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Abstract

In this article, we consider the Virtual Network Embedding (VNE) problem for 5G networks slicing. This problem requires to
allocate multiple Virtual Networks (VN) on a substrate virtualized physical network while maximizing among others, resource uti-
lization, maximum number of placed VNs and network operator’s benefit. We solve the online version of the problem where slices
arrive over time. Inspired by the Nested Rollout Policy Adaptation (NRPA) algorithm, a variant of the well known Monte Carlo
Tree Search (MCTS) that learns how to perform good simulations over time, we propose a new algorithm that we call Neighborhood
Enhanced Policy Adaptation (NEPA). The key feature of our algorithm is to observe NRPA cannot exploit knowledge acquired in
one branch of the state tree for another one which starts differently. NEPA learns by combining NRPA with Neighbordhood Search
in a frugal manner which improves only promising solutions while keeping the running time low. We call this technique a monkey
business because it comes down to jumping from one interesting branch to the other, similar to how monkeys jump from tree to tree
instead of going down everytime. NEPA achieves better results in terms of acceptance ratio and revenue-to-cost ratio compared to
other state-of-the-art algorithms, both on real and synthetic topologies.

1. Introduction

The fifth-generation (5G) communications system is envi-
sioned to serve a variety of novel services and industries, such
as, autonomous vehicles, Virtual Reality (VR), Augmented Re-
ality (AR) and remote healthcare, each requiring different Quality-
of-Service (QoS). In this context, network slicing is a new way
to manage telecommunication networks in a similar manner to
what is done with cloud computing, relying on virtualization.
The idea is that an operator owns a physical network (analo-
gous to a data center for cloud computing) that can host mul-
tiple virtual networks (or slices). The operator can instantiate
slices on the fly to a third party service provider. Each slice
provides resources in an isolated, adaptable and dynamic man-
ner. Service providers can have demands for slices with spe-
cific QoS/security constraints, topologies and resource require-
ments. Slices would be implemented using Network Function
Virtualization (NFV) and software defined networking (SDN).
The former allows to instantiate Network Functions (NFs - en-
tities managing networking blocks such as authentication, gate-
ways, etc). The latter enables packet routing to be modified by
a centralized controller, enabling efficient and adaptable con-
figuration of links (”virtual links”) of the slice. The interest of
such an approach mainly lies in its flexibility: one could envi-
sion supporting various use cases such as autonomous vehicles
(requiring ultra low latency and ultra high reliability), virtual
reality (requiring high throughput) or sensor networks (requir-
ing an enormous amount of connections on a small area)[1].
In the current ”one size fits all” paradigm, supporting such use
cases would imply building a new physical network for each
one, which would hardly be economically viable.

In this context, an important question is how to place slices
on such a network: clients give the operator slice (virtual net-
work) requests in the form of interconnected NFs (e.g. a graph),
and the operator tries to embed them onto the physical infras-
tructure (e.g. to provide enough CPU for each virtual node and
enough bandwidth for each virtual link between those nodes),
by accepting as many slices as possible, so as to maximize the
operator’s gain. This problem is known as Virtual Network
Embedding[2] (VNE) problem which has been extensively stud-
ied in the recent years[3][4][5]. The VNE being NP-complete
and inapproximable [6], running an exact algorithm is not an
option in most cases. Various methods have been studied for
this problem, among which many are heuristic algorithms based
on Linear programming[3][7], ranking algorithms[4] or rein-
forcement learning (RL) methods [8][9]. We are particularly
interested in the latter ones, as these approaches enable to con-
struct heuristics in an autonomous manner, based on experience
and learning while solving the on-line version of the problem,
where slices arrive and leave the system over time. Research on
RL methods is still lacking, as current neural networks based
methods either have hard constraints on the network topologies
[10] or require very large amount of computing resources for
training [9]. On the other hand, Monte Carlo based methods
such as [8] still have large rooms for improvement, as we show
in this work. These shortcomings of other RL approaches are
further developped in section 2.
In this paper, our main contribution is to provide a new state-of-
the-art algorithm called Neighborhood Enhanced Policy Adap-
tation for this problem which combines reinforcement learning
techniques with neighborhood search. This article builds on our
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previous work from [11], since it improves the proposed Nested
Rollout Policy Adaptation (NRPA)[12] algorithm with a neigh-
borhood search technique. To our knowledge this is the first
time the Monte-Carlo Tree Search (MCTS) based NRPA algo-
rithm is complemented with such neighborhood search tech-
nique for any problem, enabling it to beat several state-of-the-
art algorithms. The MCTS approach (called Maven-S) from [8]
uses UCT (Upper Confidence bound for Trees)[13], which is
adapted to stochastic problems. On the other hand, NRPA is
specifically adapted to deterministic optimization problems. In
our case, we do not know the slices in advance making the ar-
rival process stochastic; however, once a slice arrives it is fully
observable, and so is the physical network, making NRPA more
adapted to tackle the placement of slices, given the current state
of the network. NRPA learns through exploring the NF place-
ment possibilities of the slice at random while learning weights
for biasing future explorations, which enables it to focus on re-
gions of the search space that have been the most rewarding so
far while still maintaining a good level of exploration. These
characteristics make it a very efficient algorithm for solving the
VNE. However we show it can be further enhanced when com-
bining it with neighborhood search. They key idea is that NRPA
bases its search on the tree structure of the search space, which
is good for quickly finding good solutions. However it can
limit exploration of new, better branch once the algorithm has
converged. Neighborhood search enables us to exploit knowl-
edge of those good solutions for jumping to better branches of
the search tree (similar to how monkeys jump from branch to
branch) and continue the search from there, which enables bet-
ter future exploration. We also propose a heuristic for initializa-
tion of the weights, and we show our numerical results, showing
an improvement in the slice acceptance probability on real and
synthetic networks compared to other methods, and therefore
an increase in financial gains for an operator. Our contributions
in this paper are then the following :

• We combine NRPA with neighborhood search and our
heuristic weight initialization, deriving the Neighborhood
Enhanced Policy Adaptation (NEPA) algorithm for the
virtual network embedding problem which outperforms
state-of-the-art methods in both acceptance and revenue-
to-cost ratio on all tested instances, including both syn-
thetic and real topologies. Our approach is particularly
effective on real topologies, on which it can even triple
the number of accepted slices compared to some of the
previous algorithms. We also investigate the topologi-
cal features of those real topologies and explain how our
algorithm can exploit them. Note that NRPA had never
been used for the VNE problem.

• We publish a large set of testing scenarios for the com-
munity to experiment with, patching a lack of publicly
available instances for quicker experimentation and com-
parisons (126 instances).

• We publish our implementations of several algorithms
publicly (including NRPA, NEPA and algorithms from

[14][8]), since during this work, we found most algo-
rithms lacked a well-documented implementation.

• To our knowledge, we are the first to explore the combi-
nation of NRPA with neighborhood search for any prob-
lem. We believe the idea can be exploited in other appli-
cation where NRPA has been successful and where good
neighborhood search algorithms are known such as the
Travelling Salesman Problem (TSP)[15] or the Vehicle
Routing Problem (VRP)[16]

• Finally, we assess wether the results of NEPA for the
VNE can be improved by utilizing the reward function
described in [17] (see Appendix B).

The paper is organized as follows : Section I introduced our
work, section II presents our litterature review of the VNE, then
section III presents our model. We describe NEPA in section IV,
section V presents our numerical experiments, and in section VI
we summarize our work and we propose extensions and future
perspectives

2. Litterature review

Several methods have already been proposed for the VNE
problem.

2.1. Mathematical programming

Notoriously, some work has been done for exact VNE us-
ing Mathematical programming. In [18], the authors propose
an ILP formulation. This has the advantage to give guaranteed
optimal solutions. However, since the VNE is NP-hard[19],
such an approach would not be able to cope with even medium
slices with a reasonable execution time. Hence, a lot of work in
the literature focus on heuristic algorithms. In [3], two heuris-
tics based on linear programming and rounding (either random-
ized or deterministic) are derived. These give good results in
terms of acceptance and revenue-to-cost ratio, although most
other approaches manage to beat them ([8][14][9]). These two
rounding heuristics also sometimes suffer from relatively high
runtimes, as [9] shows they run up to 13 times slower than the
approach from [8] for worst results, and that for some cases the
approaches are even unable to run due to a lack of computa-
tional resources. In [7], an ILP heuristic is derived by reducing
the number of candidate paths to a small amount, which en-
ables the solver to find a solution quicker. However since it is
ILP-based the algorithm is still non-polynomial. Our approach
addresses these issues by proposing a solution which both runs
quickly (sub-second runtime) and provides high quality (state-
of-the art) embeddings.

2.2. Graph neural networks

Some recent papers [20][21] process the problem with a
deep neural network for performing the embedding (note that
in this section we do not consider approaches using neural net-
works in conjunction with RL). In [20], the graph is clustered
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with a graph neural network, which then helps guide the em-
bedding procedure. On the other hand [21] pre-processes the
network in order to reduce the state-space, making the problem
more manageable for other algorithms. Overall, [21] addresses
a slightly different problem than we do, since the paper is con-
cerned with feeding a VNE algorithm (such as ours) with hints
for solving the VNE, and both could be used in conjunction. On
the other hand, [20] is concerned with the VNE, and although
it has good results, the runtime is a significant problem as it
is exponential in the number of nodes. The authors patch this
issue with the use of a GPU. However, our experiments show
that although the runtime is manageable it is still higher than all
other algorithms we tested (in the order of ...).

2.3. Heuristics and meta-heuristic techniques
There is also a wealth of meta-heuristic algorithms for the

VNE. This includes genetic algorithms [22] and ant colony op-
timization [23]. However the most popular class of meta-heuristic
approach for the VNE is particle swarm optimization (PSO),
with several well performing algorithms such as [14], [24] or
[25]. These PSO approaches work by initializing ”particles” as
a swarm of random solutions which move in the space of can-
didate solutions. They find new solutions by sarcastically com-
bining the best solutions found so far with current solutions.

Regarding heuristics, in [26], authors propose metric for
evaluating a nodes’ resource capacity/demand and then match
highly demanding virtual nodes to highly available physical
nodes. A similar idea is used in [4] where it is combined with
the Pagerank algorithm for ranking nodes.

These heuristic and meta-heuristic approaches show rela-
tively good performances that we aim at beating in this article.
Especially, to our knowledge, none of them exploits the fact
that solutions can be improved by keeping virtual nodes close
to one another. In that regard, our work could inspire enhanced
versions of the cited algorithms.

