Relation Extraction from Clinical Cases for a Knowledge Graph - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Relation Extraction from Clinical Cases for a Knowledge Graph

Extraction de relations dans des cas cliniques pour des graphes de connaissances

Résumé

We describe a system for automatic extraction of semantic relations between entities in a medical corpus of clinical cases. It builds upon a previously developed module for entity extraction and upon a morphosyntactic parser. It uses experimentally designed rules based on syntactic dependencies and trigger words, as well as on sequencing and nesting of entities of particular types. The results obtained on a small corpus are promising. Our larger perspective is transforming information extracted from medical texts into knowledge graphs.
Fichier principal
Vignette du fichier
DOING_2022_relation_extraction.pdf (422.14 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03877015 , version 1 (17-10-2024)

Identifiants

Citer

Agata Savary, Alena Silvanovich, Anne-Lyse Minard, Nicolas Hiot, Mirian Halfeld Ferrari. Relation Extraction from Clinical Cases for a Knowledge Graph. ADBIS (Short Papers) 2022, Sep 2022, Turin (IT), Italy. pp.353-365, ⟨10.1007/978-3-031-15743-1_33⟩. ⟨hal-03877015⟩
273 Consultations
9 Téléchargements

Altmetric

Partager

More