowshaftbearing tautomatism, tgearboxoil, thub 0.138

tgearboxoil tgearboxbearing1, papparent, tconverter 0.064

tstator tgearboxbearing2, igenerated, tconverter2 0.374

tconverter tgearboxoil, papparent, tmastbase 0.141

ttransfo swind2, igenerated, pactivesetpoint 0.102

The models generated are simple ones. Most of
the variables ν selected are temperatures, which
means that the GFS algorithm favors variables
of the same type as the output yc. One can also
notice that the variables selected are not restricted
to the component studied, which shows the strong
interaction between the major components of the
nacelle.

We can see on Table 1 that the average PM
value, computed from TSIf , is different for each
component. These values express the estimation
performance of the TSIf during a period when
the turbine is assumed to be operating in normal
condition.

4.2. Application on the selected failure
4.2.1. Detection threshold tuning

The most common way to conduct health moni-
toring using residuals is to set a threshold value to
separate low residual values, illustrating a normal
operating period, and higher values, representing
a potential defect in progress. This threshold is
called the detection threshold.

In our case, the health indicators used to detect
a fault are the processed TSIs. Tuning the detec-
tion threshold is usually done according to a fault
detection performance criterion such as the false
alarm rate (defined as the percentage of samples
over the detection threshold in a normal operating
period). In the case of this study, the detection
thresholds were set as the 99th percentile of the
TSIf computed during the learning period, which
sets the false alarm rate to 1%.

4.2.2. Visual analysis

For a given wind turbine Ti, the weekly alarm rate
is defined as the number of TSIf samples above
the detection threshold over the number of TSIf
samples during the week considered. These values
are computed for every TSIf .

The comparative analysis of the residuals is
performed using a heatmap. In this heatmap, each
row correspond to a TSIf . Each column is a
week during the validation period (see Section
3.2.3). The weekly alarm rate is then displayed
as a colored indicator graduated from zero (white)
to one (purple). This visual representation allows
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an overview of the detection performances of the
bank of TSIf .

Fig. 2 show the resulting heatmap for T2 and
T9 for the fault period from June 1 to August 15,
2020. As a reminder, T2 is the most impacted ma-
chine of the farm while no intervention on the con-
verter has been done on T9 during the year 2020.
On the heatmap from T2 values, the fifth row,
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Fig. 2. Weekly alarm rate heatmap of the TSIf for T2
(top) and T9 (bottom)

representing the converter TSIf , is highlighted
during a period of six weeks, which corresponds
to the time when the field near the wind farm
was harvested until the time when ventilation fan
were cleaned. The weekly alarm rate remains at
a level close to zero for the other TSIf from T2
and T9 as can be seen in Fig. 2. This means that
on all the TSI computed except TSIT2

converter, no
significant crossing of the detection threshold has
been observed on the validation period, and so that
the associated components are in a good thermal
condition. These results show that the models built
using the strategy presented in Section 2 are able
to predict correctly the variations of the temper-
atures when the turbine operates in normal con-
ditions.Thus, the resulting TSIf networks allow

the failure on the converter of turbine T2 to be
detected and localized.

However, for a deeper analysis of the results,
we will take a look at the temporal profiles of the
TSI, which are used to build the weekly alarm rate
heatmap.

Fig. 3 shows the six TSIf profiles in function
of time during the validation period for the wind
turbines referenced T2 (top plot) and T9 (bottom
plot). The TSIf values above the detection thresh-
old are highlighted by a coloring of the area under
the curve. The purple signal shows the profile of
the TSIf monitoring the converter thermal state.
This figure confirms the observation done using
the heatmap in Section 4.2.2.

5. Conclusion

In this paper, a method to build a network of health
indicators, to monitor wind turbine main compo-
nents and isolate possible faults is presented. The
indicators are residuals computed from linear nor-
mal behavior models. The models are generated in
an automatic way, using a data driven approach,
which selects iteratively the best variables to add
to the model. The models obtained are simple,
and easy to interpret. They are able to predict
efficiently the temperature of any component, for
all the turbines of a wind farm. The residuals
obtained for each turbine are compared to a farm
reference, to make them less sensitive to variations
due to environmental and operational changes.
They form a network of thermal state indicators
which allows a global view of the thermal state
of the whole turbine. It gives good detection and
localization performances on a real failure case.
The method proposed can be easily applied to any
new wind farm, which is its main advantage. Thus,
in the future, an evaluation of the TSIs network
performance detection will be conducted on other
wind farms from Valemo’s fleet.
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