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Abstract: In this paper, a low-order approximation (LOA) of fractional order PID (FOPID) for an
automatic voltage regulator (AVR) based on the modified artificial bee colony (ABC) is proposed.
The improved artificial bee colony (IABC) high-order approximation (HOA)-based fractional order
PID (IABC/HOA-FOPID) controller, which is distinguished by a significant order approximation
and by an integer order transfer function, requires the use of a large number of parameters. To
improve the AVR system’s performance in terms of transient and frequency response analysis, the
memory capacity of the IABC/HOA-FOPID controller was lowered so that it could fit better in the
corrective loop. The new robust controller is named the improved artificial bee colony (IABC) low-
order approximation (LOA)-based fractional order PID (IABC/LOA-FOPID). The performance of the
proposed IABC/LOA-FOPID controller was compared not only to the original ABC algorithm-tuned
PID controller, but also to other controllers tuned by state-of-the-art meta-heuristic algorithms such
as the improved whale optimization algorithm (IWOA), particle swarm optimization (PSO), cuckoo
search (CS), many optimizing liaisons (MOL), genetic algorithm (GA), local unimodal sampling
(LUS), and the tree seed algorithm (TSA). Step response, root locus, frequency response, robustness
test, and disturbance rejection abilities are all compared. The simulation results and comparisons
with the proposed IABC/LOA-FOPID controller and other existing controllers clearly show that
the proposed IABC/LOA-FOPID controller outperforms the optimal PID controllers found by other
algorithms in all the aforementioned performance tests.

Keywords: improved artificial bee colony (IABC); fractional order proportional-integral-derivative
controller (FOPID); low order approximation (LOA); stability; automatic voltage regulation (AVR)

1. Introduction

In power systems, the automated voltage regulator (AVR) is employed to maintain the
terminal voltage of a synchronous generator at a suitable level. The AVR system regulates
the constancy of the terminal voltage by adjusting the generator’s exciter voltage [1,2].
In power system applications, maintaining a consistent input voltage has always been a
difficult problem. When there is a sudden shift in load for power supply requirements, the
AVR system is employed to stabilize the voltage value.

The AVR system is now receiving a lot of attention in the industry for keeping the
synchronous generator’s terminal voltage constant under all situations. Classical integer
order proportional-integral-derivative (IOPID) [3–5], proportional-integral-derivative ac-
celeration (PIDA) [6], fractional order PID (FOPID) [7–9], PID plus second-order derivative
(PIDD2) controller [10], modified neural network (MNN) [11], genetic algorithm (GA) [12],
interval type-2 fuzzy logic (IT2FL) [13], and a differential evolution—artificial electric field
algorithm (DE-AEFA) [14].
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Likewise, the objective function can also be of any type such as integral of time
multiplied square error (ITSE) [15], integral of time multiplied absolute error (ITAE) [16],
integral absolute error (IAE) [17] and integral square error (ISE) [18].

However, even for the same controllers, several optimization methods are available.
For example, artificial bee colony (ABC) [15], stochastic fractal search [19], whale opti-
mization algorithm (WOA) [20], improved whale optimization algorithm (IWOA) [21],
sine-cosine algorithm (SCA) [22], tree seed algorithm (TSA) [23], particle swarm optimiza-
tion (PSO) [24], improved kidney-inspired algorithm (IKIA) [25], cuckoo search (CS) [26],
genetic algorithm [12,27], many optimizing liaisons (MOL) [28], grey wolf optimization
(GWO) [18], crow search algorithm (CSA) [29], water wave optimization (WWO) [30],
local unimodal sampling (LUS) [31], water cycle algorithm (WCA) [32], and ant colony
optimization (ACO) [33], are optimization algorithms that have been proposed to tune
the controller parameters of an AVR system. In refs. [14,34], the authors investigated
the combined analysis of load frequency control (LFC) and automatic voltage regulation
(AVR), where a differential evolution—artificial electric field algorithm—is presented and
is applied to the combined LFC-AVR model. Further examples of the intelligent strategies
for achieving optimal parameters in various systems can be found in [35–38].

Using fractional calculus, it is possible to improve the performance of the PID controller
in AVR systems. The FOPID controller (FOPID) is a type of classical PID controller that
employs fractions instead of integers in order of derivation and integration. Furthermore,
as compared to the integer order PID controller, FOPID provides a better transient response
while also being more robust and stable [39–45]. Because of the previously indicated
benefits of the FOPID, this research focuses on this form of controller.

In this paper a low-order approximation (LOA) of fractional order PID (FOPID)
based on the artificial bee colony (ABC) has been proposed. The IABC/FOPID controller
approximation, which is distinguished by a transfer function of integer order and a long
memory (or high order approximation (HOA)), named IABC/HOA-FOPID, and requires a
lot of parameters to be used. To enhance the performance of the AVR system in terms of
transient and frequency responses analysis, the complete IABC/HOA-FOPID controller’s
memory capacity was reduced so that it could fit better in the corrective loop, the new
robust controller is named IABC/LOA-FOPID.

The following list summarizes this paper’s originality contribution:

- For the first time, the low-order approximation of a FOPID controller based on the
ABC algorithm (named IABC/LOA-FOPID) is used.

- In terms of transient response performance, the proposed IABC/LOA-FOPID con-
troller was thoroughly compared to various strategies in the literature, such as IWOA-
PID [21], PSO-PID [12], ABC-PID [15], CS-PID [26], MOL-PID [28], GA-PID [12],
LUS-PID [31], and TSA [23]. The findings of the research clearly show that the LOA-
FOPID controller tuned by IABC is better.

