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Abstract. In a so-called partial key exposure attack one obtains some
information about the secret key, e.g. via some side-channel leakage. This
information might be a certain fraction of the secret key bits (erasure
model) or some erroneous version of the secret key (error model). The
goal is to recover the secret key from the leaked information.
There is a common belief that, as opposed to e.g. the RSA cryptosystem,
most post-quantum cryptosystems are usually resistant against partial
key exposure attacks. We strongly question this belief by constructing
partial key exposure attacks on code-based, multivariate, and lattice-
based schemes (BIKE, Rainbow and NTRU). Our attacks exploit the
redundancy that modern PQ cryptosystems inherently use for efficiency
reasons. The application and development of techniques from information
set decoding plays a crucial role for achieving our results.
On the theoretical side, we show non-trivial information leakage bounds
that allow for a polynomial time key recovery attack. As an example, for
all schemes the knowledge of a constant fraction of the secret key bits
suffices to reconstruct the full key in polynomial time.
Even if we no longer insist on polynomial time attacks, most of our
attacks extend well and remain feasible up to large erasure and error
rates. In the case of BIKE for example we obtain attack complexities
around 60 bits when half of the secret key bits are erased, or a quarter
of the secret key bits are faulty.
Our results show that even highly error-prone key leakage of modern PQ
cryptosystems may lead to full secret key recoveries.

Keywords: Erasure/Error Model, Asymptotics, Cold Boot Key Recov-
ery.

1 Introduction

Ideally, cryptographic schemes should enjoy robustness against key leakage in the
following informal sense. If a scheme uses n-bit keys and k ă n bits of information
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are leaked, then the scheme should offer the security of pn´kq-bit keys. The LWE
problem is known to provide this leakage robustness property [14]. Therefore, it
is widely believed that modern post-quantum schemes provide a good level of
resistance against computing the secret key from partial information, i.e., against
so-called partial key exposure attacks.

Notice that leakage robustness of a cryptographic problem does not imply
any resistance against side-channel attacks, see e.g. [12]. It just tells us that
the leakage of a certain amount of information does not completely destroy the
problem’s hardness. Moreover, a cryptographic scheme that relies on a leakage
robust problem might not automatically inherit its leakage robustness, since the
scheme may introduce weaknesses, e.g. via additional secret key redundancy.

As a main result, our work shows that a certain amount of side-channel in-
formation (wherever it may come from) suffices to fully recover the secret key in
polynomial time – or from a more practical perspective in reasonable time, say
260 operations – for the post-quantum cryptosystems BIKE, Rainbow, NTRU.
We chose these schemes as representative candidates for code-, multivariate-
and lattice-based cryptography. NTRU, respectively BIKE, is a NIST 3rd round
finalist, respectively alternate, encryption scheme, and Rainbow is a finalist sig-
nature scheme.

Partial Key Exposure Attacks on RSA in the Erasure and Error Model. It is
well-known that RSA does not enjoy leakage robustness. For instance, by a
famous result of Coppersmith [9] an RSA modulus N “ pq can be factored in
polynomial time given only half of the bits of p. Similar results have been shown
for fully recovering the secret key d [7], the RSA plaintext m [9], and also RSA
CRT-exponents [6] from partial knowledge in polynomial time.

All of these attacks are in what we call the erasure model, i.e., we obtain a
certain fraction of the bits, and have to recover the remaining bits. Moreover, the
above mentioned attacks usually require that the known as well as the unknown
bits are in consecutive positions. An erasure model with known bits in random
positions was first addressed by Heninger and Shacham [17].

The erasure model is from a theoretical perspective convenient, because it
usually provides a good starting point for reasoning about algorithms that re-
cover complete secret keys from incomplete information. In practice however,
side-channel analysis often gives us full keys with some faults that stem from
the side-channel’s noisiness. This is what we call the error model, which might
be further refined by its error type.

In the error model Henecka, May, Meurer [16] showed that an RSA secret
key in which bits are randomly flipped with a certain error rate r ! 1

2 can be
recovered in polynomial time. This was further refined by Paterson, Polychro-
niadou, Sibborn [23] introducing asymmetric bit-flip rates, where bits may flip
from 1 to ground state 0 with large error rate p1, whereas the inverse direction
has only small probability p0. Such an asymmetric error accurately models e.g.
the side-channel obtained by Cold Boot Attacks from Halderman et al. [15].
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Previous Work on PQC Partial Key Exposure Attacks. For post-quantum cryp-
tography, in 2017 a first partial key exposure on NTRU was proposed by Pater-
son and Villanueva-Polanco [24], followed by two more attacks from Villanueva-
Polanco on BLISS [28] and LUOV[29]. The PhD thesis of Villanueva-Polanco [25]
contains a more systematic study of partial key exposure attacks also for Rain-
bow and McEliece.

However, the results achieved by Paterson and Villanueva-Polanco seem to
support the strong belief in leakage robustness of post-quantum cryptosystems.
For example considering NTRU, even in the asymmetric error setting their at-
tacks experimentally cannot reach with good success probability rather small
error probabilities p1 “ 0.1 and p0 “ 0.001. Similar for Rainbow, the attack in
[25] only reaches error probabilities of p1 “ 0.001 and p0 “ 0.001 even for toy
Rainbow parameters.

These results stand in quite sharp contrast to our attacks, that handle rela-
tively large erasure/error rates, sometimes even in polynomial time. We see two
main reasons for our substantial improvement over previous work.

First, we heavily use the key redundancy provided by many modern post-
quantum systems to recover secret keys much more efficiently. Key redundancy
has already been exploited by Albrecht, Deo, Paterson [1] by using the NTT
representation of Kyber keys. However, [1] still only tolerates comparatively
small error probabilities around 1%.

Second, we use and further develop more advanced techniques from infor-
mation set decoding and lattices, thereby building on the work of Horlemann,
Puchinger, Renner, Schamberger, Wachter-Zeh [18] for decoding with hints and
the work of Dachman-Soled, Ducas, Gong, Rossi [10] for lattices with hints.
Especially, our new decoding techniques might be of independent interest.

Our results with Polynomial Time Key Recovery. To the best of our knowledge,
our work is the first that achieves polynomial time partial key exposure attacks
on post-quantum cryptosystems for non-trivial erasure/error rates. Our results
are summarized in Table 1.

Polynomial Attacks key format erasure error

BIKE
standard 0.500 logn

?
n

compact 0.092 1
log2 n

Rainbow
first layer n

n`1
logn
n

full key 1?
n

logn
n

NTRU
(un)packed n´ 2

3

?
logn
n

”consecutive” 0.250

Table 1: Summary of (asymptotic) bounds on erasure/error probability for
polynomial-time key recovery.
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Let us briefly discuss our results, what we mean by the different key formats,
and how we exploit key redundancies.

BIKE For BIKE keys we achieve erasure rates of p “ 1
2 (standard) and p “

0.092 (compact). Let ps, eq P Fn{2
2 ˆ Fn{2

2 be a BIKE secret key in standard
format, i.e., ps, eq is given as a bit-vector. Then half of the secret key bits suffice
to recover the full secret key in polynomial time.

This might be surprising at first glance, but a BIKE secret key fulfills an
LWE/LPN-relation As “ e. From this alone one can see that s suffices to effi-
ciently recover e. Our attack now simply shows that any n{2 bits suffice. Thus, in
comparison to LWE/LPN, BIKE secret keys are redundant, since they store the
secret s and the error e. Both parts are required in BIKE for proper decryption
(as opposed to LWE-type schemes).

If ps, eq is stored compactly, i.e., only the few non-zero positions of both
vectors are encoded, then one can only recover the key efficiently given all but
a 0.092-fraction of its bits.

In the error setting, our BIKE results tolerate roughly an 1?
n
-error in the

standard case, i.e. roughly
?
n error positions. However, notice that somewhat

surprisingly the compact case allows for a huge number of n{ log2 n error posi-
tions.

We would like to point out that all of our BIKE results also hold identically
for HQC [21] secret keys.

Rainbow For Rainbow keys, our partial key exposure attacks are even stronger.
This stems from our main observation that a single row of Rainbow’s secret key
matrix suffices to fully recover the first half of the key (labeled as ”first layer” in
Table 1). Here, in the erasure setting, we can tolerate rates that converge to 1.
In other words, a linear fraction of the secret key matrix is already enough to
recover this part of the key.

In order to recover the full key in polynomial time, slightly more information
is needed, which leads to only

?
n manageable errors. However, a Rainbow se-

cret key, inherently contains a (quadratic) redundancy factor, which is heavily
exploited by our attacks.

For error recovery our results are significantly worse. Here, we can only tol-
erate log n error positions per key.

NTRU Eventually, for the NTRU cryptosystem we achieve for errors/erasures
in random positions only small tolerable rates. The NTRU encryption scheme can
be considered as a Ring-LWE instance. As explained for BIKE, the consequence
is that NTRU secret keys provide less redundancy than BIKE secret keys, since
NTRU does not store the LWE error. Thus, it is not surprising that we obtain
weaker bounds for NTRU.

Yet, if we look into the setting of erasures in consecutive positions of an
NTRU secret key, then we can recover the full secret key from only a 3{4-
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fraction of all positions. This consecutive partial key exposure attack heavily
exploits NTRU’s ring structure. We are not aware of any cryptanalytic results
in the literature that exploit the ring structure with such a significant gain.

Concrete Parameters: The Erasure Case. While from a theoretical perspective
it is desirable to understand for which erasure/error rates we can achieve poly-
nomial time attacks, it might be even more interesting to see how our attacks
perform on concrete parameter sets. Table 2 shows the results of our attacks on
Category-1 parameter sets (equivalent to AES-128 security), when we allow for
attack bit complexities of 45, 60 and 80 bit.4

Erasures key format
bit complexity bound

45 60 80

BIKE
standard 0.570 0.650 0.730

compact 0.410 0.425 0.445

Rainbow full key 0.710 0.810 0.890

NTRU
unpacked 0.219 0.300 0.422

packed 0.065 0.092 0.138

Table 2: Tolerable erasure rates for different key formats that allow for a key
recovery with bit complexity less than 45, 60 and 80 on the Category-1 parameter
sets.

Recall from Table 1 that polynomial time attacks on BIKE are feasible for
erasure rates of 0.5 (standard key format), respectively roughly 0.1 (compact key
format). We observe from Table 2 that the allowed errors in the standard format
are significantly larger, namely in the interval r0.57, 0.73s, whereas in compact
format we even improve to rates beyond 0.4. Hence, BIKE’s redundancy leads
to efficient key recoveries in practice given roughly half of the secret key bits.

Rainbow with its large key redundancy tolerates even larger rates than BIKE
for Category-1 parameters.5 Here, erasure rates in the interval r0.71, 0.89s still
allow for key recovery as shown in Table 2.

Asymptotically, NTRU has least key redundancy and therefore tolerates only
small erasure rates. This is reflected by the results of Table 2, where we can
recover erasure rates in the interval r0.22, 0.42s. However, compared to previous
results from Paterson and Villanueva-Polanco [24], our results still improve by
orders of magnitude. The reason for this improvement comes from using more
involved lattice techniques than the simple key enumeration from [24]. Even

4 The code to rerun our experiments and bitcomplexity calculations is available at
https://github.com/Crypto-TII/partial-key-exposure-attacks

5 For Rainbow Category-3 and -5 parameters tolerable rates are lower, as we discuss
in Section 4.
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for the least redundant packed key format, we still obtain erasure rates in the
interval r0.06, 0.14s.

Errors
key format

bit complexity

45 60 80
asym. sym. asym. sym. asym. sym.