2.4. Reinforcement learning approaches
The family of approaches that interests us the most is re-

inforcement learning. First of all [8] showed how to use the
Monte Carlo Tree Search algorithm (MCTS) [13] for the VNE
problem. MCTS intelligently explores the space of possible
placement solutions in order to find the best, but its exploration
is based on multi-armed bandit theory, which assumes stochas-
tic rewards. Instead, the outcome of a given embedding is deter-
ministic and our method more efficaciously exploits determin-
ism. Both can be considered online methods, since they can
immediately take decisions on any slice arrivals.

By contrast, offline methods accumulate knowledge during
an extensive learning (training) stage, which is then reused for
a near-instantaneous high-quality embedding. Recently, Deep-
Vine [10] used a deep neural network in order to learn embed-
ding. This approach learns from graphs that are turned into im-
ages, enabling easy use of convolutional neural network (CNN)
architectures. Although successful, this method makes strong
assumptions about the input graphs: CNNs rely on the networks
to be grid-shaped. Another method is [9] where the neural neu-
ral network is fed directly with graphs. In this article, they use

Notation Description
VNE Virtual Network Embedding
VNR Virtual Network Request/Slice
G(V, E) Physical network with nodes V and links E
Hx(V x,

Ex, tx
a , t

x
d) xth slice with nodes V x, links Ex, arrival and departure dates tx

a and tx
d

CPUvi CPU capacity of physical node vi

BWvi ,v j BW capacity of physical link (vi, v j)
CPUo

vi
Occupied CPU of physical node vi

BWo
vi ,v j

Occupied BW of physical link (vi, v j)

CPUd
vx

j
CPU demanded by virtual node vx

j

BWd
vx
i ,v

x
j

BW demanded by virtual link (vx
i , v

x
j )

¯BW x
vi ,v j

Bandwidth used by slice x on physical link (vi, v j)
¯CPU x

v j
CPU used by slice x on physical node v j

MDP Markov Decision Process
A Set of possible actions in MDP
s(k) State of MDP at step k
ak Action chosen in MDP at step k
NRPA Nested rollout policy adaptation
MCTS Monte Carlo Tree Search
P Policy function (associates a State-action couple with its weight
P Link-mapping function (associates virtual links with physical paths)

Table 1: Notation and Acronyms

the A3C (Asynchronous Advantage Actor-Critic) algorithm for
learning, which has been successful for other RL tasks. These
approaches rely on function approximators (namely, neural net-
works) coupled with model-free RL techniques. This use of
neural networks enables them to deal with big state-spaces, but
comes at the cost of having no convergence guarantees to an op-
timal embedding or even an approximation. On the other hand,
online methods like ours can be tweaked to guarantee that given
enough time, they could converge to the optimal solution. They
are also able to handle similar state-spaces compared to neural-
network based methods.

The huge computation needed to perform a very costly a-
priori training (e.g., training for 72h on 24 for parallel instances
of the problem [9]) may make these offline methods [9][10]
infeasible in practical situations. In particular when applying
embedding on different scenarios (or with different conditions
or constraints), the huge offline learning phase must start from
scratch. It is also an open question whether or not in a real
world scenario we will have enough samples in order to enable
such algorithms to learn. The advantage of online methods is
instead their ability to immediately adapt and take decisions on
new instances of the problem.

For these reasons we improve upon the state-of-the-art on-
line methods [8] [11], providing convergence at regime toward
the optimal embedding, sample efficiency and better empirical
performance.

3. VNE with a MDP approach

The physical network belongs to an operator. At any point
in time, the operator has a full knowledge of the state of the net-
work, e.g. the amount of resources available, the slices it hosts
and the resources they use. The operator receives slice requests
from its clients over time. These requests are descriptions of a
virtual network they would like to embed on the network, in-
cluding resources required and topology. The goal of the oper-

3



ator is to place the incoming slices on its network in order to
maximize a given objective (slice acceptance rate in our case).

3.1. Graph theoretic notation
The VNE problem can be formally described as a graph

embedding problem:

• the physical network is represented as an undirected graph
G(V, E), where V is the set of n physical nodes, v1, . . . , vi,
. . . , vn, that represent several physical machines where
virtual network functions can be hosted, and E is the set
of the physical edges between the nodes. So we have:

– Each physical node vi is characterized by a
CPU capacity, CPUvi and an occupied CPU quan-
tity, CPUo

vi
. One could extend this model with other

resource types (RAM, HDD, ...) without loss of
generality.

– On the other hand, each physical edge (vi, v j) ∈
E is weighted by a maximum bandwidth amount,
BWvi,v j and an occupied bandwidth amount BWo

vi,v j
.

In case BWvi,v j = 0, then we consider that there is
no edge between vi and v j.

• We denote by Hx(V x, Ex, tx
a, t

x
d) the undirected graph de-

scribing the xth slice with the resources needed: each vir-
tual node of the slice, vx

i ∈ V x carries a CPU demand,
CPUd

vx
i

and each virtual link (vx
i , v

x
j) ∈ Ex carries a band-

width demand, BWd
vx

i ,v
x
j
. Since we are in a dynamical sys-

tem, each slice also has a time of arrival tx
a and a time of

departure tx
d. Observe that as slices are placed or leav-

ing, the physical occupied resources, CPUo
vi

and BWo
vi,v j

change over time. The problem is to map each virtual
node on a physical node and each virtual link on a phys-
ical path between the two host of its extremities, taking
into account the available resources.

3.2. Problem constraints
If at a certain instant time instant the xth slice request ar-

rives, placement decisions must satisfy the following constraints:

• Each placed virtual node should have enough CPU, e.g.
if we choose vi hosts virtual node vx

j we should have
CPUd

vx
j
≤ CPUvi − CPUo

vi
(where CPUvi − CPUo

vi
rep-

resents available CPU on node vi)

• For virtual link (vx
m, v

x
p) all physical links (vi, v j) it uses

should be chosen so BWd
vx

m,vx
p
≤ BWvi,v j − BWo

vi,v j
(where

BWvi,v j − BWo
vi,v j

represents the available bandwidth be-
tween nodes vi and v j) such that these links form a path
between the physical nodes hosting vx

m and vx
p).

• If two virtual nodes belong to the same slice, they can’t
be placed on the same physical node. This constraint is
present in most previous works on the VNE[8, 3, 4]. It
ensures reliability by preventing a significant portion of
a slice from going off if a single physical node is down.

19

7

812

13

4
7

10

6

8

4
7

11

Figure 1: Slice (white nodes) embedded on physical network (gray nodes).
Link demands and remaining capacities are boxed, used physical links are in
red. CPU demands and capacities are non-boxed.

To our knowledge, the optimal trade-off between sharing
physical nodes (thus economizing bandwidth) and redun-
dancy has not been well studied. Our approach, as most
of the others cited, could easily be adapted to a relaxation
of this constraint.

3.3. Online VNE description

An example of slice is shown in Figure 1. We solve the
VNE online :

• when a slice x arrives at time tx
a, we directly try to embed

it. If a feasible solution is found, the slice is placed on
the physical network, consuming the corresponding CPU
and bandwidth resources, i.e. updating the correspond-
ing CPUo

vi
and BWo

vi,v j
. If no solution is found, the slice

leaves the system and is dropped.

• When time tx
d is reached, the slice leaves the physical net-

work and resources are freed.

The full system time is continuous and gives us the arrival and
departure dates for slices (tx

a and tx
d refer to this scale) we as-

sume the VNE is instantaneous : in the same instant the slice
request arrives, the corresponding MDP (described in the next
subsection) is solved, instantaneously, and the slice is either
placed or discarded. For each virtual node to be placed, we se-
lect a physical node via RL (Reinforcement learning). In order
to learn an optimized sequence of decisions for virtual resource
placement via RL, one needs to frame the VNE problem as a
Markov Decision Process (MDP)[27].

3.4. MDP description

A MDP is a system made up of two elements: the agent (the
network operator in our case) and the environment (the descrip-
tion of the slice to place and of the state of the physical network
in our case i.e. the amount of resources available and occupied).

Observe that our MDP works as a sequence of steps, each
step corresponding to the decision of placing a virtual node
onto a physical node. Note that these steps do not have any
time-dimension, they can be considered to be all taken instan-
taneously. Also observe that our MDP is fully deterministic:
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s(0) s(1) ... s(kend)
Compute terminal
reward (optimize
link placement)

Success: feasible
embedding found

Failure due to link
placementsa(kend) = ∅

sa(kend) , ∅

R(s(0), a0) = 0
a0

R(s(1), a1) = 0
a1

R(s(kend − 1), akend−1)
akend−1

R(s(kend − 1), akend−1) = rx
cx

R(s(kend − 1), akend−1) = 0

s(0) s(1) ... s(kend)
Failure due to node
placement

R(s(0), a0) = 0
a0

R(s(1), a1) = 0
a1

R(s(kend − 1), akend−1) = 0
akend−1

Figure 2: Example sequences of actions in the MDP. Dashedy arrows are transitions not occurring in the MDP (no action choice).

all transitions and all rewards (which we will define later) are
deterministic and computable in advance.

In our particular setting, we consider the optimization prob-
lem where we have to place a single slice at a time. This means
that as soon as one slice requests arrives, an MDP is initialized
in order to decide the embedding of each virtual node and link
it demands.

We assume that the agent only decides where to place each vir-
tual node. After all virtual nodes of a certain slice have been
placed, we calculate Link placement with a shortest path heuris-
tic (see algorithm 5). Therefore, we adopt MDP only for virtual
node placement.

3.4.1. Elements of the MDP
Let s(k) = (sa(k), sb(k)) be a state of the MDP, it is com-

posed of two components :

• sa(k) is the set of virtual nodes yet to be embedded at step
k.

• sb(k) represents, at step k, the occupation of the physical
nodes by the virtual nodes. It is a vector with |V | elements
where sb(k)[i] = j if virtual node vx

j from slice x is hosted
on physical node vi. If vi hosts no node from the current
slice, sb(k)[i] = 0 (we assume indexes of virtual nodes
are strictly positive integers).

For the incoming slice x, we consider the virtual nodes vx
j ∈

V x one by one1 and we take an action i which corresponds to
placing it on a physical node vi. Therefore, the set of possible
actions A = {1, . . . , n} corresponds to the physical nodes of V .
Choosing action i would mean placing the current virtual node
on vi. We also consider A(s(k))⊆ A the set of legal actions
from state s(k), which will be specified later.

1The order in which we iterate through virtual nodes can be chosen arbitrar-
ily

3.5. System’s evolution

The main steps of the system evolution are described as fol-
lows:

a. At step 0, s(0) = (V x, u), where u is a vector of |V | com-
ponents all equal to 0.

b. At step k ≥ 0, from the state s(k), let vx
l be the first virtual

node of sa(k). Then A(s(k)) is the set of actions j ∈ A
such that CPUd

vx
l
≤ CPUv j −CPUo

v j
and sb(k)[ j] = 0.