- To investigate the system’s behavior, several robustness tests are specifically studied.
All along the experiments, the LOA-FOPID regulator optimized by ABC outperforms
the classical or fractional PID controller, whose parameters have been optimized by
the other methods that have been researched in the literature.

This paper is organized as follows: Section 2 provides a brief overview of the AVR
system’s composition, the fundamentals of fractional calculus, and the stability of fractional
order systems. Section 3 provides a thorough explanation and mathematical formulation
of the proposed IABC/LOA-FOPID controller. The simulation results are displayed in
Section 4 of this study. Section 5 summarizes the study’s overall findings.

2. Materials and Methods
2.1. AVR System Description and Modeling

The basic role of an AVR system is to keep the generator’s terminal voltage constant
via the excitation system. A basic AVR system consists of four major components: an
amplifier, an exciter, a generator, and a sensor. These components are represented by
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transfer functions [9,12,15,46] and modeled in the MATLAB/Simulink environment to
study the dynamic performance of an AVR. A first-order transfer function with a gain and
a time constant is used to represent each component of the AVR system. Table 1 shows the
transfer functions of the aforementioned components. The closed-loop block diagram of
the AVR system without a controller is shown in Figure 1 along with the transfer functions.

Table 1. Main components of AVR system.

Component of AVR System Transfer Function Gain Range Time Constant Range [s]

Amplifier Ga = Ka
1+Tas 10 < Ka < 400 0.02 < Ta < 0.1

Exciter Ge =
Ke

1+Tes 1 < Ke < 400 0.4 < Te < 1

Generator Gg =
Kg

1+Tgs 0.7 < Kg < 1 1 < Tg < 2

Sensor Gs =
Ks

1+Tss Ks = 1 0.001 < Ts < 0.06
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Figure 1. AVR system block diagram without a PID controller.

To compare the results fairly, in this work, the AVR system’s parameters are Ka = 10,
Ke = 1, Kg = 1, Ks = 1, Ta = 0.1, Te = 0.4, Tg = 1 and Ts = 0.01, which are the same as in the
research works [12,15,21,23,26,28,31]. The closed loop transfer function for the AVR system
is found as the following equation given the model parameter values mentioned above.

Vout

Vre f
=

0.1s + 10
0.0004s4 + 0.045s3 + 0.555s2 + 1.51 + 11

(1)

Figure 2 depicts the output step voltage response of the aforementioned system, which
makes it evident that it is oscillatory stable.
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Table 2. Values of the AVR system’s transient response without a controller.

Controller Type Mp [%] ts [s] tr [s]

AVR without controller 65.7226 6.9865 0.2607

2.2. Fractional Calculus

Fractional calculus is a non-integer order operator aDα
t extension of integration and

differentiation, where a and t signify the operation’s limits and denote the fractional order
such that

aDα
t =


dα

dtα , R(α) > 0
1 , R(α) = 0∫ t
a (dτ)−α, R(α) < 0

(2)

where it is commonly believed that α ∈ R, although it might alternatively be a complex
number. The fractional differintegral has several definitions. A typical definition is the
Riemann-Liouville differintegral [47].

Definition 1. The mathematical definition of Grünwald–Letnikov is:

Dα f (t) = lim
h→0

h−α ∑k
j=0(−1)j

(
α
j

)
f (kh− jh) (3)

Here, ‘h’ is the step time and the coefficients given above can be evaluated in relation
to the expression given below;

ω
(α)
j =

(
α
j

)
=
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(α− j + 1)
(4)

Definition 2. Mathematically, the Riemann-Liouville definition is:

f (t) =
dn

dtn

∫ t

0

f (τ)

(t− τ)α−n+1 dτ (5)

The Oustaloup methodology performs by approximating the function from as:

G f (s) = Sα , α ∈ R+ (6)

Taking the rational function into consideration [48,49]:

G f (s) = K
N

∏
k=1

s + w′k
s + wk

(7)

However, gain, zeros, and poles can be calculated as follows:

K = wγ
h , wk = wb.w(2k−1+γ)/N

u , w′k = wb.w(2k−1−γ)/N
u

where wu represents the unity gain in frequency and the central frequency in a geometrically
distributed frequency band. Let, wu =

√
whwb, where wh represents the upper frequencies

while wb represents the lower frequencies, γ is the derivative order and N is the filter.

2.3. Stability of Fractional Order Systems

When developing a control system, stability is a fundamental and critical condition.
In integer order, a linear time-invariant (LTI) system in continuous-time is stable if all of
the characteristic equation’s roots are on the left half of the ‘s’ plane.
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The stability of fractional order is determined by more than simply the placements
of the poles on the left half side. The fractional order determines it, which becomes
progressively complicated as seen below. The characteristic equation of a general linear
fractional differential equation is as follows:

∑j
i=0 aisαi = 0 (8)

where, αi is rational, the characteristic equation can be rewritten as;

∑n
i=0 ais

i
m = 0 (9)

where m is integer, α = 1/m and αi > 0.
Figure 3a shows the stability zone of a fractional order system when 0 < α < 1, which

is greater than the stability region of an integer order system. Figure 3b shows the stability
zone of a fractional order system when 1 < α < 2, which is smaller than the stability region
of an integer order system [50,51].
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3. Fractional PID Controller Based on IABC Algorithm
3.1. ABC Algorithm

The employed bees, following bees, and scout bees are the three categories that the
basic algorithm of the artificial bee colony divides the population and assigns a search to
each type of artificial bee phase [52,53]. As a starting point, the initial solution (food sources)
is arbitrarily generated. All solutions Xi = (i = 1, 2, . . . , N); Xi = (xi1, xi2, xi3, . . . , xid)

T

stands for the position of all food sources.
Equation (10) is used by the employed bee to conduct a random search of the feasible

domain in search of food sources. The deployed bee then passes the results of the food
source multiplication to the next bee, which is waiting in the hive to perform the food
source search.

x′ij = xij + rij

(
xij − xkj

)
(10)

where k = 1, 2, . . . , N and j = 1, 2, . . . , d. k is a randomly selected indicator for different i. N
stands for the population size, and D stands for the problem dimension, rij is a random
number between −1 and 1.

