Economy and embedded exhaustification

Danny Fox, Benjamin Spector

To cite this version:

Danny Fox, Benjamin Spector. Economy and embedded exhaustification. Natural Language Semantics, 2018, 26 (1), pp.1-50. 10.1007/s11050-017-9139-6 . hal-03877024

HAL Id: hal-03877024

https://hal.science/hal-03877024

Submitted on 29 Nov 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Economy and Embedded Exhaustification ${ }^{1}$ Danny Fox and Benjamin Spector fox@mit.edu, spector.benjamin@gmail.com

The origin of Scalar Implicatures (SIs) is a topic of much contention. Recent literature, in particular, has been concerned with whether SIs follow directly from principles of language use, as envisioned by Paul Grice, or whether novel grammatical mechanisms need to be postulated. In order to understand the debate, it is useful to define an operator exh (for exhaustification) which, when applied to a sentence S and a set of alternatives ALT, returns the conjunction of S and its scalar implicatures relative to ALT (See, among others, Spector 2003, 2007, van Rooij and Schulz 2004, 2006, Schulz and van Rooij 2006). With the help of exh, one can characterize, in a compact way, the predictions of various competing theories; more specifically, one can try to compare a theory that incorporates this operator directly into the grammar, henceforth the Grammatical Theory (as in Chierchia 2006, Chierchia, Fox \& Spector 2012, Fox 2007a, Fox \& Hackl 2007, Groenendijk \& Stokhof 1984, Krifka 1993, Landman 1998, Sevi 2009), with one that derives the results with the aid of postulated principles of language use (henceforth the Neo-Gricean theory, e.g., Horn 1972, 1989, Gazdar 1979, Gamut 1991, Sauerland 2004, Spector 2003, 2007, van Rooij and Schulz 2004, 2006, Schulz and van Rooij 2006, Russell 2006, Geurts 2011). Various challenges have been recently presented to the neoGricean theory and have been argued to favor the grammatical alternative (See in particular Chierchia, Fox \& Spector, 2012, section 4, and references therein, Magri 2009, Chemla \& Spector 2011, Katzir 2013, Fox 2014, Spector 2014a., and objections to some of these arguments in Geurts 2009, 2011 Russell 2011, Ippolito 2011, Geurts \& Pouscoulous 2009, Geurts \& van Tiel 2013, a.o.)

We would like to focus here on one challenge that has been voiced already in the 70s (Cohen 1971, and much subsequent work) on the basis of the claim that implicatures sometimes need to be computed in embedded positions in order to derive the correct meaning of complex sentences. ${ }^{2}$ It seems to be a consensus that if this claim is correct, it is problematic for the Neo-Gricean theory, and the reason is fairly straightforward. Under the Neo-Gricean theory, SIs are computed on the basis of principles that regulate the choice of communicative acts, and therefore do not apply to sub-constituents of a sentence. By contrast, under the Grammatical Theory there is - within grammar - an

[^0]implicature-computing operator, and, if no further stipulations are introduced, there should be no ban on embedding this operator in any position in which it would be interpretable.

Various arguments have been given for the existence of embedded implicatures, but there are considerations that go the other way, namely cases where this kind of embedding seems to be impossible. On the basis of these considerations, Horn has famously argued that embedded implicatures should be derived by the postulation of various meta-linguistic operators that would leave the theory of SIs unaffected (See in particular Horn 1989, section 6.2.). So, the relevance of the phenomena for the theory of SIs is still much under debate.

The goal of the current paper is to contribute towards a resolution of this dilemma. Specifically we will suggest that embedded implicatures are real and follow from the grammatical theory, i.e., from inserting the operator exh in embedded positions. As such, we will use a more transparent term, namely Embedded Exhaustification, EE. However, we would also like to deal with counter-arguments of the sort discussed by Horn, i.e. limitations on the availability of EE that are compatible with the grammatical theory only if application of exh could somehow be constrained. These limitations, one might think, should argue for the Neo-Gricean theory. But that, of course, is true only if this theory could account for the full paradigm, which, at least to us, seems unlikely. So we will propose to limit the application of exhaustification by a constraint that we would like to think of as an economy condition. This economy condition will allow exh to be inserted in a given position only if it has a particular overall effect on the meaning of the sentence in which it is embedded, namely if it does not lead to a meaning that is entailed (overall weaker than, or equivalent to) the meaning that would have resulted without it. However, this global requirement will be computed incrementally, at a particular point in sentence processing based on a technique developed by Schlenker in another context (Schlenker 2008), and will be stated in terms of a constraint on the choice of an alternative set for the exhaustivity operator. ${ }^{3}$

But before we get started, we should say a few words about the meaning of exh. The operator takes a sentence S and a set of alternative sentences C and returns a sentence which is stronger than S - a sentence which asserts S and denies/excludes certain members of C . Which members of C are excluded by exh is a rather complicated matter, but for now we will make the simplifying (though we believe false) assumption that it is the set of sentences not entailed by S :
(1) $\quad E x h_{C}(S)$ is true iff S is true and $\forall \mathrm{S}^{\prime} \in \mathrm{C}\left[\mathrm{S}^{\prime}\right.$ is not entailed by $S \rightarrow \mathrm{~S}^{\prime}$ is false $]$.

So in order to determine the meaning that results from applying exh to a sentence, S , one has to know the identity of the set of alternatives, C . This set is determined by an interaction of grammar and context, much like the alternatives of focus sensitive

[^1]operators, e.g. only or even. Specifically C is the intersection of formal alternatives determined by grammar and a set of contextually relevant alternatives. For now we will assume that the formal alternatives are the scalar alternatives of S defined as follows: ${ }^{4}$
(2) $\operatorname{ALT}(S)=\left\{S^{\prime}: S^{\prime}\right.$ can be derived from S by replacing scalar items by members of their Horn Set $\}$
(3) Examples of Horn Sets (usually called Horn Scales): ${ }^{5}$
a. Connectives: $\{o r$, and $\}$
b. Quantifiers: $\{\text { some, all }\}^{6}$
c. Numerals: $\{$ one, two, three, four,...\}

So - ignoring the role of context - we can determine the nature of C based on S and a full specification of Horn sets. For this reason, we will very often omit C from the representation, using sloppy notations such as the following: ${ }^{7}$
a. exh(John talked to Mary or Sue)

Equivalent to John talked to Mary or Sue but not to both.
b. exh(some boys came)

Equivalent to some but not all boys came.
c. Exh(John introduced 3 people to Mary)

Equivalent to John introduced 3 but not 4 people to Mary, i.e., to John introduced exactly 3 people to Mary.

1: Three problems pertaining to Embedded Exhaustification

One of the most straightforward arguments for EE comes from downward entailing operators (DE operators). As we've seen, exh strengthens the meaning of a sentence with which it combines, ${ }^{8}$ If the output of this combination is embedded under the scope of a DE operator, the overall result is entailed by the representation we get without exh. ($\mathrm{OP}[\operatorname{Exh}(\mathrm{S})]$ is entailed by OP[S] if OP is a DE operator.) Hence, simple investigation of

[^2]judgments of assent might tell us whether application of exh below a DE operator is possible. ${ }^{9}$

Consider from this perspective the acceptability of (5). If exh were not embedded under negation, the second sentence in (5) would contradict the first.
(5) John didn't do the reading OR the homework. He did both. (based on Cohen 1971)

This is because the negation of a disjunction is tantamount to the claim that each disjunct is false, which, of course, entails the negation of the conjunction: $\neg[p \vee q] \Leftrightarrow[\neg \mathrm{p} \wedge \neg \mathrm{q}] \Rightarrow$ $\neg[p \wedge q]$. If, however, exh could be embedded under negation, we will have a straightforward explanation for the fact that the sentences are not judged to be contradictory (i.e., that one might assent to (5), or assert it in the first place). The negation of the exhaustified meaning of a disjunction (of the exclusive disjunction, see (4)a) is not equivalent to the claim that each of the disjuncts is false. Instead, it is compatible with two possibilities - either each of the disjuncts is false or they are both true: $\neg[\operatorname{Exh}(p \vee q)] \Leftrightarrow \neg[(p \vee q) \wedge \neg(p \wedge q)] \Leftrightarrow[(\neg[(p \vee q) \vee(p \wedge q)] \Leftrightarrow[(\neg p \wedge \neg q) \vee(p \wedge q)]$.

So the acceptability of (5) can be taken to argue in favor of EE. However, it has been noted in many places, most notably in Horn (1989), that (5) is acceptable only on a "marked" pronunciation, pronunciation with pitch accent on the scalar item or. Without this pitch accent, the sentence is unacceptable:
(6) \#John didn't do the reading or the homework. He did both.

This allows us to state our first problem.
(7) Problem \#1
a. If EE is possible why is (6) bad?
(a question raised most forcefully by Horn 1989)
b. If EE is impossible why is (5) good?
(a question raised by many: Cohen 1971, Levinson 2000, i.a.)
More specifically, we will argue for the following generalization, and our problem will be to understand why it holds.
(8) The Implicature Focus Generalization: implicatures can be embedded under a downward entailing (DE) operator only if the (relevant) scalar term bears pitch accent. ${ }^{10}$

[^3]In Chierchia, Fox and Spector (2012, henceforth CF\&S), we argued that EE is subject to an economy condition that bars any occurrence of an exhaustivity operator if it leads to a reading that is logically (strictly) weaker than (i.e. asymmetrically entailed by) a reading that would have resulted in its absence. This economy condition predicts that an exhaustivity operator cannot occur in a DE-environment, which captures the judgment given in (6). In order to account for the fact that EE appears to be possible in the scope of DE-operators if the relevant scalar item bears pitch accent (cf. (5)), one could adopt Horn's view that cases of this sort involves a special use of negation (or other DE operators), commonly labeled metalinguistic.

In this paper, we will develop a modified version of the economy condition proposed in CFS, and this modification will still be compatible with the view that cases like (5) involve a metalinguistic use of negation. However, the arguments we will develop in connection with other cases of EE will suggest a different perspective on the generalization given in (8), one that relates the requirement of pitch accent to independently needed properties of the theory of focus.

Our second problem is based on an observation due to Gajewski and Sharvit (2012) (henceforth G\&S) when combined with an argument for EE made in CF\&S. CF\&S argue that (9)a involves EE, specifically that it has the parse in (9)b.
(9) a. John talked to Mary or Sue, or both.
b. Exh(John talked to Mary or Sue) or John talked to both

One of the arguments, which we will review below, is based on the fact that this parse is needed in order for the sentence to comply with a general condition (Hurford 1974) that rules out disjunctive sentences in which one of the disjuncts entails another (Hurford's Constraint, henceforth HC). We will call such disjunctive sentences - namely those that would violate HC without EE - Hurford disjunctions.

If EE is possible, why is the Hurford disjunction bad when embedded under negation, (10)a (as observed by G\&S)? After all, it should be possible for this sentence to receive the parse in (10)b, which does not violate HC. ${ }^{11}$
(10) a. *John didn't talk to Mary or Sue, or both. (G\&S)
b. Not [Exh(John talked to Mary or Sue) or John talked to both)]
(11) Problem \#2 ${ }^{\mathbf{1 2}}$
a. If EE is possible, why can't a Hurford disjunction be embedded under negation? E.g., why is (10)a bad?
b. If EE is impossible, why are Hurford disjunctions in general good? E.g., why is (9)a good?

[^4]Our third problem is similar to the second problem and pertains to a constraint on Hurford disjunctions discovered in Singh (2008b). Consider the contrast in (12). (12)a is a repetition of the acceptable Hurford disjunction we have seen - (9) a - and, as mentioned, we assume that it is acceptable due to EE. But why should the Hurford disjunction be bad when the order of the disjuncts is reversed, (12)b?
(12) a. John talked to Mary or Sue, or to both Mary and Sue.
b. \#John taked to both Mary and Sue or to Mary or Sue
(13) Problem \#3

If EE is possible, why can't the disjuncts in a Hurford disjunction such as (9)a be reversed?

So, we have seen three cases where EE needs to be constrained: it cannot apply under DE operators, unless there is pitch accent on the relevant scalar item (problem \#1, the Implicature Focus Generalization), it is unable to obviate HC under negation (problem \#2) or on a second disjunct of a Hurford disjunction (problem \#3). Our goal for this paper is to develop an economy condition which will solve these three problems and to present a few arguments in favor of our solution.

But before we get there, we will have to review the arguments presented in CFS in favor of EE in Hurford disjunctions. We will then move to our solution for Problems 1-3, which will be easiest to understand in reverse order. The discussion of Singh's observation (problem \#3), with which we will start (section 4), will be based on a simplified version of our economy condition. Our goal will be to show that this simplified condition derives Singh's basic observation and makes a host of new predictions, which we will try to corroborate. We will then discuss how the condition might be extended to predict that EE is impossible in DE contexts, thus accounting for Gajewski and Sharvit's problem (Problem \#2), with an additional new prediction (section 5). This discussion will seem to be at odds with the Implicature Focus Generalization, Problem \#1, but we will show that it need not be (section 6). Specifically, we will discuss certain assumptions about the nature of scalar alternatives and their relationship to focus that will allow us to extend the proposal to a solution for this problem as well. As we develop our proposal we will be presenting a variety of very detailed predictions, some of which will involve rather subtle contrasts in acceptability judgments. We are not always as confident about the judgments as we would like to be. Nevertheless we think that stating the predictions explicitly would be useful in understanding the nature of our proposal.

2. Hurford's Constraint and Embedded Exhaustification

In both sentences in (14), the second disjunct entails the first one. ${ }^{13}$ Hurford uses the unacceptability of sentences of this sort to argue that entailment between disjuncts is, in general, impossible, i.e., for the constraint in (15), to which we alluded above.
(14) a. \#John was born in France or Paris.
b. \#I have a dog or a German Shepard.
(15) Hurford's constraint (HC): a disjunction p or q is unacceptable when p entails q or q entails $p{ }^{14}$

But, the acceptability of the sentences in (16) now appears to be problematic.
a. John talked to [Mary or Sue] or both. (Hurford 1974)
b. John did some or all of the homework.
c. John read 3 books or more.
(Gazdar 1979)
There are two possible reactions to (16). HC might be modified, as suggested by Gazdar 1979, or the disjuncts might receive a special analysis making them compatible with HC despite surface appearances. We will not go over Gazdar's suggestion, but instead review some of CF\&S's argument in favor of the second possibility, specifically in favor of the claim that the sentences in (16) are compatible with HC due to EE, and that, more generally, (17) holds.
(17) $\mathbf{E E}$ is the culprit: HC is correct, and wherever it appears to be false, EE is involved.

CF\&S, in particular, argue that the sentences in (16) must receive the parse in (16)', which doesn't violate HC. In this parse the first disjunct is exhaustified, and the exhaustified meaning involves the denial of the second disjunct. Thus, the second disjunct does not entail the first.
a. $[\operatorname{Exh}(p \vee q)] \vee(p \wedge q)$
b. $[\operatorname{Exh}(J o h n$ did some of the homework) $] \vee$ (John did all of the homework)
c. $[E x h(J o h n ~ r e a d ~ 3$ books $)] \vee$ (John read more than 3 books)

[^5]Some have suggested that local implicatures (what we analyze as EE) always involve a marked intonation (e.g. Horn), but, the sentences in (16) do not require a marked intonation. ${ }^{15}$ So, if the parse in (16)' is correct, EE does not always require marked intonation. In other words, if the analysis is correct, Hurford disjunctions support our statement of the generalization pertaining to pitch accent, namely that pitch accent is needed only when exh is embedded under DE operators (see note 10).

But, what can tell us whether the parse is correct? After all, exh in (16)' has no consequences for the overall meaning of the construction. CF\&S argue for this parse based on constructions where this is not the case. The arguments, which we will review, will be relevant for two reasons. First they will provide support for EE without which there will be no point in postulating our economy constraint. Second, they will be directly relevant for our arguments in favor of the economy condition, since this condition will be sensitive to the overall semantic consequences of EE , and the manipulations needed to show that EE can have semantic consequences in Hurford disjunction will turn out to be directly relevant in determining whether EE can apply.

2.1 Distant Entailing Disjunctions

The reason EE has no overall semantic consequences in (16)' is that the states of affairs excluded by exh in the first disjunct verify the second disjunct. Subsequently, the result of the exclusion is rendered vacuous. To see this, consider (16)'c. Exh on the first disjunct excludes worlds where John read more than 3 books. But in such worlds the second disjunct is true, and the sentence as a whole is, subsequently, true. In other words, everything excluded by $e x h$ in the first disjunct is allowed to "sneak in" by the second disjunct.

One way to ensure that exhaustifying the first disjunct has overall effects on meaning is to construct disjunctive sentences where this is not the case; where there are states of affairs that are excluded by exh in the first disjunct that do not get to sneak in by the second disjunct. If EE is required, the sentence will be false in those states of affairs.

The disjunctive sentences in (18) have the specified property.

> a. John has 3 or 6 children. ${ }^{16}$
> Horn Scale $<\ldots 3,4,5,6, \ldots>$

[^6]b. The water is (somewhat) warm or absolutely boiling. Horn Scale <warm, hot, absolutely boiling>

To see this, consider first (18)a. Exhaustifying the first disjunct excludes any world where John has more than 3 children, and there are, of course, worlds of this sort where the second disjunct is false, i.e., where John doesn't have 6 children. In those worlds, i.e., worlds where John has exactly 4 or exactly 5 children, exhaustifying the first disjunct will make the sentence false. Similarly, exhaustifying the first disjunct in (18)b excludes not only worlds that are allowed to sneak in by the second disjunct - worlds where the water is absolutely boiling - but also worlds that are excluded by the second disjunct, namely worlds where the water is hot but not yet absolutely boiling. Exhaustifying the first disjunct will make the sentence false in these worlds.

The combination of HC and EE, thus, makes new predictions for these sentences. They should be limited to interpretations that are false in the states of affairs we just characterized (worlds that are excluded by the first disjunct and do not verify the second disjunct). This prediction seems to be correct. Thus (18)a seems to be false if John has exactly 4 or 5 children and (18)b seems to be false if the water is hot but not absolutely boiling.

What was special about the examples in (18) is that the two disjuncts contained scalar items which are non-adjacent (distant) members of a Horn Scale. This is why we will call disjunctive constructions of this sort Distant Entailing Disjunctions (DEDs). So in (18)a the scalar items 3 and 6 are separated on the Horn Scale by two other numerals (4 and 5). Similarly in (18)b (somewhat) warm and absolutely boiling are separated on their Horn Scale by hot. Therefore, the exhaustified meaning of the first disjunct excludes weaker sentences than the second disjunct, i.e., sentences consistent with situations that the second disjunct excludes. ${ }^{17}$ These situations are predicted to falsify the sentence.

