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Abstract. — We study the asymptotic expansion of transmission eigenvalues for anisotropic
thin layers. We establish a rigorous second order expansion for simple transmission eigen-
values with respect to the thickness of the layer. The convergence analysis is based on a
generalization of Osborn’s Theorem to non-linear eigenvalue problems by Moskow [19]. We
also provide formal derivation in more general cases validating the obtained theoretical result.

1. Introduction

Transmission eigenvalues are associated with the existence of an incident field that does
not scatter [9]. They can be equivalently defined as the eigenvalues of a system of two
coupled partial differential equations posed on the inclusion domain. One of these equa-
tions refer to the equation satisfied by the total field and the other one is satisfied by
the incident field. The two equations are coupled on the boundary by imposing that the
Cauchy data coincide. This eigenvalue problem can then be formulated as the non-linear
eigenvalue problem a non-selfadjoint compact operator [9, 19]. These special frequencies
can be identified from far field data as proved in [8, 9, 18]. Since they carry information on
the material properties of the scatterer, transmission eigenvalues would be then of interest
for the inverse problem of retrieving qualitative information on the material properties
from measured multistatic data [16, 17].

This paper is a continuation of the study started in [3]. More specifically, we consider the
transmission eigenvalue problem corresponding to anisotropic media with a thin coating. It
corresponds in particular to inclusions where the contrast is present in the main operator.
There is a structural difference between isotropic and anisotropic transmission eigenvalue
problems. In the first case, one can reformulate the eigenvalue problem as a quadratic
eigenvalue problem that can be transformed into a linear eigenvalue problem for a linear
(non-selfadjoint) compact operator. This transformation is not possible in the anisotropic
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one. Following [12] we are lead to transform the problem into a non linear eigenvalue prob-
lem where the compact operator depends itself on the eigenvalue. An additional structural
difference comes from different functional spaces for solutions. This implies for instance
a different treatment for the corrector terms in the asymptotic analysis. Asymptotic ex-
pansion of transmission eigenvalues has been addressed in the literature for small inclusion
perturbations in [6, 12, 19]. Our analysis follows the procedure developed in [12] for
the case of anisotropic media. The main theorem is the expression and error analysis for
corrector terms associated with simple transmission eigenvalues. Simplicity assumption
is mainly needed when applying Osborn’s theorem for correctors [19]. The extension to
eigenvalues with higher multiplicity is an open question. We consider two dimensional
setting for the formal calculations but the procedure can be extended to three dimensional
problems as well.

The paper is structured as follows. We introduce in Section 2 the transmission eigenvalue
problem for anisotropic media in R? and we formulate it as a non-linear eigenvalue problem
for a compact operator. In Section 3, we prove the convergence results needed to later
obtain the asymptotic for the transmission eigenvalues. The main result is proved in
Section 4 using the perturbation formula for non linear eigenvalues given in [19]. Finally,
we outline a classical formal procedure (as in [1, 2, 3] for instance) to obtain the expression
of the asymptotic expansion which coincides with the one in Section 4 (independently from
the multiplicity of the eigenvalue).

2. Formulation of the problem and main results

Let Q C R? be a bounded domain with a smooth boundary I'. For € > 0 a small enough
parameter, we denote

W ={zeQ, dxT) > ¢}
and its boundary
Fe={reQ, dz,T)=¢} =000

where d(z,T) denotes the distance of a point 2 to the boundary T'. Let Q. = Q\Q0 be the
layer of thickness € adjacent to 20 (see Figure 1). Let O, n. be L°°(€2) functions such that

| ©(z) inQ, () — no(r) in Q,
Oc(z) = {@1<$> in Q.. e(z) = {nl(x) in Q.

where © and ©; are real valued positive definite matrices in L°°(R?)?*? and ny and n,
are non negative real valued functions in L>°(R?) that are independent from e. For the
sake of simplicity, we assume that the restriction of ng to €2, is constant function along
the normal coordinate to I for € sufficiently small. We then consider the following interior
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FIGURE 1. The scattering object €.

transmission eigenvalue problem formulated inside €2

div(©.Vw) + Acncw. =0 in Q,
Av, + Ave =0 in Q, (1)
We = Ve on I,
o NVw.-v=Vuv,-v on I,
where v the unitary normal to I' directed to the interior of 2.
Definition 2.1. — The values \. for which (1) has a non trivial solution (we,v.) €

HY(Q) x HY(Q) are called transmission eigenvalues.