In the following bee stage, the food source is selected by the onlooker bee based
on likelihood. As can be seen from (Equation (11)) below, the probability value, prob(i),
is calculated:

prob(i) =
f it(i)

∑N
i=1 f it(i)

(11)

When an onlooker makes a decision about which food source to choose, it starts searching
for it, generates an updated location by (10), assesses the profitability, and then remembers
the better location. fit(i) in (11) represents the fitness value of the ith food source Xi.

The scout bees reject all food sources that have previously been used to make honey
during this phase, going over the permitted intake for all food sources. A bee that has been
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working on a food source that has been abandoned eventually develops into a scout bee.
The scout will investigate a new food source at random (12).

xij = xmin,j + rand(0, 1)
(
xmax,j − xmin,j

)
(12)

3.2. Fractional Order PID Controller

Classical PID controllers are frequently used because of their basic design and simple
implementation. The dynamic response of the AVR system can be improved by using
controllers with fractional order PID (FOPID) or integer order PID (IOPID). With respect to
the error signal, the PID controller executes three major control actions using proportional,
integral, and derivative approaches. The PID controller transfer function is provided by:

GIOPID(s) = Kp +
Ki
s
+ Kds (13)

where Kp represents the proportional gain, and Ki and Kd represent the integral and
derivative gains respectively.

The fractional order PID controller is an extension of the traditional PID controller,
offering an integration of order λ and a differentiation of order µ, where λ and µ can be
any positive real integer.

GFOPID(s) = Kp +
Ki

sλ
+ Kdsµ (14)

where the two additional parameters are λ (fractional order integration) and µ. (fractional
order differentiation).

The fractional PID controller is the most popular kind of PID controller because of
its original characteristics. There are various kinds of FOPID controllers, such as PID
(λ = 1, µ = 1), PI (λ = 1, µ = 0), PD (λ = 0, µ = 1), and the P controller (λ = 0, µ = 0).
The graphical representation of the various PID controllers is shown in Figure 4.
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3.3. Design of the FOPID Controller Using IABC

To optimize the parameters of the FOPID controller (Kp, Ki, Kd, λ, µ), the modified
ABC algorithm presented in [52], which is based on the use of cyclic exchange neighborhood
and chaos (CNC), is used. Figure 5 depicts an AVR system with an IABC-FOPID controller.
A food source location represents a potential solution of the FOPID controller to be opti-
mized, which is represented by a vector with five components, X =

(
Kp, Ki, Kd, λ, µ

)
.

Each solution’s fitness is determined by (15).
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Figure 5. Proposed IABC/LOA-FOPID controller applied to the AVR system.

The modified ABC algorithm described in [50], which is based on the use of the
cyclic exchange neighborhood and chaos (CNC), is used to optimize the parameters of
the FOPID controller (Kp, Ki, Kd, λ, µ). An AVR system with an IABC/LOA-FOPID
controller is shown in Figure 5. The FOPID controller to be optimized has a potential
solution represented by a food source location, which is represented by a vector with five
components, X =

(
Kp, Ki, Kd, λ, µ

)
.

The fitness of each solution is given by (15).

J(KP, KI , KD, λ, µ) =
∫ ∞

0

∣∣∣∣y(t)∗ − y(t)
∣∣∣∣dt =

∫ ∞

0
|e(t)|dt (15)

where: y(t) represents the output of the system, in our case is the output voltage of the
generator; noted Vout. y(t)∗ is the reference voltage; noted Vre f .

The following are the main design steps [52].
Step 1: Start with the basic solution.
Step 2: Determine each initial solution’s fitness xi.
Step 3: Set cycle to 1.
Step 4: Bees are used to produce new solutions xi, and fitness is calculated, both using

(16) and (15);

x′ij =

 xNj + rij

(
xij − xkj

)
, i = 1

xi−1j + rij

(
xij − xkj

)
, 2 ≤ i ≤ N

(16)

Step 5: Use the greedy selection to select the best one between x′i and xi.
Step 6: Using Equation (11), compute the probability values prob(i) of the solutions.
Step 7: Onlooker bees select the solution based on prob(i), then look for a neighbor to

generate new solutions by (10) and calculate fitness by (15).
Step 8: Use a greedy choice to find the right and best solution.
Step 9: If a solution requires improvement, scouts should conduct a search for chaos.
Step 10: Commit the best answer so far to memory.
Step 11: Cycle = cycle + 1; if cycle is greater than the allowed number of cycles, the

process is stopped; if not, move on to step 4.
Figure 5 illustrates the block design for the proposed IABC/LOA-FOPID controller

used in an AVR system.
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3.4. Sub-Optimal Reduction Algorithm

Figure 6 shows the error signal for model reduction, where the initial model is
provided by:

G(s) =
bn−1sn−1 + . . . + b1s + b0

sn + an−1sn−1 + . . . + a1s + a0
(17)
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Our present goal is to develop a low-order approximation (LOA) integer-order model
of the type in [54]:

Gr/m(s) =
β1sr + . . . + βrs + βr+1

sm + α1sm−1 + . . . + αm−1s + αm
(18)

An objective function to reduce the H2 norm of the reduction error signal is as follows:

Jr = min
θ
‖Ĝ(s)− Gr/m(s)‖2 (19)

With θ the parameters are to enhance such that:

θ = [β1, . . . , βr, α1, . . . , αm] (20)

To find the low-order approximation (LOA) model of the fractional-order model
characterized by a long memory, use the following approaches [55]:

1. Choose an initial simplified model Ĝ0
r (s).

2. Get an error function ‖Ĝ(s)− Ĝr/m(s)‖2
3. Use the Powell optimization method [55] to iterate a step to obtain a better estimation

of the Ĝ1
r/m(s) model.