But the same effect can also be generated without distant members of a Horn Scale. We can, thus, generalize the notion of a Distant Entailing Disjunction in the following way.

(19) A DED is a disjunctive phrase \boldsymbol{p} or \boldsymbol{q} with the following properties:

a. q entails p
b. This entailment can be obviated by exhaustification: there is a way to strengthen p by Exh, p^{*}, such that q doesn't entail $p^{*} .{ }^{18}$
c. $(p$ or $q)$ is not equivalent to p^{*} or q (it's strictly weaker) where p^{*} is the relevant strengthening of $p .{ }^{19}$

[^7]Since q entails p in a DED, HC predicts that a DED should be bad as is. EE allows the DED to receive the meaning of p^{*} or q, rather than that of p or q (which is equivalent to p). This prediction seems to be corroborated for (18), as we've mentioned. But there are consequences for other constructions types discussed in CF\&S.

One prediction pertains to the strengthened meaning of sentences that contain operators with a universal force. Consider the construction in (20).
(20) Either the students are required to do the reading or the homework, or they are required to do both.

There should, in principle, be two ways of strengthening the first disjunct both of which will have overall semantic consequences. Specifically exh can be embedded within the first disjunct either above or below the universal modal required: $\operatorname{exh}[\square(p \vee q)]$, or $\square[\operatorname{exh}(\mathrm{p} \vee \mathrm{q})]$. For reasons that are not entirely clear to us (see CF\&S for some discussion), the former possibility is very much preferred when the sentence is uttered in isolation, so we will focus on it.

To compute the meaning of $\operatorname{exh}[\square(p \vee q)]$ we need to know the scalar alternatives of $[\square(p \vee q)]$. But independently of our purpose here, we know what the result has to be, namely that the strengthened-meaning/implicature of the students are required to do the reading or the homework should involve the claim that it is up to the students to to decide whether to do the reading or the homework. For now, we will derive this under Sauerland's (2004) assumption that the Horn Set for disjunction contains each of the disjuncts in addition to the conjunction. From this, it follows that $E x h \square(p \vee q)$ involves the exclusion of the two alternatives: $\square p$ and $\square q$. I.e., $\operatorname{Exh} \square(p \vee q)$ $\Leftrightarrow \square(\mathrm{p} \vee \mathrm{q}) \wedge \neg \square \mathrm{p} \wedge \neg \square \mathrm{q} \Rightarrow \Delta \mathrm{q} \wedge \forall \mathrm{p} .^{20}$

If this is the strengthening that is used to obviate HC , the overall result is not vacuous. ${ }^{21}$ The sentence ends up meaning that either the students are required to do the reading or the homework and have a choice as to which one to do, or they are required to do both. ${ }^{22}$ It is thus incompatible with $\square \neg \mathrm{p}$ and with $\square \neg \mathrm{q}$. This is not equivalent to the reading corresponding to a structure with no $e x h$, (' $\square(p \vee q) \vee \square(p \& q)$ ', equivalent to ' $\square(p \vee q)$ '), since the latter parse is compatible with $\square \neg p$ (and likewise with $\square \neg q$). ${ }^{23}$ This

[^8]prediction seems to us to be correct. That is, (20) is judged false in a situation where students are required to do the reading but are not required to do the homework, or the other way around, but not in a situation where they are required to do both.

In the next sub-section we will discuss the predicted effects of EE on the implicatures of sentences that embed Hurford disjunctions, effects that follow from the consequences of EE for the scalar alternatives of a Hurford disjunction. But first we need to provide a bit more background about the idea that the disjuncts are alternatives of a disjunctive expression. This idea, which seems to be needed for a variety of purposes in addition to the one mentioned above (see Sauerland 2004, Fox 2007a,b), is hard to implement given the view of scalar alternatives we are adopting, in particular it doesn't follow from the Horn-set for disjunction given in (3)a.

To deal with this, we could follow Sauerland (2004) and expand the set to include the abstract elements L and R , where $p L q$ is equivalent to p and $p R q$ is equivalent to q :

(21) Saureland's alternatives for disjunction:

\{or, L, R, and $\}$
It would obviously be better to derive the same alternatives without appeal to L and R (see Katzir 2007, and Alonso-Ovalle 2006, 2008), and ultimately we will move to a system in which we derive the right alternatives without resorting to this undesirable stipulation. But, for now, let us adopt Sauerland's implementation - the only implementation, as far as we know, compatible with the idea that scalar alternatives are derived based on Horn Sets.

The obvious problem with the proposal that the disjuncts are among the alternatives of a disjunctive statement needed to account for the free choice effect is that our operator exh, defined in (1), now yields a contradiction when it applies to a simple disjunctive sentence: if (1) is correct, $\operatorname{Exh}(p$ or $q)$ states that the disjunctive sentence is true and each of its alternatives (none of which it entails) is false. In particular, it would now follow that each of the disjuncts is false. The problem arises whenever the set of alternatives contains what we might call symmetry, i.e., whenever it contains two or more alternatives that can be excluded separately but not together (e.g. p or q is consistent with the exclusion of p or with the exclusion of q, but the moment both are excluded the result is contradictory).

In order to correct for this problem, we have to revisit the question of which alternatives get to be excluded. (1) stated that entailed alternatives don't get excluded. But, why? The reason seems rather obvious. Exclusion of weaker alternatives would lead to an automatic contradiction. But, as we've just seen, there are other exclusions that would lead to a contradiction, namely exclusions of symmetric alternatives. We might therefore suggest that exh be modified to eliminate contradiction in situations of symmetry. In particular, given a sentence S and a set of alternatives C , we would like to define a set of innocently excludable alternatives, I-E(S,C), a set of sentences that can all be false while S is true. ${ }^{24}$

[^9]a. $E x h_{C}(S)$ is true iff S is true and $\forall \mathrm{S}^{\prime} \in \mathrm{I}-\mathrm{E}(\mathrm{S}, \mathrm{C})$: S^{\prime} is false
b. I-E(S,C) is the intersection of maximal excludable alternatives of C given S .
c. $\mathrm{M} \subseteq \mathrm{C}$ is an excludable alternative of C given S , if the conjunction of S and the negation of all members of M is consistent.
d. M is a maximal excludable alternative of C given S if M is an excludable alternative of C given S and there is no superset of M in C which is an excludable alternative of C given S .

The result of applying exh, at times, could be rather difficult to compute, but the notion itself is rather simple. All alternatives that are not entailed by the prejacent are excluded unless there is symmetry, in which case as many alternatives are excluded as possible (without making any arbitrary choices among symmetric alternatives). However, in most cases we will not need to consider (22). Specifically, whenever (1) is noncontradictory, we can continue to use it, and the reason is simple. If (1) is noncontradictory the set of innocently excludable alternatives is precisely the set of sentences in C not entailed by S. We will, thus, continue to use (1) whenever the result is consistent.

However, one important consequence of symmetry should be noted. Whenever a sentence S has symmetric alternatives, S_{1} and S_{2} (such that $S \wedge \neg S_{1}$ is consistent and $S \wedge \neg$ S_{2} is consistent but $S \wedge \neg S_{1} \wedge \neg S_{2}$ is inconsistent), two effects are expected. First, S will not generate SIs based on S_{1} or S_{2}, i.e., neither $\neg S_{1}$ nor $\neg S_{2}$ will be SIs of S. Second, if S is embedded under a universal operator, symmetry will be eliminated and the SIs should re-emerge, since, e.g., $\square S \wedge \neg \square S_{1} \wedge \neg \square S_{2}$ is consistent (See Fox 2007b for details). These two consequence can be used to argue for the existence of symmetry in cases where the nature of the alternatives is not obvious (See Fox and Katzir 2011). This is what we turn to next. We will see that Hurford disjunctions have symmetric alternatives only if the first disjunct is exhaustified, as assumed by CF\&S, and that the two consequences of symmetry are indeed attested.

2.2. Embedding Hurford disjunctions under Matrix Exh (Distinct Implicatures)

Another prediction discussed by CF\&S pertains to the (non-embedded) implicatures of sentences that, themselves, embed Hurford disjunctions. Since we are deriving implicatures by $e x h$, be they embedded or global/matrix, we describe the relevant environments as environments where a Hurford disjunction is embedded under a matrix exh. If HC is correct, the environments can be schematized as follows:
(23) Structure for implicatures of sentences that embed Hurford Disjunctions:
$\operatorname{Exh}(\ldots[\operatorname{exh}(p)$ or q]...)

2.2.1. Vacuous Embedding

The first case to consider is a simple Hurford disjunction, an in (24)b.
a. John bought some of the furniture.
b. John bought some or all of the furniture.

Since the early days of theorizing on the nature of SIs, the fact that (24)b is not associated with the same SIs as the simple sentence in (24)a has been viewed as a problem. We will see that the problem is eliminated the moment the role of EE is understood.

The two sentences in (24) are equivalent. Under the Neo-Gricean Theory, as well as the grammatical alternative we are considering, the only way two equivalent sentences can be systematically associated with different SIs is if they have different scalar alternatives. The problem is that, without EE, (24)a and (24)b have equivalent scalar alternatives.

To see this, consider the scalar items in (24)b: some, all, and or with the following Horn Sets.
a. Connectives: $\{o r, L, R$, and $\}$
b. Quantifiers: $\{$ some, all $\}$

We thus get the following sentential alternatives:
a. Alternatives for (24)a:
\{John bought some of the furniture, John bought all of the furniture\}
b. Alternatives for (24)b:
$\{$ John bought some of the furniture, \mid John bought all of the furniture,
John bought some or all of the furniture, John bought all or all of the furniture,
John bought some or some of the furniture,
John bought some and some of the furniture,

John bought some and all of the furniture,
John bought all and all of the furniture\}

Although there are more alternatives in (26)b than in (26)a, the alternatives in (26)b divide into two sets each of which consists of equivalent sentences (separated by a vertical line). One set (on the left) is equivalent to the some alternative in (26)a and the other (on the right) to the all alternative. So it is easy to see that the same SI is predicted for (24)a and (24)b.

This problem is obviated the moment EE applies to the first disjunct. With EE, we have another alternative, namely the first disjunct exh(John bought some of the furniture) which states that John bought some but not all of the furniture. This alternative is symmetric relative to the all alternative. One cannot exclude both, and, hence neither is innocently excludable. There are thus no innocently excludable alternatives, and matrix application of $e x h$ is vacuous, precisely the result we want.

2.2.2. Non-vacuous embedding

However, as discussed above, symmetry is eliminated the moment we embed the relevant sentence under a universal operator (e.g., a universal quantifier or a necessity modal). We thus predict that (27)b (under the reading where 'either...or' takes scope below 'required') will contrast with (27)a in its implicatures.
a. You're required to buy some of the furniture. Alternative: \square [you buy all of the furniture].
b. You're required to either buy some or all of the furniture.

Alternatives (predicted by HC and EE):

1. \square [you buy all of the furniture].

2 . $\square[$ Exh (you buy some of the furniture)].
[I.e., $\square[$ you buy some but not all]
(27)b has an alternative that (27)a does not have (alternative 2). As discussed abstractly at the end of sub-section 2.1., one can deny both alternatives of (27)b without contradiction, hence both are innocently excludable. It follows that (27)b can implicate the negation of both alternative 1. and alternative 2., as expressed schematically in (28)a, which, together with the literal meaning of (27)b, yields the strengthened reading expressed in (28)b:
a. $\neg \square$ (you buy some but not all of the furniture) and $\neg \square$ (you buy all of the furniture)
b. You are required to buy some of the furniture, you are not required to buy all of it, but you are allowed to buy all of it.

EE is crucial for deriving the inference 'you are allowed to buy all of the furniture' since it gives us alternative 2. We thus predict (27)b to contrast with (27)a precisely in this respect, a prediction that seems to be corroborated by the contrast between (29)b and (29)c below:
a. You're required to buy some of the furniture.

No! we have to buy all of it.
(Good objection: denies the implicature 'we don't have to buy all of it)
b. You're required to buy some of the furniture
\# No! we are not allowed to buy all of it
(Bad objection: 'you are allowed to buy all of it' is not an implicature)
c. You're required to either buy either some or all of the furniture

No! we are not allowed to buy all of it
(Good objection: denies the implicature 'we are allowed to buy all of it')
If we are right, the inferences in (28) are entailments of (27)b under the following parse, where matrix exh is responsible for the negation of the alternatives mentioned below (27)b:
$\operatorname{exh}(\square[\operatorname{exh}($ you do some of the homework) or you do all of the homework] $)$
The point that we have just made can in fact be generalized to all cases where a Hurford Disjunction is embedded within the scope of an operator with universal force. We expect completely similar facts when a Hurford Disjunction is embedded within the
scope of a universal quantifier over individuals (instead of a universal quantifier over worlds, i.e. a necessity modal). That is, in the case of (31) below, both the alternatives given in 1. and 2. can be negated without contradiction.
(31) Every student either solved most or all of the problems Alternatives (predicted by HC and EE):

1. Every student solved all of the problems
2. Every student exh(solved most of the problems) = Every student solved most of the problems but not all of them

So applying exh at the matrix level to (31) yields (32)a, which is equivalent to (32)b:
(32) a. Every student solved most of the problems, and not every student solved all of the problems, and not every student solved only most of the problems.
b. Every student solved most of the problems; and some, but not all students, solved all of the problems.

The embedded exhaustivity operator is responsible for the inference that some students solved all of the problems (since it is responsible for the presence of alternative 2).

As a result, the following contrast is predicted:
a. Every student solved most of the problems
\#No! No student solved all of the problems
b. Every student solved most or all of the problems No! No student solved all of the problems.

2.3. Interim summary

By assuming that apparent violations of Hurford constraint involve parses where an exhaustivity operator applies to the first disjunct, we can explain a number of complex facts in a simple way. First, we account for these apparent violations. Second, we predict very specific readings in cases which involve Distant Entailing Disjunctions, which turn out to be the perceived readings (section 2.1). Third, we also predict the fact that the relevant sentences themselves trigger different implicatures from their corresponding, non-Hurford violating, counterparts (section 2.2). These two types of prediction will play an important role in motivating our account for Singh's asymmetry (Problem \#3).

3. Basic Strategy

In the rest of the paper, we provide a solution to the three problems that we presented in the introduction. As mentioned at the outset, our basic strategy for addressing the constraints on the distribution of Hurford disjunctions is to introduce an economy condition that will prevent exh from appearing in the position required for HC to be obviated.

Specifically, our economy condition will be designed to block the schematic representations in (36) for (10)b and (12), which are repeated below as (34) and (35)
(34) Gajewski \& Sharvit's restriction (Gajewski and Sharvit 2009)
*John didn't talk to Mary or Sue or both.
(35) Singh's Asymmetry (Singh 2008b)
*John either talked to both Mary and Sue or to Mary or Sue.
a. $\neg[\operatorname{Exh}(\mathrm{p}$ or q$)$ or $(\mathrm{p} \& \mathrm{q})]$
b. $(p$ and $q)$ or $\operatorname{Exh}(p$ or $q)$

As a result, the only available parses for (34) and (35) will be the ones below, which, of course, violate HC.
a. (p and q) or (p or q)
b. $\neg[(p$ or $q)$ or $(p \& q)]$

Finally, our solution to Problem\#1 (the account of the Implicatures Focus Generalization) will be based on a generalization of the economy condition. It will thus make sense for us to address our problems in reverse order.

4. An economy condition on Exh insertion (first version)

In this section, we will introduce a preliminary version of our economy condition which is able to solve problem \#3, and we will derive from it a number of new predictions, directly connected to the data discussed in the previous section. Specifically, in precisely those cases where the obligatory presence of exh in a Hurford disjunction had a detectable semantic effect, our economy condition will predict that the disjuncts can be reversed.

4.1. Addressing Problem \#3 - First Version of the economy condition

Let us first present our idea in a rather informal way. As we observed, sentences of the form p or q or (p and q) and (p and q) or p or q violate HC , but this is not so for the schematic sentences in (38).
a. $\operatorname{exh}(p$ or $q)$ or (p and $q)$
b. (p and q) or $\operatorname{exh}(p$ or $q)$

Our economy condition must, thus, allow exh to appear in (38)a but not in (38)b. Consider first a rather natural yet incorrect principle, one that bars any occurrence of exh which is semantically vacuous:
*S, if S is equivalent to S^{\prime}, where S^{\prime} is obtained from S by deleting an occurrence of exh.

This condition is clearly too strong, as it would rule out both (38)a and (38)b: in both cases, $e x h$ is semantically vacuous, since both (38)a and (38)b are equivalent to (p or q), which is equivalent to (p or q) or (p and q) (and to (p and q) or (p or q)).

But can we find a natural modification of this principle that would distinguish the two parses: i.e., rule out (38)b but not (38)a? Indeed, we can, building on a technique developped in Schlenker (2008) in the context of an argument for a somewhat similar economy condition aimed to predict how presuppositions project. Consider again (38)a, repeated as (40):

$$
\begin{equation*}
\operatorname{exh}(p \text { or } q) \text { or }(p \text { and } q) \tag{40}
\end{equation*}
$$

Exh is semantically vacuous in (40). Note, however, that at the point where $\operatorname{exh}(p$ or $q)$ has been encountered by a hearer (i.e. before the second disjunct has been reached), there is no way for the hearer to know that exh will turn out to be vacuous. Assume that just after $\operatorname{exh}(p$ or q) has been parsed, the hearer entertains the correct hypothesis about the overall structure of the sentence, i.e., one that would not lead to a garden path. In other words, assume that the hearer assigns the overall structure $[\operatorname{exh}(p$ or q) $X \quad Y$], where X stands for a binary connective and Y stands for an arbitrary constituent of the appropriate type. There are choices for X and Y that would not make exh semantically vacuous (take for instance $\mathrm{X}=$ or and $\mathrm{Y}=j$, with j logically independent of p and of q, yielding $\operatorname{exh}(p$ or q) or j). When such choices exist, we will say that exh, though globally vacuous, is not incrementally vacuous.