Assume the chosen action from A(s(k)) is ak = i. Then
the virtual node vx

l is embedded on physical node vi and
we have a transition to the state s(k + 1) = (sa(k) −
{vx

l }, sb(k)+bi) where bi is a vector with the ith component
equal to index l of virtual node vx

l and all other compo-
nents equal to 0.

The embedding process continues at each step until we reach
the final state at a certain step kend, where A(s(kend)) = ∅. At
this point, two situations can occur:

• Either the node embedding is a success, so the set of vir-
tual nodes is sa(kend) = ∅. The second part of the state
holds a vector sb(kend) indicating which physical nodes
are used by each virtual node of the slice. So the final
state is (∅, u′), where u′[i] = l if virtual node vx

l is hosted
by physical node vi .

• Or the embedding fails, which means that for a virtual
node, there is no suitable physical node to host it e.g.
sa(kend) , ∅. In this case, the entire slice is rejected.

If node embedding is successful, the Link embedding is calcu-
lated using algorithm 5 which is a shortest path heuristic. Then,
if link embedding is successful too, we need to update the phys-
ical network to acknowledge for the used resources, e.g. update
CPUo

vi
and BWo

vi,v j
for all physical nodes vi and physical links

vi, v j used by the slice. On the other hand, if one of the two
phases fails, the slice is discarded.
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3.5.1. Reward Function
We now define the reward obtained by the agent over the

course of its actions. Let us first define the revenue of the oper-
ator rx (representing the revenue gained thanks to a client pay-
ing for slice x) and the cost cx (the cost induced by operating the
physical resources allocated to host the slice) for a successfully
placed slice x as:

rx =
∑

∀vx
i ,v

x
j∈V

x

BWd
vx

i ,v
x
j
+
∑
∀vx

m∈V x

CPUd
vx

m
(1)

cx =
∑

∀(vi,v j)∈E

¯BW x
vi,v j

+
∑
∀vi∈V

¯CPU x
vi
, (2)

where for slice x, ¯BW x
vi,v j

is the bandwidth used on physical link
(vi, v j) and ¯CPU x

vi
the CPU used on physical node vi. In other

words, service providers pay proportionally to the resource de-
mands by their slices. The cost of operation of a slice is pro-
portional to the physical resources consumed. We define the
immediate reward function of our MDP as:

R(s(k), ak) =


rx

cx if sa(k + 1) = ∅ and node and link
mapping are successful

0 otherwise
(3)

Examples of sequences of actions in the MDP are shown in fig-
ure 2, in which the circular states correspond to the states of the
MDP, where the decisions are taken by the agent. The sequence
at the top diagram corresponds to a successful embedding (af-
ter node and link placement), while the bottom one returns a
failure. Note that since rewards happens during transitions, the
last reward is R(s(kend − 1), akend−1) as it happens during the last
transition, from s(kend − 1) to s(kend).

3.5.2. Objective function
From the initial state s(0), we consider a sequence of kend

actions : seq = a0, a1, . . .,akend−1. We define the total reward
from the state s(0) for seq as follows :

Rseq(s(0)) =

kend−1∑
k=0

R(s(k), ak) (4)

Then the objective function is:

max
seq

Rseq(s(0)) (5)

And the agent seeks to find the best sequence of actions:

seq∗ = arg max
seq

Rseq(s(0)) (6)

and the corresponding reward:

R∗(s(0)) = Rseq∗ (s(0)) (7)

Notice that in practice, all rewards except the last one are
equal to 0 due to equation (3). With this definition of reward,
the agent, i.e., the network operator always tries to choose

valid embeddings, since any valid embedding has a non-zero
revenue-to-cost ratio. It also favors embeddings that use the
least possible amount of resources, since the reward increases
as

∑
∀(vi,v j)∈E

¯BW x
vi,v j

decreases. An intuitive way to frame this is

that the reward encourages the choice of embeddings that lead
to placing virtual links on short physical paths, effectively try-
ing to place the slice on a cluster of physical nodes. We do this
based on the idea that if a slice uses the least possible amount
of resources, then it will leave more resources available for fu-
ture slices, thus enabling us to improve the acceptance ratio on
the full scenario. Note that, at best, each virtual link is mapped
on a physical link of length 1. Note also that for a success-
fully embedded slice,

∑
vi∈V

¯CPU x
vi =

∑
vx

m∈V x
CPUd

vx
m
, hence the best

achievable reward is 1 and, the closer the reward is to 0, the
worst the embedding is in terms of resource usage (with 0 be-
ing the worst reward, reserved for failed embeddings). There-
fore, this reward function quantifies the quality of an embed-
ding regardless of the size of the slice. This has clear advan-
tages over the reward function used in [8] which is r′x − cx with
r′x = α

∑
∀vx

i ,v
x
j∈V

x
BWd

vx
i ,v

x
j
+ β

∑
∀vx

m∈V x
CPUd

vx
m
, where α, β are weight

parameters which have to be tweaked. In [8] they use param-
eters of 1 which provides an upper bound of 0 and no lower
bound, making it harder to compare the quality of embeddings
for different slice sizes. In the general case they do not provide
any bound. This is particularly unfortunate for the MCTS algo-
rithm they use, as it is based on the upper confidence bounds al-
gorithm UCB-1, which provides its theoretical guarantees only
for a reward bounded between 0 and 1.

3.6. Characteristics of the MDP and implications on resolution
Since the MDP transition model for a given slice is com-

pletely known in advance and deterministic, one could be
tempted to use a method such as dynamic programming to solve
the problem. However, it would be unrealistic due to the num-
ber of states: there are |V |!

(|V |−|V x |)! final states (which corresponds
to the number of possible repetition-free permutations of |V |
physical nodes of size |V x|), each requiring to calculate link
placement. For a slice of size 12 placed on a 50 nodes net-
work , we have 5 × 1019 possible terminal states.
Also note virtual nodes are taken in an arbitrary order, hence a
given final placement is reachable only using a single sequence
of actions. This implies the MDP has a tree topology (see Fig-
ure 3 which illustrates the full tree of states for a toy example
placement). We argue our algorithm should take this structure
into account for exploration and exploitation. Particularly, we
will see that existing MCTS methods (MaVEN-S from [8] and
NRPA) are interesting since they take advantage of the MDP’s
tree structure for finding good solutions. However this can lead
to local optima once the algorithm has converged. The main
motivation of our work is to escape these optima by ”jumping”
to unexplored branches of the tree that we can guarantee are
better than the best solutions found. We will show this can be
done by getting around the tree topology and sometimes explor-
ing the solution space in a different manner.
Next, we present our online learning algorithm (NEPA) which
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improves slice acceptance ratio, with reduced computation time
by implementing this idea. As our result section will show, we
only need to explore a few hundred complete sequences of ac-
tions for our algorithm.

4. Proposed algorithm

The algorithm we propose in this paper is called NEPA.
It is based on NRPA, adding weight initialization and
neighborhood-search based refinement. For the sake of clar-
ity, instead of directly presenting NEPA, we first present NRPA
and weight initialization.

4.1. Review of Nested Rollout Policy Adaptation (NRPA)

The NRPA[12] algorithm is a Monte Carlo Search algo-
rithm that aims at finding near-optimal solutions in determin-
istic environments. It is perfectly suited for our problem as in
our model a given action from a certain state always leads deter-
ministically to the same state. This setup is similar to the puz-
zle games which NRPA solves remarkably well (with a world
record for Morpion Solitaire) [12]. We describe NRPA in Al-
gorithm 2. The idea of this algorithm is to consider the MDP
as a tree that we have to explore (”search tree”). This is coher-
ent with our model because we treat virtual nodes to place in
an ordered manner, hence there is only a single way to reach a
given final or partial state. NRPA explores the search tree with
recursive calls to the search function. This search function is
defined as such:

• At level 0 a search call does a random simulation of legal
actions in the MDP. It returns the reward obtained during
that run of the MDP along with the sequence of actions
used and the virtual link placement solutionP, calculated
using Algorithm 5. If we refer to figure 3, we can see a
random simulation as a complete descent from the root
of the tree to a leaf (e.g. final) state. The return values
from that descent are the corresponding seq and Rseq.

• At level l , 0 the algorithm makes N NRPA calls of level
l − 1. It then returns the best sequence returned by these
”children” calls to its caller function, which is either a
level l + 1 NRPA call or the main function. In the lat-
ter case the returned sequence is the best sequence found
over every simulations tried so far (called seqbest) and the
NRPA algorithm terminates.

• Then, the control flow returns to the main function (algo-
rithm 1), which updates the resources.

The NRPA search function is combined with a policy learning
procedure (see Algorithm 3 : Adapt procedure for NRPA).

Policy improvement. The principle is that during each simula-
tion, we choose the sequence of actions seq in a biased manner
that leads to final states close to the best final state found so
far, Rseqbest

, which has been reached through sequence of actions
seqbest. This random sampling enables us to focus on sequences
of actions that resemble seqbest.

We shall now give the details through which we learn and
then bias the simulations :

• We define a policy matrix, P which associates each pos-
sible tuple (s(k), ak) with a real weight P[s(k), ak] from
which probabilities are calculated during simulation.

• Given a certain initial state s(0) = (sa(0), sb(0)) and a pol-
icy matrix P, the algorithm will try a sequence of random
actions dictated by the probabilities calculated from P.

After each NRPA call, the weights of actions of the best se-
quence found seqbest are incremented with respect to the state
where they should be chosen, e.g. P[s(i), ai] is incremented for
all ai ∈ seqbest (see Algorithm 3). Then, during the simulation,
when we are in state s(k) and need to select the action ak = i
randomly, we draw using Gibbs sampling, e.g. with probability

exp P[s(k),i]
exp

∑
1≤ j≤|A|

P[s(k), j] . A visualization of those steps is depicted in fig-

ure 4, where the recursive nature of the algorithm is particularly
noticeable.