4. Set Ĝ0
r/m(s) ← Ĝ1

r/m(s) , go to step 2 until an optimal LOA model Ĝ∗r/m(s) is obtained.

4. Results and Discussion

The algorithm’s performance in managing the AVR system specified in Equation (1)
is validated by the simulations that follow. The simulations were created using the MAT-
LAB/SIMULINK software. Table 3 provides a list of the proposed IABC algorithm’s
parameters.

Table 3. IABC-FOPID Parameters for solving optimization problems.

Parameter Value

Population size 40

Maximum cycle number 200

Lower bound for
[
Kp; Ki; Kd; λ; µ

]
[0.001; 0.001; 0.001; 0.001; 0.001]

Upper bound for
[
Kp; Ki; Kd; λ; µ

]
[15; 10; 10; 2; 2]

Dimension for optimization problem 5

Table 4 shows the parameters of the IABC/LOA-FOPID controller that was identified
during the optimization process.
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Table 4. Gain parameters of the proposed controller and other compared controllers.

Controller Type Kp Ki Kd λ µ

IABC/LOA-FOPID [Proposed] 1.9605 0.4922 0.2355 1.4331 1.5508
IWOA-PID [21] 0.8167 0.6898 0.2799 1 1
PSO-PID [12] 0.6254 0.4577 0.2187 1 1
ABC-PID [15] 0.6352 0.4235 0.2241 1 1
CS-PID [26] 0.6198 0.4165 0.2126 1 1

MOL-PID [28] 0.5857 0.4189 0.1772 1 1
GA-PID [12] 0.8851 0.7984 0.3158 1 1
LUS-PID [31] 0.6190 0.4222 0.2058 1 1

TSA [23] 1.1281 0.9567 0.5671 1 1

For the AVR model system given in Equation (1) with the following fractional PID
parameters: Kp = 1.9605, Ki = 0.4922, Kd = 0.2355, λ = 1.4331 and µ = 1.5508, an IABC
algorithm is used to build a fractional PID controller.

The IABC/FPID controller is given by:

GIABC/FOPID(s) = 1.9605 + 0.4922s−1.4331 + 0.2355s1.5508 (21)

Consequently, the Oustaloup approach with ωb = 0.1 rad/s, ωh = 10 rad/s and
unity feedback yields the IABC/HOA-FOPID controller’s closed loop transfer function
as follows:

GCLIABC/HOA−FOPID (s) =

0.08371s13 + 10.18s12 + 197.6s11 + 1756s10 + 9249s9+
3.152e04s8 + 7.033e04s7 + 1.016e05s6 + 9.449e04s5+
5.696e04s4 + 2.234e04s3 + 5553s2 + 786.3s + 47.43

0.0004s15 + 0.05533s14 + 1.776s13 + 34.72s12 + 400.2s11+
2787s10 + 1.261e04s9 + 3.876e04s8 + 8.072e04s7+

1.115e05s6 + 1.006e05s5 + 5.936e04s4 + 2.289e04s3+
5619s2 + 789.3s + 47.43

(22)

and it can be observed that the approximation model’s order is 15, which is rather high.
We can now obtain the low-order approximation, such as r = 3, m = 5. The following

equation gives the reduced model:

GCLIABC/LOA−FOPID (s) =
12.78s3 + 0.7049s2 + 0.7921s + 0.04369

s5 + 3.157s4 + 13.22s3 + 0.9005s2 + 0.8154s + 0.04369
(23)

Figure 7 illustrates the Bode diagrams of the high- and low-order approximation
models.
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The low-order approximation model, as it can be seen from the Figure 7, is remarkably
close to the high-order approximation model.

The PID controller parameters shown in Table 4 were utilized for comparison with
other current techniques such as IWOA-PID [21], PSO-PID [12], ABC-PID [15], CS-PID [26],
MOL-PID [28], GA-PID [12], LUS-PID [31], and TSA [23]. Consequently, the closed loop
transfer function GCL derived via IWOA-PID [21], PSO-PID [12], ABC-PID [15], CS-PID [26],
MOL-PID [28], GA-PID [12], LUS-PID [31], and TSA [23], are as follows:

GCLIWOA−PID =
0.028s3 + 2.882s2 + 8.236s + 6.898

0.0004s5 + 0.0454s4 + 0.555s3 + 4.31s2 + 9.167s + 6.898
(24)

GCLPSO−PID =
0.02187 s3 + 2.25s2 + 6.3s + 4.557

0.0004s5 + 0.0454s4 + 0.555s3 + 3.697s2 + 7.254s + 4.577
(25)

GCLABC−PID =
0.02241 s3 + 2.304s2 + 6.395s + 4.235

0.0004s5 + 0.0454s4 + 0.555s3 + 3.75s2 + 7.352s + 4.235
(26)

GCLCS−PID =
0.02126 s3 + 2.188s2 + 6.24s + 4.165

0.0004s5 + 0.0454s4 + 0.555s3 + 3.636s2 + 7.198s + 4.165
(27)

GCLMOL−PID =
0.01772 s3 + 1.831 s2 + 5.899s + 4.189

0.0004s5 + 0.0454s4 + 0.555s3 + 3.282s2 + 6.857s + 4.189
(28)