For $e x h$ to be incrementally vacuous in a given sentence S, it must be the case that, given a correct parse for S, exh can be determined to be globally vacuous independently of the meaning of the constituents that follow exh and its argument (i.e. if it can be determined to be vacuous right at the point after exh and its argument have been encountered). More precisely, for exh to be incrementally vacuous in a sentence S, it should be globally vacuous not only in S, but also in every sentence S^{\prime} that can be obtained from S by replacing any constituent that follows exh and its argument with an arbitrary constituent. ${ }^{25}$

[^10]Our first version of the economy condition, thus, states that an occurrence of exh in a sentence S is ruled out if $e x h$ is incrementally vacuous in S (see below for an explicit statement of the condition). This condition ensures that (40) is licensed, because exh is not incrementally vacuous in this sentence (though it is globally vacuous).

Consider now (38)b, repeated below as (41):
(41) [(p and q) or exh(p or q)]

As before, exh is globally vacuous in (41). But in this case, exh is also incrementally vacuous. Indeed, $\operatorname{exh}(p$ or $q)$ is not followed by any constituent. So it is trivially the case that $e x h$ is globally vacuous in every sentence obtained from (41) by replacing any constituent following exh $(p$ or $q)$ in (41) with an arbitrary constituent. ${ }^{26}$

Our first version of the economy condition is, thus, the following:
(42) Economy (first version)

An occurrence of exh in a sentence S is not licensed if this occurrence of exh is incrementally vacuous in S.

For short: *S(Exh(A)), if Exh is incrementally vacuous in S.
a. An occurrence of exh is globally vacuous in a sentence S if eliminating it doesn't change truth conditions (for short: if $S(\operatorname{Exh}(A)$) is equivalent to $S(A)$)
b. An occurrence of exh which takes A as argument is incrementally vacuous in a sentence S if it is globally vacuous for every continuation of S at point A.
c. S^{\prime} is a continuation of S in point A if S^{\prime} can be derived from S by replacement of constituents that follow A.
d. Y follows A if all the terminals of Y are pronounced after all the terminals of A.

As we have shown, (42) together with HC predicts Singh's assymmetry. Acceptable Hurford Disjunctions of the form ' p or q or (p and q)' are licensed because they can receive the parse in (44)a2, which satisfies both HC and Economy. Bad Hurford Disjunctions of the form '(p and q) or (p or q)' have no parse that jointly satisfies HC and Economy. Either HC is satisfied but Economy is not (cf. (44)b1), or the other way around (cf. (44)b2):
(44) The Hurford Case:

[^11]a1. $[\operatorname{Exh}(\mathrm{p}$ or q)] or (p and q) Economy: Exh is not incrementally vacuous a2. * (p or q) or (p and q) HC

The Singh Case:
b1. *(p and q) or exh[(p or q)] Economy: Exh is incrementally vacuous b2. *(p and q) or (p or q) HC

4.2. Further Predictions

In this sub-section, we will show that our economy condition does not actually rule out every Hurford Disjunction in which the disjuncts appear in 'reverse order' (i.e. where the exhaustivity operator has to be introduced in the second disjunct). In certain circumstances, Singh's asymmetry is predicted to disappear.

Preliminary evidence that this is a desirable outcome comes from a cursory look at the distribution of Hurford Disjunctions in the Corpus of Contemporary American English (http://corpus.byu.edu/coca/): it seems that even though Singh's asymmetry describes a clear statistical tendency (namely, examples in the 'good' order are much more frequent than examples in the 'wrong' order), it does not hold as an absolute constraint. Below are the numbers returned by a search of the Corpus of Contemporary American English for various Hurford Disjunctions ('canonical order' refers to the case where the weaker scalar item occurs in the first disjunct, as in the first column of the table): ${ }^{27}$

	Canonical Order	Reverse Order
some or all	396	53
some or many	7	0
some or most	8	1
most or all	164	152
many or all	14	2
can or must	1	0
may or must	0	0
sometimes or always	3	2
sometimes or often	19	7
often or always	16	14
possible or certain	1	0

[^12]| might or must | 0 | 0 |
| :--- | :--- | :--- |
| allowed or required | 2 | 0 |
| few or none | 19 | 4 |
| rarely or never | 55 | 12 |
| right or obligation | 1 | 0 |
| good or excellent | 79 | 34 |
| TOTAL | 785 | 247 |

So there is a clear asymmetry in Singh's direction, but it doesn't seem to be absolute. We want to argue that this tendency is to be accounted for by an absolute constraint (Economy) which rules out Hurford Disjunctions in the 'wrong' order in the most basic cases but turns out to have no consequence in more complex environments.

4.2.1. Preview

The basic logic can be summarized as follows. For an occurrence of exh to be incrementally vacuous, it has to be globally vacuous (incremental vacuity entails global vacuity). In the most simple cases of Hurford Disjunctions, exh is globally vacuous; Singh's asymmetry follows from the fact that in such cases, exh is furthermore incrementally vacuous when and only when the disjuncts are reversed. This is so because when (and only when) exh scopes over the final disjunct, global vacuity and incremental vacuity are equivalent. However, we have seen in section 2 that in certain Hurford Disjunctions, the presence of exh has global consequences for meaning; in such cases, exh was not globally vacuous. Since reversing the order of the disjuncts does not modify the truth-conditions of the relevant sentences, exh is not globally vacuous also when the disjuncts are reversed and hence not incrementally vacuous. In such examples, Singh's asymmetry is, therefore, predicted to disappear.

The relevant examples can be built on the basis of the very sentences we used in order to show that exh can have global consequences for meaning (i.e. that exh is not necessarily globally vacuous in Hurford Disjunctions), i.e. Distant Entailing Disjunctions and non-vacuous cases in which a Hurford Disjunction is embedded under another exhaustivity operator. We predict that in such cases, reversing the disjuncts should yield an acceptable Reverse Hurford Disjunction (in contrast to Singh 2008a, who designed a system where the asymmetry is a primitive).

4.2.2. DEDs

It should now be clear that the following is one way to construct a Reverse Hurford Disjunction that does not violate our economy condition:
(45) Ingredients: Take two Distant Entailing Disjuncts (DEDs) and form a disjunction in the reverse order of that discussed in (19). i.e. Take two sentences p and q, such that:
a. q entails p
b. this entailment can be obviated by exhaustification: there is a way to strengthen p by exh, p^{*}, such that q doesn't entail $p^{* 28}$
c. q or p^{*} is logically stronger than (q or p).

In such a disjunction, strengthening of p by exh will be licensed by Economy (since it is not vacuous), and q or p will receive the parse q or p^{*}, which will not violate HC. We can apply this recipe to (18)b, which involved a Hurford Disjunction where the relevant scalar items were non-adjacent members of a scale. This results in (46) below, which we correctly predict to be acceptable: ${ }^{29}$

The water is absolutely boiling or (somewhat) warm
To investigate further the predictions of our economy condition, let us examine various other cases where the same logic is at play.

4.2.2.1. Non-adjacent members of a scale

It is standardly assumed that the Horn Scale for some contains the scalar item all as well as an intermediate member, e.g. is something like <some, most, all>. Since some and all are non-adjacent members of this scale, they should qualify as DEDs, and the Reverse Hurford Disjunction all or some should be acceptable whenever the intermediate member of the scale, i.e. most, is sufficiently salient. For then the strengthened meaning of some is going to be some but not most, and as a result exh is not globally vacuous in all or exh(some) (meaning all or (some but not most)). Let us consider a concrete example:

Did John do most of the homework? No. He did all of it or some of it.

In order to meet HC , the answer in (47) must have the following parse:
(48) He did all of the homework or exh_{C} (he did some of the homework).

In this context, the set of alternatives C for $e x h$ can be assumed to include not only he did some of the homework and he did all of the homework, but also the sentence based on the intermediate member of the scale, i.e. he did most of the homework. As a result, the two disjuncts are Distant Entailing Disjuncts, and therefore our economy Condition should be satisfied. More precisely, the second disjunct ends up meaning he did some of the homework but not most of it, with the result that (48), as a whole, means He either did all of the homework or some but not most of it. Note that (48) is false in a situation where John did most of the homework but not all of it, contrary to what would have resulted if exh were deleted. So exh is not globally vacuous, hence not incrementally

[^13]vacuous. We thus predict that the answer in (47) should be felicitous, under the interpretation corresponding to (48), a prediction that we believe is borne out. ${ }^{30}$

4.2.2.2. Free Choice Effect in the second disjunct

Another example involving DEDs was given in (20), repeated below as (49):
(49) Either we are required to do the reading or the homework, or we're required to do both.

Recall that the meaning of the first disjunct after exhaustification (needed in order to meet HC) entails the following "free choice inference".
(50) We are allowed to do the reading without doing the homework and we are allowed to do the homework without doing the reading.

As we observed, the overall meaning of (49) is thus predicted to exclude situations where we are required to do the reading and are not required to do the homework (and viceversa), and this is what made the exhaustification of the first disjunct non-vacuous globally.

Since $e x h$ is not globally vacuous in (49), reversing the disjuncts is predicted to yield an acceptable Reverse Hurford Disjunction. The following contrast is therefore predicted:
(51) a. \# He did both the reading and the homework or he did one of them.
b. We are required to do both the reading and the homework or we're required to do one of them.

4.2.2.3. Universally quantified contexts

Other universally quantified contexts allow us to construct similar pairs:

[^14]a. *Either John did both the reading and the homework or he did the reading or the homework.
b. Either everyone did both the reading and the homework or everyone did the reading or the homework.
(52)b is expected to be acceptable for the following reason. A possible parse for the second disjunct of $(52) \mathrm{b}$, one that insures that HC is obeyed, is the following:
exh(everyone did the reading or the homework)

Now, following section 2.1.'s assumption that the alternatives induced by a disjunctive phrase include each disjunct separately, the alternatives for the prejacent in (53) will include everyone did the reading and everyone did the homework. As a result, (53) entails the negation of these very alternatives, and is equivalent to (54)a, which in turn entails (54)b - these inferences are the counterpart of the 'free-choice inference' triggered by disjunction under a necessity modal (cf. 50).
a. Everyone did the reading or the homework, not everyone did the reading and not everyone did the homework
b. Someone did the reading without doing the homework, someone did the homework without doing the reading.

Under this analysis, (52)b meets HC since (54)b contradicts the first disjunct ('everyone did the reading and the homework'). Furthermore, (52)b, under this parse, excludes a situation where everybody did the homework and some people, but not all, also did the reading: for in such a situation the first disjunct - everyone did both the reading and the homework - is false and the second one, which is equivalent to (54)b, is false as well, since nobody did the reading without doing the homework. This interpretation would not have arisen in the absence of exh on the second disjunct. Exh is therefore not globally vacuous in (52)b, hence is not incrementally vacuous, and (52)b is predicted to be acceptable.

4.2.3. Embedding under Matrix exh

The other type of construction which enabled us to show that the presence of exh in a Hurford Disjunction can have a detectable semantic effect was one in which the Hurford Disjunction (hence an embedded exhaustivity operator) was under the scope of a matrix exhaustivity operator (section 2.2.). In such a construction, the embedded exhaustivity operator was shown to be globally non-vacuous. This will obvioulsy remain the case if the relevant disjuncts are reversed and will thus lead us to expect Singh's asymmetry once again to disappear.

Let us thus consider again one such example, in the canonical order:
(55) You are required to either buy some or all of the furniture

As we argued above (section 4.2.2.2), (55) triggers the 'free-choice' inference that it is up to the addressee to decide whether to buy some but not all of the furniture or all of it. And we showed that this inference is an entailment of (55) under the following parse:

$$
\begin{align*}
& \text { exh[You are required to } \tag{56}\\
& \begin{array}{ll}
\text { either } \quad & \text { exh(PRO buy some of the furniture) } \\
& \text { PRO buy all of the furniture] }
\end{array}
\end{align*}
$$

In this structure, neither of the two occurrences of exh is globally vacuous, since the two of them are jointly responsible for the free-choice inference. And this will remain true if we reverse the order of the two disjuncts. Therefore, (57)a below, under the parse given in (57)b, meets the economy condition and is predicted to be acceptable, a prediction which we believe is correct.
a. You are required to either buy all or some of the furniture
b. exh[You are required to either PRO buy all of the furniture or exh(PRO buy some of the furniture)]

As observed in section 2.2.2, examples where a Hurford Disjunction is embedded under a necessity modal are special cases of embedding under a universal quantifier. So what we see in (57) should extend to other universal quantifiers: we expect that reversing the disjuncts should be acceptable for all Hurford disjunctions embedded under a universal quantifier. In other words, we predict the following contrast:
a. *The student solved all or some of the problems.
b. Every student solved all or some of the problems
(58)a is a simple, unembedded, Reverse Hurford Disjunction, and therefore violates the economy condition (unless an intermediate alternative, e.g. most, is made salient). But (58)b, under the schematic parse given in (59) does not.

$$
\begin{equation*}
\operatorname{Exh}(\forall x(A L L \ldots x \ldots) \text { or } \operatorname{Exh}(S O M E \ldots x . . .)) \tag{59}
\end{equation*}
$$

This is so because the two exhaustivity operators are jointly responsible for the entailment that some students solved all of the problems (cf. section 2.2). One may indeed typically use a sentence such as (58)b in order to convey the information that the students can be partitioned into two non-empty classes, namely those who solved all of the problems and those who solved most but not all of the problems.

This prediction seems to be corroborated by a Google search for the string all or most and all or some, which revealed examples such as the following in which the disjunction is embedded under a modal or a quantifier, as in (60), or under a performative as in (61):
(60) A new Harris Poll finds a plurality of Americans want all or most abortions to be illegal
(61) What are all or some of the differences and similarities between Roman Architecture and Egyptian Architecture?
Similar to: Tell me all or some of the differences and similarities between Roman Architecture and Egyptian Architecture.

Both examples illustrate the predicted free choice effect. In particular (60) supports the inference that some Americans want all abortions to be illegal, while others want most but not all of them to be illegal (and that there is no majority for either position). Similarly (61), which is a question in a homework assignment, is understood as giving the addressee the option of listing all of the relevant differences or just some of them. ${ }^{31}$

5. Gajewski and Sharvit and version 2 of the economy condition

Let us now return to Problem \#2, which arises from the observation that a simple Hurford Disjunction cannot be embedded immediately below negation. As mentioned, we would address this problem if we could find a way to rule out structures such as the following:

$$
\begin{equation*}
\neg[\operatorname{Exh}(\mathrm{p} \text { or } \mathrm{q}) \text { or }(\mathrm{p} \text { and } \mathrm{q})] \tag{62}
\end{equation*}
$$

Our economy condition, as it stands, does not rule out (62): even though exh is globally vacuous in (62), it is clearly not incrementally vacuous, for replacing the second disjunct (p and q) with e.g. any expression which is logically independent of p or q gives rise to a structure in which exh is not globally vacuous. ${ }^{32}$

Since our economy condition in its current formulation is too weak to rule out (62), we would like to strengthen it. Now, note that exh in (62), though not incrementally vacuous, is incrementally weakening in the following sense: any sentence of the form $\neg[\operatorname{Exh}(p$ or $q) \Gamma r]$, where Γ stands for either or or and, is necessarily entailed by $\neg((p$

[^15]or q) Γr). ${ }^{33}$ Therefore, at the point where $\operatorname{exh}(p$ or $q)$ has been encountered in (62), it can be determined that whatever the meaning of the following constituents will be, the resulting meaning will be either logically weaker than, or equivalent to, what would have resulted in the absence of exh. If we strengthen the economy condition into the condition that no occurrence of exh can be incrementally weakening in this sense, we predict the impossibility of structures such as (62). Such a principle is reminiscent of various versions of the so-called Strongest Meaning Hypothesis found in the literature (cf. the work on reciprocals and plurality by Dalrymple et al. 1998, Winter 2001, among others), according to which disambiguation between various readings of a given sentence tends to favor the strongest possible reading. ${ }^{34,35}$ In the domain of scalar implicatures, a somewhat similar condition was already proposed by Chierchia (2004), in order to rule out embedded implicatures in DE-contexts, an issue which we will return to shortly. ${ }^{36}$ The main innovation of the current proposal is the embedding of this general idea as an incremental principle of the sort we advocated in the previous section, following work by Schlenker.

So we propose to modify our economy condition as follows:

economy condition ($2^{\text {nd }}$ Version):

An occurrence of exh in a sentence S is not licensed if this occurrence of exh is incrementally weakening in S , with 'incrementally weakening' defined as in (64). For short: *S(Exh(A)), if Exh is incrementally weakening in S.
${ }^{33} \operatorname{exh}(p$ or $\left.q)\right] \Gamma r$ entails $(p$ or $q) \Gamma r$ because $\operatorname{exh}(p$ or q) entails (p or q), and Γ, which is either or or and, is monotone increasing with respect to both its right and left argument. So $\neg((p$ or $q) \Gamma r)$ entails $\neg((e x h(p$ or $q) \Gamma r)$.
${ }^{34}$ Note that the principle according to which an occurrence of exh should not be incrementally weakening never forces the presence of an embedded exh. We do not adopt a version of the SMH which would force embedded exhaustification when the resulting meaning is stronger than what would have resulted without it. Our economy condition can only disallow certain insertion sites for exh, in cases where inserting exh leads to an overall weaker (or equivalent) reading. Hence our principle never predicts that embedded exhaustification should be the default. More concretely, consider the three following possible logical forms for a sentence such as Every student read the Russian books or the French books:
(a) (Every student) $)_{x}$ exh(x read the French books or the Russian books)
(b) $\operatorname{Exh}\left[(\text { Every student })_{\mathrm{x}}\right.$ (x read the French books or the Russian books)]
(c) (Every student) $)_{x}(x$ read the French books or the Russian books)
(a) a-symmetrically entails (b), which a-symmetrically entails (c). Yet all of these three LFs satisfy the new economy condition: in both (a) and (b), exh is not incrementally weakening, and in (c) the principle does not apply because no exh is present. Any version of the Strongest Meaning Hypothesis states that a given reading R for a certain sentence is dispreferred if it is logically weaker than some competing reading in a certain fixed class of competitors. In our implementation, while (c) is a competitor for both (a) and (b), (a) is not a competitor either for (b) or (c), and (b) is not a competitor either for (a) or (c). See CFS, section 4.6. ${ }^{35}$ A Possible Functional Motivation for our principle is the following (from Fox 2007): The role of exh is to eliminate unwanted ignorance inferences derived by Gricean reasoning. If exh is weakening, it cannot eliminate ignorance inferences.
${ }^{36}$ Chierchia (2004) took the view that embedded implicatures are possible in monotone increasing and nonmonotonic contexts, but not in monotone decreasing contexts. In this paper, we argue that embedded implicatures are in principle possible in every context, but require pitch accent on the relevant scalar item in DE-contexts (cf. our Generalization (8)). We'll show in section 6 how this generalization can be made to follow from a refined version of our economy condition.
a. An occurrence of Exh is globally weakening in a sentence S if eliminating it does not alter or strengthens truth conditions, i.e., if $S(A)$ entails $S(\operatorname{Exh}(A))$
(*special case S is equivalent to $\mathrm{S}(\operatorname{Exh}(\mathrm{A})$); i.e. when exh is vacuous*)
b. An occurrence of Exh which takes A as argument is incrementally weakening in a sentence S if Exh is globally weakening for every continuation of S at point A.
c-d as before
Note that this modification does not affect the results reported in the previous section. The reason is obvious: we did not consider downward entailing environment, hence all the cases we discussed in which the first version of the economy condition was satisfied were cases in which the relevant occurrence of exh was not only incrementally non-vacuous, but in fact incrementally non-weakening as well (a fact that we invite the reader to check).

