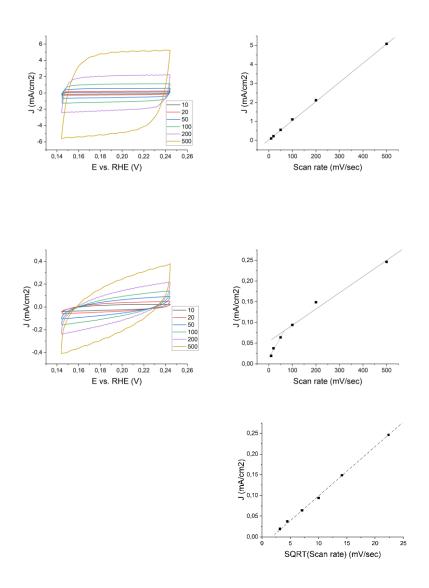
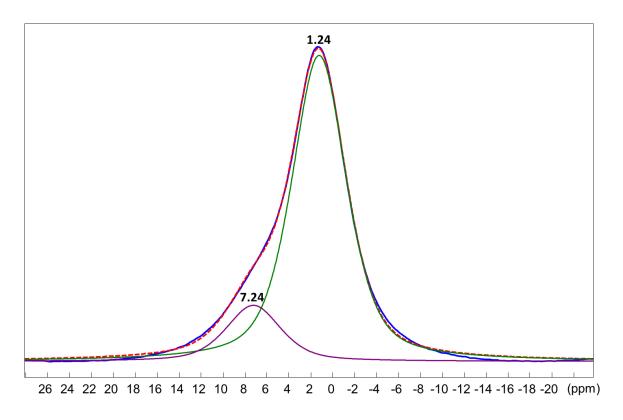
3R-TaS₂ as Intercalation-dependent Electrified Interface for Hydrogen Reduction and Oxidation Reactions


Hamid Ghorbani Shiraz^{*1}, Zia Ullah Khan¹, Daniel Péré², Xianjie Liu¹, Yannick Coppel³, Mats Fahlman¹, Magnus Berggren¹, Radoslaw Chmielowski², Myrtil L. Kahn³, Mikhail Vagin^{*1}, Xavier Crispin¹

¹ Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden.

² Department of Advanced Materials, IMRA Europe S.A.S., 06904 Sophia Antipolis, France.


³LCC-CNRS, University of Toulouse, CNRS, Toulouse, France.

Supplementary information

Fig. S1: CVs, recorded at different scan rate and plots of current density vs. scan rate; (top row) intercalated and (bottom row) pristine sample

Supplementary information

Fig. S2: Deconvolution of the ¹H MAS spectrum of HA-exfoliated TaS_2 highlighting the presence of ammonium species.