GCLGA−PID =
0.03158 s3 + 3.247s2 + 8.931s + 7.984

0.0004s5 + 0.0454s4 + 0.555s3 + 4.668s2 + 9.851s + 7.984
(29)

GCLLUS−PID =
0.02058 s3 + 2.12s2 + 6.232s + 4.222

0.0004s5 + 0.0454s4 + 0.555s3 + 3.568s2 + 7.19s + 4.222
(30)

GCLTSA−PID =
0.05671s3 + 5.784s2 + 11.38s + 9.567

0.0004s5 + 0.0454s4 + 0.555s3 + 7.181s2 + 12.28s + 9.567
(31)

4.1. Transient Response Analysis Comparison

Figures 8–11 present the results of the step response and transient response comparison
analysis for AVR control systems designed using different approaches. Figure 8 shows the
step response comparisons while bar chart comparisons of maximum overshoot (in %),
settling time (for±2% tolerance) and rise times (for 10%→ 90%) are given by Figures 10–12.
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According to these figures, the IABC/LOA-FOPID controller obviously has a superior
time response than the others, including the ABC-PID controller. As a result, the suggested
controller design technique outperforms not only the ABC-based design approach, but also
various methods for controller design, such as IWOA-PID [21], PSO-PID [12], CS-PID [26],
MOL-PID [28], GA-PID [12], LUS-PID [31], and TSA [23], with higher transient stability,
quick damping characteristics, and less overshoot.

Taking into consideration different parameters such as rise time, settling time and
overshoot percentage, we made a comparative study and evaluation of our controller used
in an AVR system application with other tuning PID techniques available in the literature.
The results are shown in Table 5.

Table 5. Comparative analysis of the transient response.

Controller Type Maximum Overshoot Mp [%] Settling Time ts [s] Rise Time tr [s] IAE

IABC/LOA-FOPID
[Proposed] 2.3323 0.3129 0.1373 0.109

IWOA-PID [21] 6.9064 0.6466 0.2266 0.3150
PSO-PID [12] 0.4349 0.4609 0.3007 0.2917
ABC-PID [15] 0.0081 1.2041 0.2957 0.2892
CS-PID [26] 0.0198 1.1681 0.3082 0.2916

MOL-PID [28] 1.9547 0.5154 0.3432 0.3086
GA-PID [12] 8.6338 0.6055 0.2042 0.3048
LUS-PID [31] 0.5896 0.4778 0.3125 0.2930
TSA-PID [23] 15.4763 0.7582 0.1321 0.3553

Table 5 shows that the performance indices of maximum overshoot values (Mp[%])
obtained with PSO-PID [12], ABC-PID [15], CS-PID [26] and LUS-PID [31] have less over-
shoot and oscillations than the proposed controller. However, these controllers are slower
in terms of rise time and settling time than other PID controllers. On the other hand, the
proposed IABC/LOA-FOPID controller shows superior performance over the different op-
timized PID controllers in terms of settling time and rise time. Furthermore, the presented
algorithm significantly reduces the performance index value.

4.2. Comparison of Frequency Domain Analyses

Bode plots with different controller settings are compared in Figure 12. Table 6
summarizes the results of the comparative frequency response performance study. Gain
margin (Gm: in decibels), phase margin (ϕm: in degrees) and bandwidth (Bw: in Hertz) are
all parts of the performance criteria.
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Table 6. Comparative analysis of the frequency response.

Controller Type Gain Margin Gm [db] Phase Margin ϕm [◦] Bandwidth Bw [Hz]

ABC/LOA-FOPID
[Proposed] Inf 178.7980 15.7280

IWOA-PID [21] Inf 161.6094 9.6571
PSO-PID [12] Inf 173.8067 7.5015
ABC-PID [15] Inf 180 7.6998
CS-PID [26] Inf 180 7.3393

MOL-PID [28] Inf 180 6.3391
GA-PID [12] Inf 116.3886 10.6594
LUS-PID [31] Inf 180 7.1673
TSA-PID [23] Inf 77.3967 16.2326

The data clearly shows that the proposed IABC/LOA-FOPID and TSA-PID controllers
are the most stable systems in terms of the frequency response criteria.

As shown in Table 6, the AVR systems with the ABC-PID [15], CS-PID [26], MOL-
PID [28] and LUS-PID [31] controllers have the maximum phase margin of 180◦, while
the proposed IABC/LOA-FOPID controller has an acceptable phase margin (almost 180◦).
On the other hand, the proposed IABC/LOA-FOPID and TSA-PID [23] controllers have
the largest bandwidth and the quickest response. It is worth mentioning that a broad
bandwidth enables the system to precisely follow random inputs.

4.3. Stability Assessment

The three most important stability measurement criteria, namely, pole-zero map, root-
locus plot, and Bode analyses, were performed to evaluate the stability of the proposed
IWOA-based AVR design, and are illustrated in Figures 13–15, respectively.

Energies 2022, 15, x FOR PEER REVIEW 14 of 20 
 

 

 

Figure 13. Pole-zero map (x, pole; o, zero). 

 

Figure 14. Root locus plot. 

Figures 13 and 14 show that the closed-loop poles of the ABC/LOA-FOPID-based 

AVR system are located at s1 = −2.49 × 10−³, s2= −2.16 × 10−1 + 7.75× 10−1i, s3 = −2.16 × 10−1 + 

7.75 × 10−1i, s4 = −1.25 × 10+1 + 1.12 × 10+1i, and s5 = −1.25× 10+1 + 1.12 × 10+1i, with comparable 

damping ratios of 1.00, 2.68 × 10−1, 2.68× 10−1, 7.46× 10−1, and 7.46 × 10−1. Since all of the 

closed-loop poles are on the left half of the s-plane, the system is stable and has an ac-

ceptable frequency response. 