The second version of the economy condition makes an interesting additional prediction: we can construct cases were a Hurford Disjunction appears in the immediate scope of a DE-operator but is nevertheless not (incrementally) weakening because this DE-operator is itself under the scope of another DE-operator, to the effect that the overall context for exh is upward-entailing. Here are some relevant contrasts:
a. *John didn't hand in the first or second assignment or both.
b. Everyone who didn't hand in the first or second assignment or both failed the class. ${ }^{37}$
a. \#I would go to the movies without John or Bill or both.
b. I wouldn't go to the movies without John or Bill or both.

But we will have additional predictions, closer in spirit to those we discussed in relation with Singh's-asymmetry, which we will be able to discuss once we propose a solution for Problem \#1.

[^16]
6. Towards a solution of Problem \#1

Let us now return to the Implicature Focus Generalization - the generalization that EE is possible under a DE-operator only if the relevant scalar item receives pitch accent (IFG). At first sight, our economy condition appears to rule out EE under a DE-operator altogether, since an exhaustivity operator appears to be weakening in such a context. ${ }^{38}$

One might suggest that no more needs to be said. Our current economy condition, as it stands, manages to account for Problems \#3 and \#2, and appears to make the further prediction that EE is impossible in DE-contexts. True, we would still need an account for the fact that embedded implicatures appear to be possible in DE-contexts if the relevant scalar item is prosodically marked. But, as mentioned at the outset, there is already a proposal in the literature which is designed to account for this apparent exception, namely the idea that metalinguistic negation yields an effect tantamount to EE (Horn 1989). By supplementing our economy condition with Horn's theory of metalinguistic negation, we might be able to predict all the known facts (along lines similar to those suggested in Chierchia 2004).

Although this is a possible position, we would like to investigate an alternative. One of our motivations has been already acknowledged by Horn, namely that resort to metalinguistic negation is not sufficient, since, under the relevant prosodic pattern, EE can arise under the scope of other DE-operators. Horn's (1989: 379-382) response to this problem consists in generalizing the notion of metalinguistic negation to other operators, i.e., in assuming that many (perhaps all) operators are ambiguous between an ordinary meaning and metalinguistic meaning. But we think that this is a costly assumption which should motivate the search for alternatives.

Another motivation is analytic. Our proposal, as it stands, turns out to predict that, under very specific circumstances, EE should be possible even under DE operators. Capitalizing on this observation, we will see that it is possible to construct an alternative to Horn's ambiguity hypothesis, which is consistent with our economy condition. Under this alternative, the so-called metalinguistic meaning would result from embedding exh below a DE operator. Furthermore, we will see that the requirement for pitch accent on the scalar item could follow if we adopt yet another modification of the economy condition, which we think will remain faithful to its original motivation.

More specifically, our task can be divided into two. First, we need to understand how embedding exh under a DE operator could satisfy an economy condition which bans (incremental) weakening. Second, we need to understand how pitch accent could end up

[^17]being relevant. Let's start with the first task. Needless to say, if exh is embedded in a DE context, the overall result is weaker than the alternative (derived without the presence of exh):
$E x h$ is necessarily weakening in a DE context:
If $S(\ldots)$ is a $D E$ environment, then $S(\operatorname{Exh}(A))$ will necessarily be equivalent to or weaker than - i.e., entailed by - S(A), since $\operatorname{Exh}(A)$ entails A.

However, as we've already seen (in the context of our discussion of (65) and (66)), elements in the scope of a DE operator need not be in a DE context (globally). Specifically, if the DE operator is itself embedded under yet another operator, properties of the other operator might affect the monotonicity of the overall context.
(68) The Scope of a DE operator is not necessarily a DE context:

If A is in a the scope of a $D E$ operator, dominated by a sentence S, the context, S(A), need not be a DE context.

So in (65)b, for example, the Hurford Disjunction is in the scope of a DE operator, but is, nevertheless, not in a DE context in the matrix sentence, since in the matrix sentence the DE operator is further embedded in the restrictor of a universal quantifier, thus reversing monotonicity, once more.

To see something similar, with an example relevant for problem \#1, consider an occurrence of exh below negation with another occurrence of exh above negation, as in (69):

$$
\begin{equation*}
\operatorname{Exh}(\neg \operatorname{Exh}(p \vee q)) \tag{69}
\end{equation*}
$$

Since $e x h$ is a non-monotonic operator, the most embedded occurrence of exh in (69) is not in a DE-context, and therefore might be able to meet the economy condition. To see one circumstance under which the economy condition would indeed be satisfied, assume that the alternative for the higher occurrence of exh could be a sentence just like the prejacent differing only in that it lacks the exhaustive operator:

$$
\begin{equation*}
\operatorname{ALT}(\neg \operatorname{Exh}(\mathrm{p} \vee \mathrm{q}))=\{\neg \operatorname{Exh}(\mathrm{p} \vee \mathrm{q}), \neg(\mathrm{p} \vee \mathrm{q})\} . \tag{70}
\end{equation*}
$$

Since $\neg(p \vee q)$ is strictly stronger than $\neg \operatorname{Exh}(p \vee q)$, applying exh to $\neg \operatorname{Exh}(p \vee q)$ yields the following:

$$
\begin{align*}
\operatorname{Exh}_{\mathrm{ALT}} & (\neg \operatorname{Exh}(\mathrm{p} \vee q)) \tag{71}\\
& =\neg \operatorname{Exh}(\mathrm{p} \vee q) \text { and } \neg \neg(\mathrm{p} \vee q) \\
& =\neg \operatorname{Exh}(\mathrm{p} \vee \mathrm{q}) \text { and }(\mathrm{p} \vee q) \\
& =\neg([\mathrm{p} \vee \mathrm{q}] \text { and } \neg[\mathrm{p} \wedge q]) \text { and }(\mathrm{p} \vee q) \\
& =[\neg(\mathrm{p} \vee q) \text { or }(\mathrm{p} \wedge q)] \text { and }(\mathrm{p} \vee q) \\
& =(\mathrm{p} \wedge q)
\end{align*}
$$

In the absence of the most embedded exh, the resulting structure $\operatorname{exh}(\neg(p$ or q)) would be equivalent to $\neg(p \vee q)$. Therefore, the most embedded occurrence of exh in (69) is not globally weakening: $(p \wedge q)$ is not entailed by $\neg(p \vee q)$. Hence it is not incrementally weakening, and the economy condition is met for this occurrence of exh. Likewise, for the higher occurrence of exh: without this occurrence, the resulting structure, $(\neg \operatorname{exh}(p \vee q))$, would be weaker than $\neg(p \vee q)$, hence, again, would not entail the actual meaning, $p \wedge q$. ${ }^{39}$

But, of course, we still need to understand how the alternatives in (70) are determined. We will entertain an answer to this question that also meets our second task, namely accounts for the correlation with pitch accent. Our starting point will be a modification of our theory of exh in favor of an alternative which we think might be conceptually superior on independent grounds, namely a theory according to which the choice of alternatives for any occurrence of exh correlates with focus marking, that is, a theory in which exh is literally a focus sensitive operator (see Fox \& Katzir 2011). ${ }^{40}$

The requirement of pitch accent on the scalar item will be translated with the aid of such a theory to a requirement that exh have a particular set of alternatives as its first argument. In order to explain why this latter requirement holds in the scope of a DE operator, we will provide a more general statement of our economy condition. The new condition will ban an occurrence of exh in a sentence S, associated with a certain set of alternatives, if the overall result is weaker than what would have resulted if exh had been associated with a smaller set of alternatives.

7. Exh as a focus sensitive operator

Before we present any of this in detail, we would like to explain how exh could be viewed as a focus sensitive operator. Our discussion will be centered on the ingredients needed for our specific purposes, but can embedded within a more general theory of focus (based on Fox and Katzir 2011).

7.1. Narrow Focus, Broad Focus, and Minimize Focus

Consider, first, the sentence in (72), which contains the paradigmatic focus sensitive operator only.
(72) John only talked to [Mary] ${ }_{F}$

LF: Only ALt $^{\text {[prejacent }}$ John talked to $[\text { Mary }]_{\mathrm{F}}$]
AF: ALT must be a contextually salient sub-set of F (prejacent)
$F($ prejacent $)=\{$ John talked to Mary, John talked to Fred, John talked to Sue, ... $\}$

[^18]The alternatives for only are constrained by the theory of association with focus (AF) to be a (contextually salient) sub-set of the focus value of the "prejacent", and this focus value is determined to be the set of sentences derived from the prejacent by replacing focused constituents with their alternatives, in the case of (72), the set of sentences of the form John talked to x where x names an individual.

Only, just like exh, states that the prejacent is true and that every member of ALT which is true is entailed by the prejacent. ${ }^{41}$ (Though there are reasons to believe that both need to be modified along lines discussed in (22), a modification which - as mentioned can be ignored whenever the result of the simpler formulation is consistent.) Since in (72) the members of ALT must all be sentences of the form John talked to x, the sentence, as a whole, ends up entailing that John did not talk to various individuals. But the actual meaning depends on the contribution of context, i.e., on what is taken to be contextually salient/relevant.

Consider next the SI of a simple disjunctive sentence such as John talked to Mary or Sue. Under our proposal, deriving this SI requires a structure in which exh appears above disjunction. But if exh is a focus sensitive operator, we also have to ask what constituent is focused. Let's consider first the relatively easy case in which the disjunctive coordinator or is focused:
(73) $\operatorname{Exh}_{\text {ALT }}\left[\right.$ prejacent J John talked to Mary OR_{F} Sue]

AF: ALT must be a contextually salient subset of F (prejacent).
$F($ prejacent $)=\{$ John talked to Mary or Sue, John talked to Mary and Sue $\}$
Under this focus structure, we can say that the alternatives for exh are determined in exactly the same way as the alternatives for only in (72). Specifically, they are determined by AF to be a (contextually salient) sub-set of the focus value of the prejacent, and this focus value is determined to be the set of sentences derived from the prejacent by replacing focused constituents with their alternatives. If we think that the conjunctive word and is an alternative of or, we get precisely the right result. ${ }^{42}$

But wouldn't we predict, incorrectly, that focus - hence pitch accent - on or would be required for the SI to be derived? Well, actually no. The only thing that might be required for the SI to be derived is that the conjunctive alternative (John talked to Mary and Sue) be a member of ALT. This requirement will be met if or is a focus marked constituent, but it will also be met in other ways. Under standard theories of focus, it will be met as long as or is contained within some focus marked constituents. This would be sufficient

[^19]to guarantee that the sentence that can be derived from the prejacent by replacing or with and will be a focus alternative of the prejacent, as exemplified in (74). ${ }^{43}$
$\operatorname{Exh}_{\mathrm{ALT}}\left[\mathrm{CPP}\right.$ John talked to [Mary or SUE] ${ }_{\mathrm{F}}$]
AF: ALT must be a contextually salient subset of F (prejacent).
F (prejacent) $=\{$ John talked to Mary or Sue, John talked to Mary and Sue, John talked to Fred, John talked to Mary and Fred, ...\}

What we've seen is an instance of a much broader observation. Whenever we consider two focus structures for a given sentence, one in which a constituent, x, is focused (narrow focus) and another in which a larger constituent, y (i.e., one that dominates x), is focused (broad focus), we observe that the focus value of the sentence under narrow focus is a subset of the focus value of the sentence under broad focus. This means that any alternative of the sentence under narrow focus will also be an alternative under broad focus. Hence, we do not predict that deriving SIs requires scalar items to be focused. Instead, we predict that SIs require the relevant scalar items to be either focused or dominated by a focused constituent, an assumption that we think is not problematic. (For evidence in favor of this assumption, see Rooth 1985: 42-43, Rooth 1992, section 2.3., and Fox and Katzir 2011.)

However, there is another observation that we need to consider, namely that gratuitous focus is, in general, not allowed (Schwarzschild 1999). Under the relevant condition (Minimize Focus), broad focus, in particular, is allowed only if among the contextually selected alternatives there is one which is not a member of the focus value under narrow focus. It is, thus, not sufficient to assume, AF, in (75)a, and MF in (75)b, must be considered as well:
a. Association with Focus (AF): The set of alternatives for a focus sensitive operator must be a subset of the focus value of the prejacent.
b. Minimize Focus (MF): ${ }^{44}$ A sentence can't have a focus value F, if it would satisfy AF with another focus value F^{\prime} (derivable by a different distribution of focus marking), and $\mathrm{F}^{\prime} \subset \mathrm{F}$.

Once these two principles are adopted, we predict a contrast between (73) and (74). In both sentence, AF allows the conjunctive alternative, M\&S, to be a member of ALT, hence both should allow the exclusive SI to be computed. But MF treats the two sentences differently: in (74), if $M \& S \in A L T$, there must be at least one alternative in ALT which is not a member of the focus value of (73) (else focus on or would be sufficient to satisfy AF). Consequently, if (74) yields the "not and" inference, it must

[^20]yield an additional exclusive inference that would make it stronger than (73), e.g. that John did not talk to Jane.

The facts are hard to determine - an expected state of affairs given that the additional exclusive inference could be close to a tautology when the whole prejacent is focused, since it will amount to the negation of some other relevant sentence, i.e. a contextual tautology if the sentence in question is already known to be false. But if we consider a specific background question that would fix the focus structure appropriately, e.g. focus on the DP that dominates disjunction as in (74), we think the facts go in the right direction. In particular, when (74) is uttered as an answer to the question Who did John talk to?, an inference that John did not talk to Jane would definitely arise if Jane is taken to be in the domain that the question quantifies over (cf. Spector 2006 for an argument that the exclusive interpretation of disjunction in such a case is tied to additional exhaustivity effects, whether this is achieved by a covert exhaustivity operator or by only). To make the point clearer, consider e.g. Who among these four girls did John talk to?. More generally, we make the following prediction: ${ }^{45}$

A restriction on broad focus: Let $S_{\text {narrow }}$ be a sentence that contains one scalar item with narrow focus on the scalar item, and let not S_{l} be its SI. Let $S_{\text {broad }}$ be identical to $\mathrm{S}_{\text {narrow }}$ with the sole exception that focus is on a constituent that properly dominates the scalar item. Predictions:
a. AF allows $\mathrm{S}_{\text {broad }}$ to have not S_{l} as an SI.
b. But then it must have an extra SI, not S_{2}, where S_{2}, is not a member of the focus value of $\mathrm{S}_{\text {narrow. }}{ }^{46}$

[^21](75b)'. Minimize Focus (strengthened) Let $\mathrm{O}(\mathrm{C})(\mathrm{S})$ be sentence, where O is a focus sensitive operator, C is its restrictor, and S its prejacent. Then S cannot have a focus value F if
(i) there is another sentence $O\left(C^{\prime}\right)\left(S^{\prime}\right)$ that satisfies AF such that S^{\prime} differs from S only in that the focus value of S^{\prime} is F^{\prime} and $F^{\prime} \subset F$ and
(ii) The meaning of $\mathrm{O}(\mathrm{C})(\mathrm{S})$ is identical to that of $\mathrm{O}\left(\mathrm{C}^{\prime}\right)\left(\mathrm{S}^{\prime}\right)$.

7.2. Alternatives derived by deletion

Our eventual goal is to explain why EE under a DE operator requires narrow focus on the scalar item. Once this is explained the IFG would follow from basic observations about the phonological realization of focus. Our explanation is going to be based on the observation we just made that broad focus requires an extra inference not S_{2}. As we will see, this extra inference leads to overall weakening of the meaning, something which is going to be blocked by a generalization of our economy condition.

But before we get there, we have to say something about the parse we are going to assume for EE under DE operators, e.g., the one in (71) repeated below, with two subscripts ALT1 and ALT2 that represent the restrictors for the two occurrences of exh.

$$
\begin{equation*}
\operatorname{Exh}_{\mathrm{ALT} 1}\left(\neg \operatorname{Exh}_{\mathrm{ALT} 2}(\mathrm{p} \vee \mathrm{q})\right) \tag{77}
\end{equation*}
$$

We've already said something about the identity of ALT2, namely that it is going to contain the single conjunctive alternative $p \wedge q$ when v receive narrow focus and it will contain at least one additional alternative under broad focus. But we still have to say something about the identity of ALT1.

In order to know what ALT1 can be, we have to know the focus value of its prejacent $\neg \operatorname{Exh}_{A L T 2}(p \vee q)$. For the sake of this discussion, we will assume (following Rooth 1985, 1992) that the focus value of $p v q$ is irrelevant: namely, we assume that the focus value of a constituent does not percolate beyond a focus-sensitive operator which associates with this focus value. Furthermore, we will assume that the lower occurrence of exh is either focused or (more plausibly) dominated by a focused marked constituent and that this is sufficient for generating the alternative we identified in section 6, namely $\neg(p \vee q)$. Following Katzir (2007) and Fox and Katzir (2011), we will call this alternative, an alternative generated by deletion. There are also alternatives we could consider in which the lower occurrence of exh is replaced by other focus sensitive operators (e.g. only or even) but we can think of none that will affect our overall result. Hence we assume the structure in (78), which we generalize to DE operators other than negation in (79).

$$
\begin{align*}
& \operatorname{Exh}_{\{-(\mathrm{p} \vee \mathrm{q})\}}\left(\neg \operatorname{Exh}_{\mathrm{ALT2} 2}(\mathrm{p} \vee \mathrm{q})\right) \tag{78}\\
& \operatorname{Exh}_{\{\mathrm{OP}(\mathrm{~S})\}}\left[O P\left[\operatorname{exh}_{\mathrm{ALT} 2}(\mathrm{~S})\right]\right] \tag{79}
\end{align*}
$$

7.3. Computing Embedded Exhaustification under DE operators

So now we would like to compute the meaning of representations such as (78) for both narrow and broad focus on the embedded S. Under narrow focus, we've already gone over the computation in (71), though at the time we did not put too much thought into the way alternatives are determined:

$$
\begin{equation*}
\operatorname{Exh}_{\{(\mathrm{p} \text { or } \mathrm{q})\}}\left(\neg\left[\operatorname{Exh}_{\{\mathrm{p} \text { and } q)}\left(\mathrm{p} \text { or } \mathrm{r}_{\mathrm{F}} \mathrm{q}\right)\right]_{\mathrm{F}}\right)= \tag{80}
\end{equation*}
$$

$$
\neg\left[\operatorname{Exh}_{\{\mathrm{p} \text { and } \mathfrak{q}\}}(\mathrm{p} \text { or } \mathrm{q})\right] \& \neg \neg(\mathrm{p} \text { or } \mathrm{q})=\mathrm{p} \& \mathrm{q}
$$

Now the choice of alternatives is understood, and with it, the compatibility of this particular form of EE with our economy condition. To repeat, neither occurrence of exh is (incrementally) weakening, and the economy condition is thus satisfied. But - to repeat in order to address Problem \#1, we still need to understand the correlation with pitch accent.