BIKE
standard 0.050 0.050 0.150 0.120 0.300 0.200

compact 0.175 0.030 0.240 0.060 0.275 0.080

Rainbow full key 0.240 0.120 0.375 0.190 0.540 0.270

NTRU
unpacked 0.033 0.002 0.099 0.009 0.273 0.019

packed 0.009 0.003 0.020 0.008 0.040 0.015

Table 3: Tolerable error rates for key recovery of Category-1 parameter sets with
bit complexities bounded by 45, 60 and 80. In the asymmetric setting we fix
p0 “ 0.001.

Concrete Parameters: The Error Case. Analogous to Table 2, we denote in
Table 3 the error rates that we can recover for Category-1 parameter sets when
using bit-complexities of 45, 60, and 80 bits.

Noteworthy, we achieve high error rates in the asymmetric error setting. For
Rainbow, this again stems from the larger key redundancy. However, for BIKE
and NTRU we exploit the partial key information to significantly lower the di-
mension of the underlying problems. This in turn speeds up our decoding/lattice
reduction algorithms. Most impressive is maybe the error correction of unpacked
NTRU keys with error rate p1 “ 0.27 within a complexity of 80 bit. Observe
that our attack is not yet very effective for 45 bits (with error p1 “ 0.03), since
it requires a large polynomial overhead.

Conclusion. As opposed to the common belief, current post-quantum schemes
allow for effective partial key exposure attacks, both in the erasure and the
error setting. We demonstrate this for representative post-quantum candidates
from codes, multivariate and lattices. As a rule of thumb, the higher the key
redundancy, the more effective are our attacks. But even the least redundant
NTRU scheme still allows for quite impressive erasure/error rates.

Organization of the paper. We elaborate on our erasure/error model in Section 2,
where we also recap the basics of information set decoding attacks. All our BIKE
results, asymptotically and for concrete parameters, are given in Section 3. Our
Rainbow results can be found in Section 4, and we conclude with the NTRU
results in Section 5.
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2 Preliminaries

We denote vectors and matrices as bold lower case and bold capital letters. For
a matrix M P Fkˆn

q and a set I Ď t1, . . . , nu we let MI be the matrix obtained
by projecting M onto the columns defined by I. We use the same notation for
vectors. We refer by O to the all-zero matrix. All logarithms are base 2 if not
stated otherwise. We use standard Landau notation for complexity statements
and call a probability p high if p “ 1 ´ op1q.

2.1 Key Exposure Models

Throughout this work we consider two different key exposure models – the error
and the erasure model. In the error model one obtains knowledge of a faulty
version of the full secret key, whereas in the erasure setting only certain parts of
the secret key are known but guaranteed to be correct.

In our theoretical treatment we work with errors and erasures on the field
level, while for practical considerations we work with errors and erasures on the
bit level. This distinction allows us to keep the theoretical consideration (mostly)
independent of the chosen key-representation. In our practical analysis we then
analyze the performance of our attacks using specific key formats. Let us more
formally define both models, starting with the field level.

Errors and erasures in fields For all schemes that we consider the private keys
are either vectors (or matrices) over Fq or polynomials with coefficients over Fq,
which are represented via their coefficient vector. Field erasures then correspond
to a set of indices for which the corresponding coordinates or coefficients are
unknown, while the rest is known.

Definition 2.1 (Erasures). Let n P N, f “ pf1, . . . , fnq P Fn
q and I Ď t1, . . . , nu

denote the erasure positions. For ui denoting the i-th unit vector we let

f̃ :“
ÿ

iRI

fiui `
ÿ

iPI

yiui,

with yi P Fq. In the erasure model I and f̃ are known, while the yi are unknown.
Each coordinate of f gets erased with probability p :“ Prri P Is, which we denote
as Fq-erasure probability. We call f̃ a partially erased version of f .

In a concrete attack scenario of Definition 2.1 f would be the secret key, and
the goal is to recover f from the partially erased version f̃ . We call such an attack
a (key recovery) attack in the erasure model.

Let us analogously define the error model.

Definition 2.2 (Errors). Let n P N and f “ pf1, . . . , fnq P Fn
q . Further let

e “ pe1, . . . , enq P Fn
q be an error vector. In the error model one is given

f̃ :“ pf̃1, . . . , f̃nq “ f ` e “ pf1 ` e1, . . . , fn ` enq,
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while the fi and ei are unknown. Every coordinate of the error is different from
zero with probability p :“ Prrei ‰ 0s, which we refer to as Fq-error probability.
If ei ‰ 0, then ei is uniformly distributed in Fqzt0u, i.e., Prrei “ 0s “ p1 ´ pq

and Prrei “ ks “
p

q´1 for all k P Fqzt0u. We call f̃ an erroneous version of f .

Again, in a partial key exposure scenario f would be the secret key and f̃ the
known erroneous version of it. The goal is to recover f from f̃ . We call such an
attack a (key recovery) attack in the error model.

Errors and erasures of bits For our practical analysis we switch from field to
bit errors, i.e., every bit in the binary representation of the secret key is flipped
(error model) or erased (erasure model) with a certain probability. One obtains
a definition for the erasure and error model considering bit-errors / -erasure by
letting f of Definition 2.1 and 2.2 be the binary representation of the secret
key and correspondingly setting q “ 2. In these cases we might use the term
bit-error and bit-erasure rather than F2-error and F2-erasure. Once it is known
how the secret key is represented on the bit-level, one can relate the field- and
bit-error/-erasure.

Speaking of the error model, in a practical scenario, which is often motivated
via cold-boot attacks, we usually find asymmetric error probabilities, i.e., the
probability p0 of a zero flipping to one is different from the probability p1 of a
one becoming a zero. Let the binary representation of the secret key be f P Fn

2

and the error be e P Fn
2 . An attack in the error model then asks to recover f

from f̃ :“ f ` e. Therefore

p0 :“ Pr rei “ 1 | fi “ 0s and p1 :“ Pr rei “ 1 | fi “ 1s .

Usually one of the probabilities is rather small, since bits are more likely to
flip to the ground state of the respective memory region to which all bits decay
over time. Following the initial work of Halderman et al. [15] we assume in our
analysis that all bits decay to the same ground state for simplification. Moreover
we consider the ground state to be zero and adopt the choice of p0 “ 10´3,
experimentally observed in [15].

2.2 Decoding

Some of our attacks make use of information set decoding (ISD) algorithms to
decode linear codes. A linear code C is a k dimensional subspace of Fn

q . We call
n the code length and k the code dimension. Such a code can be represented via
the kernel of a matrix H P Fpn´kqˆn of rank n´k, i.e., C :“ tc P Fn

q | HcJ “ 0u.
Hence, recovering a codeword c P C from a given faulty string y “ c ` f is
equivalent to recover f from the syndrome s :“ Hy “ Hpc ` fq “ Hf .

Definition 2.3 (Syndrome Decoding Problem). Let n, k P N. Given the

parity check matrix H P Fpn´kqˆn
q of a linear code over Fq, a syndrome s P Fn´k

q

and an error-weight δ P N, the syndrome decoding problem asks to find a vector
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f P Fn
q of weight wtpfq “ δ satisfying Hf “ s. We call pH, s, δq an instance of

the syndrome decoding problem and f the solution.

The class of ISD algorithms, initiated by Prange in 1962 [26], allows to solve the
syndrome decoding problem.

Prange’s Information Set Decoding (ISD) For a permutation matrix P P

Fnˆn
2 , P´1f forms a solution to the permuted syndrome decoding instance

pHP, s, δq. We let the permuted error be P´1f “: pf1, f2q P Fn´k
q ˆ Fk

q and

the permuted parity check matrix HP :“ pH1 | H2) with H1 P Fpn´kqˆpn´kq
q .

From Hf “ s it follows that

pH1q´1pHPqpP´1fq “ pIn´k | H1
2qpf1, f2q “ f1 ` H1

2f2 “ pH1q´1s “: s1,

where H1
2 “ pH1q´1H2. Let us further assume that the permutation distributes

the weight on pf1, f2q such that wtpf2q “ γ and, hence, wtpf1q “ δ ´ γ. Then
finding a solution corresponds to finding an f2 of weight γ for which the corre-
sponding f1 “ s1 ´ H1

2f2 has weight δ ´ γ. In the following we call any selection
of n´k columns (defined by the permutation) that leads to an f1 of weight δ´γ
an information set. Further for γ “ 0 an information set contains the whole
error. Prange’s algorithm now chooses a random permutation matrix, computes
H1

2 and s1 and then enumerates all possible f2 of weight γ until it finds an f1 of
weight δ ´ γ. This process is repeated with fresh initial permutations until suc-
cess. The expected complexity of Prange’s algorithm (up to polynomial factors)
is

TPrange “

`

n
δ

˘

`

n´k
δ´γ

˘`

k
γ

˘

loooomoooon

Permutations

ˆ

k

γ

˙

pq ´ 1qγ

loooooomoooooon

Enumeration

“
pq ´ 1qγ ¨

`

n
δ

˘

`

n´k
δ´γ

˘ . (1)

Obviously, γ “ 0 minimizes the running time. However, for large δ, namely
for δ ą n ´ k, choosing γ equal to zero is not possible.

To derive our asymptotic bounds we show the following theorem, specifying
a small error regime for which Prange’s algorithm has polynomial complexity.

Theorem 2.1. Let H be the parity-check matrix of a code with length n and
co-dimension n ´ k “ c ¨ n, for constant c. Then a syndrome decoding instance
pH, s, δq with δ “ Oplog nq can be solved in polynomial time.

Proof. The complexity of Prange’s algorithm to solve such an instance is (up to
polynomial factors) given by Eq. (1) as

`

n
δ

˘

`

n´k
δ

˘ “

`

n
δ

˘

`

cn
δ

˘ “

δ´1
ź

i“0

n ´ i

cn ´ i
“

δ´1
ź

i“0

1

c ´
pc´1qi
n´i

“

ˆ

1

c ´ op1q

˙δ

“ nOp1q. [\
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3 BIKE

For BIKE the private key is the solution to a syndrome decoding instance
pH, s, δq over F2, of code length n and dimension k, defined via the public key H.
Hence, the secret key is a vector f P Fn

2 . The scheme uses a code rate of R “ 1
2 ,

i.e., n “ 2k and δ :“ wtpfq “ Θp
?
nq “ Θp

?
kq.

We consider two different key formats in our analysis. The standard key
format stores the secret key as bitstring of length n, while the compact key
format stores only the δ one entries of f .6 In a nutshell our attacks on both
formats follow a similar strategy: Initially, we generate likely candidates for the
one positions in the secret key based on the given key material. Then to obtain
polynomial attacks we upper-bound the total number of candidates dependent
on the error/erasure probability. In our practical attacks we consider constant
error/erasure probabilities, which lead to a large set of candidates. Our attacks
then speed up Prange’s ISD procedure by prioritizing the set of candidates.

3.1 Standard Format Keys

We say the secret key is stored in standard format or using standard represen-
tation when it stores the secret value f P Fn

2 as a sequence of n bits.

The Erasure Model First let us investigate the erasure model. Since the

parity-check matrix H P Fn{2ˆn
2 defines n{2 linear equations in f , we can directly

recover f whenever the number of unknowns is at most n{2.

Theorem 3.1 (Polynomial Erasure Attack on Standard Format). Let
f̃ be a given partially erased BIKE secret key in the standard format with F2-
erasure probability p ď 1

2 . Then, the secret key f P Fn
2 can be recovered in poly-

nomial time with success probability at least 1
2 .