Figure 13. Pole-zero map (x, pole; o, zero).



Energies 2022, 15, 8973 14 of 20

Energies 2022, 15, x FOR PEER REVIEW 14 of 20 
 

 

 

Figure 13. Pole-zero map (x, pole; o, zero). 

 

Figure 14. Root locus plot. 

Figures 13 and 14 show that the closed-loop poles of the ABC/LOA-FOPID-based 

AVR system are located at s1 = −2.49 × 10−³, s2= −2.16 × 10−1 + 7.75× 10−1i, s3 = −2.16 × 10−1 + 

7.75 × 10−1i, s4 = −1.25 × 10+1 + 1.12 × 10+1i, and s5 = −1.25× 10+1 + 1.12 × 10+1i, with comparable 

damping ratios of 1.00, 2.68 × 10−1, 2.68× 10−1, 7.46× 10−1, and 7.46 × 10−1. Since all of the 

closed-loop poles are on the left half of the s-plane, the system is stable and has an ac-

ceptable frequency response. 

Figure 14. Root locus plot.

Energies 2022, 15, x FOR PEER REVIEW 15 of 20 
 

 

 
Figure 15. Bode plot. 

The AVR system (or any control system) provides information on the AVR system’s 
time-dependent response and stability. Any root locus diagram may be used to compute 
the poles (Eigen values) and damping ratio. Larger stability is associated with more 
negative poles and a higher damping ratio. Table 7 compares the simulation results of 
several optimization-technique-based AVR systems for closed-loop poles, damping 
ratios, frequencies and time constants. 

Table 7. AVR system closed-loop poles, damping ratios frequencies and time constants. 

PID Tuning Methods Closed-Loop Poles Damping Ratio Frequency [rad/s] Time Constant [s] 

ABC/LOA-FOPID 
[Proposed] 

−2.49 × 10−3 1.00     2.49 × 10−3      4.01 × 10+2 
−2.16 × 10−1 + 7.75 × 10−1i 2.68 × 10−1      8.05 × 10−1 4.64   
−2.16 × 10−1 + 7.75 × 10−1i 2.68 × 10−1      8.05 × 10−1 4.64   
−1.25 × 10+1 + 1.12 × 10+1i 7.46 × 10−1     1.68 × 10+1      8.00 × 10−2   
−1.25 × 10+1 + 1.12 × 10+1i 7.46 × 10−1     1.68 × 10+1      8.00 × 10−2   

IWOA-PID [21] 

−1.01 × 10+2 1.00     1.01 × 10+2 9.92 × 10−3 
−1.35 + 6.77 × 10−1i 8.93 × 10−1      1.51 7.43 × 10−1   
−1.35 + 6.77 × 10−1i 8.93 × 10−1      1.51 7.43 × 10−1   
−5.02 + 7.09i 5.78 × 10−1     8.68      1.99 × 10−1   
−5.02 + 7.09i 5.78 × 10−1     8.68      1.99 × 10−1   

PSO-PID [12] 

−1.01 × 10−2 1.00     1.01 × 10+2 9.94 × 10−3 
−1.30 + 3.92 × 10−1i    9.58 × 10−1     1.36 7.67 × 10−1   
−1.30 + 3.92 × 10−1i    9.58 × 10−1     1.36 7.67 × 10−1   
−5.14 + 5.91i    6.56 × 10−1     7.84          1.94 × 10−1   
−5.14 + 5.91i    6.56 × 10−1     7.84          1.94 × 10−1   

ABC-PID [15] 

−1.01 × 10+2 1.00     1.01 × 10+2 9.94 × 10−3 
−1.12  1.00     1.12      8.97 × 10−1   
−1.50  1.00     1.50      6.66 × 10−1   

−5.13 + 6.04i    6.47 × 10−1     7.93      1.95 × 10−1   
−5.13 + 6.04i    6.47 × 10−1     7.93      1.95 × 10−1   

CS-PID [26] 

−1.01 × 10+2 1.00 1.01 × 10+2 9.94 × 10−3 
−1.07 1.00 1.07 9.31 × 10−1 
−1.62 1.00 1.62 6.15 × 10−1 

−5.11 + 5.76i 6.63 × 10−1 7.70 1.96 × 10−1 

Figure 15. Bode plot.

Figures 13 and 14 show that the closed-loop poles of the ABC/LOA-FOPID-based
AVR system are located at s1 = −2.49 × 10−3, s2 = −2.16 × 10−1 + 7.75 × 10−1i, s3 = −2.16
× 10−1 + 7.75 × 10−1i, s4 = −1.25 × 10+1 + 1.12 × 10+1i, and s5 = −1.25 × 10+1 + 1.12 ×
10+1i, with comparable damping ratios of 1.00, 2.68 × 10−1, 2.68 × 10−1, 7.46 × 10−1, and
7.46 × 10−1. Since all of the closed-loop poles are on the left half of the s-plane, the system
is stable and has an acceptable frequency response.

The AVR system (or any control system) provides information on the AVR system’s
time-dependent response and stability. Any root locus diagram may be used to compute
the poles (Eigen values) and damping ratio. Larger stability is associated with more
negative poles and a higher damping ratio. Table 7 compares the simulation results of
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several optimization-technique-based AVR systems for closed-loop poles, damping ratios,
frequencies and time constants.

Table 7. AVR system closed-loop poles, damping ratios frequencies and time constants.