Given what we said in section 7, we need to block the representation in which the prejacent of the embedded occurrence of exh receives broad focus. There are two cases to consider. The first case, presented in (81)a, is identical in all respects (other than Fmarking) to (80). This representation, as discussed in 7.1., is blocked by MF.
a. $\operatorname{Exh}_{\{-(\mathrm{p} \text { or q)\} }}\left(\neg\left[\operatorname{Exh}_{\{\mathrm{p} \text { and q) }}(\mathrm{p} \text { or q) })_{\mathrm{F}}\right]_{\mathrm{F}}\right) \quad$ blocked by MF
b. $\operatorname{Exh}_{\{-(\mathrm{p} \text { or } \mathrm{q})\}}\left(\neg\left[\operatorname{Exh}_{\{\mathrm{p} \text { and } \mathrm{q}, \mathrm{d})}(\mathrm{p} \text { or q) })_{\mathrm{F}}\right) \quad\right.$ Hope: the lower exh is blocked

Next we need to consider representations such as that in (81)b, in which an additional sentence d is added as an alternative to the embedded exh - as required by MF. If the IFG is to follow, representations of this sort must be ruled out as well. To see how this might be achieved, we compute the resulting meaning in (82).
(82) Interpretation of (81)b:

$$
\begin{aligned}
& \operatorname{Exh}_{\{-(\mathrm{p} \text { or } \mathrm{q})\}}\left(\neg \left[\operatorname{Exh}_{\{\mathrm{p} \text { and } \mathrm{q}, \mathrm{~d}\}}(\mathrm{p} \text { or q)]})\right.\right. \\
& =\neg\left[\operatorname{Exh}_{\{\mathrm{p} \text { and } \mathrm{q}, \mathrm{~d}\}}(\mathrm{p} \text { or } \mathrm{q})\right] \& \neg \neg(\mathrm{p} \text { or } q) \\
& =(\mathrm{p} \text { or } \mathrm{q}) \& \neg\left[\operatorname{Exh}_{\{\mathrm{p} \text { and } \mathrm{q}, \mathrm{~d}\}}(\mathrm{p} \text { or } \mathrm{q})\right] \\
& =(p \text { or } q) \& \neg[(p \text { or } q) \& \neg(p \& q) \& \neg d] \\
& =(p \text { or } q) \text { and either }[(p \text { and } q) \text { or } d] \\
& =[\mathrm{p} \text { and } \mathrm{q}] \text { or }[(\mathrm{p} \text { or } \mathrm{q}) \text { and } \mathrm{d}]
\end{aligned}
$$

It is easy to see that the resulting meaning is weaker than what we get in (80), and it is this observation which we will build on in our explanation of the IMF in the next section.

8. Comparison Class for Economy

The previous version of our economy condition looked at a constituent $\operatorname{exh}(\varphi)$ in a given syntactic context $\mathrm{S}(\operatorname{exh}(\varphi))$ and checked how it fared relative to its competitor φ. Specifically $\mathrm{S}(\operatorname{exh}(\varphi))$ could not be (incrementally) weaker than $\mathrm{S}(\varphi)$. This formulation ignored the set of alternatives of exh, ALT. There is an equivalent way of stating the same constraint, which does not ignore ALT and suggests on obvious generalization.

According to the equivalent statement, the competitor of $\operatorname{exh}_{A L T}(\varphi)$ would not be φ itself but rather the vacuous exhaustification of $\varphi, \operatorname{exh}_{\odot}(\varphi)$ - the exhaustification of φ with no alternatives whatsoever. The vacuous exhaustification of φ is, of course, equivalent to φ itself, hence $\operatorname{exh}_{A L T}(\varphi)$ would be weakening relative to φ iff it is weakening relative to $e x h_{\odot}(\varphi)$.

Economy Condition (equivalent to (63)):

${ }^{*} \mathrm{~S}\left(\operatorname{Exh}_{\mathrm{C}}(\mathrm{A})\right)$, if $E x h_{C}$ is incrementally weakening in S .
(84) a. An occurrence of $E x h_{C}$ is globally weakening in a sentence S if $S\left(E x h_{\odot}(A)\right)$ entails $\mathrm{S}\left(\operatorname{Exh}_{\mathrm{C}}(\mathrm{A})\right.$
b. b-d as before

Although equivalent, the conceptions suggested by (83) and (63) are somewhat different. What (83) compares is not (like (63)) the presence or absence of exhaustification, but rather the precise nature of exhaustification: what (83) says is that the presence of alternatives should not be weakening. But if this suggested conception is correct, there is an obvious generalization to consider, namely that every innocently-excludable single alternative (or subset of innocently-excludable alternatives) must be non-weakening. That is, it should never be the case that by adding to its prejacent the negation of an alternative, exh yields a global result that is overall weaker than or equivalent to what would have resulted if this alternative had not been excluded. In other words, given a certain set of alternatives C associated with an occurrence of exh, the comparison class for Economy is every set of alternatives such that their innocently excludable members are a proper subset of the innocently excludable alternatives of C. ${ }^{47}$
(85) Economy Condition: $* S\left(E x h_{C}(A)\right)$, if $E x h_{C}$ is incrementally weakening in S.
a. An occurrence of $E x h_{C}$ is globally weakening in a sentence $S\left(\operatorname{Exh}_{C}(A)\right)$ if there is a set C^{\prime} such that $\mathrm{I}-\mathrm{E}\left(\mathrm{A}, \mathrm{C}^{\prime}\right)$ is a proper subset of $\mathrm{I}-\mathrm{E}\left(\mathrm{A}, \mathrm{C}^{\prime}\right)$ and $\mathrm{S}\left(\operatorname{Exh}_{\mathrm{C}}(\mathrm{A})\right)$ entails $\mathrm{S}\left(\operatorname{Exh}_{\mathrm{C}}(\mathrm{A})\right.$.
b-d as before
It is easy to see that if $E x h_{C}$ is (incrementally) weakening by (63) (=(83)), then it is also (incrementally) weakening by (86). (Just let the empty set be $\left.\mathrm{C}^{\prime}.\right)^{48}$

[^22]
9. Deriving the Implicature Focus Generalization

We now have the necessary ingredients to derive the IFG. First note that if exh is inserted in a DE context, the result would violate Economy for reasons mentioned in section 6, so we need to postulate representations with two instances of exh, as in (79) repeated below.

$$
\begin{equation*}
\operatorname{Exh}_{\{\mathrm{OP}(\mathrm{~S})\}}\left[O P\left[\operatorname{exh}_{\mathrm{ALT} 2}(\mathrm{~S})\right]\right] \tag{79}
\end{equation*}
$$

Our task is to explain why S must receive narrow focus on the scalar item.
For starts, let's focus on a specific case - let's explain how the violation of the IFG in (81) (repeated below) is blocked.
a. $\operatorname{Exh}_{\{-(\mathrm{p} \text { or } \mathrm{q})\}}\left(\neg\left[\operatorname{Exh}_{\{\mathrm{p} \text { and q\}}}(\mathrm{p} \text { or q) })_{\mathrm{F}}\right]_{\mathrm{F}}\right) \quad$ blocked by MF
b. $\operatorname{Exh}_{\{-(\mathrm{p} \text { or } \mathrm{q})\}}\left(\neg\left[\operatorname{Exh}_{\{\mathrm{p} \text { and } \mathrm{q}, \mathrm{d}\}}(\mathrm{p} \text { or q) })_{\mathrm{F}}\right]_{\mathrm{F}}\right) \quad$ The lower exh is incrementally weakening
(81)a was already blocked by MF. Our problem was to explain why (81)b is blocked, and now the answer is clear. The meaning of $(81) \mathrm{b}$ is weaker than what we would have gotten if the lower exh excludes a proper subset of alternatives, namely without d as an alternative (see our discussion of (80)). Hence Economy rules out this representation.

Now let's see how this explanation can be generalized (to other scalar items and other DE operators). Consider (87), where the embedded sentence S contains a scalar item which (when replaced with a scalar alternative) yields a stronger sentence $\mathrm{S}+$. It is clear that (87)a, like (81)a, is blocked by MF. Our goal is to show that (87)b, like (81)b, is blocked by Economy, whenever A contains innocently-excludable members other than S+ (the scalar alternative of S). If this could be achieved, we will have an explanation for the necessity for narrow focus. ${ }^{49}$
that we could rely on certain reasonable assumptions regarding the way alternative sets are constrained by relevance. The idea would be that an utterance of ' $\operatorname{exh}_{C}(S O M E)$ or ALL' indicates that 'ALL' is relevant, with the result that 'ALL' should be included in the alternative set C. More specifically, in order to allow for Distant Entailing Disjunctions (e.g. for the parse ' $\mathrm{exh}_{\left\{\mathrm{MANY}^{2}\right.}(\mathrm{SOME})$ or ALL'), we could state that when a certain potential alternative X is contextually relevant, then X can be pruned from the restrictor C of exh only if the resulting reading of $E x h_{C}(S)$ settles X, i.e. entails X or its negation. In the above case, this would allow C to contain the alternative MANY instead of ALL, since 'SOME $\& \neg$ MANY' entails
' \neg ALL'.
${ }^{49}$ Our economy condition does not impose narrow focus on disjunction for all structures of the form ' $\mathrm{Exh}_{\mathrm{C}}$ $\left(\neg \operatorname{Exh}_{C^{\prime}}(\mathrm{p} \text { or } \mathrm{q})\right)^{\prime}$. Consider indeed the following:

$$
\begin{align*}
& \operatorname{Exh}_{\{\{(\mathrm{p} \text { or } q)\}}\left(\neg\left[\operatorname{Exh}_{\{r \mathrm{r}}(\mathrm{p} \text { or } \mathrm{q})_{\mathrm{F}}\right]_{\mathrm{F}}\right)= \tag{i}\\
& \quad \neg\left[\operatorname{Exh}_{\{r \mathfrak{r}\}}(\mathrm{p} \text { or } \mathrm{q})\right] \& \neg \neg(\mathrm{p} \text { or } \mathrm{q})=(\mathrm{p} \text { or } \mathrm{q}) \text { and } \mathrm{r} \\
& \neg\left[\operatorname{Exh}_{\{r\}}(\mathrm{p} \text { or } \mathrm{q})\right]=\mathrm{p} \text { or } \mathrm{q} \text { and not } \mathrm{r} \\
& \neg\left[\operatorname{Exh}_{\{r\}}(\mathrm{p} \text { or } \mathrm{q})\right] \& \neg \neg(\mathrm{p} \text { or } \mathrm{q})=(\mathrm{p} \text { or } \mathrm{q}) \text { and either }(\mathrm{p} \text { and } \mathrm{q}) \text { or } \mathrm{r} .
\end{align*}
$$

But note that this fact is not obviously relevant to the IFG, which might be stated as a constraint on the embedding of scalar implicatures and the lower exh in (i) does not trigger an exclusive construal of disjunction. Whether examples such as (i) are in fact available is something that we have not examined in any detail, but the following might suggest that they are:
a. $\operatorname{Exh}_{\{\mathrm{OP}(\mathrm{S})\}}\left(\mathrm{OP}\left[\operatorname{Exh}_{\{\mathrm{S}+\}}(\mathrm{S})_{\mathrm{F}}\right]_{\mathrm{F}}\right) \quad$ blocked by MF
b. $\operatorname{Exh}_{\{\mathrm{OP}(\mathrm{S})\}}\left(\mathrm{OP}\left[\operatorname{Exh}_{\mathrm{C}=\{\mathrm{S}+, \mathrm{Al}, \ldots ., \mathrm{An}\}}(\mathrm{S})_{\mathrm{F}}\right]_{\mathrm{F}}\right) \quad$ The lower exh is incrementally weakening [with A1,...., An innocently excludable] ${ }^{50}$

But this is an automatic consequence of the following fact:
(88) Let:

1. OP be a DE operator
2. C, C' be two sets of sentences and such that I-E(S, C') $\subset \mathrm{I}-\mathrm{E}(\mathrm{S}, \mathrm{C})$.
3. $E x h_{C}(S)$ and $E x h_{C}(S)$ both asymmetrically entail S.

Then:
$E x h_{\{O P(S)\}}\left(O P\left[E x h_{C}(S)\right]\right)$ entails $E x h_{\{O P(S)\}}\left(O P\left[E x h_{C}(S)\right]\right)$

Proof:

a) $\left[\operatorname{Exh}_{\{\mathrm{OP}(\mathrm{S})\}}\left(\mathrm{OP}\left[\operatorname{Exh}_{\mathrm{C}}(\mathrm{S})\right)\right] \Leftrightarrow\left[\mathrm{OP}\left[\operatorname{Exh}_{C}(\mathrm{~S})\right] \wedge \neg \mathrm{OP}[(\mathrm{S})]\right]\right.$
(because $E x h_{C}(S)$ asymmetrically entails S and $O P$ is DE) ${ }^{51}$
b) $\left[\operatorname{Exh}_{\{\mathrm{OP}(\mathrm{S})\}}\left(\mathrm{OP}\left[\mathrm{Exh}_{\mathrm{C}^{\prime}}(\mathrm{S})\right)\right] \Leftrightarrow \mathrm{OP}^{\left(\mathrm{Exh}_{\mathrm{C}},(\mathrm{S})\right] \wedge \neg \mathrm{OP}[(\mathrm{S})]}\right.$
(because $E x h_{C} \cdot(S)$ asymmetrically entails S and $O P$ is DE)
Since $I-E\left(S, C^{\prime}\right) \subset I-E(S, C), E x h_{C}(S)$ entails $E x h_{C}(S)$. Since $O P$ is DE, $O P\left[E x h_{C}(S)\right] \wedge \neg O P[(S)]$ entails $O P\left[E x h_{C}(S)\right] \wedge \neg O P[(S)$. Given a) and b), $E x h_{\{O P(S)\}}\left(O P\left[E x h_{C}(S)\right]\right)$ entails $E x h_{\{O P(S)\}}\left(O P\left[E x h_{C}(S)\right]\right)$.
(ii) Context: Student comes in late to class.

Teacher: What do you need to do to get a grade?
Student: To hand in some of the homework.
Teacher. No. You don't need to hand in some of the homework. You need to hand in some of the homework and attend every single class.
${ }^{50}$ See footnote 47.
${ }^{51}$ Strictly speaking, this will hold in full generality only if the DE-operator is 'strongly DE ', in the following sense: an operator $O p$ is strongly $D E$ if, whenever x asymmetrically entails $y, O p(y)$ asymmetrically entails $O p(x)$. All the DE-operators we consider (and maybe all DE-operators in natural languages) happen to be strongly DE.

10. Further Predictions

What we've seen in section 9 is that there is a natural generalization of our economy condition [(85) and (86)] which (together with certain auxiliary assumption motivated independently for the theory of focus) derives the IFG. In this section, we would like to draw additional predictions that follow from this derivation. The predictions, unfortunately, are not always very easy to test. So there is a lot of work that still needs to be done in order to properly assess our proposal in this domain. It might be useful to state the obvious here, namely that this paper (like any other) should not be taken as a "package deal". It is possible, for example, that we are right in our approach to problems \#2 and \#3 and that Horn is right in the account of the IFG (see section 6 above). And there are of course many other choice point worth exploring (see note 52)

10.1 exh \neg exh

The combination of Minimize Focus!, Association with Focus, and our economy condition ensures that whenever an exhaustivity operator occurs under the scope of an unembedded DE-operator, another exhaustivity operator must be present. We thus predict that whenever an embedded SI is computed under the scope of a non-embedded DEoperator, some additional, non-embedded, SI should be computed as well.

In particular, as discussed in section 6 and 7.3, it is predicted that an exclusive construal of disjunction just under the scope of an unembedded negation should always yield a conjunctive interpretation:

$$
\begin{equation*}
\operatorname{Exh}[\neg[\operatorname{Exh}(p \text { or } q)]=p \& q \tag{89}
\end{equation*}
$$

A similar prediction is made for structures that result from replacing disjunction in (89) with other scalar items that have stronger alternatives. Namely, if S is a sentence with alternative $\mathrm{S}+$ (where $\mathrm{S}+$ asymmetrically entails S), we have:

$$
\begin{equation*}
\operatorname{Exh}_{\{[-S\}}\left[\neg\left[\operatorname{Exh}_{\{S+\}}(S)\right]=S+\right. \tag{90}
\end{equation*}
$$

To be more concrete, we predict that a sentence such as (91) below cannot be interpreted as equivalent to (92)a, even if an embedded scalar implicature is present. Rather, an exclusive construal of the embedded disjunction should always lead to a conjunctive interpretation, as in (92)b:
(91) Jack didn't talk to Mary OR Sue
a. Jack didn't [talk to Mary or Sue but not both]
$=$ Jack talked to either both Mary and Sue or neither Mary nor Sue
b. Jack talked to both Mary and Sue.