4.2. Virtual links placement
Algorithm 5, is used for placing virtual links after the node

placement is decided. It is used during each call to the simula-
tion procedure (Algorithm 4). The idea is to treat virtual links
one by one by descending bandwidth demands, embedding
them on the shortest path (in terms of hops) that has enough
bandwidth. Note this is not an exact algorithm and it could re-
placed with other methods of link embedding. We do not use
an exact method because the underlying problem of placing vir-
tual links is an instance of the unsplittable flow problem which
is itself NP-Hard [28]. One alternative could be to relax the
problem and allow ”path-splitting”, making the problem solv-
able by linear programming [29]. It might be of interest and has
been used for the VNE (see for example [8]), with the relaxed
version consistently improving performance metrics at the cost
of a larger computation time (in the order of 40 times for their
small cases). However it is unclear whether such an algorithm
would be implementable in practice, due to scalability issues
as well as the need to reorder packets on arrival, incurring po-
tential additional delay and CPU processing times. For these
reasons, the case of path-splitting is outside the scope of this
article. To conclude with NRPA, we give in Algorithm.1 the
main procedure which describes the calls of the different algo-
rithms related to NRPA for a slice placement.

4.3. Heuristic weight initialization
In standard NRPA, when one encounters an unseen state

s(k), all its potential following states s′(k+1), reached from s(k)
by choosing action ak are initialized with a weight P[s(k), ak] =

0. However, this leads to exploring completely at random with-
out exploiting knowledge of the problem. We propose to bias
the weight initialization towards more interesting actions, draw-
ing inspiration from [16]. Our heuristic for weight initialization
assumes that good embeddings tend to cluster virtual nodes,
i.e. to place virtual nodes of the same slice in close-by physi-
cal nodes, which reduces the mean length of the virtual links.
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Figure 3: Example MDP for a toy example. Observe transitions are deterministic and MDP has a tree topology.

Level l=2

Level l=1

Level l=0

initial policy

simulation simulation
Rseq = 0.4 Rseq = 0

... simulation
Rseq = 0.53

adapt adapt

max

adapt

max max

adapt

simulation simulation
Rseq = 0.8 Rseq = 0

... simulation
Rseq = 0.55

adapt adapt

max

adapt

max max

adapt

...

maxmax

adapt

simulation simulation
Rseq = 0.78 Rseq = 0.89

... simulation
Rseq = 0.68

adapt adapt

max

adapt

max max

max

final sequence

Figure 4: Example execution of NRPA for l=2. Dashed arrows represent the policy going from one function to the other, while plain arrows represent sequences
returned between functions. A function needs to get values from all its predecessor before executing.
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Potential next
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Initial weight
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ak = 4 ({}, [0, 0, 1, 3, 2]) −
d(3,4)+d(5,4)

2 = −1.5

ak = 2 ({}, [0, 3, 1, 0, 2]) −
d(3,2)+d(5,2)

2 = −1

ak = 1 ({}, [3, 0, 1, 0, 2]) −
d(3,1)+d(5,1)

2 = −2.5

Figure 5: Example of state weight heuristic initialization when first choosing
action from state ({3}, [0, 0, 1, 0, 2])

When a new state-action couple (s(k), ak) is encountered, we
initialize its weight with:

P[s(k), ak] =

 −
∑

1≤i≤n

d(i,ak)×1(sb(k)[i])∑
1≤ j≤n

1(sb(k)[ j]) , i f sb(k) , ~0

1
n otherwise

(8)

where 1(sb(k)[i]) is equal to 1 if sb(k)[i] is non-zero (meaning
that some virtual node from current slice is associated to phys-
ical node vi) and zero otherwise. The function d(i, j) returns
the distance (in terms of hops) between physical node i and j.
Note this distance does not take bandwidth into account, mak-
ing the function computable in advance before starting NRPA,
which makes the complexity of weight initialization negligible.
In other words we penalise the physical nodes that are far from
the ones used up to the current state to embed the current slice.
Figure 5 gives an example of such an initialization when the
NRPA algorithm first encounters the state ({3}, [0, 0, 1, 0, 2])}.
Note that candidate physical nodes that are close to previously
placed virtual nodes get a higher weight, since we assume they
tend to be more interesting choices. We show an example of
such a weight initialization in Figure 5. Notice that the highest
weight corresponds to placing virtual node 3 on physical node
2, which leads to using the least resources.

Algorithm 1 MAIN placement procedure

Input: G(V, E) : Physical network, Hx(V x, Ex) : slice to place
Output: G(V, E) : Physical network, seqbest : best node place-

ment, Pbest: link mapping corresponding to seqbest

1: Choose level parameter l (and level l′ for NEPA) and number of
iterations per level N

2: Initialize policy P as all 0s
3: Derive initial state s(0) from G and Hx

4: if we call NRPA then
5: Rseqbest

, seqbest,Pbest ← NRPA(l, N, P, s(0), Ex,G)
6: end if
7: if we call NEPA then
8: Rseqbest

, seqbest,Pbest ← NEPA(l, N, P, s(0), Ex,G, l’)
9: end if

10: if Rseqbest
≥ 0 then

11: Update occupied resources of G with the placed slice
12: end if
13: return G, seqbest,Pbest

4.4. Neighborhood Enhanced Policy Adaptation (NEPA)

Observe that once NRPA has found a reasonably good
seqbest, the weights of the partial state leading to it (e.g. the

Algorithm 2 NRPA Algorithm

Input: l: Search level , N: max iterations, P : Policy, s(0):
Initial state, Ex: Virtual links, G(V, E): Physical network

Output: Rseqbest
: Best score, seqbest: best sequence of actions

to achieve it, Pbest: link mapping corresponding to seq
1: if l = 0 then
2: return SIMULATION(s(0), P, Ex, G)
3: end if
4: Rseqbest

← −∞

5: seqbest ← ∅

6: Pbest ← ∅

7: for N iterations do
8: Rseq, seq,P ← NRPA(l − 1,N, P, s(0), Ex,G)
9: if Rseqbest

≤ Rseq then
10: Rseqbest

← Rseq

11: seqbest ← seq
12: Pbest ← P

13: end if
14: P← ADAPT(P, seqbest)
15: end for
16: return Rseqbest

, seqbest,Pbest

Algorithm 3 ADAPT procedure for NRPA

Input: P: Policy matrix, seq : sequence of actions
Output: Update of P biased towards drawing actions from seq

1: Pnew ← P
2: for k = {0, ..., |seq|} do
3: vx

l ← first node of sa(k)
4: Pnew[s(k), ak] += 1 // ak is the kth action of seq
5: for m ∈ A(s(k)) do
6: Pnew[s(k), m] −= exp( P[s(k),m]∑

j∈A(s(k))
exp(P[s(k), j]) )

7: end for
8: s(k+1)← (sa(k) − {vx

l }, sb(k) + bak )
9: end for

10: return Pnew

Algorithm 4 SIMULATION procedure

Input: s(0): Initial State, P: Policy matrix, Ex: Set of virtual
links, G: Physical network

Output: seq: sequence of actions, Rseq: the reward it yielded,
P: path mapping found by Alg. 5 for seq

1: seq← ∅, k ← −1
2: whileA(s(k)) , ∅ do
3: k++

4: vx
l ← first node of sa(k)

5: DeduceA(s(k)) for vx
l

6: ak ← random-choice(A(s(k)))
// draws action fromA( s(k)) with probability exp(P[s(k),ak])∑

j∈A(s(k))
exp(P[s(k), j])

7: b← ~0
8: b[ak]← l
9: s(k + 1)← (sa(k) − {vx

l }, sb(k) + b)
10: seq← seq

⋃
ak

11: end while
12: Rseq, P← VLINK(Ex, seq,G)
13: return Rseq, seq, P
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Level l=2
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simulation simulation
Rseq = 0.4 Rseq = 0

... simulation
Rseq = 0.53

adapt adapt
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final sequence

Figure 6: Example execution of NEPA for l=2, l’=2. Dashed arrows represent the policy going from one function to the other, while plain arrows represent sequences
returned between functions. A function needs to get values from all its predecessor before executing.

Algorithm 5 VLINK (virtual link placement) procedure

Input: Set of virtual links Ex, sequence of actions seq, Physi-
cal network G

Output: Rseq : Reward yielded by seq, P = {Pvx
i ,v

x
j
,∀(vx

i , v
x
j) ∈

Ex} : set of physical path used by each virtual link
1: while Ex , ∅ do
2: Pick (vx

i , v
x
j) ∈ Ex, the most demanding link.

3: Find the shortest path Pvx
i ,v

x
j
between the physical nodes

hosting vx
i and vx

j , minding only physical links with
available bandwidth (at least equal to BWd

vx
i ,v

x
j
)

4: if P , ∅ then
5: Update the physical links occupied by Pvx

i ,v
x
j

6: P ← P
⋃
Pvx

i ,v
x
j

7: else
8: return 0, ∅
9: end if

10: end while
11: compute Rseq

12: return Rseq,P

weights on the path from the root of the tree to the best final
state found) will start increasing. This means if a random sim-
ulation deviates from seqbest early on, it will then draw actions
from a state which is considered almost unexplored, and where
the knowledge of seqbest is not used. For example, in Fig. 3, if
the best sequence found so far is [1, 4, 3] and at first step the
chosen action is 4, it would be desirable to exploit the knowl-
edge that in the best sequence found, virtual node 3 goes on
physical node 3, as it is true in [1, 4, 3]. In our toy exam-
ple, this would imply that the algorithm would have a higher
chance to find the optimal sequence, [4, 1, 3]. However, with
NRPA this is not how things go: if we descend to an unexplored
part of the tree, there is no way to reuse the information gained
from the known best sequence. This is the reason we intro-
duce NEPA, which we call a monkey business algorithm: our
goal is to improve NRPA by enabling it to use its knowledge
of seqbest for finding better branches, similar to how monkeys
jump from one branch to another. When monkeys explore the
jungle, they swing from branch to branch, they go faster than if
they went back down each time they want to move. Similarly,
NEPA swings from branch to branch to explore the MDP while
NRPA has to go down every time it wants to explore a new zone
of the search space.

One possible solution for this could be to increase weights
of all states resembling those found by executing seqbest. How-
ever, this would incur significant cost due to the factorial num-
ber of total states, potentially requiring to design approximate
methods or workarounds that are outside of the scope of this
paper.

Instead, we observe NRPA often finds good embeddings
that would be very easy to improve upon by changing the place-
ment of only a small subset of nodes. We also observe that
improving such embeddings could be interesting for discover-
ing better sequences of actions that resemble seqbest but would
not necessarily be discoverable through NRPA’s weight mech-
anism (such as in our example above). Our key idea is that we
can improve upon seqbest through neighborhood search, find-
ing a new, better sequence without taking the tree structure of
the MDP into account. Then, once this improved sequence has
been found, we reinject it into NRPA to use as its new seqbest,
which it can further improve.