Proof. Let X by a random variable for the number of erased coordinates of f .
Since X is binomially distributed with parameters n and p ď 1

2 , we have

PrrX ď n{2s “

n{2
ÿ

i“0

ˆ

n

i

˙

pip1 ´ pqn´i ě 2´n
n{2
ÿ

i“0

ˆ

n

i

˙

ě
1

2
.

Thus, with probability at least 1
2 we have at most n{2 unknowns. In this case,

matrix H with rank n{2 provides n{2 linearly independent equations in at most
X ď n{2 unknowns. Therefore, we recover f via Gaussian elimination in time
Opn3q. [\

6 Both formats can be found in the NIST submission[4] or the implementation accom-
panying it.
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The Error Model Next let us consider the error model for the standard key
format. According to Section 2.1 this corresponds to a given syndrome decod-
ing instance pH, s, δq together with a faulty solution vector f̃ “ f ` e, where
Pr rei “ 1s “ p. Note that we can again easily transform such an instance into a
different syndrome decoding instance with weight δ1 “ wtpeq. Therefore we just
let the new syndrome be s1 :“ s ` Hf̃ , since

s1 :“ s ` Hf̃ “ Hf ` Hpf ` eq “ He.

This gives a first improvement, whenever δ1 ă δ. However, intuitively as long as
p ‰ 1

2 (which corresponds to a uniform error) the problem should become easier.
To obtain a speedup whenever p ă 1

2 , we exploit that the distribution of

the weight on the candidate f̃ in this case carries information about the weight
distribution of f . Observe that the expected weight of f̃ is

δf̃ :“ Erwtpf̃qs “ p1 ´ pqδ ` ppn ´ δq,

where the first addend counts the ones of f contributing to δf̃ , while the second
counts the contribution from e. Let γ1 be the random variable counting the
weight of f restricted to the coordinates where f̃i “ 1, then it follows that
Erγ1s “ δp1´ pq. Analogously, the rest of the weight, namely γ0 :“ δ ´ γ1, must
then distribute over the coordinates where f̃i “ 0.

In the following we adapt the choice of columns selected by Prange’s algo-
rithm for finding an information set based on the given key material. Put simple,
if a higher fraction of the error-weight is located on the coordinates of f̃ with
f̃i “ 1 than on those with f̃i “ 0, overall more coordinates are taken from the
one-associated coordinates and vice versa. More precisely, we introduce a pa-
rameter ρ1 ď δf̃ determining how many of the n ´ k columns, belonging to the

information set, are chosen from the block defined by the one-coordinates of f̃ .
Consequently, the remaining ρ0 :“ n ´ k ´ ρ1 are taken from the block defined
by the zeros of f̃ . The probability that n ´ k columns selected this way form an
information set that contains the whole error becomes

q :“

`

δf̃ ´γ1

ρ1´γ1

˘

`

δf̃
ρ1

˘ ¨

`

n´δf̃ ´γ0

ρ0´γ0

˘

`

n´δf̃
ρ0

˘ “

`

ρ1

γ1

˘`

ρ0

γ0

˘

`

δf̃
γ1

˘`

n´δf̃
γ0

˘ . (2)

Let us assume that the binomially distributed random variable γ1 stays below
its expectation, which happens with constant probability. Then, we can bound
the expected amount of sets to be selected until we find such an information set
as

E
“

q´1 | γ1 ď Erγ1s
‰

ď

`

ρ1

p1´pqδ

˘`

n´k´ρ1

pδ

˘

` δf̃
p1´pqδ

˘`

n´δf̃
pδ

˘
. (3)

The following theorem states up to which error probability the expected
attack complexity, i.e., Eq. (3), stays in the polynomial time regime, using The-
orem 2.1.
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Theorem 3.2 (Polynomial Error Attack on Standard Format). Let f̃
be a given erroneous BIKE secret key in the standard format with F2-error prob-

ability p “ O
´

logn
?
n

¯

. Then the secret key f P Fn
2 can be recovered in polynomial

time with constant probability.

Proof. Given in Appendix A.1.

Note that the above attack can easily be adapted to asymmetric error proba-
bilities. In this case the expected weight of f̃ changes to δf̃ “ δp1´p1q`p0pn´δq.
Again the first addend counts the number of ones contributed from f , which lets
the fraction of ones in f̃ also present in f become γ1 :“ δp1´ p1q. Now the adap-
tation of the ISD algorithm works as before, where Eq. (2) yields the probability
of success in each iteration.

3.2 Compact Format Keys

If the secret key is stored via δ integers encoding its one positions, we say the
key is stored in compact format or representation. Since BIKE’s secret key is
balanced, i.e., it has weight δ

2 on each half of the coordinates, every integer
encoding a position requires log k bits. We find that the compact compared to
standard format allows for improved asymptotic bounds in the error model, while
giving a slight disadvantage in the erasure model.

To allow for a direct comparison between the error- and erasure-probabilities
for both key formats we stay with bit-errors and -erasures, i.e., we treat the
secret key in compact format as a sequence of δ log k bits, where any bit might
be erroneous or get erased, rather than as δ integers.

The Erasure Model Our strategy for key recovery in the erasure model is again
to generate candidates for the one coordinates of the key, based on the given
information, and include those candidates in the information set. As long as the
amount of candidates stays smaller than the co-dimension, which is n´k “ k in
the case of BIKE, we can recover the secret key in polynomial time via Gaussian
elimination. We get a slightly worse bound than for the standard format because
ε bit-erasures in any integer lead to 2ε candidates, i.e., we have an exponential
amplification in the amount of candidates.

Theorem 3.3 (Polynomial Erasure Attack on Compact Format). Let
f̃ be a given partially erased BIKE secret key in the compact format with F2-
erasure probability p ď 0.092. Then the secret key f P Fδ log k

2 can be recovered in
polynomial time with constant success probability.

Proof. Given in Appendix A.2.

Overall this corresponds to a constant factor disadvantage to the standard
key format.

12



The error model Interestingly, if we turn our focus to the error-model, the
compact key representation allows for an asymptotic increase in the error prob-
ability while staying in the polynomial time regime. This is because the compact
representation allows to derive more candidates than the standard format and,
hence, exploit the full size of the information set.7 Therefore, we again generate
candidates for each index of the secret key based on the given erroneous indices.

Theorem 3.4 (Polynomial Error Attack on Compact Format). Let f̃ be

a given erroneous BIKE secret key with F2-error probability p “ O
´

1
log2`κ k

¯

for a small constant κ ą 0. Then the secret key f P Fδ log k
2 can be recovered in

polynomial time with high success probability.

Proof. We start similar to the erasure-setting by bounding the number of bit-
errors per index to a certain value. So that the total number of candidates
remains less than k resulting in a polynomial-time key recovery. Note that if
we have no more than ε ď

log k
2 bit-errors per index we find a total amount of

candidates of

N :“ δ
ε

ÿ

i“1

ˆ

log k

i

˙

ď cδε
?
k

ˆ

log k

ε

˙

ď cδε
?
k logε k,

where δ ď cδ
?
k for some constant cδ. Consequently, we find N ă k if ε ď

log k
2 log log k p1 ´ op1qq. Now, let us consider an error rate of p “ 1

log2`κ k
for some

constant κ ą 0. This yields an expected amount of

E :“ p ¨ δ ¨ log k “ Opp ¨
?
k ¨ log kq “ O

˜ ?
k

log1`κ k

¸

errors in total. A Chernoff bound gives that we have ΘpEq errors with high prob-
ability. Now to bound the number of bit-errors per index we treat the problem
as a balls into bins problem, i.e., we consider the indices as

?
k bins and throw

ΘpEq balls uniformly at random into those. Note that in contrast to the standard
balls-into-bins problem we have a slight bias in the balls’ distribution, due to the
maximum capacity of log k per bin. In our setting balls are placed uniformly over
all possible free places in those bins, i.e., as soon as a few balls got placed in a bin
it becomes less likely that more balls are placed in that same bin. However, since
we are interested in bounding the maximum number of errors per bin, this bias
lies in our favor. Therefore treating the balls as independent just overestimates
the maximum balls per bin, which still gives a valid upper bound for our setting.
Note that when throwing m balls into d bins, where d

polylogpdq
ď m ăă d log d

a result by Raab and Steger [27, Theorem 1] states that with high probability
there is no bin with an occupancy higher than

log d

log d log d
m

˜

1 ` α
log log d log d

m

log d log d
m

¸

,

7 Recall, that for the standard format the most likely candidates are given by the one
coordinates of the erroneous secret key, which are only δf̃ “ opnq.
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for any α ą 1, which gives an upper bound for ε. From here it follows for
our choice of d “ δ and m “ ΘpEq that we have ε ă

log k
2 log log k as long as κ

is a small constant, as desired. We give the necessary technical calculations in
Appendix A.3. Eventually, a union bound gives that both events – in total an
amount of ΘpEq errors and small enough ε – happen still with high probability.

[\

Summarizing, the compact key representation of BIKE allows for a polynomial
time key recovery in the error setting up to an error rate of p “ 1

log2`κ k
for a

small κ ą 0 in comparison to the less compact variant which only allows for an
error-rate of log k

?
k
.

3.3 Practical Attacks on BIKE

The erasure model Our practical approach for key recovery in the standard
format extends the idea from Section 3.1 in the following way. Let I be the set of
erased coordinates and Ī :“ t1, . . . , nuzI, i.e., all coordinates of fI are unknown,
while those of fĪ are known. Now from Hf “ s it follows that

HIfI “ s ` HĪfĪ ,

where only fI is unknown. Recovering fI now corresponds to solving a syndrome
decoding instance with code length n1 :“ |I|, unchanged co-dimension n ´ k
and error weight δ1 :“ |ti P I | fi “ 1u|, which is the number of missing one
coordinates of the secret key. Note that for n1 ď n ´ k we can solve for fI via
Gaussian Elimination again.

For the compact format we also slightly extend our previous approach from
Section 3.2. Recall, that the secret key is represented as a vector of integers. We
first check if there are erasure-free indices. Any of those decreases the searched
error weight and the code length by one. Next, we generate a set of candidates for
the remaining one positions of the secret key, i.e., whenever we find ε erasures
in an index it contributes with 2ε candidates. Any coordinate not identified
as one in the first step and not appearing among the candidates must be zero,
which shortens the code further. Finally this gives a syndrome decoding instance
with code length ñ, which is the amount of distinct candidates, unchanged co-
dimension n ´ k and error weight δ̃ :“ δ ´ β, where β denotes the number of
erasure-free indices identified in the first step.

For our simulation we generate a BIKE secret key in the respective format
and simulate the bit-erasures. Next we derive the parameters of the reduced
syndrome decoding instances and use the Syndrome Decoding Estimator tool by
Esser and Bellini [13] to obtain the bit complexity of Stern’s algorithm to solve
the resulting instance.

In Fig. 1 we illustrate the averaged complexity (solid marks) of several ex-
periments (transparent marks) as a function of the bit-erasure rate. Coherent to
our theoretical analysis we find that attacks on the standard format are more
efficient in the erasure model than attacks on the compact format. However, we
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also observe that for practical parameters in the compact format the point where
the reduced code length ñ exceeds the co-dimension (which marks the transition
to the non-polynomial regime) is p « 0.38, rather than the theoretically proven
p “ 0.092. The difference stems from the fact that in our analysis we neglected
the possibility of collisions between candidates from different blocks.

0.4 0.6 0.8 1

50

100

150

erasure probability p

b
it

co
m
p
le
x
it
y

standard format

compact format

(a) Category 1: pk, δq “ p12323, 142q

0.4 0.6 0.8 1

100

200

300

erasure probability p

b
it

co
m
p
le
x
it
y

standard format

compact format

(b) Category 5: pk, δq “ p40973, 274q

Fig. 1: Bit complexity of partial key exposure attack in the erasure model on the
compact and standard key representations based on experiments.