Before testing this prediction, let us contrast this case with a similar case, in which an exhaustivity operator also occurs in the scope of a DE operator, but the DE operator is
not simply negation, but a negative quantifier. Thus consider the following kind of structure, where S is a one-place predicate and $\mathrm{S}+$ is an alternative of S stronger than S :

$$
\begin{equation*}
\mathrm{EXH}_{\left\{\mathrm{Nox}_{\mathrm{S}(\mathrm{x})\}}\right.}\left[\mathrm{Nox}^{\left(\mathrm{EXH}_{\{\mathrm{S}+(\mathrm{x})\}}\right\}}(\mathrm{S}(\mathrm{x}))\right] \tag{93}
\end{equation*}
$$

A concrete instantiation of (93) is the following:
(94) $\mathrm{EXH}_{\text {\{No student studies phonology or morphology\} }}$ [No student $\mathrm{EXH}_{\text {\{studies phonology and morphology\} }}$ (studies phonology OR morphology)]

Let us compute the meaning of (93):

$$
\begin{align*}
& \mathrm{EXH}_{\left\{\operatorname{Nox~}_{\mathrm{S}(\mathrm{x})\}}\right\}}\left[{\operatorname{Nox}\left(\mathrm{EXH}_{\{\mathrm{S}+(\mathrm{x})\}}(\mathrm{S}(\mathrm{x}))\right]=}_{\mathrm{EXH}_{\{\operatorname{Nox}(\mathrm{x})\}}\left[\operatorname{Nox}^{(\mathrm{S}(\mathrm{x}) \& \neg S(\mathrm{x}))]=}\right.}^{\text {For no } \mathrm{x}(\mathrm{~S}(\mathrm{x}) \& \neg S+(\mathrm{x})) \& \text { for some } \mathrm{x} \mathrm{~S}(\mathrm{x})=}\right. \tag{95}\\
& \text { For no } \mathrm{x}(\mathrm{~S}(\mathrm{x}) \& \neg S+(\mathrm{x})) \& \text { for some } \mathrm{x}, \mathrm{~S}+(\mathrm{x})
\end{align*}
$$

Applied to (94), this yields the following reading:
(96) No student studies phonology or morphology but not both, and at least one student studies both.

Importantly, then, (94) (contrary to the previous case) is not expected to trigger a 'conjunctive interpretation'; more precisely, it is not expected to entail that every student studies both phonology and morphology.

What are the facts? Consider first the following contrast:
(97) Nurse: The boy looks bad. Why is that?

Doctor: He didn't take Tylenor OR Advil as he was supposed to. He took both pills.

Doctor': He didn't take Tylenor OR Advil as he was supposed to. \#He took both pills or none of them.

Both replies (from Doctor and Doctor') in (97) are expected to force an exclusive construal of the embedded disjunction, in order for the overall discourse to be coherent. But the last sentence in Doctor's reply is pragmatically incompatible with the conjunctive interpretation that we predict [because the last sentence - `he took both pills or none of them' - suggests that the speaker does not know which of the disjuncts is true]. Given our prediction that an exclusive construal of disjunction forces a conjunctive
reading, Doctor''s reply is expected to be odd. In contrast with this, we do not predict that the following should be odd: ${ }^{52}$
(98) Nurse: All of the patients look bad. What happened?

Doctor: None of them took Tylenor OR Advil as they were supposed to. Every single patient took both of the pills or none of them.

While the facts are pretty subtle, the speakers we consulted detect a contrast in the predicted direction both between Speaker A and Speaker A's replies in (97), on the one hand, and between Speaker A's reply and (98), on the other hand.

10.2. Gajewski and Sharvit

We also make relatively complex predictions pertaining to Problem \#2, namely Gajewski and Sharvit's observation that a Hurford Disjunction is infelicitous in DE-contexts. In section 5., we pointed out that our Economy Principle prevents a Hurford Disjunction from occurring in a DE-context. But we ignored the possibility that DE-ness can be disrupted by an additional matrix exh, as it does in our account of the IFG.

As we will see shortly the predictions are rather nuanced. Our current economy condition turns out to allow Hurford Disjunctions to occur in such structures, but only under very special circumstances. To a certain extent, this will prove to be a good feature of our account, since we will see systematic exceptions to the generalization that are predicted. However, our account will nevertheless appear to be too liberal, licensing sentences which are in fact deviant. We will start with what we think are good predictions, pertaining to Distant Entailing Disjuncts. Then, we will consider problematic consequences: it will turn out that all Hurford Disjunctions which appear to occur in DEcontexts should in principle be able to 'saved' by the presence of a matrix exh, if this matrix exh is associated with a very specific set of alternatives. We will not have a solution for this problem but will sketch a possible strategy for addressing it.

10.2.1. Distant Entailing Disjunctions

In this sub-section, we show that EC (both on its incremental and its global version) predicts Hurford Disjunctions to be able to occur in the scope of (apparently unembedded) negation if the disjunction involves Distant Entailing Disjuncts. That this is a correct prediction is illustrated, we think, by the coherent reply in (99)b (and its contrast with the original examples of Gajewski and Sharvit):
(99) a. I was told that at the beginning of each academic year you have a party for the first year students alone, or one for all the students (first, second and third year).

[^23]b. That's not always true. This year, I will not invite the first year students or all of the students. I will invite the first year students and the second year students.

This is to be compared with a minimally different dialogue with an embedded Hurford Disjunction that does not involve DEDs, as in (100). Our approach predicts (100)b to sound less good than (99)b.
(100) a. I was told that at the beginning of every year you have a party with your colleagues and just the first year students, or one with your colleagues and the first and second year students.
b. \# That's not always true. This year, I will not invite the first year students or the first and second year students. I will only invite my colleagues.

To see that (99)b can, indeed, meet our economy condition, consider the following parse: ${ }^{53}$
(101) $\operatorname{exh}_{\{- \text {-(we will invite the } 1 \text { st year students or all of the students }\}}\left(\neg \operatorname{exh}_{\{\text {we will invite the }}\right.$ 2nd year students\} (we will invite the first year students) or we will invite all of the students)

Let us schematize this structure as follows:

```
exh{(FIRST OR ALL)}
```

The meaning of the prejacent of the matrix exhaustivity operator is the following:

$$
\begin{align*}
& \left(\neg \operatorname{exh}_{\{\text {SECOND }\}}(\text { FIRST }) \text { or ALL }\right) \tag{103}\\
& \quad=\neg[(\text { FIRST } \& \neg \text { SECOND }) \text { or ALL }]
\end{align*}
$$

The only alternative to this prejacent is \neg (FIRST OR ALL), which is equivalent to \neg FIRST. Now, \neg FIRST is not entailed by the prejacent (i.e. by (103)), hence is innocently excludable. So the overall predicted meaning of (102) is as follows:

$$
\begin{align*}
& \neg[(\text { FIRST } \& \neg \text { SECOND }) \text { or ALL }] \& \neg \neg \text { FIRST } \tag{104}\\
& \quad=\text { FIRST } \& \text { SECOND } \& \neg \text { ALL } \\
& \quad=\text { We will invite the first and second year students but not all of the } \\
& \\
& \text { students. }
\end{align*}
$$

Given this result, it is clear that the matrix exhaustivity operator meets our economy condition, on both its global and its incremental version: its alternative set contains only one member, which is innocently excludable, and it is therefore not

[^24]globally weakening, hence also not incrementally weakening (recall that if an occurence of exh is globally non-weakening, it is also incrementally non-weakening). We now only need to check that the embedded exh is also globally non-weakening (hence incrementally non-weakening). So let us compute the meaning of the structure that results from (102) by replacing the alternative set of the embedded exh with the empty set.
(105) Resulting reading if the lower exh were associated with an empty alternative set:
\[

$$
\begin{aligned}
\operatorname{exh}_{\{-(\text {FIRST OR ALL })\}} & \left(\neg \operatorname{exh}_{\varnothing}(\mathrm{FIRST}) \text { or ALL }\right) \\
= & \neg(\text { FIRST or ALL })=\neg \text { FIRST } \\
& \gg \quad \text { does not entail }(104)
\end{aligned}
$$
\]

(The crucial point here is that the alternative for the matrix exh is equivalent to its prejacent, hence not excludable).

Since (105) does not entail (104), the lower exh in (102) meets our economy condition. Since both occurrences of exh in (102) meet the condition, (102) is licensed, which, by the judgments of the people we consulted with, is the desired result.

10.2.2. Non Distant Entailing Disjunctions -- First Pass

Consider now the feature of the structure in (102) that is responsible for our account of its acceptability. The reason why the higher exh is not weakening is that its alternative is not entailed by its prejacent. And the reason why this is so is that the embedded exh is itself not vacuous within the embedded Hurford Disjuction, which involves DEDs: thanks to this feature, the embedded Hurford Disjunction happens to be strictly stronger than its first disjunct, so that when negation is added, the result is now strictly weaker than the alternative of the matrix exh, and this alternative can be excluded consistently. The presence of DEDs is thus crucial to this result. To see this in greater detail, let us turn to cases involving non-distant entailing disjuncts (the cases that G\&S focused on):

First consider the following structure:
(106) $\operatorname{exh}_{\{-(\text {we will invite some or all of the students }\}} \checkmark\left[\left[\operatorname{exh}_{\{(\text {we will invite all of the students) })}\right.\right.$ (we will invite some of the students)] or we will invite all of the students)[

The Hurford disjunction embedded under negation is equivalent to `we will invite some of the students', i.e. to the negation of the alternative associated with the higher exh. It follows that the higher exh is globally vacuous, hence globally weakening. The higher exh is also incrementally weakening, since it applies to the whole sentence (hence nothing follows the argument of exh in the sentence).

But to explain the unacceptability of the sentence, we need a more general result. Specifically, we need to show that there is no choice of alternatives for both exhaustivity operators satisfying both Hurford's Constraint and our economy condition. That is, we need to rule out the structure in (107), for any choice of C and C' satisfying Hurford Constraint (as long as the two disjuncts are not DEDs, in which case we are back to the previous case).
(107) $\operatorname{exh}_{C} \neg\left[\left[\mathrm{exh}_{C^{\prime}}\right.\right.$ (we will invite some of the students)] or we will invite all of the students)]

We will start by seeing that the global version of our economy condition delivers this result. In other words, we will see that the global version is able to account both for the cases that obey Gajewski and Sharvit's generalization and for the exceptions that we have just noted. Let us assume that C^{\prime}, the alternative set for the lower exh, includes the alternative We will invite all of the students, which ensures that the disjunctive phrase embedded under negation satisfies Hurford's Constraint. (We also assume that no alternative using an intermediate scale-mate of `some' and `all', e.g. 'many' is present, since otherwise the two disjuncts would be DEDs. $)^{54}$ We can thus schematize (107) as follows:

$$
\begin{equation*}
\operatorname{exh}_{\mathrm{C}} \neg\left[\mathrm{exh}_{\mathrm{C}^{\prime}=\{\mathrm{ALL}, \mathrm{~b} 1, \ldots, \mathrm{bn}\}}(\mathrm{SOME}) \text { or ALL }\right] \tag{108}
\end{equation*}
$$

Now, let us assume that the higher exh is not weakening, i.e. that C contains at least one excludable alternative. Let a_{1}, \ldots, a_{n} be the excludable alternatives contained in C. The meaning of (108) is as follows, where b_{1}, \ldots, b_{j}, ALL are the innocently excludable member of C^{\prime} :

$$
\begin{align*}
& \neg\left[\left(\text { SOME } \& \neg \mathrm{~b}_{1} \& \ldots \& \neg \mathrm{~b}_{\mathrm{j}} \& \neg \text { ALL }\right) \text { or ALL }\right] \&\left[\neg \mathrm{a}_{1} \& \ldots \& \neg \mathrm{a}_{\mathrm{n}}\right] \tag{109}\\
&=\neg\left[\text { SOME } \& \neg \mathrm{~b}_{1} \& \ldots \& \neg \mathrm{~b}_{\mathrm{j}}\right] \&\left[\neg \mathrm{a}_{1} \& \ldots \& \neg \mathrm{a}_{n}\right]
\end{align*}
$$

Now, for the lower exh to be globally non-weakening, each innocently excludable member of C ' should be such that removing it does not result in a stronger overall reading. We note that in the absence of the higher exh, each (excludable) member of C' above would have a weakening effect (because the lower exh would be in a DE context). The only way an excldable member of C' can manage to be globally non-weakening is if it plays a role in making the higher exh itself non-weakening. In other words, the only way the lower exh could manage to be globally non-weakening would be a case where, for every excludable member x of C^{\prime}, at least one excludable member of C would fail to be innocently excludable if x were removed from $\mathrm{C}^{\prime}{ }^{55}$ One of the members of C^{\prime} is $A L L$, but note that this particular alternative has no effect on the meaning of the embedded Hurford Disjunction. Hence it has also no effect on the meaning of the prejacent of the higher exh: if we remove it, the set of excludable alternatives for the higher exh is bound to remain exactly the same as before. Therefore, the presence of $A L L$ in C^{\prime} violates the global version of our economy condition.

10.2.3. Non-Distant Entailing Disjunctions and incrementality

[^25]We will now point out a problem for our proposal, namely that the incremental version our economy condition does not predict Gajewski and Sharvit's observations to hold for any choice of alternatives. For some (perhaps unnatural) choices of alternatives, a structure such as (107), even though it violates the global version of EC, meets the incremental version. Let us right away display a case with this property, in a schematic form. Consider the following structure, where x is logically independent of both s and s^{+}, s and $s+$ are (adjacent) members of a scale, $s+$ stronger than s [for instance: $s=$ 'we will invite some of the students', $s+=$ 'we will invite all of the students', and $x=$ 'we will invite the professors']
(110) $\operatorname{exh}_{\{\operatorname{NOT}(\text { s or } \mathrm{x})\}} \operatorname{NOT}\left(\mathrm{exh}_{\left\{\mathrm{s}^{+}\right\}}(\mathrm{s})\right.$ or $\left.\mathrm{s}^{+}\right)$

In this structure the lower exh is not incrementally weakening. ${ }^{56}$ To show this, it is sufficient to show that there is at least one continuation of (110) at the point of occurrence of s (i.e. the prejacent) in which the lower exh is not globally weaning. Here is one such continuation:

```
(111) exh {NOT (s or x)}
    = NOT((s & NOT(s+)) or x) & (s or x)
    = s+&NOT(x)
```

Compare (111) with what happens when you eliminate the lower 'exh' in (110) :
(112) $\operatorname{exh}_{\{\text {NOT (s or x)\}}} \operatorname{NOT}($ s or x$)$

$$
\begin{aligned}
& =\operatorname{NOT}(\mathrm{s} \text { or } \mathrm{x}) \\
& =\operatorname{NOT}(\mathrm{s}) \text { and } \operatorname{NOT}(\mathrm{x})
\end{aligned}
$$

Since (112) does not entail (111), the lower 'exh' is not globally weakening in (111), hence is not incrementally weakening in (110).

What about the matrix exh? As mentioned above, for the matrix exh, incremental weaking and global weakening are equivalent. We thus need to show that the higher exh is not globally weakening in (110). Now, (110) has the following meaning:
(113) $\operatorname{exh}_{\{\mathrm{NOT}(\mathrm{s} \text { or } \mathrm{x})\}} \mathrm{NOT}\left(\mathrm{exh}_{\{\mathrm{s}+\}}\right.$ (s) or $\mathrm{s}+$)

$$
=\operatorname{NOT}((\mathrm{s} \& \text { NOT-s+ }) \text { or } \mathrm{s}+) \&(\mathrm{~s} \text { or } \mathrm{x})
$$

$$
=\operatorname{NOT}(\mathrm{s}) \&(\mathrm{~s} \text { or } \mathrm{x})
$$

$$
=\operatorname{NOT}(\mathrm{s}) \& x
$$

Eliminating the higher 'exh' yields:
(114) $\operatorname{NOT}\left(\operatorname{exh}_{\{s+\}}(\mathrm{s})\right.$ or $\left.\mathrm{s}^{+}\right)$

[^26]$=$ NOT(s)
Since (114) does not entail (113), the higher exh is not globally weakening. We conclude that neither the lower nor the higher exh is incrementally weakening in (110), i.e. that (110) meets the incremental version of EC [note that the fact that x is logically independent of both s and $s+$ is crucial: if x were entailed by s^{+}(whether or not it were also entailed by s), then $s+\& N O T(x)$ would be contradictory, and thus would not be the meaning of (111). If x entailed s (whether or not it also entailed $\mathrm{s}+$), then $N O T(x) \& s x$ would be contradictory, hence could not be the meaning of (113) - the higher exh would in be vacuous in (113)].

One can wonder whether this prediction is right, i.e. whether Gajewski \& Sharvit's generalization is in fact obviated for some particular choices of alternatives. This is not easy to determine, because it is hard to come up with a context, which would make the alternative for the higher exh (s or x) relevant. ${ }^{57}$ At this point, we could argue that we still predict that Gajewski and Sharvit's observation holds when the choice of possible alternatives is restricted to 'natural' alternatives.

We thus find ourselves in a complicated situation. On the one hand, the global version of our economy condition (unlike the incremental version) does a good job at predicting when a Hurford Disjunction is licensed under the scope of negation, as shown in the previous section. Specifically, it correctly predicts that a Hurford Disjunction is not licensed under the scope of negation unless it involves Distant Entailing Disjuncts. On the other hand, the global economy condition makes wrong predictions for Hurford Disjunctions that occur in upward-entailing contexts, since it rules out all Hurford Disjunctions that do not involve DEDs, even in upward-entailing contexts. This is why we resorted to the incremental version to begin with. One might wonder whether there could be a reason why the global version is relevant for some cases but not others.

We would like to tentatively sketch a perspective that could help us make sense of this fact. Note that the reasoning whereby (110) was shown not to violate our economy condition is fairly complicated. In particular, in order to take into account the incremental aspect of our economy condition, one has to manage to find a continuation in which the lower exh is not globally weakening. In the cases we have considered in section 4 (e.g. unembedded Hurford Disjunctions in the canonical order), it was easy to see that an occurrence of exh, though globally weakening, was not incrementally weakening, because there were many 'continuations' in which exh was not globally weakening, and these continuations were not hard to find (it was sufficient to replace the second disjunct with an arbitrary disjunct that was logically independent of the first disjunct). In the case of (110), however, things are different: in these cases, only very specific continuations are such that both occurrences of exh were not weakening. This in itself could be sufficient in order to explain why Gajewski \& Sharvit's observation seems to hold.