In this section, we devise our method for discovering such
sequences while keeping the computational complexity reason-
able. We call the resulting algorithm Neighborhood Enhanced
Policy Adaptation (NEPA) as it combines NRPA with neighbor-
hood search for improving good solutions. The idea of NEPA
is to choose a level l′ of search at which the solutions should
be improved. Then, when the NEPA search reaches level l′,
each solution found (which correspond to the best solution of
each level l′−1 call) is refined through the neighborhood search
procedure described in Algorithm 6.

We define the neighborhood of a final state s(kend) (corre-
sponding to an embedding solution of the virtual nodes on the
physical network), as the set of final obtained by moving a vir-
tual node to another physical nodes.

4.4.1. Main steps of NEPA
We describe in Algorithm 7 the main steps of NEPA al-

gorithm. It is similar to the NRPA algorithm except that if we
reach a level l = l′, then we choose to refine the solution by
searching a neighboring solution as described in the following
algorithm:

a. Algorithm 6 first finds the nodes with the largest poten-
tial improvement among the already placed virtual nodes
(e.g. we choose a single node vx

B to move). We find it by
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Algorithm 6 REFINE procedure

Input: K: Max number of physical nodes candidates,
X:Number of iterations, G: Physical network, Hx: Slice,
seq: node placement sequence, P: link mapping for seq,
Rseq: reward yielded by seq and P

Output: Rseqre f
: Refined solution reward, seqre f : refined node

mapping, Pre f : refined mapping
1: seqre f ← seq
2: Rseqre f

← Rseq

3: Pre f ← P

4: for X iterations do
5: previous R← Rseqre f

6: Compute most promising virtual node to move in place-
ment given by seqre f , Pre f using eq.(9)

7: Build set of K best physical nodes (ranked using eq.(8))
Vr ⊂ V suitable for hosting the virtual node

8: for v ∈ Vr do
9: Put virtual node on physical node v, i.e.:

10: • Compute updated version of seqre f seq
11: • Compute new shortest paths P considering the

new position of the virtual node
12: • Update resources used on the physical node and

links newly used.
13: Compute Rseq using seq and P
14: if Rseq > Rseqre f then
15: Rseqre f

← Rseq

16: seqre f ← seq
17: Pre f ← P

18: else
19: Restore resources used on physical node and

link to values matching seqre f ,Pre f

20: end if
21: end for
22: if previous R = Rseqre f then
23: break
24: end if
25: end for
26: return Rseqre f

, seqre f ,Pre f

calculating:

score(vx
m) =

∑
vp∈V x

BWd
vx

m,vx
p
· d(vx

m, v
x
p)

deg(vx
m)

(9)

for each virtual node vx
m, where l(vx

m, v
x
p) is a function re-

turning the length of the physical path used by virtual link
(vx

m, v
x
p) and deg(vx

m) is the degree of virtual node vx
m. The

virtual node which maximizes this metric is considered
as the most promising for improvement, since it is the
one which consumes the most bandwidth compared to its
number of neighbors.

b. The refining procedure is then to try several candidate
physical nodes that could be better suited to host the se-
lected virtual node vx

B, in terms of reducing resource con-
sumption. For each candidate, we remap the virtual node
on them (which corresponds to flipping values in the state

vector), then remap its adjacent virtual links. After all
candidate physical nodes have been tried, the new place-
ment of vx

B is then the one that leads to a maximum reward
(see eq (3)).

To control the execution time of the algorithm, we introduce
two parameters:

• X : is the number of times that the process is repeated,
note that the process is also stopped if a full trial does
not lead to any improvement. Typically a criterion can be
to do no more than |V x| tries. This ensures the runtime
is reasonable while spending more time on larger slices,
since they tend to be harder to place.

• K is the number of candidate physical nodes. For choos-
ing candidates, the simplest thing would be to try all pos-
sible physical nodes. However this would lead to poor
scalability. Instead, we use our weight initialisation func-
tion and define our K candidates as the K nodes with the
highest distance score. For example, in Fig. 7, which
shows a refinement iteration with K = 2, the two can-
didates for hosting virtual node 3 are physical nodes 4
and 2 because they are the two nodes that are the closest
to physical nodes 3 and 5, which host the other virtual
nodes.

After the refinement, the resulting placement is treated like a
normal state by NEPA, e.g. if it is the best found so far, its
weight is incremented. In this sense, NEPA (Alg. 7) maintains
the structure of NRPA (Algorithm 2). Note that in practice,
NRPA could potentially have found any sequence of actions
(e.g. node placement) found by NEPA. However, the virtual
link embedding corresponding could be different since NRPA
places only using Algorithm 5 while in the case of refinements,
NEPA uses Algorithm 6 which can find a different link embed-
ding for the sequence than what Algorithm 5 could have found.
This is particularly important since in practice, we observe that
some sequences found by Algorithm 6 have no valid solution
if using only Algorithm 5. Hence, when using NEPA, it is nec-
essary to save not only the best sequence of actions, but also
the link embedding result in case it needs to be restored after
execution for future use. This is typically done at the end of Al-
gorithm 6 by saving the link embedding solution in the global
data structure S emb

NEPA requires only very little modifications to NRPA (see
algorithm 7), which is particularly noticeable in figure 6, as it
illustrates the way NEPA makes its function calls recursively.
Also note how few refine calls there are compared to the num-
ber of max operations, since those we chose l′ = 2.

Our method enables us to discover better solutions that
would not be easy to find once standard NRPA has converged:
once NRPA has found a local optimum, the probabilities of
choosing the states of the best sequence found in NRPA will go
towards 1, meaning exploration could become poor while there
is no point exploiting the same region anymore. With NEPA,
since we change the best sequence found so far, we open the
opportunity of exploring completely new, but better parts of the
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search space. A single change in the first few actions can lead
to discovering a whole new part of the state-space where most
states are undiscovered, leading to a highly explorative phase
with a very good sequence as a starting point (which we newly
found through the refinement procedure). Hence NEPA exploits
its neighborhood search mechanism in order to help NRPA es-
cape local optima.

Algorithm 7 NEPA Algorithm

Input: Search level l, Number of iterations N, Policy matrix P,
Initial state s(0), Set of virtual links Ex, Physical network
G, Refinement level l′

Output: Best score achieved and best sequence of actions to
achieve it

1: if l = 0 then
2: return SIMULATION(s(0), P, Ex, G)
3: end if
4: Rseqbest

← −∞

5: seqbest ← ∅

6: Pbest ← ∅

7: for N iterations do
8: Rseq, seq,P ← NEPA(l − 1,N, P, s(0), Ex,G, l′)
9: if Rseqbest

≤ Rseq then
10: Rseqbest

← Rseq

11: seqbest ← seq
12: Pbest ← P

13: end if
14: if l = l’ and Rseqbest

, 0 then
15: Rseqbest

, seqbest, Pbest = REFINE(K, X, G, Hx, seqbest,
Pbest, Rseqbest

)
16: end if
17: P← ADAPT(P, seq)
18: end for
19: return Rseqbest

, seqbest, Pbest

4.5. Complexity
In this section, we outline complexity results for both NRPA

and NEPA. We first start by calculating their computational
complexity, then memory complexity is discussed.

4.5.1. Computational Complexity
Proposition 1. The NRPA algorithm has a computational com-
plexity of O(|V | × N l) for sparse physical and virtual graphs.

Let T (N, l) be the function associating the algorithms’ pa-
rameters (number of iterations per level N and search level l)
with the number of simulations executed (e.g. the number of
calls to Alg. 3). We shall prove T (N, l) = N l by induction on l:
For l = 0 the relationship is verified. We now assume that our
hypothesis is verified, e.g. T (N, l) = N l. We will now show that
this implies T (N, l + 1) = N l+1.

T (N, l + 1) = N × T (N, l) = N × N l = N l+1 (10)

This proves T (N, l) = N l. By the same argument, one could
show that the same NRPA search would perform N l adaptations
of its policy (e.g. N l calls to Alg. 2).

Algorithms 3 and 4 are really similar and treat a sequence of
length |V x|. For each element of the sequence, both algorithms

loop through the list of legal moves. At worst, at each step,
all physical nodes that have not already been chosen are legal.
In such a case, the complexity of both nested loops would be
O(|V x| × |V |). In order to compute the rewards in the simulation
procedure, we place virtual links of the embedding found. This
is done using algorithm 5. A breadth-first search (BFS), used in
Alg. 4 for finding shortest path, has a complexity of O(|V |+ |E|)
which we perform Ex times in Alg. 4. The complexity of the
simulation procedure (Alg. 3) is then O((|V | + |E|) × |Ex|). Fur-
thermore, at worst we have |E| = |V |(|V |−1)

2 and |Ex| =
|V x |(|V x |−1)

2 ,
so the complexity of the link embedding phase is O(|V |2×|V x|2).

It can then be concluded that the complexity of the NRPA
algorithm (Alg. 1) is O(|Ex| × |E| × N l) = O(|V x|2 × |V |2 × N l).
Note that we used the simplest possible embedding function for
links. If one swaps it out for a more elaborate function, such
as an exact method[30], one taking congestion[31], delays[32]
or survivability[33] into account, the complexity would typi-
cally increase. We expect such a costlier function to be used
in a more realistic setting. Also note that in a typical sce-
nario, both physical network and virtual networks are sparse,
e.g. |V |2 >> |E| and |V x|2 >> |Ex| hence the complexity of
BFS can be assumed to be reduced to O(|V |) and the complex-
ity of NRPA to be O(|V x| × |V | ∗N l). Furthermore in most cases
|V | >> |V x| and it further reduces to O(|V | × N l).

Proposition 2. The NEPA algorithm has a computational com-
plexity of O(|V | × (N l + N l′ × K × X)) when physical and virtual
graphs are sparse, where K is the number of candidates per re-
finement, X is the maximum number of times we try to refine the
solution and l’ is the level where refinements are performed.

First, note that the number of simulations does not change
compared to NRPA and is still N l. It follows that the total num-
ber of operations performed by the simulation part of the algo-
rithm is O(|V | × N l as in NRPA.
The complexity of NEPA is then O(|V | × N l + Z) where Z is
the number of operations incurred by all the refinement steps.
At each refinement step, we perform X × K BFS searches of
complexity |E|. The total number of operations performed by
refinements is then Z = O(N l′ × K × X × |E|). In the case of a
sparse graph, this number is Z = O(N l′ ×K ×X × |V |). The total
computational cost of NEPA is then

O(|V |×N l +N l′×K×X×|V |) = O(|V |×(N l +N l′×K×X)) (11)

Overall, NEPA has a greater theoretical complexity than NRPA.
However, numerical results from Appendix B show that NEPA
is far more effective than NRPA when they are given equal time.