PID Tuning Methods Closed-Loop Poles Damping Ratio Frequency [rad/s] Time Constant [s]

ABC/LOA-FOPID
[Proposed]

−2.49 × 10−3 1.00 2.49 × 10−3 4.01 × 10+2

−2.16 × 10−1 + 7.75 × 10−1i 2.68 × 10−1 8.05 × 10−1 4.64
−2.16 × 10−1 + 7.75 × 10−1i 2.68 × 10−1 8.05 × 10−1 4.64
−1.25 × 10+1 + 1.12 × 10+1i 7.46 × 10−1 1.68 × 10+1 8.00 × 10−2

−1.25 × 10+1 + 1.12 × 10+1i 7.46 × 10−1 1.68 × 10+1 8.00 × 10−2

IWOA-PID [21]

−1.01 × 10+2 1.00 1.01 × 10+2 9.92 × 10−3

−1.35 + 6.77 × 10−1i 8.93 × 10−1 1.51 7.43 × 10−1

−1.35 + 6.77 × 10−1i 8.93 × 10−1 1.51 7.43 × 10−1

−5.02 + 7.09i 5.78 × 10−1 8.68 1.99 × 10−1

−5.02 + 7.09i 5.78 × 10−1 8.68 1.99 × 10−1

PSO-PID [12]

−1.01 × 10−2 1.00 1.01 × 10+2 9.94 × 10−3

−1.30 + 3.92 × 10−1i 9.58 × 10−1 1.36 7.67 × 10−1

−1.30 + 3.92 × 10−1i 9.58 × 10−1 1.36 7.67 × 10−1

−5.14 + 5.91i 6.56 × 10−1 7.84 1.94 × 10−1

−5.14 + 5.91i 6.56 × 10−1 7.84 1.94 × 10−1

ABC-PID [15]

−1.01 × 10+2 1.00 1.01 × 10+2 9.94 × 10−3

−1.12 1.00 1.12 8.97 × 10−1

−1.50 1.00 1.50 6.66 × 10−1

−5.13 + 6.04i 6.47 × 10−1 7.93 1.95 × 10−1

−5.13 + 6.04i 6.47 × 10−1 7.93 1.95 × 10−1

CS-PID [26]

−1.01 × 10+2 1.00 1.01 × 10+2 9.94 × 10−3

−1.07 1.00 1.07 9.31 × 10−1

−1.62 1.00 1.62 6.15 × 10−1

−5.11 + 5.76i 6.63 × 10−1 7.70 1.96 × 10−1

−5.11 + 5.76i 6.63 × 10−1 7.70 1.96 × 10−1

MOL-PID [28]

−1.00 × 10+2 1.00 1.00 × 10+2 9.95 × 10-3

−1.06 1.00 1.06 9.41 × 10−1

−2.11 1.00 2.11 4.74 × 10−1

−4.92 + 4.72i 7.21 × 10−1 6.82 2.03 × 10−1

−4.92 + 4.72i 7.21 × 10−1 6.82 2.03 × 10−1

GA-PID [12]

−1.00 × 10+2 1.00 1.01 × 10+2 9.91 × 10−3

−1.29 + 8.20 × 10−1i 8.43 × 10−1 1.52 7.78 × 10−1

−1.29 + 8.20 × 10−1i 8.43 × 10−1 1.52 7.78 × 10−1

−5.03 + 7.73i 5.45 × 10−1 9.23 1.99 × 10−1

−5.03 + 7.73i 5.45 × 10−1 9.23 1.99 × 10−1

LUS-PID [31]

−1.01 × 10+2 1.00 1.01 × 10+2 9.94 × 10−3

−1.06 1.00 1.06 9.40 × 10−1

−1.74 1.00 1.74 5.75 × 10−1

−5.06 + 5.57i 6.73 × 10−1 7.53 1.97 × 10−1

−5.06 + 5.57i 6.73 × 10−1 7.53 1.97 × 10−1

TSA-PID [23]

−1.01 × 10+2 1.00 1.02 × 10+2 9.85 × 10−3

−9.26 × 10−1 + 8.22 × 10−1i 7.48 × 10−1 1.24 1.08
−9.26 × 10−1 + 8.22 × 10−1i 7.48 × 10−1 1.24 1.08
−5.05 + 1.13 × 10+1i 4.07 × 10−1 × 10−1 1.24 × 10+1 1.98 × 10−1

−5.05 + 1.13 × 10−1i 4.07 × 10−1 1.24 × 10+1 1.98 × 10−1

4.4. Noise Attenuation

Additive noise is considered in the input of the process to be regulated. Figures 16 and 17
depict the temporal response characteristics of different integer order and fractional order
PID controllers with random output noise of 2% and 20% of the reference signal amplitude,
respectively. The overshoot produced with the various integer order PID and fractional
controllers is extremely similar, as shown in Figure 16.



Energies 2022, 15, 8973 16 of 20

Energies 2022, 15, x FOR PEER REVIEW 16 of 20 
 

 

−5.11 + 5.76i 6.63e−01 7.70 1.96 × 10−1 

MOL-PID [28] 

   -1.00 × 10+2 1.00        1.00 × 10+2 9.95 × 10-3 

−1.06                  1.00        1.06          9.41 × 10−1     

−2.11                  1.00        2.11          4.74 × 10−1     

−4.92 + 4.72i 7.21 × 10−1        6.82          2.03 × 10−1     

−4.92 + 4.72i 7.21 × 10−1        6.82          2.03 × 10−1     

GA-PID [12] 

   −1.00 × 10+2 1.00        1.01 × 10+2 9.91 × 10−3 

−1.29 + 8.20 × 10−1i      8.43 × 10−1        1.52          7.78 × 10−1     

−1.29 + 8.20 × 10−1i      8.43 × 10−1        1.52          7.78 × 10−1     

−5.03 + 7.73i      5.45 × 10−1        9.23          1.99 × 10−1     

−5.03 + 7.73i      5.45 × 10−1        9.23          1.99 × 10−1     

LUS-PID [31] 