[^27]More generally, we should ask under which conditions the consequences of our economy condition, as we stated it, are tractable for speakers/hearers. Because of its incremental aspect, in order to make sure that an exhaustivity operator is ruled out, the economy condition instructs us to consider all the possible relevant continuations. But this, of course, is an impossible task in the literal sense, because there are infinitely many such continuations. In the cases we considered, it was possible to give a proof that the relevant occurrence of the exhaustivity operator was globally weakening in every continuation, without going through each individual continuation. But it is not obvious that individual grammars include an internalized proof system that could generate such a proof for all the relevant cases. Rather, we would like to suggest that the economy condition might be implemented in the following way. Whenever an exhaustivity operator is encountered, it needs a motivation. A motivation would be satisfied by a demonstration of some continuation, under which the relevant occurance of exh is not globally weakening (in the relevant sense). What is needed then is at least one continuation that would make exh not globally weakening. If the relevant algorithm that implements Economy finds such a continuation, then exh is licensed. If not, exh is not licensed and the parser reanalyzes the structure being parsed as one in which exh does not occur in the relevant position (or equivalents one in which exh has an empty st of alternatives as a restrictor).

If this is how Economy is implemented, there may well be cases where there exists a continuation making a given occurrence of exh non-weakening, but the relevant parse is not available. This is particularly likely to happen when only very specific continuations would be able to meet Economy, such as the ones discussed in this section (Hurford Disjunctions in the scope of negation and a matrix exh). More generally, when an exhaustivity operator occurs in a downward-entailing context, the parser will have a harder time finding a continuation that would satisfy the global economy condition than when the exhaustivity operator occurs in a UE-context (in which case most continuations in fact satisfy the global economy condition). We might thus expect to find an asymmetry between UE and DE environments, whereby people's judgments will tend to correspond to the predictions made by the incremental version of our economy condition in UE environments, but would be closer to the predictions made by the global version in DE environments.

11. Conclusion

In earlier work we've argued that Hurford Disjunctions make it rather clear that embedded Implicatures exists. However, it is fairly clear that Implicatures cannot be embedded in every possible position. We presented a condition which imposes very clear restrictions on the positions where Implicatures can be embedded. Naturally, we do not expect this to be to the complete story. We hope, however, that it is a reasonable starting point.

REFERENCES

Alonso-Ovalle, L. 2006. Disjunction in alternative semantics: University of Massachusetts at Amherst dissertation.

Alonso-Ovalle, Luis. 2008. Innocent Exclusion in an Alternative Semantics. Natural Language Semantics 16(2): 115-128.
Beaver, D., and B. Clark. 2000. "Always" and 'Only': Why Not All Focus Sensitive Operators Are Alike." Ms., Stanford University.
Breheny, Richard. 2008. A new look at the semantics and pragmatics of numerically quantified noun phrases. Journal of Semantics, 25(2), 93-139.
Chemla, Emmanuel. To appear. "Similarity: Towards a Unified Account of Scalar Implicatures, Free Choice Permission and Presupposition Projection." Semantics and Pragmatics.
Chemla, Emmanuel and Benjamin Spector, 2011. "experimental evidence for embedded scalar implicatures. Journal of Semantics 28(3), 359-400.
Chierchia, Gennaro, Danny Fox, and Benjamin Spector, 2009. "Hurford's Constraint and the Theory of Scalar Implicatures". In Presuppositions and Implicatures. Proceedings of the MIT-Paris Workshop, Paul Egré \& Giorgio Magri, eds. MIT Working Papers in Linguistics 60, 2009
Chierchia, Gennaro, Danny Fox, and Benjamin Spector. 2012.. "Scalar implicature as a grammatical phenomenon." In P. Portner, C. Maienborn et K. von Heusinger (Eds), An International Handbook of Natural Language Meaning, vol 3, 2297-2331. Mouton de Gruyter
Chierchia, Gennaro. 2004. "Scalar Implicatures, Polarity Phenomena, and the Syntax/pragmatics Interface." In Structures and Beyond, ed. Adriana Belletti. Vol. 3. Oxford University Press.
Chierchia, Gennaro. 2006. "Broaden Your Views: Implicatures of Domain Widening and the 'Logicality' of Language." Linguistic Inquiry 37: 535-590.
Cohen, L. J. 1971. "Some Remarks on Grice's Views About the Logical Particles of Natural Language." In Pragmatics of Natural Languages, 50-68. Bar Hillel, Y. Dordrecht: Reidel.
Crnic, L., E. Chemla, and D. Fox (2015). "Scalar Implicatures of Embedded Disjunction," Natural Language Semantics, 23, 4, 271-305.
Dalrymple, M., M. Kanazawa, Y. Kim, S. Mchombo, and S. Peters. 1998. "Reciprocal Expressions and the Concept of Reciprocity." Linguistics and Philosophy 21 (2): 159210.

Fox, D., and R. Katzir. 2011. "On the Characterization of Alternatives." Natural Language Semantics 19 (1): 87-107.
Fox, Danny, and Martin Hack1. 2007. "The Universal Density of Measurement." Linguistics and Philosophy 29: 537-586.
Fox, Danny. 2004. "Implicatures and Exhaustivity - Class 4." http://web.mit.edu/linguistics/people/faculty/fox/class 4.pdf
Fox, Danny. 2007a. "Free Choice and the Theory of Scalar Implicatures." In Presupposition and Implicature in Compositional Semantics, ed. Penka Stateva and Uli Sauerland. Palgrave-Macmillan.
Fox, Danny. 2007b. "Too Many Alternatives: Density, Symmetry, and Other Predicaments." In Proceedings of Semantics and Linguistic Theory 17. Vol. 17.
Fox, Danny. 2008. "Two short notes on Schlenker's theory of presupposition projection". Theoretical Linguistics 34 (3): 237-252

Fox, Danny, 2014. "Cancelling the Maxim of Quantity: Another challenge for a Gricean theory of Scalar Implicatures". Semantics and Pragmatics 7(5): 1-20. Doi: 10.3765/sp.7.5

Franke, Michael, 2011. "Quantity implicatures, exhaustive interpretation, and rational conversation". Semantics and Pragmatics, 4(1):1-82. Doi: 10.3765/sp.4.1
Gajewski, J., and Y. Sharvit. 2012. "In Defense of the Grammatical Approach to Local Implicatures." Natural Language Semantics 20 (1): 31-57.
Gamut, L. T. F. 1991. Gamut, LTF: Logic, Language, and Meaning, Volume 1. Vol. 1. University of Chicago Press.
Gazdar, Gerald. 1979. Pragmatics: Implicature, Presupposition and Logical Form. Academic Press, New York.
Geurts, Bart. 2009. "Scalar implicature and local pragmatics". Mind \& Language, 24(1), 51-79.
Geurts, Bart. 2011. Quantity Implicatures. Cambridge Univ Press.
Geurts, Bart \& Nausicaa Pouscoulous. 2009. "Embedded Implicatures?!?" Semantics and Pragmatics 2(4): 1-34
Geurts, Bart \& Bob van Tiel. 2013. "Embedded scalars". Semantics and Pragmatics 2(4). 1-34.
Groenendijk, J., and M. Stokhof. 1984a. "On the Semantics of Questions and the Pragmatics of Answers." In Varieties of Formal Semantics: Proceedings of the Fourth Amsterdam Colloquium, September 1982, 143.
Groenendijk, J., and M. Stokhof. 1984b. "Studies in the Semantics of Questions and the Pragmatics of Answers". University of Amsterdam.
Horn, L. R. "A presuppositional approach to only and even." In Proceedings of the Chicago Linguistic Society, vol. 5, pp. 98-107. 1969.
Horn, L. R. 1972. "The Semantics of Logical Operators in English". Ph. D. thesis, Yale University.
Horn, L. R. 1989. A Natural History of Negation. University of Chicago Press Chicago.
Horn, L. R. 2009. "WJ-40: Implicature, Truth, and Meaning." International Review of Pragmatics 1 (1): 3-34.
Hurford, James. 1974. "Exclusive or Inclusive Disjunction." Foundations of Language 11: 409-411.
Ippolito, M. 2008. "On the Meaning of Only." Journal of Semantics 25 (1): 45-91.
Ippolito, M. 2011. "A Note on Embedded Implicatures and Counterfactual Presuppositions." Journal of Semantics 28 (2): 267-278. doi:10.1093/jos/ffq019.
Katzir, R. 2007. "Structurally-defined Alternatives." Linguistics and Philosophy 30 (6): 669-690.
Katzir, 4. 2013. "A note on contrast". Natural language semantics 21(4), 333-343, 2013
Katzir, R. 2014. "On the roles of markedness and contradiction in the use of alternatives". In Pragmatics, Semantics and the Case of Scalar Implicatures (pp. 4071). Palgrave Macmillan UK.

Katzir, R. and R. Singh (2013). "Hurford disjunctions: embedded exhaustification and structural Economy," In Sinn und Bedeutung (SuB) 18, pages 201-216.
Kennedy, Chris. 2013. "A Scalar Semantics for Scalar Readings of Number Words". In Caponigro, I. and C. Cecchetto (eds.), From Grammar to Meaning: The Spontaneous Logicality of Language. Cambridge University Press.

Kennedy, C. 2015. "A 'de-Fregean' semantics (and neo-Gricean pragmatics) for modified and unmodified numerals". Semantics and Pragmatics, 8(10), 1-44.
Klinedinst, Nathan. 2006. "Plurality and Possibility". PhD Dissertation. UCLA.
Krifka, Manfred. 1993. "Focus and Presupposition in Dynamic Interpretation." Journal of Semantics 10 (10): 269-300.
Landman, Fred. 1998. "Plurals and Maximalization." In Events and Grammar, ed. S. Rothstein. Kluwer, Dordrecht.
Levinson, S. C. 2000. Presumptive Meanings: The Theory of Generalized Conversational Implicature. The MIT Press.
Magri, Giorgio, 2009. "A Theory of Individual-level Predicates Based on Blind Mandatory Scalar Implicatures." Natural Language Semantics 17 (3): 245-297.
Magri, Giorgio, 2011. "Another argument for embedded scalar implicatures based on oddness in downward entailing environments." Semantics and Pragmatics, 4, Article 6: 1-51.
Mandelkern, M and J. Romoli, to appear, "Parsing and Presuppositions in the Calculation of Local Contexts". Semantics and Pragmatics.
Meyer, Marie-Christine, 2013. Ignorance and grammar. PhD diss., Massachusetts Institute of Technology.
Meyer, Marie-Christine, 2014, "Grammatical Uncertainty Implicatures and Hurford's Constraint". Talk given at SALT 2014.
Rooij, Robert van, and Katrin Schulz. 2004. "Exhaustive Interpretation of Complex Sentences." Journal of Logic, Language and Information (13): 491-519.
Rooij, Robert van and Katrin Schulz. 2006. "Only: Meaning and implicatures". In Maria Aloni, Alistair Butler \& Paul Dekker (eds.), Questions in dynamic semantics (Current Research in the Semantics/Pragmatics Interface 17), 193-223. Amsterdam and Singapore: Elsevier.
Rooth, M. 1985. "Association with Focus." PhD diss, Cornell, available at http://ecommons.library.cornell.edu/handle/1813/28568.
Rooth, M. 1992. "A Theory of Focus Interpretation." Natural Language Semantics (1): 75-116.
Russell, Benjamin. 2006. "Against Grammatical Computation of Scalar Implicatures." Journal of Semantics 23 (4): 361.
Russell, Benjamin. 2011. Topics in the Computation of Scalar Implicatures. PhD diss., Brown University.
Sauerland, U. 2012. "The Computation of Scalar Implicatures: Pragmatic, Lexical or Grammatical?" Language and Linguistics Compass 6 (1): 36-49.
Sauerland, Uli. 2004. "Scalar Implicatures in Complex Sentences." Linguistics and Philosophy 27 (3): 367-391.
Schlenker, P. 2008. "Be Articulate: A Pragmatic Theory of Presupposition Projection." Theoretical Linguistics 34 (3): 157-212.
Schlenker, P. 2009. "Local Contexts". Semantics and Pragmatics 2 (3): 1-78.
Schulz, Katrin Robert van Rooij. 2006. "Pragmatic Meaning and Non-monotonic Reasoning: The Case of Exhaustive Interpretation." Linguistics and Philosophy 29 (2): 205-250.
Schwarzschild, Roger. 1997. "Why Some Foci Must Associate". Rutgers, Ms., Available at http://semarch.linguistics.fas.nyu.edu/Archive/WZjNGRmN/schwarzschild.why.pdf

Schwarzschild, Roger. 1999. "Givenness, AvoidF and Other Constraints on the Placement of Accent." Natural Language Semantics 7 (2): 141-177.
Sevi, Aldo. 2009. Exhaustivity: A Semantic Account of"Quantity"Implicatures. VDM Verlag Dr. Müller.
Singh, Raj. 2008a. "Modularity and Locality in Interpretation". Doctoral dissertation, MIT.
Singh, Raj. 2008b. "On the Interpretation of Disjunction: Asymmetric, Incremental, and Eager for Inconsistency." Linguistics and Philosophy 31 (2): 245-260.
Spector, Benjamin. 2003. "Scalar Implicatures: Exhaustivity and Gricean Reasoning." In Proceedings of the Eigth ESSLLI Student Session, ed. Balder ten Cate. Vienna, Austria.
Spector, Benjamin. 2006. "Aspects De La Pragmatique Des Opérateurs Logiques". Université Paris 7.
Spector, Benjamin. 2007. "Scalar Implicatures: Exhaustivity and Gricean Reasoning." In Questions in Dynamic Semantics, ed. Maria Aloni, Paul Dekker, and Alastair Butler.
Vol. 17. Current Research in the Semantics/Pragmatics Interface. Elsevier.
Spector, Benjamin. 2013. "Bare Numerals and Scalar Implicatures." Language and Linguistics Compass. 7(5): 273-294.
Spector, Benjamin. 2014a. "Global Positive Polarity Items and Obligatory Exhaustivity".
Semantics and Pragmatics 7(11):1-61. Doi: 10.3765/sp.7.11.
Spector, Benjamin. 2014b. "Comparing Exhaustivity Operators". Ms. http://semanticsarchive.net/Archive/jU2YzUwM/MinWorldInnExclSpector.pdf
Winter, Y. 2001. "Plural Predication and the Strongest Meaning Hypothesis." Journal of Semantics 18 (4): 333-365.

[^0]: ${ }^{1}$ The proposals made in this paper were first presented in June 2008 at MIT and have since been presented
 ${ }^{2}$ Additonal challenges involve environments where SIs are obligatory (Chierchia 2006, Magri 2009, Spector 2014a), the connection between SIs and NPI licensing (Chierchia 2004, 2006), to Modularity (Fox 2004, Fox and Hackl 2006, Magri 2009, Singh 2008a), the SIs of sentences in which numerals receive cumulative interpretations (Landman 1998), Free Choice Phenomena (Chemla, to appear, Fox 2007, Franke 2011, Klinedinst 2006), and the relationship between SIs and so-called ignorance inferences (Fox 2014). For a review of some of the material, see Chierchia, Fox \& Spector (2012), section 4.

 It has been often argued that the Neo-Gricean theory is conceptually superior to the grammatical alternative (Horn 2009, Geurts 2011, Sauerland 2012). In our opinion, however, this evaluation is not obvious. It is true that the Neo-Gricean allows for a simpler grammar (in that it avoids the grammatical mechanisms postulated by the grammatical alternative). However, as pointed in Fox 2007, 2014, the cost is a more complicated pragmatics than what can be assumed the moment the grammatical mechanism is introduced.

[^1]: ${ }^{3}$ The overall idea bears obvious resemblance to Chierchia (2004), who claims that SIs are computed locally, but get removed in DE contexts because of a preference for stronger meanings. Our economy condition will retain this idea, with two differences. We do not want to claim that SIs have to be computed locally, and we do not want to entirely rule out EE under DE operators, else we would loose important evidence for EE (See Chierchia, Fox and Spector, 2012).

[^2]: ${ }^{4}$ If this is correct, it means that there is a special definition of C that does not follow from the theory of focus, not an optimal assumption, and one we will revise once we discuss the effects of pitch accent on C.
 ${ }^{5}$ We will use the two terms (Horn Set and Horn Scale) interchangeably. The term Horn Scale is somewhat misleading since (a), as we will see, scalar alternatives need not be totally ordered (i.e., need not form a scale), and (b) the order of the members of the set is irrelevant for SIs; what is relevant is the ordering of the members of $\operatorname{ALT}(\mathrm{S})$ (see Sauerland 2004). We will use the term Horn Scale when we make specific reference to the ordering of the element in the Horn Set, e.g., when we explain (in section 2.1.) why we label certain disjunctions DEDs.
 ${ }^{6}$ The set probably has additional members, e.g., many, most, which we will, for now, ignore.
 ${ }^{7}$ As we progress, we will say more about the way context and grammar interact to determine alternatives, and, at that stage, we will be unable to omit the parameter C.
 ${ }^{8}$ We use strengthen in the weak sense here, meaning simply that $\operatorname{exh}(S)$ always entails S. The two can be equivalent when there are no alternatives to C that get to be excluded. By the simplified definition of exh in (1), equivalence would hold only when S entails all alternatives in C , in which case the application of exh is vacuous.

[^3]: ${ }^{9}$ As discussed in sections 6-9, if exh is inserted above a DE operator the overall environment for yet another exh below the DE operator need not be DE (it could be non-monotonic instead). This will not affect the methodological point about judgments of assent, for which the environment needs to be non-upwardmonotone, but need not be downward monotone.
 ${ }^{10}$ Our main argument for this generalization is based on the rejection of an alternative generalization that suggests itself, the one which is presupposed in Horn's work, namely that any embedding of implicatures requires pitch accent on scalar items.

[^4]: ${ }^{11}$ Note that (10)b does not violate CFS's economy condition mentioned above (below example (8)), since in this case the exhaustivity operator is semantically vacuous.
 ${ }^{12}$ The account of Hurford Constraint developed in Meyer $(2013,2014)$ leads to a different solution to this problem (though not to Problems \#1 and \#3). We do not have the space to discuss this solution here, but hope to return to it in some other occasion.

[^5]: ${ }^{13}$ Two notes are in order. First, the relevant notion of entailment for HC is that of entailment given background presuppositions (e.g., that Paris is in France or that a German Shepard is a dog), so called, "contextual entailment". Second, to simplify the discussion, we will treat all our disjuncts as sentential. This choice is not crucial for our purpose: it would be simple enough to assume non-sentential coordinates, but this, as usual, would require irrelevant complications: i.e., a new flexible type for exh, along with the familiar flexible type for or and a generalized notion of entailment.
 ${ }^{14}$ It is tempting to think of this condition as one that bans redundancy (in the offending disjunctions, the stronger disjunct is redundant). See Katzir and Singh (2013) and Meyer $(2013,2014)$ for a discussion of how this might be achieved. See Singh (2008b) for arguments that the constraint should be strengthened, arguments, which as Singh mentions, do not bear on our conclusions in this section.