The error model In our practical consideration we consider asymmetric error
probabilities, again let those be p0 and p1 as defined in Section 2.1.

For the compact format, contrary to what the proof of Theorem 3.4 suggests,
we do not take the error-weight as criterion to derive a list of candidate positions,
rather we use a maximum-likelihood approach. Therefore let Ĩ with |Ĩ| “ δ be the
given set of erroneous (integer) indices. Then for every i P Ĩ we compute a set Si

containing those x P t1, . . . , nu for which the probability px :“ Pr
”

x P I | i P Ĩ
ı

is maximized, where I is the set of coordinates representing the true secret key.
More precisely, we define a threshold τ and only include those x with px ą τ . We
then compute the union of the Si as S “

Ť

i Si. Intuitively, S contains the most
likely candidates for true secret key indices. Now, we are in a similar setting
to the attack on the standard format, where the set S corresponds to a set of
coordinates containing more weight than t1, . . . , nuzS.

We performed experiments for fixed p0 and increasing p1 to estimate the
complexity of our attacks on both key formats. We first generate BIKE secret
keys in the respective formats and then simulate the error to obtain an erroneous
key. For the standard case we now calculate the complexity of an attack on the
generated instance by using Eq. (2). For the compact case we proceed similarly,
by first choosing a value for the threshold τ calculating the set S and finally
calculating the complexity of the resulting attack via Eq. (2). Then we minimize
over the choice of τ .
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Fig. 2: Bit complexity of partial key exposure attacks on the compact and stan-
dard key representations based on experiments for p0 “ 10´3.

Fig. 2 illustrates the obtained bit complexities for the Category-1 and -5
parameter sets of BIKE. Each data point is averaged (solid marks) over ten ex-
periments (transparent marks). Coherent to our analysis attacks on the compact
key format perform exceptionally well for ”small” error rates p1 ď 0.225. The
attack on the compact format also scales well when increasing the parameters of
the scheme, as shown in Fig. 2, where the break-even point is shifted to p1 « 0.3.

We also applied the experiment for symmetric error probabilities. In this case
the amount of candidates in the compact format increases drastically, which leads
to an overall inferior attack on the compact format, as also reflected in Table 3.

4 Rainbow

We consider two layers Rainbow with parameters pq, v, o1, o2q. Let n :“ v `

o1 ` o2, x :“ px1, . . . , xnq be a vector of unknowns, and Fqrxs be the ring of
polynomials with coefficients in Fq.

A Rainbow central map is a quadratic map F “ pf1, . . . , fo1`o2q P pFqrxsq
o1`o2 ,

where the polynomials in (f1, . . . , fo1) (resp. (fo1`1, . . . , fo1`o2q) are of the form
řv

i“1

řv`o1
j“1 ai,jxixj (resp.

řv`o1
i“1

řn
j“1 ai,jxixj). The sequence (f1, . . . , fo1) (resp.

(fo1`1, . . . , fo1`o2q) is called the first layer (resp. second layer) of F .

Public and secret keys: The public key is a sequence of quadratic polynomials
over Fqrxs given by pp1, . . . , po1`o2q “ S ˝ F ˝ T , where S : Fo1`o2

q Ñ Fo1`o2
q ,

T : Fn
q Ñ Fn

q are linear maps. The secret key is given by S´1, T ´1, and F .
In order to reduce the size of the private key, Ding et al. [11] proposed to use

S and T such that for all y P Fo1`o2
q and all x P Fn

q we have

S´1pyq “

„

Io1 S1

O Io2

ȷ

loooomoooon

:“S´1

y and T ´1pxq “

»

—

–

Iv Tp1q Tp4q

O Io1 Tp3q

O O Io2

fi

ffi

fl

loooooooomoooooooon

:“T´1

x, (4)
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where S,Tp3q
P Fo1ˆo2

q , Tp4q
P Fvˆo2

q , and Tp1q
P Fvˆo1

q . So far none of the
known attacks on Rainbow can benefit from secret matrices S and T chosen as
in Eq. (4).

Remark 4.1. Suppose that the secret maps S and T are homogeneous, and
they are represented by the matrices S and T, respectively. Then, the poly-
nomials of the public key and the central map F are related by the equation
řo1`o2

j“1 si,jpjpxq “ fi pTxq , for i “ 1, . . . , o1 ` o2, where S´1 :“ rsi,js.

We conclude the overview on Rainbow by stating the three suggested parameter
sets, which are Rainbow-I pq “ 16, v “ 36, o1 “ 32, o2 “ 32q, Rainbow-III
pq “ 256, v “ 68, o1 “ 32, o2 “ 48q and Rainbow-V pq “ 256, v “ 96, o1 “

36, o2 “ 64q.

4.1 Attack Strategy

Our partial key exposure attacks exploit the structure of the maps S´1 and T ´1

given in Eq. (4) and work in two steps. The first step consists in recovering the
outer layer, corresponding to S1,Tp3q and Tp4q and the second step recovers the
inner rainbow layer, i.e., the matrix Tp1q.

For the first step, we derive in Proposition 4.1 linear relations between some
coefficients of polynomials in F and coordinates of the matrix S1. We then use the
erroneous/ partially erased private key to find one complete row of S1 by either
solving an instance of the syndrome decoding problem (in the error model) or
enumerating the minimum amount of information so that we obtain one row by
solving a linear system (in the erasure model). We finally observe that this single
row of S1 is already sufficient to recover the full outer layer in polynomial time.
In a second step, we recover a few columns of Tp1q from the faulty / erased key
material by enumeration. Eventually, we observe that these columns together
with the outer layer suffice to recover the full matrix Tp1q.

Let us introduce the vinegar part of a homogeneous quadratic polynomial.

Definition 4.1 (vinegar part). Let p be a homogeneous quadratic polynomial
in Fqrx1, . . . , xns. The vinegar part of p is the homogeneous quadratic polyno-
mial pv P Fqrx1, . . . , xvs such that ppx1, . . . , xnq ´ pvpx1, . . . , xvq contains no
monomials of the form xixj where 1 ď i, j ď v.

We observe the following relation between the vinegar parts of the public
polynomials and the polynomials in the hidden central map, which forms the
basis of our attacks.

Proposition 4.1. Let fi be the i-th polynomial in the first layer of a Rainbow
central map, that is, i ď o1. Let pp1, . . . , po1`o2q be a Rainbow public key, where
the corresponding secret maps S and T are homogeneous, and their matrix rep-
resentations are as shown in Equation (4). Then, we have

pvi px1, . . . , xvq `

o1`o2
ÿ

j“o1`1

si,j ¨ pvj px1, . . . , xvq “ fv
i px1, . . . , xvq,
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where psi,1, . . . , si,o1`o2q is the i-th row of S´1.

Proof. Given in Appendix B.1.

As a second key ingredient for our attacks, we show the following theorem,
which allows us to recover the full Rainbow secret key in polynomial time from
a single known row of S1 and a constant number of columns from Tp1q.

Theorem 4.1 (Rainbow Full Key Recovery). Let pq, v, o1, o2q be a Rainbow
parameter set, and S1 and T as defined in Eq. (4). Then, (1) knowledge of any
single row of S1 is sufficient to recover the secret matrices S1,Tp3q, and Tp4q

in polynomial time in the input parameters. (2) The additional knowledge of
any set of rv{o1s columns of Tp1q allows to recover the full matrix Tp1q in time
polynomial in the input parameters q, v, o1, o2.

Proof. Given in Appendix B.2.

4.2 Fq-errors and -erasures

All over this section we treat o2 as the major security parameter by assuming
that o1 “ co1o2, v “ cvo2, q “ cqo2, where co1 , cv and cq are considered constant.
This allows us to state our results only as a function of o2.

The erasure model In the erasure model we use Proposition 4.1 together with
the given partially erased information to derive linear equations in the unkown
coordinates of a single row of S1. We then proceed similar for Tp1q by deriving
quadratic equations in the unknown coordinates of its columns.

Theorem 4.2 (Polynomial Erasure Attack). Given a partially erased Rain-

bow secret key with Fq-erasure probability p “ O
´

1?
o2

¯

. Then the secret key can

be recovered in polynomial time with constant success probability.

Proof. Let si denote the i-th row of S1 from Eq. (4) and fv
i be the vinegar part

of polynomial fi in the first layer. Denote by Isi the indices of erased coordinates
of si and by Ifv

i
the indices of unknown coefficients in fv

i . Note that there exists

one i with |Isi | ď po2 and |Ifv
i

| ď p vpv´1q

2 with constant probability. Now, by
Proposition 4.1, every coefficient of fv

i is equal to a linear combination of the
entries of the si. Hence, every known coefficient of fv

i leads to a linear equation
in the |Isi | ď p¨o2 unknown variables of si. Thus, we expect to find the remaining
unknown entries of si whenever

p ¨ o2 ď p1 ´ pq
vpv ´ 1q

2
ô p ď

1

1 ` 2
cvv

“
1

1 ` op1q
.

From the found row of S1, we recover the full matrix S1 (Theorem 4.1) and can
compute the polynomials pf1pTxq, . . . , fo1pTxqq, where the fi’s are the secret
polynomials of the first layer.
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We now recover the secret matrix Tp1q. Let t P Fv
q be any column of Tp1q.

Then with constant probability there are less than p ¨ v “ Op
?
o2q erasures in

t. Since t satisfies the quadratic equations f1pTtq “ ¨ ¨ ¨ “ fo1pTtq “ 0, where
o1 “ Opo2q, we can solve for the Op

?
o2q erased coordinates in polynomial time.

We repeat this process rv{o2s “ Op1q many times and then use the obtained
columns to recover Tp1q using Theorem 4.1. [\

Note that the proof of Theorem 4.2 shows that we can recover S1,Tp3q and
Tp4q, corresponding to the first layer of Rainbow, even up to an erasure proba-
bility of 1

1`op1q
in polynomial time. In order to also recover Tp1q the probability

bound then drops to p “ O
´

1?
o2

¯

. Note that the remaining inner layer of Rain-

bow forms a small instance of the unbalanced oil and vinegar (UOV) scheme [19].
This indicates that UOV is strictly less vulnerable against this kind of partial
key exposure attack than Rainbow.

The error model For our attack in the error model, we first show a reduction
from the recovery of the secret matrices S1,Tp3q, and Tp4q to the syndrome
decoding problem. Then we study the complexity of solving the corresponding
syndrome decoding instance. We give the reduction in the following lemma.

Lemma 4.1 (Reduction to Syndrome Decoding). Recovering the Rainbow
secret matrices S1,Tp3q, and Tp4q from a given erroneous candidate with Fq-
error probability p can polynomially be reduced to solving an instance of the

syndrome decoding problem pH,b, δpq, where H P Frˆpr`o2q
q and δp :“ ppr ` o2q

and 1 ď r ď
vpv´1q

2 .

