Transformers for Tabular Data Representation: A Survey of Models and Applications - Archive ouverte HAL
Article Dans Une Revue Transactions of the Association for Computational Linguistics Année : 2023

Transformers for Tabular Data Representation: A Survey of Models and Applications

Gilbert Badaro
  • Fonction : Auteur
  • PersonId : 1196219
Mohammed Saeed
  • Fonction : Auteur
  • PersonId : 1196220
  • IdRef : 266364241
Paolo Papotti

Résumé

In the last few years, the natural language processing community has witnessed advances in neural representations of free texts with transformer-based language models (LMs). Given the importance of knowledge available in tabular data, recent research efforts extend LMs by developing neural representations for structured data. In this work, we present a survey that analyzes these efforts. We first abstract the different systems according to a traditional machine learning pipeline in terms of training data, input representation, model training, and supported downstream tasks. For each aspect, we characterize and compare the proposed solutions. Finally, we discuss future work directions.
Fichier principal
Vignette du fichier
publi-7123.pdf (273.73 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03877085 , version 1 (29-11-2022)

Identifiants

  • HAL Id : hal-03877085 , version 1

Citer

Gilbert Badaro, Mohammed Saeed, Paolo Papotti. Transformers for Tabular Data Representation: A Survey of Models and Applications. Transactions of the Association for Computational Linguistics, In press. ⟨hal-03877085⟩

Collections

EURECOM ANR
471 Consultations
728 Téléchargements

Partager

More