[^6]: ${ }^{15}$ Geurts $(2009,2011)$ argues that cases of this sort involve pragmatic strengthening of the scalar item, but views this strengthening as completely distinct from scalar implicature generation. He assumes that a pragmatic 'reconstrual' mechanism can affect the interpretation of lexical items. Sauerland (2012) and footnote 21 of this paper contain arguments that a purely lexical mechanism is not sufficient to cover all the relevant data. Geurts (2011) seems to envision in passing a non purely lexical mechanism that would also be distinct from scalar implicature generation (footnote \#6, p. 184-185), but this mechanism is left entirely unspecified in the case of embedded scalar items. If a non-lexical strengthening mechanism is posited for cases of apparently embedded SIs, it is unclear to us that the resulting theory, once made explicit, will be clearly distinct from one that allows for embedded exhaustification.
 ${ }^{16}$ Recent literature has suggested that numeral might always have an exactly meaning (Breheny 2009, Kennedy 2013, 2015, see Spector 2012 for discussion). If these claims are correct then (18)a would be an irrelevant piece of our argument. It is our impression, however, that there is no escape from the at least meaning being one of the possible meanings for numerals (See Kennedy 2015's use of Partee shifters to weaken the exactly meaning to form an at least meaning). If this impression is correct, it is hard to see how to derive the effect in (18)a on Gazdar's approach.

[^7]: ${ }^{17}$ This effect is observed only when the intermediate member of the scale, namely hot, is taken into account, a highly context-dependent condition. What is important is that the reading we describe here is clearly a possible reading. See section 8 , in which we discuss constraints on the choice of alternatives for exh.
 ${ }^{18}$ We write p^{*} instead of $\operatorname{exh}(\mathrm{p})$ because in some cases the exhaustivity operator that must be introduced in order to break the entailment relation will actually not take scope over p, but over a sub-constituent of p (see Chierchia, Fox and Spector 2009, example 17). p* thus stands for an expression identical to p yet stronger due to the fact that at least one occurrence of exh has been added.
 ${ }^{19}$ The disjunctive phrase in the reversed order q or p, is also going to be called a DED, once we get to Singh's problem. But for now we will focus on the order p or q.

[^8]: ${ }^{20}$ See also Spector (2003), Spector (2006), Sauerland (2004b), Fox (2007b), among others.
 ${ }^{21}$ Note that in this case exhaustification takes place at an intermediate scope site, i.e. within the scope of the matrix disjunction but above "required". For this reason, attempts to salvage the neo-Gricean approach by assuming a process of local lexical enrichment in order to account for apparent cases of embedded SIs fail to account for such cases. Sauerland (2012) mentions additional examples. Consider:
 (i) We are either required to write more that three paper, or more than four (I don't remember). This sentence is easily understood as a disjunctive statement about the minimal writing requirement, a meaning that can only results fro exhaustifying each disjunct above required.
 ${ }^{22}$ As noted by a reviewer, (20) also triggers an ignorance implicature whereby one understands that the speaker does not know whether the students have a choice between doing the reading and doing the reading, or whether they have to do both. We assume here that such ignorance implicatures are not computed within the grammar. See Meyer $(2013,2014)$ for an alternative view, and also footnote 34. ${ }^{23}$ It is not equivalent either to what would result if exh applied to the whole sentence ('exh[$\square(p \vee q) \vee \square(p$ $\& q)]$ '), which, given the definition in (1), would implicate (among others) ' $\neg \square(\mathrm{p} \& \mathrm{q})$ ', i.e. 'we are not required to do both the reading and the homework' (and this is not an available parse, see the discussion in 2.2.1).

[^9]: ${ }^{24}$ This is the definition of Fox (2007), which is very much inspired by Sauerland's algorithm for the computation of SIs. There is a stronger definition of exh, inspired by Groenendijk and Stokhof (1984b), which also does not derive a contradiction in the relevant cases, given in Spector $(2003,2007)$ and van Rooij \& Schulz (2004, 2006), Schulz \& van Rooij (2006). See Spector (2014b) for discussion.

[^10]: ${ }^{25}$ Incremental vacuity is defined in terms of both linear ordering and constituent structure: that is, the only sentences that have to be considered in order to know whether a certain occurrence of exh in a sentence S is incrementally vacuous are those in which some material following exh and its argument is replaced by some other material in a way that respects S 's constituent structure. So, for instance, in the case of a sentence of the form [$\mathrm{X}[\operatorname{exh}(\mathrm{A}) \mathrm{Y}] \mathrm{Z}]$ (where X, Y and Z are constituents), one does not have to consider, in order to determine whether exh is incrementally vacuous, structures like [[X exh(A)] [Y' $\left.\left.\mathrm{Z}^{\prime}\right]\right]$, even though the linear ordering of the occurring lexical items is the same in both structures up to $\operatorname{exh}(A)$. Because the human parser is assumed to make hypotheses about the final constituent structure of a sentence before the sentence has been entirely parsed, it is natural to define the set of "possible continuations" of a sentence at a certain point in sentence processing as the set of sentences consistent with the structure that the parser has assumed at this point (cf. Fox 2008).

 Schlenker's notion of incremental vacuity makes reference only to strings of terminal symbols. Viewing sentences as strings, a continuation of a sentence S at point A can be defined, in Schlenker's approach, as any well-formed sentence S ' which is identical to S up to A. This notion may seem very different from ours. Note, however, that Schlenker applies this notion to a language that includes parentheses, so that strings actually encode constituent structure. In other words, a continuation S' at point A is such that all opening parentheses before A have a corresponding closing parenthesis after A. This makes Schlenker's definition very close to ours (See Schlenker 2009 for discussion). While there is no

[^11]: general equivalence between the definition in terms of strings for a language with parentheses and ours in terms of constituent structure, in practice we have not found a case where it makes a difference, and in any case it does not make any difference for the example sentences we discuss in this paper.
 ${ }^{26}$ Recall that exh is incrementally vacuous in [s...exh(A)....] if and only if it is globally vacuous in every sentence S^{\prime} obtained by replacing a constituent following $\operatorname{exh}(A)$ in S with an arbitrary constituent. Thus if no constituent follows $\operatorname{exh}(A)$, incremental vacuity and global vacuity coincide. See the previous footnote.

[^12]: ${ }^{27}$ This table reflects all our searches (we did not test any other Hurford Disjunction). The numbers we report are those that were returned on December 22, 2014 (we had slightly different numbers in 2012, which we replaced because we did not record the date of our initial queries - the pattern was essentially the same as the one we report here). Examples based on the 'canonical' order are much more frequent than those using the 'reverse order', and the differences we found between the canonical and the reverse order is highly significant, according to a simple sign-test, since in 15 out of 17 cases we found the predicted asymmetry, and the two other cases were ties (Two-tail p-value $=0.0023$, counting the two ties - cases where both orders were equally frequent - as negative). A binomial test comparing the number of observed 'canonical' (785) and 'non-canonical' (247) cases yields a two-tail p-value smaller than 10^{-15}.

[^13]: ${ }^{28}$ See footnote 18.
 ${ }^{29}$ Applying the same recipe to (18)a yields 'John has six or three children', which is also acceptable. But this example is irrelevant, because exhaustification with numerals appears to be insensitive to the economy condition. See Spector (2012).

[^14]: ${ }^{30}$ Out of the blue, the pragmatically strengthened meaning of some seems to be some but not all, rather that some but not most, which is why Horn (1989), among others, assumes that it is possible to ignore intermediate members of a scale. But the parse all or exh(some), interpreted as all or (some but not all), violates our economy condition.

 Strictly speaking, what we therefore predict is a subtle asymmetry between the order exh(some) or all and the order all or exh(some). Both should be acceptable, but in the case of exh(some) or all, exh can be globally vacuous and still meet the economy condition, and the sentence is therefore predicted to be ambiguous between (some but not all) or all (i.e. some) and (some but not most) or all. In the case of all or exh(some), only the reading all or (some but not most) should be possible. It seems, however, that intermediate alternatives need to be sufficiently 'salient' in order to be active, so that accessing this reading is relatively hard, unless the context makes the intermediate member salient, as in (47). Given this, 'all or some' is predicted to sound less felicitous in a context in which, unlike (47), the alternative with 'most' is clearly not relevant - a subtle prediction that might need to be tested in a controlled setting. See Fox \& Katzir (2011) on the role played by relevance in constraining sets of alternatives, and below (section 4.2.2.4) for a similar asymmetry.

[^15]: ${ }^{31}$ Singh 2008a pointed out a problem for our proposal (presented at the time in an MIT talk) that we haven't been able to resolve. Our approach predicts that the Singh's asymmetry should be obviated whenever the relevant disjunction involves Distant Entailing Disjuncts (DEDs). Yet this does not seem to be the case with Hurford disjunctions that do not contain scalar items but referential expressions that can give rise to an exhaustive interpretation. That is, the following contrast is unexpected from our point of view :
 (1) a. \#John solved all the problems or problem \#1.
 b. John solved problem \#1 or all of the problems.
 (1b), at least in certain contexts, behaves like a DED, and is then interpreted as 'John solved problem \#1 and no other problem or solved all the problems'. And yet, (1a), where the ordering of the disjuncts is reversed, seems to us to be odd. We don't have an account for this fact. See Singh (2008a) for relevant discussions.
 ${ }^{32}$ Generally speaking, if an occurrence of exh is not incrementally vacuous in a sentence S , then it is not either incrementally vacuous in $\neg \mathrm{S}$. Since exh is not incrementaly vacuous in $\operatorname{exh}(p$ or q) or (p and q), it is not incrementally vacuous in $\neg[\operatorname{exh}(p$ or q) or (p and $q)]$.

[^16]: ${ }^{37}$ Note however that the following is also acceptable, which might be considered problematic, since here a Hurford Disjunction occurs in the restrictor of a universal quantifier, hence in a DE-context:
 (a) Every student who handed in the first or the second assignment or both failed the class We believe that (a) is not in fact a counterexample to our proposal, because quantifiers tend to trigger a non-vacuity inference according to which their restrictor does not have an empty denotation. If this inference is taken into account, the restrictor of a universal quantifier (or of any other quantifier) no longer qualifies as a DE-context. In fact, a sentence such as (a) strongly suggests that at least one student handed in the first or the second assignment but not both, and at least one student handed in both. Given our assumption that the embedded Hurford Disjunction contains an exhaustivity operator applying to the first disjunct, this is a specific instance of the following generalization: a sentence of the form `every (A or B) is P' triggers the inference that there are some As and there are some Bs. Assuming we can explain how exh can yield this generailation, it will be non-vacuous in (a), since it will be responsible for the fact that the sentence triggers the inference that some students handed in the first or the second assignment but not both.

[^17]: ${ }^{38}$ The relevant notion is of course that of incremental weakening, which is achieved if the DE-operator scoping over the relevant scalar item occurs to its left, as is usually the case in a head initial language. It would be very interesting to investigate head-final languages in this context. Note also that a structure such as That exh(Jack talked to Mary or Sue) is false is expected to meet our incremental economy condition. Even though exh occurs in a DE-context, this fact cannot be 'known' at the point where exh is encountered, but only after the last word has been parsed. However, there does not seem to be a clear contrast between this sentence and It is false that Jack talked to Mary or Sue. This potential problem might be solved by assuming that the incremental component of the economy condition does not only depend on surface linear order, but also on more abstract aspects of linguistic structure which play a role in the order in which constituents are parsed. Schlenker's (2008) account of left-right asymmetries in presupposition projection runs into a somewhat similar problem in cases involving postposed if-clauses (see Mandelkern and Romoli to appear).

[^18]: ${ }^{39}$ In section 10.1, we argue that this conjunctive interpretation is indeed the only possible interpretation when or is interpreted as exclusive under negation.
 ${ }^{40}$ There is a debate regarding the nature of association with focus, which we do not address here; while Schwartzshild (1997) argued that association with focus is always a pragmatic phenomenon, Rooth (1992), Beaver \& Clark (2000), and much subsequent literature argued that it is encoded in the semantics of at least some focus-sensitive expressions (only). In this paper we adopt the latter view, but we think that our proposal could be rephrased in terms of a pragmatic theory of association with focus.

[^19]: ${ }^{41}$ We ignore the fact that only, unlike exh, triggers complex presuppositions (whose exact nature is disputed), as discussed in Horn (1969) and much subsequent work (Van Rooij and Schulz 2006, Ippolito 2008, a.o.).
 ${ }^{42}$ Here we depart from Rooth's own framework, in which the focus-value for any expression E consists of the set of all objects that belong the semantic type of E. In the case of 'or', the predicted focus-value would have been the set of all binary Boolean functions, which is clearly inadequate. There is agreement that the focus value of a scalar term must be further constrained: for instance, it might consist in its Horn- scale. See Katzir (2007) and Fox \& Katzir (2011), in which an alternative proposal is presented which can dispense with Horn-scales.

[^20]: ${ }^{43} \mathrm{AF}$ does not rule out the possibility that the set of alternatives for exh in $\operatorname{exh}(A$ or $B)$ be $\{A, A$ and $B\}$, which would result in a non-attested reading (B and not A). See Fox \& Katzir (2011), Katzir (2014), and Crnic et. al. (2015) for constraints on Pruning of alternatives that would deal with this problem.
 ${ }^{44}$ Schwarzschild's own statement of 'Avoid Focus' is couched differently, as it does not refer to the inclusion relationships between potential focus values, but rather to the number of focus-marked constituents. It is our impression, however, that evidence that has been provided in favor of Schwarzschild's condition can be dealt with by the condition we propose.

[^21]: ${ }^{45}$ Once the potential role of focus is taken at face value, some arguments against the grammatical approach to SIs lose their force. For instance, Ippolito (2011) points out that, in a sentence such as 'John wishes that Mary had eaten some of the cookies', it is hard to understand 'some' as equivalent to 'some but not all'unless 'some' is stressed, as is for instance the case in 'Mary ate all of the cookies. John wishes she had eaten SOME of the cookies'. This, however, provides an argument against embedded implicatures only to the extent that focus on 'some' would not be expected on independent grounds. It turns out that, in the very same context, adding an overt only under the scope of 'wish' also makes it obligatory to stress 'some': 'Mary ate all of the cookies. John wishes she had only eaten SOME of the cookies'. In fact, with or without an overt only, stress on 'some' is expected here to result from the interplay of AF and givenness considerations (Schwarzschild 1999).
 ${ }^{46}$ In the present formulation, broad focus would satisfy MF if the set of active alternatives consisted of members of the focus value under narrow focus along with non-excludable alternatives (that would be in the focus value only under broad focus). We haven't come up with any concrete case where this possibility is realized in a way that threatens our predictions. But we suspect that this is a wrong prediction and would like to suggest the possibility of strengthening MF (in 75 b) by requiring that broader focus be semantically motivated. More specifically, the suggested modification of MF is the following:

[^22]: ${ }^{47}$ In a previous version of this paper, the comparison class included all subsets of C, with no reference to innocently-excludable alternatives. As noted by a reviewer, our original constraint would generally rule out any alternative set that contains non-excludable alternatives. For instance, exhaustifying A or B with respect to the alternative set $\{A, B, A$ and $B\}$ would be disallowed since the alternative set consisting simply of $\{A$ and $B\}$ would yield the same result - and the alternative set $\{A, A$ and $B\}$ would yield a stricly stronger result (see Fox \& Katzir 2011 for an independent constraint ruling out such an alternative set, and also footnote 43). It is not clear that our previous definition creates any problem (after all, exhaustifying just with respect to $\{A$ and $B\}$ would be allowed and would give rise to the desired outcome), but the version we adopt here, though more complex to state, is in many respects more simple to apply and as adequate as far as we can see.
 ${ }^{48}$ There is, however, a complication regarding the treatment of basic Hurford disjunctions and Singh's asymmetry. Given our approach to exhaustification, a sentence such as 'John did some or all of the homework' could satisfy Hurford constraint if it received the following parse: ' $\mathrm{exh}_{\left\{\mathrm{RR}_{\}}\right\}}(\mathrm{SOME})$ or ALL', where R is some proposition that is logically independent of both disjuncts. In this case, the first disjunct is interpreted as 'SOME \& $\neg \mathrm{R}$ ', and is thus not entailed by ALL. Note that in such a case, exh is neither incrementally nor globally vacuous, and we thus expect the reverse order ('John did all or some or the homework') to be fine, under the parse 'ALL or $\operatorname{exh}_{\left\{\mathbb{R}_{\}}\right.}$(SOME)'. In order to rule out such cases, we think

[^23]: ${ }^{52}$ While our informants report a contrast between (97) and (98), some report that (97) is not as bad is it should be. It might be relevant to point out that the conjunctive meaning is not predicted if speakers can parse the sentence with the matrix K operator posited in Meyer (2013, 2014).

[^24]: ${ }^{53}$ Note that even if the potential alternative $A L L$ is taken to be relevant, there is no obligation to include it in the alternative set of either exhaustivity operator, given the constraint suggested in footnote 48 - which states that relevant alternatives can be pruned if the overall meaning determines their truth value.

[^25]: ${ }^{54}$ As noticed in footnote 48, we independently need a constraint that ensures the alternative set C in a Hurford Disjunction such as `exh ${ }_{C}(S O M E)$ or ALL' (be it embedded or not) includes either ALL or some member of the focus value of SOME that is entailed by ALL.
 ${ }^{55}$ Otherwise, the only effect of the lower exh would be to strengthen the negated constituent, i.e. weaken the overall meaning of the sentence. In all the cases we discussed where exh was licensed under negation, this was because the relevant occurence of exh managed to meet the economy condition by 'helping' some other, higher, occurence of exh to be itself non-weakening.

[^26]: ${ }^{56}$ Note that this structure does not violate either Association with Focus or Minimize Focus. The alternative for the higher exh meets both these conditions if the associate of the higher exh is the scope of negation, i.e. $\operatorname{exh}(s)$ or s^{+}, with x an alternative of s^{+}.

[^27]: ${ }^{57}$ We can nevertheless try to construct such a case. Here is our attempt (with $\mathrm{x}=$ he did the reading, $\mathrm{s}=$ he did some of the homework, $\mathrm{s}^{+}=$he did all of the homework).
 (2) a. Question: Did he do the reading, some of the homework or all of the homework? b. Answer. He didn't do some of the homework or all of the homework. He just did the reading.