Proof. We only focus on recovering one row of the hidden matrix S1, defined
in Eq. (4) then using Theorem 4.1 to recover the secret matrices S1,Tp3q, and
Tp4q. Without loss of generality, let us assume we want to find the first row
ps1, . . . , so2q of S1 and let fv “

ř

1ďiďjďv fi,j ¨ xixj be the vinegar part of the
first polynomial in the hidden Rainbow central map. Further, let ps̃1, . . . , s̃o2q :“
ps1 ` e1, . . . , so2 ` eo2q and f̃v :“ fv `

ř

1ďiďjďv ϵi,jxixj be the given faulty
versions of the first row of S1 and fv. Recall that e1, . . . , eo2 , ϵ1,1, . . . , ϵv,v P Fq

are unknown, but known to be zero with probability 1 ´ p.
Let us define xv :“ px1, . . . , xvq, and f̃i,j :“ fi,j`ϵi,j for every pair of integers

1 ď i, j ď v. Now, by Proposition 4.1 we have

pv1 pxvq `

o2
ÿ

j“1

ps̃j ´ ejq ¨ pvo1`jpxvq “ fv
1 pxvq

ϵpxvq ´

o2
ÿ

j“1

ei ¨ pvo1`jpxvq “ ´pv1 pxvq ´

o2
ÿ

j“1

s̃j ¨ pvo1`jpxvq ` f̃vpxvq, (5)

where ϵpxvq :“
ř

1ďi,jďv ϵi,j ¨ xixj . Here, the polynomial on the right side of
Eq. (5) is known. Hence, for every monomial xixj on the right-hand side, with
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coefficient bi,j , we have a linear relation of the form ϵi,j ` li,jpe1, . . . , eo2q “ bij ,
where li,j is a known linear polynomial. Therefore, for every integer 1 ď r ď

vpv ´ 1q{2 and every set of r coefficients of ϵpxvq there is a matrix L P Frˆo2
q ,

whose j-th column corresponds to the coefficient-vector of the polynomial pvj ,
such that

“

Ir|L
‰

loomoon

H

pϵi1,j1 , . . . , ϵir,jr , e1, . . . , eo2qJ

loooooooooooooooooomoooooooooooooooooon

f

“ b, (6)

where b is the vector containing the corresponding bi,j .
Note that the linear system given in Eq. (6) can be seen as an instance of

the syndrome decoding problem where the underlying code has rate R :“ r
r`o2

,
and the expected weight of the solution f is δp :“ ppr ` o2q. Finally, solving this
instance allows to recover the first row of S1. [\

Next in Theorem 4.3, we describe a polynomial-time partial key exposure
attack in the error model, that uses the previous reduction.

Theorem 4.3. Given an erroneous Rainbow secret key with Fq-error probability

p “ O
´

log o2
o2

¯

. Then the secret key can be recovered in polynomial time with

constant probability.

Proof. Lemma 4.1 states that recovering any row of S1 from the given erroneous
secret matrices S1,Tp3q, and Tp4q is equivalent to solving an instance of the

syndrome decoding problem pH,b, δpq, where H P Frˆpr`o2q
q , b P Fr

q and δp “

ppr ` o2q. In the following we set r “ o2, which is a valid choice since according

to Lemma 4.1 r ď
vpv´1q

2 “ Opo22q. For this choice we find δp ď logpo2q with
constant probability.

Note that the resulting syndrome decoding instance possesses a unique so-
lution with high probability, since the expected amount of random solutions
is

`

r`o2
δp

˘

pq ´ 1qδp

qo2
“

`

2o2
log o2

˘

pq ´ 1qlog o2

qo2
ă

p2o2qlog o2

qo2´log o2
“ op1q.

However, the searched row of S1 is a solution by construction. Now, by Theo-
rem 2.1 we can find this unique solution in polynomial time.

Let us turn our focus to Tp1q. Any column of Tp1q is error-free with proba-
bility

q :“ p1 ´ pqv “

ˆ

1 ´
cp log o2

o2

˙cvo2
o2Ñ8
ÝÑ e´cvcp log o2 “ o

´cvcp log e
2 ,

where p “
cp log o2

o2
. Note that the number of error-free columns is distributed

binomially with parameter o1 “ co1o2 and probability q. It follows that the ex-

pected number of error-free columns is v ¨ q “ o
1´cvcp log e
2 , where we can ensure

v ¨ q ě rv{o1s by an appropriate choice of constant cp. Now with constant prob-
ability we have at least v ¨ q ě rv{o1s error-free columns. Finally, we iterate over
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any combination of rv{o1s “ Op1q columns until the recovery via Theorem 4.1
yields the correct Tp1q.

[\

4.3 Practical Attacks on Rainbow

In our Rainbow bit complexity estimations we assume a field multiplication to
cost log2 q bit operations.

The erasure model Our attack again splits in the two parts of recovering both
layers of rainbow separately, starting with the first. Let again si denote the i-th
row of S1, and let fi denote the i-th polynomial in the first layer of the Rainbow
central map. Recall, that our strategy to recover any row si used in Theorem 4.2
requires to know o2 ´ k coordinates of the Fq-vector representation of fv

i , where
k is the number of known coordinates of the Fq-vector representation of si.

Our pS, F q-strategy to recover a row of S1. For a fixed integer k, which is later
optimized, let nbi for i “ 0, . . . , o1 be the minimum amount of bits we have to
enumerate of psi, f

v
i q to obtain k coordinates from si and o2 ´k coefficients from

fv
i . For each guess, we need to solve a linear system in the o2 ´k unknowns over
Fq. Finally, we need to check if the derived solution leads to the correct Rainbow
private key, which requires pv ` o1 ` o2q3 field multiplications (see Lemma B.1).
Therefore, the amount of field multiplications to recover one row of the secret
matrix S1 is 2nb ¨

`

o32 ` pv ` o1 ` o2q3
˘

, where nb “ minitnbiu.

Recovering Tp1q via partial enumeration. Note that after recovering the first
layer Rainbow polynomials, we can recover Tp1q without any extra information
in time

O
`

pv ` o1q4 ¨ qv´o1
˘

,

using the Kipnis-Shamir attack [19]. In the case of the Rainbow-I parameter
set this is already less than the complexity for the recovery of S1. However, in
the case of the Rainbow-V parameter set the Kipnis-Shamir attack becomes
inefficient. Here, we make use of the given partial information to recover rv{o1s

columns of Tp1q.

Recall that, once S1 is recovered, we can compute the first layer Rainbow
polynomials, i.e., the polynomials gi :“ pfi ˝ T q for i “ 1, . . . , o1. Further, for
any column t of Tp1q we have giptq “ 0. Our attack now proceeds as follows:
For an integer k ď o1, which has to be optimized, we enumerate the minimum
amount of bits, namely nb, so that we obtain all but k coordinates of one column
t of Tp1q. Then, we solve the system giptq “ 0 for i “ 1, . . . , o1. Overall this yields
a time complexity of qnb ¨ S, where S corresponds to the time complexity for
solving a quadratic system with k unknowns and o1 equations over Fq. In our
estimations, we use the MQ-Estimator of Bellini et al. [5] to estimate S.
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The resulting bit complexities of our key recovery attacks are shown in Fig. 3.
For each p, we computed for ten randomly generated erased private keys the com-
plexity of the key recovery (transparent marks), and the corresponding averaged
complexity (solid marks). The attack on Category-1 parameters is dominated
by our pS, F q strategy to recover the first layer, while the attack on Rainbow-V
is dominated by the recovery of Tp1q. We compare against naive enumeration
strategies, which enumerate the least amount of erased bits to obtain one row
of S1 (Rainbow-I) or rv{o1s columns of Tp1q (Rainbow-V).

Note that our strategies outperforms naive enumeration for both parameter
sets and all values of p.
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Fig. 3: Bit complexities of our partial key exposure attack in the erasure model
on Rainbow.

The error model We again start with the recovery of S1 to obtain the first
layer Rainbow polynomials, after which we recover Tp1q.

Recovery of S1. Our attack in the error model uses the reduction to the syndrome
decoding problem given in Lemma 4.1. Here we assume that every field element
is represented as a sequence of log q bits, relating the bit-error probability p and
the field error probability pq via pq “ 1´p1´pqlog q. More precisely, from a given
faulty Rainbow secret key with bit-error rate p we derive a syndrome decoding

instance pH, s, δq where H P Frˆpr`o2q
q , s P Fr

q, and δ :“
`

1´ p1´ pqlog q
˘

pr ` o2q

with 1 ď r ď
vpv´1q

2 for the respective value of v of the corresponding parameter
set.

To solve the resulting syndrome decoding instance we then use an ISD al-
gorithm. For deriving the concrete bit complexity we adapted the Syndrome
Decoding Estimator by Esser and Bellini [13] to the Fq case. In this adaptation
we assume log2 q bit operations per field multiplication. We finally minimize over
the choice of r. In contrast to our theoretical analysis the choice of r might result
in an instance with multiple solutions. As only a single of these solutions leads
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to the Rainbow secret key we need to reapply the ISD algorithm for each solu-
tion and finally check if it leads to the correct Rainbow private key. This check
requires po1 ` o2 ` vq3 field multiplications (compare to Lemma B.1). Now if
there exist E solutions and the cost for finding all of them is TISD, then the total
cost of our partial key exposure attack becomes T “ TISD ` po1 ` o2 ` vq3 ¨ E.

Recovering Tp1q by partial enumeration. Again, for the Rainbow-I parameter set
we use the efficient Kipnis-Shamir modeling to recover Tp1q without using any
extra information.

In the case of Rainbow-V, we use a similar strategy as in the erasure setting.
Therefore, let t be a given erroneous column of Tp1q with ω erroneous Fq coordi-
nates. We treat a random choice of k ď o1 of the coordinates of t as unknowns,
and assume that among these k coordinates are δ faulty entries. Then, among
the remaining v´k coordinates we enumerate all possible choices for ω´δ errors.
For each choice of k unknowns and every guess for the remaining ω ´ δ errors,
we then solve the system giptq “ 0 for i “ 1, . . . , o1, where gi are the already
recovered first layer Rainbow polynomials. The time complexity then amounts
to

`

v
ω

˘

`

k
δ

˘`

v´k
ω´δ

˘

ˆ

pv ´ kq log q

c

˙

¨ S,

where c is the maximum number of occurred bit errors over any choice of ω ´ δ
of the ω faulty Fq coordinates of t. Further, S is the complexity to solve the
quadratic system over Fq. We repeat this strategy for each column for increasing
values of c, to exploit the variance of the error.

In Fig. 4 we plot the computed bit complexity of our attacks for Rainbow-I
and Rainbow-V parameters. Note that in the case of Rainbow-V the complexity
of computing Tp1q dominates, while for Rainbow-I the recovery of S1 is more
costly. For comparison we also give the complexity of a naive enumeration of
the error on the initial row of S1 (Rainbow-I) and the complexity of a naive
enumeration of the error on rv{o1s columns of Tp1q (Rainbow-V). For Rainbow-
V we sampled for each p twenty randomly generated erroneous private keys
and computed the complexity of the key recovery (transparent marks), and the
corresponding averaged complexity (solid marks). In the case of Rainbow-I we
used the expected error weight to compute the bit complexity.

5 NTRU

Let n be an integer, q ą 3 a prime number, and let the ternary field F3 be
represented by the elements t´1, 0, 1u. We define the ring Rq :“ Fqrxs{xxn ´ 1y.

During this section, we identify polynomials v “
řn´1

i“0 vix
i P Rq with their

coefficient vector v “ pvn´1, vn´2, . . . , v0qT.
In NTRU, the secret key is given by a polynomial f P RqXR3 that is invertible

in Rq and in R3. A public h P Rq associated with f is given by h “ f´1 ¨g mod q,
where g P Rq XR3. For efficiency reasons the current NTRU NIST submission [8]

23



0 0.1 0.2 0.3 0.4 0.5

50

100

150

bit-error probability p

b
it

co
m
p
le
x
it
y

Enumeration

Prange

Dumer

(a) Category-1

0 0.02 0.04 0.06 0.08 0.1

0

100

200

300

bit-error probability p

b
it

co
m
p
le
x
it
y

Enumeration

Partial enumeration

(b) Category-5

Fig. 4: Bit complexity of our key recovery attacks on Rainbow in the error model.

stores both f and f´1
3 as the private key. Therefore, we refer to pf, f´1q as the

NTRU private key, where we drop for convenience the subscript 3 of f´1
3 . Note

that an NTRU private key fulfills the two equations

f ¨ h “ g mod q and f ¨ f´1 “ 1 mod 3.