4.5.2. Memory Complexity
Proposition 3. The NRPA and NEPA algorithms have a mem-
ory complexity of O(|V x| × N l)

We will now prove proposition 3. First, in the worst case,
each simulation procedure call can lead to finding |V x| new un-
explored states, each of which requires to store a float represent-
ing its weight in the policy. If every state found in every simula-
tion call is seen only once, we have to store N l×|V x| floats since
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Figure 7: Example iteration of Refine with K=2. The placement chosen after the iteration is in the box. We assume all nodes have enough CPU and all links have
enough BW. The chosen solution has the lowest amount of bandwidth used as reward only depends on it (CPU demands and uses are the same for a given slice)

as seen in the previous proofs, we call the simulation procedure
N l times. The other source of memory consumption in NRPA is
the storage of the sequences, seq and seqbest. Those are both of
length |V x|. Since NRPA calls itself recursively, we also have to
count the sequences stored by its infant calls. There are at worst
l such infants since the recursive call depth is of l and there is
only one call of a given level active at the same time, and once a
call returns it frees the memory. Hence the memory consump-
tion of the stored sequences is O(l × |V x|). The total memory
complexity of NRPA is O(|V x| × N l + l × |V x|) = O(|V x| × N l).
For NEPA the memory complexity remains the same as NRPA
because the refinement procedure does not incur a significant
memory usage, as it only requires memory to store the best so-
lution (a virtual network which requires O(|V x| memory in case
of a sparse graph).

4.6. Dimensionality reduction and pre-treatment
In practice, we make a slight modification to the MDP

model in order to make the NEPA search more effective. First,
we note that for a given couple of virtual node vx

i and phys-
ical node v j, if the maximum amount of bandwidth required
by links adjacent to vx

i exceeds the maximum available band-
width of links adjacent to v j, then we know one of the adjacent
links of vx

i would be impossible to embed if vx
i was placed on v j.

Hence, we reduce the size of the action space by removing such
actions before running NRPA. Similarly, if the sum of the band-
width adjacent to vx

i exceeds the sum of bandwidths available
on links adjacent to v j, then we know it would not be possi-
ble to place all virtual links if vx

i was placed on v j, hence we
remove this action from the set of possible actions for placing
vx

i . Finally, before the placement, we sort the nodes accord-
ing to the number of physical nodes that could host them. This
draws on the idea that if a node has only few possibilities for
placement, we should treat it first, otherwise there would be a

high chance of blocking the possible host with another virtual
node placed before. By doing this, we avoid exploring some
unfeasible placements.

5. Numerical Results

In this section we extensively compare NEPA with several
other methods from the state-of-the-art, demonstrating the su-
periority of of its performance consistently on various scenar-
ios. We first compare on synthetic physical networks gener-
ated randomly. Then, algorithms are tested with real physical
networks from the topologyZoo dataset. Finally, in order to
assess the performance of each tested algorithm on large prob-
lems against the theoretical optimum, we compare on a set of
Perfectly Solvable Scenarios [34], which are constructed so the
optimal is known but is very hard to achieve. This step is often
overlooked in the literature but we argue it is of key importance
in order to assess the quality of each algorithm. Note we make
sure the range of CPU and Bandwidth capacities fit reality: for
CPUs, a typical server CPU (such as intel Xeon) would have be-
tween 8 and 56 cores (for example Xeon Platinum 9282). Also
note that some server motherboards can host 2 CPUs (for ex-
ample ASUS WS C621E). For ethernet links, it is common to
find bandwidths in the order of 50-100 Gbps, see for example
[35].

5.1. Compared methods

All our experiments are ran with an Ubuntu machine with
a 16-core Intel Xeon Gold 5222s machine with 32 GB RAM,
excepted for GraphVine which requires to be ran on another
machine equipped with a GPU (see below). We compare our
proposed method NEPA with the following methods:
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• MaVEN-S [8] is a Monte Carlo Tree Search based algo-
rithm which uses a model equivalent to ours for modeling
the VNE and the same shortest path algorithm for final
reward calculation. It makes sense to compare it with our
method as it is similarly based on randomly simulating
node placements but uses a different exploration strategy.
This strategy, called Upper Confidence Bound for Trees
explores the MDP as a tree of states (rooted in the initial
state). It chooses where to descend in the tree by balanc-
ing exploration of new states and exploitation of known
states, with the objective to minimize the regret of ex-
ploring new states given the expectated reward yielded
by known states.

• UEPSO [14] is a particle swarm optimization (PSO)
based meta-heuristic algorithm that shows good perfor-
mance for the VNE.

• GraphVine [20] is a recently proposed method that ex-
ploits graph neural networks for selecting the physical
nodes on which to place the virtual nodes. Note that
GraphVine, like us, learns online, different from other
neural network approaches such as [9], which requires
an extensive offline training first, tied to the physical net-
work. For this reason, a comparison with these other ap-
proaches would not be fair. This is why we prefer to com-
pare with [20] instead.

For the sake of clarity, we keep in this section only the compar-
ison with the state-of-the-art methods (mentioned above). We
postpone the ablation study of NEPA (and its improvement over
NRPA) to Appendix B, which shows the benefits brought to
NEPA by weight initialization and neighborhood-based refine-
ments. We implemented all these methods in the Julia program-
ming language and made the code available as open source[36],
except for GraphVine for which we use the publicly available
Python/Pytorch implementation. In order to compare in the
fairest manner possible, we run the following experiments:

• We run NEPA with parameters N = 5 and l = 3.

• MaVEN-S is ran with a computational budget (e.g. the
total number of link placement attemps it executes per
slices) of 445 link placements per slice. Note we tried
to run it for longer times (up to 670 iterations per slice)
without a significant improvement of results.

• Since UEPSO is a non-recursive algorithm, it is easier to
stop it at any moment and get a valid placement. Hence
here, we simply stop UEPSO after a certain amount of
time equal to the mean time taken by NEPA.

• Finally we run GraphVine with the default implementa-
tion, as it is a quite different algorithm which does not
rely on repeated simulations and since it can exploit a
GPU. However with our original machine, we note that
it is the slowest to run. As shown in [20], the algorithm
is better suited for using a GPU. For that reason, we run
it on another computer which has a GPU (as it gave the

best runtime). This machine uses an nvidia A3000 and
an Intel i7-11850H CPU.

Runtimes are depicted in Figure 8. We run each of the described
experiments 10 times with different random seeds, excepted for
GraphVine for which we run it only once due to the high com-
putational cost. Note that we compute 99% confidence intervals
of acceptance and revenue-to-cost ratio for MaVEN-S, UEPSO
and NEPA. Some figures do not display them because they are
too narrow to be visible on figures. (e.g. confidence interval in
the order of less than ± 0.01 for acceptance and revenue-to-cost
ratio)

5.2. Results on synthetic physical topologies

We start our experiments with a sensitivity analysis. For
this part, we generate scenarios with default parameters and we
vary each of these one by one in order to assess the results on a
representative set of cases. Default parameters are reported in
Table 2. We choose to generate our slices and virtual networks
with the Waxman generation algorithm as it is commonly used
in the VNE litterature [8][5]. We choose to generate 500 slices
per scenario as we validated experimentally this gave enough
time for the system to stabilize in terms of acceptance ratio. We
then vary parameters in the following ways :

• We generate slices with varying Poisson arrival rates be-
tween λ = 0.02 and λ = 0.08 arrivals per second. (results
in Fig. 9.1/9.5)

• We generate slices with sizes (number of virtual nodes)
with minimum size 7 + i and maximum size 13 + i for
i ∈ [0, 9]. (results in Fig. 9.2/9.6)

• We modify the physical network from the default sce-
nario by removing bandwidth and CPU capacities in in-
crements of 5 from links and nodes of the physical net-
work, making resources scarcer. Since initially the re-
source capacities (CPU and BW) are chosen uniformly at
random between 50 and 100, their mean value is about
75. Since we remove from all nodes and links, the mean
number of resources for the different scenarios is 70, 65,
60, down to 45. (results in Fig. 9.3/9.7)

• We generate 10 different physical networks and slice sets
for each physical network size of 50, 60, 70, 80, 90, 100
nodes. In those scenarios, we use the default parameters,
but with λ = 0.04 and slice sizes as specified in Table
3. We scale the size of slices with respect to the physical
network size since our early experiments showed that if
the slice sizes were the same for all physical networks
tested, it resulted in too easy scenarios for larger physical
networks, where most algorithms reached performances
close to 100% acceptance rate, making the comparison
pointless. (results in Fig. 9.4/9.8)

Figure 9 shows that on every tested scenario, NEPA beats all
other algorithms by a large margin, consistently beating MCTS
of around 50% of acceptance and the best of other contenders
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Parameter Default Value
Slice arrival rate λ 0.02
Slice departure rate µ 0.005
Slice generator Waxman (α = 0.5, β = 0.2)
Number of slices 500
Min |V x | 7
Max |V x | 13
|V | 75
|E| 273
CPU demands (number of cores) 1 - 50
BW demands (Gbps) 1 - 50
Physical CPU capacities (number of cores per node) 50 - 100
Physical BW capacities (Gbps per link) 50 - 100

Table 2: Default scenario generation parameters

Number of physical nodes of Number of virtual nodes
50 7-13
60 8-14
70 9-15
80 10-16
90 11-17
100 12-18

Table 3: Mean number of nodes of virtual networks for each size of physical
network tested

(which are close to each other, above MCTS) by 15%, regard-
less of the case. In terms of revenue-to-cost ratio, it is striking to
note that NEPA beats other algorithms by an even larger mar-
gin than for acceptance. This means NEPA tends to use less
physical resources, which is the reason why it achieves a better
acceptance. This suggests that reducing the overall consump-
tion of each slice enables us to leave more resources for future
incoming slices, making it possible to place them.
For variable size physical networks (figure 9.4), we observe
again that NEPA beats other contenders by a large margin, since
it accepts up to 60% more than MaVEN-S, and consistently
beats it by 20 points of acceptance. It is remarkable to note how
regular the patterns are in the acceptance plots, especially given
that results are averaged for different topologies (recall that in
the variable size experiment, for each seed, we generate a dif-
ferent random topology). The difference between algorithms
is almost always the same regardless of sizes and difficulty of
the instance, with NEPA as a clear winner. Regarding revenue-
to-cost ratios, we note that all algorithms excepted NEPA have
average ratios between 0.5-0.6. NEPA beats them by a large
margin, since it is the only one to consistently reach 0.7 to 0.75
of revenue-to-cost ratio, showing again the effectiveness of the
neighborhood based refinement in increasing the quality of the
solutions found.