   −1.01 × 10+2 1.00        1.01 × 10+2 9.94 × 10−3 

−1.06             1.00        1.06          9.40 × 10−1     

−1.74                  1.00        1.74          5.75 × 10−1     

−5.06 + 5.57i      6.73 × 10−1        7.53          1.97 × 10−1     

−5.06 + 5.57i      6.73 × 10−1        7.53          1.97 × 10−1     

TSA-PID [23] 

   −1.01 × 10+2 1.00        1.02 × 10+2 9.85 × 10−3 

−9.26 × 10−1 + 8.22 × 10−1i      7.48 × 10−1        1.24   1.08     

−9.26 × 10−1 + 8.22 × 10−1i      7.48 × 10−1        1.24   1.08     

−5.05 + 1.13 × 10+1i      4.07× 10−1 × 10−1        1.24 × 10+1          1.98 × 10−1     

−5.05 + 1.13 × 10−1i      4.07 × 10−1        1.24 × 10+1          1.98 × 10−1     

4.4. Noise Attenuation 

Additive noise is considered in the input of the process to be regulated. Figures 16 

and 17 depict the temporal response characteristics of different integer order and frac-

tional order PID controllers with random output noise of 2% and 20% of the reference 

signal amplitude, respectively. The overshoot produced with the various integer order 

PID and fractional controllers is extremely similar, as shown in Figure 16. 

 

Figure 16. Controller’s comparison with random output noise for 2% of the amplitude of the refer-

ence signal. 

Due to noise, the performance of the IABC/LOA-FOPID has obviously degraded, 

with an increased overshoot. However, due to the derivative term, the IABC/LOA-FOPID 

controller achieves better settling time in the range of 0.29s, compared to the other existing 

techniques, as can be seen in Figure 17. 

Figure 16. Controller’s comparison with random output noise for 2% of the amplitude of the
reference signal.

Energies 2022, 15, x FOR PEER REVIEW 17 of 20 
 

 

 

Figure 17. Controller’s comparison with random output noise for 20% of the amplitude of the refer-

ence signal. 

4.5. Analysis of Robustness Comparison 

In order to maintain the system’s responsiveness within acceptable limits, a robust 

controller is needed. Therefore, a robustness analysis was performed to determine how 

stable the proposed method is under step perturbations. 

In Figure 18, the proposed IABC/LOA/FOPID controller’s disturbance rejection per-

formance is compared to that of the IWOA-PID [21], PSO-PID [12], ABC-PID [15], CS-PID 

[26], MOL-PID [28], GA-PID [12], LUS-PID [31] and TSA/PID [23] controller designs for 

the identical transfer function of an AVR system. 

 

Figure 18. Disturbance rejection comparison for different techniques. 

The most efficient control mechanism for disturbance rejection is provided by the 

proposed controller IABC/LOA-FOPID, which has a more stable structure, as shown in 

Figure 18. Although all the controllers have high peak errors, the IABC/LOA-FOPID con-

troller performs noticeably better. 

5. Conclusions 

In this paper, a low-order approximation (LOA) model of a fractional order PID 

(FOPID) based on a modified artificial bee colony (ABC) technique for an integer-order 

automatic voltage regulator (AVR) was proposed. The new robust controller is named 

IABC/LOA-FOPID. This proposed controller improved on the performance of the ABC/ 
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reference signal.

Due to noise, the performance of the IABC/LOA-FOPID has obviously degraded,
with an increased overshoot. However, due to the derivative term, the IABC/LOA-FOPID
controller achieves better settling time in the range of 0.29 s, compared to the other existing
techniques, as can be seen in Figure 17.

4.5. Analysis of Robustness Comparison

In order to maintain the system’s responsiveness within acceptable limits, a robust
controller is needed. Therefore, a robustness analysis was performed to determine how
stable the proposed method is under step perturbations.

In Figure 18, the proposed IABC/LOA/FOPID controller’s disturbance rejection
performance is compared to that of the IWOA-PID [21], PSO-PID [12], ABC-PID [15],
CS-PID [26], MOL-PID [28], GA-PID [12], LUS-PID [31] and TSA/PID [23] controller
designs for the identical transfer function of an AVR system.
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The most efficient control mechanism for disturbance rejection is provided by the
proposed controller IABC/LOA-FOPID, which has a more stable structure, as shown in
Figure 18. Although all the controllers have high peak errors, the IABC/LOA-FOPID
controller performs noticeably better.

5. Conclusions

In this paper, a low-order approximation (LOA) model of a fractional order PID (FOPID)
based on a modified artificial bee colony (ABC) technique for an integer-order automatic volt-
age regulator (AVR) was proposed. The new robust controller is named IABC/LOA-FOPID.
This proposed controller improved on the performance of the ABC/FOPID controller, which
is characterized by a large (or high-order) approximation using an integer order trans-
fer function, which necessitates the employment of a large number of parameters. The
transient and frequency response characteristic parameters of the AVR system, such as
maximum overshoot, settling time, rise time, bandwidth, gain margin, and phase margin,
were evaluated using the proposed IABC/LOA-FOPID and other existing controllers such
as IWOA-PID [21], PSO-PID [12], ABC-PID [15], CS-PID [26], MOL-PID [28], GA-PID [12],
LUS-PID [31], and TSA [23]. The results show that the proposed controller enhanced dy-
namic performance, namely speed convergence, and is well suited for the AVR system.
Furthermore, robustness, root locus, and Bode analyses were used and compared to recently
published findings to demonstrate the superiority of the proposed IABC/LOA-FOPID con-
troller. The result reveals that the proposed controller has characteristics of high stability for
AVR systems and performs better in terms of noise attenuation and disturbance rejection.
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