5.1 Fq-errors and -erasures

The results of this section heavily exploit the key redundancy from the second
equation f ¨ f´1 “ 1 mod 3. We first show how to recover in polynomial time
Op

?
nq erasures in random positions, and second that in the case of consecutive

positions we can even recover n{4 erasures.
For the error setting, an application of Theorem 2.1 shows how to correct

Op
?
log nq errors.

The Erasure Model Let us start with a polynomial-time attack in the erasure
model that exploits the second key equation, i.e., f ¨ f´1 “ 1 mod 3.

Theorem 5.1. Given a partially erased NTRU secret key pf̃ , f̃´1q with Fq-
erasure probability p “ 1?

2n
. Then the secret key pf, f´1q P Rq ˆ R3 can be

recovered in polynomial time with high success probability.

Proof. Let If , If´1 Ă t1, . . . , nu denote the unknown indices in f , f´1, i.e.,

f “
ÿ

iRIf

fix
i `

ÿ

iPIf

yix
i and f´1 “

ÿ

iRIf´1

f´1
i xi `

ÿ

iPIf´1

zix
i.

Let us use the secret key equation f ¨ f´1 “ 1 mod 3. This gives us n identities,
where the k-th identity is

ÿ

i`j“k mod n

fi ¨ f´1
j “ δk0, where δk0 “

#

1 k “ 0

0 else
.
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Let Xk be an indicator variable that takes value 1 iff the k-th identity is linear
in the variables y, z. Notice that for any pi, jq with i ` j “ k mod n we obtain
a quadratic term yizj with probability p2 “ 1

2n . A union bound shows that we
obtain for any pi, jq a quadratic term with probability at most np2 “ 1

2 . Thus,
ErXks ě 1

2 . Let X “ X0 ` . . . ` Xn´1 denote the number of linear equations.
Then by linearity of expectation ErXs ě n

2 .
Any secret key coefficient is unknown with probability p. Thus, we have an

expected number of 2np “
?
2n unknowns. An application of Markov’s equality

shows that the number of linear equations exceeds the number of unknowns with
high probability. Therefore, we can solve the resulting system of linear equations
in time polynomial in n, thereby recovering all secret key coefficients. [\

Remark 5.1. Note that the expected number of linear equations ErXs ě np1 ´

np2q drops to 0 when p “ 1?
n
. This shows that our partial key exposure attack

from Theorem 5.1 does not extend to larger error rates, even when we do not
restrict to polynomial time.

Consecutive Erasure Attack In the following, instead of having coefficients
of f and f´1 erased in random positions, we assume that the erasures appear in
consecutive positions. Surprisingly, in this case the erasure rate for a polynomial-
time attack increases significantly. While Theorem 5.1 allows on expectation
2np “

?
2n erasures, the following theorem can handle n{4 erasures.

Theorem 5.2. Let pf̃ , f̃´1q be a partially erased NTRU secret key having n{4
Fq-erasures in (cyclically) consecutive positions of both f̃ and f̃´1. Then the
secret key pf, f´1q P Rq ˆ R3 can be recovered in polynomial time.

Proof. We assume without loss of generality that the erasures are in position
0, . . . , n

4 ´1, i.e., we obtain the coefficients of f and f´1 in positions n
4 , . . . , n´1.

By cyclicity, the following argument extends to all other (cyclically) consecutive
positions. We have

f “

n{4´1
ÿ

i“0

yix
i `

n´1
ÿ

i“n{4

fix
i and f´1 “

n{4´1
ÿ

j“0

zjx
j `

n´1
ÿ

j“n{4

f´1
j xj .

The key identity f ¨ f´1 “ 1 mod 3 gives n equations, where the k-th equation
is

ÿ

i`j“k mod n

fif
´1
j “ δk0 with δk0 “

#

1 k “ 0

0 else
.

Notice that we obtain quadratic terms yizj only if 0 ď i ` j ď 2pn
4 ´ 1q. Thus,

all equations with 2pn
4 ´ 1q ă k ă n are linear. These are n ´ pn

2 ´ 2q ą n{2
linear equations. Thus, the number of linear equations exceeds the amount n

2
of unknowns yi, zj . Solving for the unknowns recovers the secret key in time
polynomial in n. [\
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Theorem 5.2 shows that we can recover 1{4 of the secret key bits, whenever
the unknowns are in consecutive positions. The following remark shows that we
can recover even up to a 1{3-fraction if certain (unrealistic) conditions are met.

Remark 5.2. Assume that 3|n, and we obtain erasures yi, zj in positions i, j P

t0, 3, 6, . . . , n´3u. Then for all k “ i` j we have 3|k. Thus, we obtain quadratic
terms only in the k-th equation with k “ 0 mod 3. This in turn gives us n´ n

3 “
2
3n linear equations and also 2

3n unknowns.

The Error Model Next we give a polynomial-time attack in the error model,
again exploiting the second key equation f ¨ f´1 “ 1 mod 3.

Theorem 5.3. Let pf̃ , f̃´1q be an erroneous NTRU secret key with Fq-error

probability p “ O
´ ?

logn
n

¯

. Then the secret key pf, f´1q can be recovered in

polynomial time with high success probability.

Proof. Let

f “

n´1
ÿ

i“0

pf̃i ` eiqxi and f´1 “

n´1
ÿ

i“0

pf̃´1
i ` e1

iqxi

with p :“ Pr rei ‰ 0s “ Pr re1
i ‰ 0s.

Let us rewrite the identity 1 “ f̃ ¨ f̃´1 as

δk0 “
ÿ

i`j“k mod n

pf̃i`eiqpf̃´1
j `e1

jq “
ÿ

i`j“k mod n

f̃ie
1
j`f̃´1

j ei`eie
1
j`f̃if̃

´1
j . (7)

Note that the terms f̃if̃
´1
j are known. We linearize the unknown quadratic terms

eie
1
j as the error terms

ēk “
ÿ

i`j“k mod n

eie
1
j mod 3.

Thus, Equation (7) provides us n linear equations in the 3n unknowns pe, e1, ēq.
Let F̃, F̃´1 P Fnˆn

3 denote the matrices that correspond to multiplication by
f and f´1 in R3, respectively. Moreover, let f “ pf0, . . . , fn´1q, where fk “
ř

i`j“k mod n f̃if̃
1
j mod 3 is the constant term of δk0 in Equation (7). Then we

can rewrite Equation (7) in matrix-vector form as
”

F̃´1|F̃|In

ı

¨ pe, e1, ēq “ f .

This is an ISD instance over Fnˆ3n
3 . The unknowns e, e1 both have expected

weight np “ Op
?
log nq. It remains to determine the weight of ē. Since Prreiej “

0s “ p2, an application of Bernoulli’s identity yields

Prrēk “ 0s ě
`

1 ´ p2
˘n

ě 1 ´ np2.

Thus, ē has expected weight at most n2p2 “ Oplog nq. This in turn implies that
the unknown vector pe, e1, ēq has in total expected weight at most Oplog nq. Now,
Theorem 2.1 allows for polynomial-time recovery of pe, e1, ēq. [\
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5.2 Practical Attacks on NTRU

In Section 5.1, we exploited the key equation f ¨ f´1 “ 1 mod 3 to recover the
secret key in polynomial time. However, Remark 5.1 already indicates limitations
for scaling our strategy to larger error rates. Hence, in our practical attacks we
devise a new strategy based on the key equation h ¨f “ g instead. First we derive
an LWE instance from the given partially erased or erroneous key material, whose
complexity is then estimated using the LWE estimator [3] in combination with
the asymptotic lattice reduction exponent of 0.3496 obtained in [2]. Second, we
give a combinatorial attack that achieves the best complexities for a compact
key representation.

Key Formats The NTRU documentation specifies two key formats, a packed
and an unpacked format. The unpacked format stores each coefficient of a ternary
polynomial via two bits. Therefore the values 0, 1 and -1 are represented in binary
as 00, 01 and 10. This key format is used whenever the secret key is accessed,
e.g., during decryption. The packed format is used to store the secret key in the
meantime, by packing five ternary coefficients, with total information 5 log 3 «

7.92 bits, into 8 bits. The conversion algorithm is outlined in Appendix C.1.
Let us detail how we translate bit to field errors/erasures for the different key
formats.

Unpacked format. For the unpacked format we observe that a single bit-erasure of
the form ?1 and 1?, where ”?” denotes an erased bit can directly be recovered to
01 and 10 coefficients. For every coefficient the probability of a single bit-erasure
is 2pp1´ pq, while the probability for two bit-erasures is p2. Since the secret key
is drawn randomly from all ternary polynomials, the probability that we can
directly recover a single-bit affected coefficient is 1{3.8 Thus, we can reduce the
total amount of expected erasure-affected F3-coefficients from p2p ´ p2qn to

p2p ´ p2qn ´
2pp1 ´ pqn

3
“

np

3
p4 ´ pq,

or put differently obtain a field-erasure probability of p
3 p4 ´ pq.

For the translation of bit-errors to field-errors we proceed similar, treating
a coefficient as erroneous as long as any bit in its binary representation is error-
prone. Hence, a bit-error probability of p results in a field error probability of
1 ´ p1 ´ pq2 “ 2p ´ p2.

Packed format. For the packed format an erased or erroneous bit in its binary
representation might affect multiple coefficients of the polynomial in unpacked
form. We determine the field-error and -erasure rates caused by a certain bit-
error/-erasure by an exhaustive enumeration of all possibilities. We start with
the erasure translation. We enumerate all possible 35 values for an 8-bit block

8 The secret key coefficient can take the values 01, 10 and 00 while only the two (out
of 6) possible single-bit erasures ?1 and 1? can be recovered directly.
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in packed representation and all possible positions for i bit-erasures for i “

1, . . . , 8, to derive the proportion of i bit-erasures leading to j field-erasures.
Essentially, for every combination of value and i erasure positions, we enumerate
all possibilities for these i bits and transform for each guess to unpacked form.
This results in five ternary coefficients. Now, those coefficients which are equal
among all guesses are known, while those differing among at least two guesses are
treated as erased. For completeness we give the derived proportions in Table 4
in Appendix C.1.

For the bit- to field- error translation we proceed similar by enumerating
all possible value-error pairs and counting the errors caused in the unpacked
representation. We give the complete results in Table 5 in Appendix C.1.

Practical Attack in the Erasure Model For our attack in the erasure model
we derive a dimension-reduced small-secret LWE instance from the partially
erased key material. Let f̃ be a partially erased version of f , where If denotes
the set of erased coefficients. The key equation gives h ¨ f “ g or equivalently
Hf “ g, where H is the multiplication matrix of h and f ,g are the coefficient
vectors of f and g. By denoting the columns of H as hi, we obtain

Hf “ g ô

n
ÿ

i“1

hifi “ g ô
ÿ

iPIf

hifi ´ g “ ´
ÿ

iRIf

hifi.

By letting pH denote the matrix containing the columns H indexed by If , and

analogously pf denote the vector containing the coordinates of f indexed by If ,

we obtain pHpf ´ g “ ´
ř

iRIf
hifi. Note that since the right hand side of the

equation is known and g is small by definition this yields an LWE instance with
secret pf of dimension |If |, which is the number of erased Fq coefficients.