Figure 8: Mean runtime per slice for each algorithm (calulated by averaging
runtime per slice on all runs of varying λ scenarios)

5.3. Real Topologies

We try all algorithms with real topologies from the Topol-
ogyZoo [37] dataset as physical networks. We choose to use
topologies that have between 60 and 200 nodes and are con-
nected. This leaves us with 26 topologies with |V | between 60
and 197. We use bandwidth capacities chosen randomly be-
tween 250 and 300 Gbps and CPU capacities between 50 and
100 cores. Slices are generated with our standard scheme but
with λ = 0.04 arrivals per second.

The results depicted in Figures 10 and 11 show that NEPA
is a lot more effective than UEPSO and MCTS. We achieve im-
provements of at least one order of magnitude in terms of accep-
tance compared to these algorithms with our best result being
to more-than-triple their acceptance ratio on the Syrin topology
by using NEPA. GraphVine interestingly performs much bet-
ter on those topologies than on random ones, however NEPA
still is the best in terms of acceptance rate with only few ex-
periments where GraphVine manages to reach a similar accep-
tance as NEPA, an only 2 where it beats our algorithm by a
thin margin. In terms of revenue-to-cost ratios, results are on
par with acceptance, since again NEPA beats other algorithms
(GraphVine aside) by an order of magnitude. We note that on
some instances, GraphVine has a worst revenue-to-cost ratio
than NEPA but still matches it in terms of acceptance (Co-
gentCo, GtsCe, Pern, ...). This observation implies that al-
though improving revenue-to-cost ratio is a key factor in order
to reach a higher acceptance, it is not the only parameter to look
for, since an approach can have a worst revenue-to-cost ratio but
a better long term acceptance ratio.

Overall, our results suggest that NEPA is the best suited
method compared to state of the art algorithms when it comes
to placing slices on real-world networks. We note however that
although the GraphVine method struggled on random topolo-
gies, it is competitive when it comes to real networks, although
not as good as NEPA overall. We think it would be a great area
of future research to try to combine both methods, as NEPA
might be able to leverage the addition of GraphVine’s neural
network for reusing information learned accross experiences.
Results also suggests that the topology of the physical network
has a great influence on the performances of each algorithms.

Starting from that observation, we investigate the key topo-
logical features that enable NEPA to peform so much better in
those cases. Our data exploration reveals that real topologies
tend to have a larger diameter and mean shortest path length
(e.g overall longer paths) than generated ones. They also tend to
have a lower link density (e.g. they have ”less” edges). We de-
pict statistics for these topologies compared to generated ones
in 7, in Appendix C. The difference between real and synthetic
topologies questions the appropriateness of the widely used in
the litterature Waxman Generator for VNE studies.

Furthermore, there is often a larger standard deviation in the
length of shortest paths (e.g. distances) in real topologies than
in synthetic ones. We notice that the differences between NEPA
(which uses distance information a lot) and other algorithms is
the most important for real topologies where the standard de-
viation in shortest path length is the largest. For example with
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9.1 Acceptances for varying
arrival rate (λ)

9.5 Revenue-to-cost ratio for
varying λ

9.2 Acceptances for varying slice
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9.6 Revenue-to-cost ratio for
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Figure 9: Results for sensitivity analysis experiments

Figure 10: Acceptance on real physical networks. Results are ordered by increasing shortest-path length variance.

Figure 11: Revenue-to-cost ratios on real physical networks
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Mean distance Diameter Standard deviation of shortest path length Clustering coefficient
Correlation 0.72 0.65 0.71 -0.17

p-value 3 × 10−5 3 × 10−4 5 × 10−5 0.38

Table 4: Correlation between graph topological statistics and improvement ratio from NRPA to NEPA for real topologies.

Syrin, where acceptance rises from 0.18 - 0.23 for MaVEN-S
and UEPSO to 0.77 with NEPA, and where the shortest path
length standard deviation is 6.77. We observe the same pat-
tern with VtlWavenet2011, UsCarrie, RedBeste, Cogentco or
TataNld. On the other hand, when standard deviation is low
(Ulaknet, Internode, Sinet, Forthnet, ...), we notice that the dif-
ferences between algorithms are much lower, as the information
to be leveraged from distances is less important, since choosing
a ”bad” placement would result in a smaller augmentation of
the cost. Note however that NEPA still beats all other algo-
rithms in those cases, although it is by a thinner margin. We
quantify the advantage NEPA gets from exploiting distance in-
formation (e.g. using weight initialization and refinement) by
calculating the augmentation ratio between the acceptance of
NEPA and the acceptance of NRPA-W (which is depicted in
Appendix B) for each real-topology scenario. We choose to
compare against NRPA-W as it is the same algorithm, but with
no help from distance-based information during node place-
ment. We then calculate the correlation between the augmenta-
tion ratio and different topological measures for results on the
real-world topologies.

Those correlation results (obtained using Pearson correla-
tion coefficient) are depicted in Table 4. We find strong positive
correlations of 0.65, 0.71 and 0.72 respectively for diameter,
standard deviation of distances and mean distance, meaning dis-
tance information is particularly important to exploit when the
physical network has a high standard deviation in the distribu-
tion of distances, such as in many of the real networks studied.
This explains why our algorithm can perform so much better on
these instances. This is relatively intuitive to understand: these
cases correspond to instances where there are a lot of chances
to make ”high-cost mistakes”, e.g. where a single virtual link
could incur à lot of cost by being placed on two physical nodes
that are far from one another. Our distance-based techniques ex-
plicitly mitigate this by ensuring virtual nodes are placed close
to one another, which results in an even greater performance
boost on those cases. Also notice that in this paragraph our
analysis was focused on standard deviation but applies to the
other distance related metrics, as mean distance, diameter and
standard deviation all have a correlation between one another
of 0.99, according to our measurements.

5.4. Specific case: Perfectly solvable scenarios

Third, we evaluate each algorithm on perfectly solvable sce-
narios (PSS). A PSS is a kind of scenario proposed by Fischer
[34] that is generated such that there are only slice arrivals and
no departure, and such that it is possible to place all slices. The
scenario is generated so the only solutions where all slices are
placed leave 0 remaining resources. Hence it is a very hard,
but theoretically feasible scenario (e.g. 100% of acceptance is
reachable).

We argue evaluating algorithms on such scenarios is an im-
portant but often overlooked practice in the literature. Indeed,
it is generally infeasible to evaluate the suboptimality gap as
computing the exact placement would be computationally too
expensive. We generate 10 PSS scenarios, using the additive
algorithm from [34] . The generation is done by first gener-
ating slices, then ”adding” them in order to form the physical
network. The ”addition” step is done by treating each virtual
node iteratively, either reusing an already created physical node
or creating a new one for the current virtual node (the choice
is made probabilistically). Then, once all physical nodes have
been created, they are linked so that if two nodes host neighbor-
ing virtual nodes, bandwidth is added to the link between them
equal to the requirement of the corresponding virtual link.

Each scenario PS S i is generated from a batch of 100 ran-
dom slices of random size 7 + i to 10 + i and a probability of
reusing existing nodes of 0.93. This parameter was chosen em-
pirically as it enabled us to generate graphs of sizes similar to
those we experimented with in the previous section, as shown
in Table 5. Our experiments show the same kind of results
(shown in figure 12) as for the previous part, e.g. that NEPA
outperforms all other methods by an order of magnitude (con-
sistently beating the second best method, UEPSO by accepting
up to 35% more slices in PSS9), both in terms of acceptance
and revenue-to-cost ratio. However, it is striking to note that
we never achieve a result of 100% of acceptance (the best one
is NEPA on PSS0 - the smallest case - with 69%), even though
the revenue-to-cost ratio gets really close to 1 (up to 0.965 in the
first scenario). This means that although we achieve an almost
perfect online optimization objective, resources on the physi-
cal network are badly used, leaving a lot of ”holes” which are
unusable. We believe this shows the need for the VNE commu-
nity to investigate better reward functions which could assess
the quality of a solution with other metrics than pure resource
usage (with the goal to define whether a virtual network ”fits”
its embedding or not). In that regard, a recent article [17] made
a first step in that direction by proposing to enrich the reward
function with degree information, which slightly helps improv-
ing acceptance depending on the algorithm used. However, the
results shown in Appendix A demonstrate this reward function
has no significant impact on the results of the NEPA placement,
suggesting it is ineffective when the algorithm is already very
good. Another possibility would be to place virtual networks in
batches, which might enable us to combine placements better,
at the cost of a higher computational complexity.

6. Discussion

Our results illustrate that the widely adopted idea of opti-
mizing placement for reduced bandwidth [8] [9] [26] [20] con-
sumption in order to let more resources for future virtual net-
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Instance PSS0 PSS1 PSS2 PSS3 PSS4 PSS5 PSS6 PSS7 PSS8 PSS9
|V | 67 86 73 94 111 104 124 121 135 150
|V x | 7-10 8-11 9-12 10-13 11-14 12-15 13-16 14-17 15-18 16-19

Table 5: Number of nodes for physical and virtual networks of PSS scenarios

Figure 12: Acceptance and revenue-to-cost ratios for perfectly solvable scenarios

works good. We show that pushing this logic a step further by
explicitly reducing the consumption of the found solution en-
ables our algorithm to reach even better results. The main hur-
dle with the refinement step is the computational cost, which
we overcome by selecting promising solutions to refine instead
of trying to refine any solution. The NRPA algorithm is eas-
ily adaptable into NEPA due to its recursive nature. It is an
open question whether other algorithms such as UEPSO could
be modified in order to similarly select promising states to be
refined, which would enable them to keep the computational
cost low while finding better embeddings.

We shall now focus on the differences between MaVEN-S
(which we call a mean-based approach) and NRPA and NEPA
(which we call max-based approaches), in an effort to try to ex-
plain why max-based approaches perform so much better than
the MCTS-based MaVEN-S algorithm (refer to Appendix B
which shows the ablation study of NEPA, also demonstrating
that NRPA without the improvements brought by NEPA out-
performs MaVEN-S), while both types of algorithms are Monte
Carlo Search algorithms that try to balance exploration and ex-
ploitation of the tree formed by the MDP underlying our em-
bedding problem.

In figure 13, we illustrate with a toy example the potential
results obtained after executing 6 random simulations (with a
policy that could either be given by NRPA/NEPA’s policy ma-
trix or by MaVEN-S’s tree). The tree represents the MDP, with
the final values obtained through simulations at its leaves. This
tree will serve us to illustrate the key difference between algo-
rithms: max-based approaches assume that the best solutions
lie near the single best solution found so far, hence they will
explore regions of the search tree even with low expected value
as long as they contain the best solution found so far. On the
other hand, MCTS is designed to explore the states with the
best expected (mean) value. Hence, on the tree from figure 13,
MaVEN-S, would exploit more the states of the bottom sub-
tree, since their mean value would be of 0.53, while max-based
approaches would go for the top sub-tree since the maximum

known value is of 0.9, even though the mean value would only
be of 0.47.

We argue this is desirable for the VNE problem we solve,
because optimizing for the mean expected reward is typically
suited for problems where there is uncertainty, e.g. where tak-
ing one action from a given state can yield to several different
states. This is not the case for the VNE, where a choice of
action from a given state always yields to the same state: the
model is a deterministic MDP. Hence it makes more sense to
choose actions only according to the best sequence found so far
and not according to the best mean value. This is what max-
based approaches do since they optimize considering the best
sequence found, as opposed to mean-based MaVEN-S, which
partly explains why MaVEN-S is outperformed.

Figure 13: Toy example of MDP exploration choices

7. Conclusion

We have proposed a new approach for the virtual network
embedding problem, which consists in placing virtualized net-
works (”slices”) on a physical infrastructure (typically a 5G
network). Our algorithm builds upon the NRPA (nested roll-
out policy adaptation) algorithm by combining its recursive
reinforcement learning procedure with neighborhood search
and by initializing the weights it uses for learning based on
distances in the physical network. The resulting algorithm,
called NEPA (Neighborhood Enhanced Policy Adaptation with
Distance-weights) shows state-of-the-art results on commonly
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used synthetic benchmarks as well as on real network topolo-
gies, while keeping the running time comparable to earlier al-
gorithms. Experiments on real topologies show that since it
exploits distances between placed nodes, NEPA brings accep-
tance and revenue-to-cost improvements of an order of mag-
nitude compared other meta-heuristic and Monte Carlo search
algorithms. It also beats a state-of-the-art graph neural network
based approach (GraphVine). On random topologies, which are
the most explored in the VNE litterature, we also showed that
NEPA is the most robust of the tested approaches since it always
reaches the best acceptance and revenue-to-cost ratio. These re-
sults will help in solving the resource allocations problems in
future 5G networks, but also help the VNE community better
evaluate its algorithms, since we characterized how topologi-
cal features can induce enormous differences between results
from different methods. In the future, we would like to demon-
strate how to use NEPA on other combinatorial problems where
good neighborhood search policies are also available, such as
the TSP and the VRP. We also plan on incorporating offline
learning by reusing the learned weights from past NEPA runs
in order to learn better how to initialize future weights as cur-
rently these datas are not used once the placement is decided.
In that regard, a combination with GraphVine would be partic-
ularly appealing. Implementing NEPA on a real 5G network is
also planned in the near future. Finally, we contribute to the
VNE community by making our set of instances and of imple-
mentations available online [36].
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Appendix A: Comparison of results for NEPA with and
without the Alternative Reward Function Based on Degrees

In this Appendix, we expose our simulation results on all
tested instances when we use the AFBD (alternative function
based on degrees) proposed in [17] in the reward function. This
function uses a combination of the sum of Bandwidth used and
the degrees of the used nodes as a cost function. The formula
for the AFBD cost function for virtual network Hx placed on G
is the following :

AFBD(G,Hx) =
∑

∀(vi,v j)∈E

¯BW x
vi,v j

+
∑

vx
i ∈V

x

deg(host(vx
i ))− deg(vx

i )

Where deg(vi) is the degree of node vi and host(vx
i ) is the phys-

ical node hosting virtual node vx
i .

The idea behind that choice is to keep minimizing the length of
the used paths, but while preserving resources on high degree
nodes when possible. This revolves around the intuition that
higher degree nodes tend to offer more link embedding possi-
bilities, hence, if a virtual network can be placed by using more
constraining physical nodes, it should be done, since some fu-
ture virtual networks might require less constrained ones in or-
der to be placed. In [17], the authors claim to achieve improve-
ments (in the order of a several percents of acceptance) that
could be transferred to other meta-heuristic algorithms.
We try to find out if this is the case with NEPA, since after
our investigations it is the best performing algorithm at our
disposal. Note that the reference meta-heuristic used in [17]
is Harmony Search, which has comparable performances to
UEPSO, as shown by the same authors in [38] (in that article
UEPSO is referred to as PSOI and shows very close acceptance
ratio with Harmony Search based methods).

Since NEPA tries to maximize a reward function, and the
AFBD function is a cost function, which should be minimized,
we take 1

AFBD(G,Hx) as the reward function in this appendix. We
run NEPA on all the cases of section 5.2 (synthetic networks)
and section 5.3 (real topologies), but only depict a subset of
those instances due to space constraints (the rest can be found
online in [36]). Our results (figs. 141516) show there is no
significative difference when using AFBD with NEPA.

Figure 14: Acceptance for several real topologies

15.1 Acceptances for varying
arrival rate (λ)

15.2 Acceptances for varying
CPU/BW capacities

15.2 Acceptances for varying slice
size

15.4 Mean acceptance ratios for
varying physical network sizes

15.5 Revenue-to-cost ratio for
varying λ

15.6 Revenue-to-cost ratio for
varying CPU/BW capacities

15.7 Revenue-to-cost ratio for
varying slice size

15.8 Revenue-to-cost ratio
(varying network sizes)

Figure 15: Results for sensitivity analysis experiments

Figure 16: Revenue-to-cost ratio for several real topologies
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Appendix B: Ablation study of NEPA components

In this appendix, we compare NEPA and NRPA with their
counterpart that do not use weight initialization. The presented
results were ran using the parameters and instance generation
described in the main article. However, due to space con-
straints, we only present a representative subset (10 topologies)
of the ablation study experiments for real networks. The rest
can be found on [36]. We call NRPA-W and NEPA-W the ver-
sions of our algorithms that do not use our weight initialization
function (but initialize all weights to 0)

Note that we chose parameters l = 3, N = 7 for NRPA and
NRPA-W, as we observed that this resulted in the same runtime
for NEPA/NEPA-W (with parameters l = 3,N = 5) and these
approches.

Our results from figure 18 show that NRPA outperforms
standard NRPA-W by a thin margin on random topologies, hint-
ing that the weight heuristic helps slightly for improving the re-
sults. For NEPA-W, there is no significative difference in results
for randomly generated topologies compared to NEPA, mean-
ing that the refining operation already exploits well the short-
est path information. However, on real topologies (figure 17),
the difference is more significative. NEPA outperforms NEPA-
W by a large acceptance margin on several topologies, such as
Pern and UsCarrie. In terms of revenue-to-cost ratios (figure 19,
NEPA also outperforms NEPA-W on real topologies. It means
on some real topologies, the extra exploitation of shortest path
information is of importance. This makes sense intuitively as,
as we have seen before in the paper, real topologies typically
have larger diameters, mean distances and distance standard de-
viation, meaning an error of placement related to distances can
be much more costly that on randomly generated topologies.

When we compare NRPA and NRPA-W on real topology,
we also observe that on most of the cases, NRPA beats NRPA-
W both in terms of acceptance and revenue-to-cost ratio by
a larger margin than what was observed with random topolo-
gies. Similarly here, we believe this is largely due to less errors
caused by choosing distant nodes when other less costly solu-
tions existed.

Finally, we observe that on all cases, NEPA significantly
outperforms NRPA, meaning that neigborhood-based enhance-
ment is effective at finding better solutions.

Figure 17: Acceptance for several real topologies

18.1 Acceptances for varying
arrival rate (λ)

18.2 Acceptances for varying
CPU/BW capacities

18.2 Acceptances for varying slice
size

18.4 Mean acceptance ratios for
varying physical network sizes

18.5 Revenue-to-cost ratio for
varying λ

18.6 Revenue-to-cost ratio for
varying CPU/BW capacities

18.7 Revenue-to-cost ratio for
varying slice size

18.8 Revenue-to-cost ratio
(varying network sizes)

Figure 18: Results for sensitivity analysis experiments

Figure 19: Revenue-to-cost ratio for several real topologies
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Appendix C: statistics on network topologies

Instance Mean distance Diameter Distance Standard Deviation Clustering Coefficient
Intellifibe 6.33 15 2.99 0.088

Latnet 3.96 12 2.17 0.058
VtlWavenet2011 13.07 31 6.50 0.000

Syrin 11.95 31 6.77 0.000
Globenet 5.23 15 2.46 0.081
Forthnet 3.28 7 1.06 0.016
GtsCe 9.83 21 4.18 0.082

Ulaknet 2.44 4 0.59 0.000
Sinet 3.93 7 1.41 0.000

Internode 3.60 6 1.14 0.013
UsCarrie 12.09 35 6.46 0.058
RedBeste 10.59 28 5.66 0.009
Missouri 6.23 14 2.73 0.025
Interoute 7.62 17 3.39 0.105
Columbus 7.24 18 3.62 0.045

Garr201201 3.62 8 1.28 0.054
Cogentco 10.51 28 5.10 0.012
Deltaco 7.16 23 3.80 0.107
AsnetA 3.78 8 1.43 0.127
Switc 6.09 13 2.80 0.110

Uninett2011 4.25 9 1.62 0.018
Ion 10.14 25 4.79 0.011

Pern 4.55 8 1.89 0.004
Esnet 4.32 9 1.68 0.034
Colt 9.35 20 3.70 0.040

TataNld 9.85 28 5.17 0.065

Table 6: Statistics on each real topology

Instance Mean Distance Diameter Distance standard deviation Clustering coefficient
Waxman 50 2.58 6 0.88 0.169
Waxman 60 2.45 4 0.76 0.108
Waxman 70 2.50 5 0.77 0.152
Waxman 80 2.41 5 0.73 0.142
Waxman 90 2.44 4 0.70 0.127
Waxman 100 2.27 4 0.66 0.160

Erdos-Renyi 0.03 4.33 9 1.60 0.032
Erdos-Renyi 0.04 3.66 8 1.27 0.042
Erdos-Renyi 0.06 3.27 7 1.09 0.019
Erdos-Renyi 0.08 2.74 6 0.87 0.054
Erdos-Renyi 0.11 2.34 4 0.68 0.109
Erdos-Renyi 0.16 2.01 3 0.55 0.142
Erdos-Renyi 0.2 1.89 3 0.49 0.182

PSS 1 1.93 4 0.62 0.385
PSS 2 1.82 4 0.61 0.476
PSS 3 1.91 4 0.59 0.376
PSS 4 1.94 4 0.59 0.358
PSS 5 1.83 4 0.56 0.425
PSS 6 1.98 4 0.62 0.413
PSS 7 1.92 4 0.60 0.398
PSS 8 1.91 4 0.58 0.360

Table 7: Statistics on example simulated topologies
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