To determine the bit complexity of the outlined attack for various erasure
probabilities p, we proceed as follows. First, we relate the bit-erasure proba-
bility p to a field-erasure probability. For the unpacked format, as outlined in
Section 5.2, we simply use the field-erasure probability p

3 p4´ pq. For the packed
format Table 4 states how to translate a certain number of bit-erasures in an 8-bit
block to a certain number of field-erasures. Hence, we first calculate the expected
number Ni of blocks out of the total n{5 affected by i bit-erasures, i “ 1, . . . , 8.
Then we compute the number of expected field-erasures as

ř

i NiEi, where Ei

is the entry of the last column of Table 4 in row i.
From there we use the LWE estimator to determine the bit complexity for

solving the derived LWE instances. Our results for both formats are depicted in
Fig. 5. The vertical dashed line represents the erasure probability up to which
our polynomial time attacks from Section 5.1 can be applied.

Practical Attack in the Error Model Our practical attack in the error
model is quite similar to the attack in erasure model. Let us first outline the
attack for a symmetric error, which does not exploit any dimension reduction.
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Fig. 5: Bit complexity of our partial key exposure attack in the erasure model
on NTRU.

In the error setting, we obtain a noisy version f̃ “ f ` e of f . Similar to before
we have

Hf̃ “ He ` Hf “ He ` g, (8)

which defines an LWE instance of dimension n and secret e, where e has expected
pq ¨ n entries different from zero, where pq is the field-error probability.

To derive the bit complexity of recovering the secret key for a given bit-error
probability p we again first relate p to the field-error probability pq. Then we
use the LWE estimator to estimate the hardness of the above LWE instance.

For the unpacked format we have pq “ 2p´ p2 (compare to Section 5.2). For
the packed format we again compute the number Ni of expected 8-bit blocks
affected by i “ 1, . . . , 8 errors. Then we derive the number of field-errors as
ř

i NiEi, where Ei is the expected number of field-errors caused by i bit-errors,
which we obtain from the i-th row of the last column of Table 5.

In Fig. 6 we plot the derived bit-complexity as a function of the error-
probability p. Since already a few errors in packed representation often lead
to multiple errors in the unpacked form, we see a steep incline for our attack
in packed form. Therefore we give a second, combinatorial approach based on a
meet-in-the-middle technique.

Combinatorial approach Imagine we guess the first ℓ ă n coordinates of g
in Eq. (8). This gives an equation of the form Hℓpf̃ ´ eq “ gℓ, where Hℓ is the
matrix formed by the first ℓ rows of H and analogously gℓ contains the first ℓ
coordinates of g.

From here we perform a meet-in-the-middle attack on e. Therefore let e “

pe1, e2q P Fn{2
3 ˆFn{2

3 , f̃ “ pf̃1, f̃2q P Fn{2
3 ˆFn{2

3 and Hℓ “ pH1 | H2q, which gives

H1pf̃1 ´ e1q “ gℓ ´ H2pf̃2 ´ e2q.

Now we enumerate all possible values for e1 (resp. e2q and store the correspond-
ing value of the right-hand side (resp. left-hand side) of the above equation in a
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Fig. 6: Bit complexity of key recovery on NTRU in the symmetric error model.

list L1 (resp. L2). Then we search between those lists for equal elements, where
by construction one matching pair reveals e “ pe1, e2q.

Note that the expected amount of matching pairs is L :“ |L1|¨|L2|

qℓ
and that the

matching can be performed in timeO
`

maxt|L|, |L1|, |L2|u
˘

. The list construction
requires per element (after the first) roughly 2ℓ field multiplications, if a gray-
code style enumeration for e1 and e2 is chosen. Moreover to check if an element
of x P L reveals the searched error we need to compute Hℓx, which costs ℓn
field multiplications. Thus by accounting for a single field multiplication log2 q
bit operations, and observing that |L1| “ |L2|, we find a bit complexity of

O
`

maxtℓn ¨ |L|, ℓ ¨ |L1|u ¨ 3ℓ log2 q
˘

.9

In the packed form, we enumerate the error first, subtract it from the respec-
tive part of the key material and then convert it to unpacked form. Thus, more
precisely, the lists contain H1 ¨ unpackpf̃1 ´ e1q and gℓ ´ H2 ¨ unpackpf̃2 ´ e2q

respectively. This is possible since every 8-bit block of the packed form can be
converted to unpacked form independently.

In the packed form the bit length of f̃ is roughly 8n
5 , hence the expected

Hamming weight of the binary representation of e is 8np
5 . Thus, in expectation

we have |L1| “ |L2| “ O
``

4n{5
4np{5

˘˘

.

This combinatorial attack yields an improved key recovery attack on the
packed format (see Fig. 6), because it benefits from the small bit length of f̃ in
packed representation.

In [20] May gives further advanced combinatorial attacks extending the here
presented meet-in-the-middle by a search-tree approach and the representation
technique. We leave it as an open research task to determine the gain of those
advancements in our settings.

An improved practical attack when facing asymmetric error probabilities is
given in Appendix C.2.

9 The factor 3ℓ can be slightly improved by guessing zero coordinates of g instead of
enumerating the first ℓ coordinates.
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A BIKE

A.1 Proof of Theorem 3.2

Before we give the proof of Theorem 3.2 , let us make explicit the following
remark on the approximation of binomial coefficients, which we already proved
implicitly in the proof of Theorem 2.1.

Remark A.1. Let n P N and 0 ă c ă 1. For δ “ opcnq it holds that

`

n
δ

˘

`

cn
δ

˘ “

ˆ

1

c

˙δp1`op1qq

.
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Now we give the proof of Theorem 3.2, for convenience we restate the theorem
first.

Theorem 3.2 (Polynomial Error Attack on Standard Format). Let f̃ be
a given erroneous BIKE secret key in the standard format with F2-error proba-

bility p “ O
´

logn
?
n

¯

. Then the secret key f P Fn
2 can be recovered in polynomial

time with constant probability.

Proof. The expected running time to recover the BIKE secret key is (up to
polynomial factors) factors given by Erq´1s, as given by Eq. (3). Let us first
approximate this expectation via Remark A.1. Note that for the BIKE choice of

δ :“ Erwtpfqs “ Θp
?
nq and our choice of p “ O

´

logn
?
n

¯

, we have p1´pqδ “ opδf̃ q.

Recall that δf̃ :“ Erwtpf̃qs “ δp1 ´ pq ` ppn ´ δq, hence,

p1 ´ pqδ “ opδf̃ q ô p1 ´ pqδ “ opppn ´ δqq ô δ “ op
a

n log nq.

Also we have pδ “ opn ´ δf̃ q, and since we consider constant rate and ρ1 ď δf̃
we also have pδ “ opn ´ k ´ ρ1q. In turn this allows us to apply Remark A.1
to approximate the expected time complexity of the attack up to polynomial
factors T :“ E

“

q´1 | γ1 ď Erγ1s
‰

as

T “

` δf̃
p1´pqδ

˘`

n´δf̃
pδ

˘

`

ρ1

p1´pqδ

˘`

n´k´ρ1

pδ

˘

nÑ8
Ñ

ˆ

δf̃
ρ1

˙p1´pqδp1`op1qq

¨

ˆ

n ´ δf̃
n ´ k ´ ρ1

˙pδp1`op1qq

,

as long as ρ1 “ ω
`

p1´pqδ
˘

, to ensure the prerequisite of Remark A.1. Note that
for small p the first term grows inevitably exponential in δ as soon as ρ1 is at
least a constant factor smaller than δf̃ . On the other hand decreasing ρ1 does
not help to decrease the second term (asymptotically), since ρ1 ď δf̃ “ opn´ kq.
Thus, the choice ρ1 “ δf̃ minimizes the running time as

T “

ˆ

n ´ δf̃
n ´ k ´ δf̃

˙pδp1`op1qq

“

ˆ

1 ´ op1q

1 ´ R ´ op1q

˙pδp1`op1qq

“

ˆ

1

1 ´ R

˙pδp1`op1qq

“

ˆ

1

1 ´ R

˙Oplognq

,

which is polynomial in n. Also note that γ1 ď Erγ1s happens with constant
probability, as γ1 is binomially distributed. [\

A.2 Proof of Theorem 3.3

Proof. Considering the concrete format of the private key every index encoding
a position where the private key is one is stored using log k bits. Hence, an
amount of ε bit-erasures in any index leads to 2ε candidates for that position.
Given the set of erased bits I Ď rδ logpkqs we denote by εi :“ |tj P rpi´1q logpkq`
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1, i logpkqs | j P Iu| for i “ 1, . . . , δ the amount of bit-erasures in index i. Again,
as long as the amount of total candidates, i.e., the amount of unknowns, is less or
equal to k we find the private key in polynomial time via Gaussian elimination, as
the parity-check matrix yields k linear equations. Hence, as long as

řδ
i“1 2

εi ď k

we recover the private key in polynomial time. Note that since δ “ Θp
?
kq the

above inequality is especially fulfilled if for all i it holds that 2εi ď
?
k, which is

equivalent to εi ď
log k
2 . Hence, it is enough to ensure that each index contributes

with at most log k
2 erasures. Using a Chernoff bound [22] yields

q :“ Pr rεi ą p1 ` γqp log ks ă

ˆ

eγ

p1 ` γqp1`γq

˙p log k

ď e´
γ lnp1`γqp log k

2 ,

for any γ ą 0, where p is the erasure probability. Thus, since δ “ c
?
k, for some

constant c, the probability that for all i we have εi ď p1 ` γqp log k is

Pr rεi ď p1 ` γqp log k @is “ p1 ´ qqδ ě p1 ´ e´
γ lnp1`γqp log k

2 qc
?
k.

Hence, as long as p1` γqp ď 1
2 and q ď 1?

k
there is no block with more than

?
k

erasures with constant probability. Solving the system

p1 ` γqp “
1

2
and

γ lnp1 ` γqp logpeq

2
“

1

2
,

yields γ “ 4.43 and p “ 0.092. Hence, with constant probability an erasure rate
of p ď 0.092 leads to a polynomial time recovery of the secret key. [\

A.3 Details on the Proof of Theorem 3.4

Recall that we have

ε ď
log d

log d log d
m

˜

1 ` α
log log d log d

m

log d log d
m

¸

,

for any α ą 1 with high probability. Thus for our choice of d “ δ ď cδ ¨
?
k

and m “ ΘpEq ě cm ¨
?
k

log1`κ k
, where cδ, cm are constants, we have d log d

m ď

cδ
2cm

?
k ¨ log2`κ

pcδkq “ O
´?

k ¨ log2`κ k
¯

resulting in

ε ď cε ¨
log k

log log2`κ k

ˆ

1 ` α
log log log2`κ k

log log2`κ k

˙

for some small constant cε of order log cd ` log cm with high probability. Further
analysis shows that this implies that

lim
kÑ8

ε ď
cε

2 ` κ
¨

log k

log log k
.

Thus, as long as κ ą 2pcε ´ 1q, we have ε ă
log k

2 log log k as desired.
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B Rainbow

In this section we give the proof of Proposition 4.1 and outline the procedure
for full Rainbow key recovery.

B.1 Proof of Proposition 4.1

Proposition 4.1. Let fi be the i-th polynomial in the first layer of a Rainbow
central map, that is, i ď o1. Let pp1, . . . , po1`o2q be a Rainbow public key, where
the corresponding secret maps S and T are homogeneous, and their matrix rep-
resentations are as shown in Equation (4). Then, we have

pvi px1, . . . , xvq `

o1`o2
ÿ

j“o1`1

si,j ¨ pvj px1, . . . , xvq “ fv
i px1, . . . , xvq,

where psi,1, . . . , si,o1`o2q is the i-th row of S´1.

Proof. Let pp1, . . . , po1`o2q “ S ˝ pf1, . . . , fo1`o2q ˝ T be a Rainbow public key,
where the linear secret maps S and T are homogeneous.

Let S and T be the matrices representing S and T , respectively. By Re-
mark 4.1, we know that

řo1`o2
j“1 si,jpjpxq “ fi pTxq, where psi,1, . . . , si,o1`o2q P

Fo1`o2
q is the i-th row of S´1. Hence, we have that

fv
i pTxq “

˜

o1`o2
ÿ

j“1

si,jpj

¸v

“

o1`o2
ÿ

j“1

si,jp
v
j px1, . . . , xvq

If T is as defined in Equation (4), then the variables x1, . . . , xv only appear
in the first v coordinates of Tx. Furthermore, the vector formed by the first v

coordinates of Tx is given by px1, . . . , xvqJ `T
p1q

vˆo1 ¨pxv`1, . . . , xv`o1qJ `T
p3q

vˆo2 ¨

pxv`o1`1, . . . , xv`o1`o2qJ.
Hence, the coefficient of the monomial xixj is the same in fipxq and in fipTxq

for any 1 ď i, j ď v,. That is, fv
i pTxq “ fv

i pxq. Finally, if S is also as in Equation
(4), then pvi px1, . . . , xvq `

řo1`o2
j“o1`1 si,j ¨ pvj px1, . . . , xvq “ fv

i px1, . . . , xvq.

B.2 Full Key Recovery on Rainbow

Let us describe the algorithm that runs in time Polypo2q and recovers the full
Rainbow private key from one row of the hidden matrix S1, and rv{o1s rows of
Tp1q (see Equation (4)). Recall that we let n :“ o1 ` o2 ` v.

Without loss of generality let us assume we know the first row ps1, . . . , so2q P

Fo2
q of S1. We denote by p1, . . . , po1`o2 the homogeneous polynomials in a given

Rainbow public key, while by f1, . . . , fo1`o2 the homogeneous polynomials in
the hidden central map. Also, we use Pi and Fk to denote, respectively, the
symmetric matrices representing the polar forms

p1
ipx,yq :“ pipx ` yq ´ pipxq ´ pipyq and

f 1
kpx,yq :“ fkpx ` yq ´ fkpxq ´ fkpyq.
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We first establish the following well known result.

Lemma B.1. Let ps1, . . . , so2q be the i-th row of S1 P Fo1ˆo2
q and n :“ v`o1`o2.

Then,

Rank

˜

Pi `

o2
ÿ

j“1

sjPo1`j

¸

“ n ´ o2.

Also, it is expected to be the only vector satisfying the above equation. Finally,
it is possible to check whether a given vector s P Fo2

q is or is not a row of the
hidden matrix S1 in

o2 ¨ pv ` o1 ` o2q2 ` pv ` o1 ` o2qω

multiplications over Fq.

Proof. By Remark 4.1 and Equation (4), we know that

pipxq `

o2
ÿ

j“1

sjpjpxq

looooooooooomooooooooooon

:“ppxq

“ fi pTxq .

Then, ppxq and fi pTxq induce the same bilinear form, that is, p1px,yq “ pfi ˝

T q1px,yq. Let P and Fi,t be the matrices representing p1 and pfi ˝ T q1, respec-
tively. It holds

Pi `

o2
ÿ

j“1

sjPo1`j “ P “ Fi,t “ TJFiT,

and consequently

Rank

˜

Pi `

o2
ÿ

j“1

sjPo1`j

¸

“ Rank
´

TJFiT
¯

“ n ´ o2.

The rest of the Lemma directly follows from the dimensions of the matrices.

Recovering the last o2 columns of T´1 Remember from Equation (4) that

T´1 “

»

—

–

Iv Tp1q Tp4q

O Io1 Tp3q

O O Io2

fi

ffi

fl

.

The last o2 columns of T´1 define a submatrix A :“
“

Tp4qJ Tp3qJ Io2
‰J

P

Fnˆo2
q . Suppose for a moment that the following equation holds

˜

P1 `

o2
ÿ

j“1

sjPo1`j

¸

¨ A “ O. (9)
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By Lemma B.1

Rank

˜

P1 `

o2
ÿ

j“1

sjPo1`j

¸

“ n ´ o2.

Thus, A is the unique generator matrix of the right kernel of P1 `
řo2

j“1 sjPo1`j

whose submatrix formed by its last o2 rows is the identity. Therefore, since we
know the first row ps1, . . . , so2q of S1, we can find A in polynomial time in n.

Now we proof that A indeed satisfy Equation (9).

Lemma B.2. Let psi,1, . . . , si,o2q be the i-th row of S1. Then,

˜

Pi `

o2
ÿ

j“1

si,jPo1`j

¸

¨ A “ O.

Proof. First notice that T ¨ A “
“

O O Io2
‰

P Fnˆo2
q . By Remark 4.1, for any

column a of A, it holds
˜

Pi `

o2
ÿ

j“1

si,jPo1`j

¸

¨ a “

´

TJF1T
¯

¨ a

“ TJ
¨ 0

“ 0.

Recovering the map S Now we show how to recover the remaining o2 ´ 1
rows of the matrix S1.

Remember that for any y P Fo1`o2
q

S´1pyq “

„

Io1 S1

O Io2

ȷ

loooomoooon

:“S´1

y.

By Lemma B.2, once we know the matrix A, which is the submatrix formed
by the last o2 columns of T´1, every row of S1 satisfies a linear system of pv `

o1 ` o2qo2 equations. Hence, once A is recovered, we can obtain each row of S
in polynomial time. We provide an implementation of the recovery of S1 from
single row in SageMath.

Finding the matrix Tp1q We denote by O1 the vector space spanned by the
columns of the matrix

»

—

–

Tp1q

Io1
O

fi

ffi

fl

P Fnˆo1
q .

It is known that for any vector o P O1, gipoq :“ pfi ˝ T qpoq “ 0 for every
i “ 1, . . . , o1. Hence, if g1

i denotes the polar form of gi, then g1
ipo1,o2q “ 0 for

every o1,o2 P O1.
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Suppose we know t1, . . . , trv{o1s columns of Tp1q. Then, any vector in O1

is a solution of the o1 ¨ rv{o1s linear equation defined by g1
iptj , ¨q “ 0 for all

i “ 1, . . . , o1, and j “ 1, . . . , rv{o1s. Thus, all remaining columns of Tp1q can be
found in polynomial time.

Recovering the central map Once S and T are recovered, we just need to
compute

S´1 ˝ P ˝ T ´1

to recover the hidden central map.

C NTRU

C.1 Packed format

Algorithm 1 describes the procedure of converting the secret polynomial in un-
packed format to packed format.

Algorithm 1 Algorithm for storing secret f

Require: The secret polynomial f with coefficients pf1, ¨ ¨ ¨ , fnq
Ensure: A byte array pb1, b2, . . . , b8rpn´1q{5sq of length 8rpn ´ 1q{5s

Prepare pb1, b2, . . . , b8rpn´1q{5sq “ p0, 0, . . . , 0q
for i “ 0 . . . rpn ´ 1q{5s ´ 1 do

Set pc1, c2, . . . , c5q P t0, 1, 2u5 such that cj “ f5i`j mod 3
Set pb8i`1, b8i`2, . . . , b8i`8q such that

ř7
j“0 2

jb8i`1`j “ ř4
j“0 3

jc1`j

end for

In Table 4 we state the calculated proportion of i “ 1, . . . , 8 bit-erasures in
packed form leading to j “ 1, . . . , 5 field-erasures in unpacked form.

bit
field

1/5 2/5 3/5 4/5 5/5 E[#field]

1/8 12.55% 23.66% 25.10% 25.77% 12.91% 3.03
2/8 0.00% 6.00% 16.11% 27.15% 50.75% 4.23
3/8 0.00% 0.41% 5.47% 19.25% 74.87% 4.69
4/8 0.00% 0.00% 0.94% 10.35% 88.71% 4.88
5/8 0.00% 0.00% 0.00% 4.00% 96.00% 4.96
6/8 0.00% 0.00% 0.00% 0.94% 99.06% 4.99
7/8 0.00% 0.00% 0.00% 0.00% 100.00% 5
8/8 0.00% 0.00% 0.00% 0.00% 100.00% 5

Table 4: Relation between bit erasures and field erasures for the packed format

Table 5 states the proportion of i bit-errors resulting in j field-errors.
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bit
field

1/5 2/5 3/5 4/5 5/5 E[#field]

1/8 12.55% 23.66% 25.10% 25.77% 12.91% 3.03
2/8 7.20% 23.57% 33.50% 27.32% 8.41% 3.06
3/8 3.53% 15.89% 29.70% 35.33% 15.55% 3.43
4/8 3.73% 16.69% 33.03% 33.83% 12.72% 3.35
5/8 2.76% 14.20% 35.32% 33.98% 13.74% 3.42
6/8 3.69% 13.40% 36.68% 32.79% 13.32% 3.38
7/8 3.81% 14.97% 34.52% 32.05% 14.45% 3.37
8/8 4.12% 16.46% 32.92% 32.92% 13.17% 3.33

Table 5: Relation between bit errors and field errors for the packed format (sym-
metric)

C.2 Practical Attack on Asymmetric Errors

Let us assume an asymmetric error probability, where we again have p0 “ 10´3,
i.e., there occur almost entirely one-to-zero-flips. By brute-forcing the positions
of the few zero-to-one-flips, this implies that whenever we find a 1 in the binary
representation of f̃ , we can take it for certain.

For the unpacked format this means that all 1 (01) and ´1 (10) coefficients
of f̃ are also present in f . Only 0 (00) or 3 (11) coefficients could either relate to
0,1 or ´1 entries. Similar to the erasure setting any known coefficient of f allows
to decrease the dimension of the LWE instance by one. As on expectation the
secret key contains n

3 coefficients equal to 0, 1 and ´1 the amount of 1 and ´1
entries still present in the erroneous version is 2n

3 p1´ p1q. Or put differently the
remaining LWE instance has an expected dimension of n

3 p1`2p1q. Note that the

secret has weight 2p1¨n
3 , which are exactly those 1 and ´1 entries of the secret

key which are not present in the given erroneous key.
For the packed format we can not similarly benefit from the asymmetry as

we need to transform to unpacked format first. Thus, for the lattice approach
we proceed exactly as in the symmetric setting.

However, For the combinatorial attack we can benefit from the asymmetry.
Recall that for this attack we enumerate the possible errors already on the packed
form. The binary representation of the packed version of f of length np :“ 8n

5

contains expected
np

2 entries equal to one, of which on expectation
p1´p1qnp

2 will
still be present in the given erroneous version. Thus, we only need to enumerate

the error on the
npp1`p1q

2 positions defined by the zero coordinates of the candi-
date. Further the errors to enumerate are exactly the expected

p1np

2 ones which
flipped to zero in the candidate. In turn this leads to a reduced expected list size
of the attack of Er|L1|s “ O

``

p1`p1qnp{4
p1np{4

˘˘

“ O
``

2p1`p1qn{5
2p1n{5

˘˘

.

Fig. 7 illustrates the achieved bit complexities for the packed and unpacked
format. We observe that the possible dimension reduction in the unpacked case
leads to a significant improvement of the lattice reduction. Note that the com-
plexity converges to the bitsecurity level of the respective parameter set for

39



p1 “ 1. For the packed format lattice reduction is entirely outperformed by the
combinatorial attack. This is because the lattice attack does not allow for dimen-
sion reduction, while the combinatorial attack can achieve slightly more than a
square root gain compared to the symmetric case.
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Fig. 7: Bit complexity to recover NTRU secret key in the error model with asym-
metric error p0 “ 10´3.
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