To investigate the analysis asymptotic expansion for transmission eigenvalues, we rewrite
(1) as a non-linear eigenvalue problem. To this end, we define the variational space

X(Q) = {(w,v) e H'(Q) x H'(Q),w — v =0 on F}

equipped with the H*(Q2) x H() inner product. It is clear that the variational form of
(1) is given by ,(we, ve) € X(€2) such that

/ (@€Vwev¢1 — VUEV@ — )\e(new6¢1 — Uegbg))d.f = O, for all ((bla ¢2) & X(Q) (2)
Q
We define the bounded sesquilinear forms:

AE<(w,v);(¢1,¢2)> — /Q <@€va¢1+wq§1>dx— /Q (VUV¢2+U¢2)da¢, (3)

B€<(U), U)? (¢1a d)?)) = /Q (new¢1 - U¢2>dl‘, (4)
and
Ce( (w,v); (1, = - dz. 5
(w095 0n,0m)) o= [ (won =) (5)
for all (w,v) € X (). Therefore, we have that (2) can be written as for all (¢1, ¢2) € X ()

Ac( (w13 (61,62) ) = B (w00 (61, 62) ) = Cc((werv)i (61,62)) =0, (6)
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Let us define by A, B, and C, : X(2) — X () the bounded linear operators defined from
i <.; .),BE<.; > and C, <.; ) by means of the Riesz representation theorem. Then (6) is
equivalent to

Ac(We, ve) = AeBe(we, ve) — Ce(we, ve) = (0,0). (7)
To give the asymptotic expansion of transmission eigenvalues, we use the generalization of
Osborn’s Theorem to non-linear eigenvalue problem [19]. We rewrite (7) as the following
form

(I - AeAe_lBe - Aglc’e)(wm Ue) - (O’ 0)

Note that B, C. : X(Q2) — X () are compact operators by using the compact embedding
of HY(Q) in L*(Q). In order, to prove the invertibility of A, , we can show that A, is
T-coercive. The idea behind the T-coercivity [15] is to consider an equivalent formulation

of (6) where A, is replaced by A" defined by
AE:T <(w67 Ue); <¢17 ¢2)) = Ae <<wea Ue); T<¢17 9252))

with T being an isomorphism of X(€2). In particular, we consider the isomorphism
T(w,v) = (w,cw + pv) with (o, 5) € R x R* such that a + 5 = 1. Then

A((w,0); T(w,v) )
- ’ /Q <@E|Vw|2 + ]w[2>d:c — ﬁ/Q <|Vv|2 + |v\2)dx — a/g <VwVv + wv)daz‘
> /Q (@6|Vw|2 + |w|2>dx — B‘ /Q <|Vv|2 + |v|2>dx‘ — oz’ /Q (VMVU —l—wv)dx‘

Using Young’s inequality, for all ¢ > 0 we obtain
1 o
| /Q (Vv +wo)de| < ool + 2 Nl (8)
We have that
o 9 o« 9
A((w,0): T(w,0)| 2 (v = 5wl + (=8 = FOlv Mg

where 7 = inf(]|01 |00, ||O0]|0c). Choosing a? < —48y and 3 < 0, to have for example

o€ (g, ——), implying A, is T—coercive.
27 «
Therefore (7) can be noted as follows [12]
(I = XA'B, — A71C) (we, ve) = (0,0). (9)
Let us define T, : X(2) — X(Q)
1
T.(\) :== A'B. + XA?CE (10)

Now we can rephrase (9) as a non-linear eigenvalue problem
AeTe(Ae)(wm Ue) = (wea UE)
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Note that T, is compact operator for all ¢ > 0 and depends analytically on A in any subset
of the complex plane that doesn’t include the origin.

We set

To(\) := Ag' By + AA 1Co, (11)
where Ay, By and Cj are defined by (3), (4) and (5) for n, = ny and ©, = Oy in
respectively. We notice that C. = Cj.
In all the following we use the notation

<(f1,f2);(91,92)> = ((f1>f2)§(91792)>x(9) and ||(f1, fo)ll = ((fl’fQ);(fl’f2)>i(Q)'

To state and prove the main result we make the following important hypothesis on the
anisotropy structure. We assume that inside a thin layer ()., for some fixed ¢y, we can
decompose O and Oy as

O1(z) - 7(s) = 07(s)7(s) and O(z) - v(s) = O7(s)v(s),
Oo(x) - 7(s) = O3 (5)7(s) and Op() - v(s) = b (s)v(s)
for a.e. © € Q, where 67,607,607 and 6§ are real functions in L>(R) that depend only on

the curvilinear abscissa s of the projection of x on 92 and where 7 and v are respectively
the tangent and normal vectors defined on 02 (see Subsection 4.1).

Theorem 2.2. — Let \g be a simple transmission eigenvalue associated with ©y and ng
and let (wo,v9) € X(2) be the corresponding eigenfunctions. Assume that

<(w0,v0);A0(w0,Uo)> =1 and /Q (no|wo|* — |vo|?)dz # 0.

We assume in addition that (wg,vy) and Ay*(wo,vo) are in C*(Q). Then for e > 0 small
enough, there exists a transmission eigenvalue A\, corresponding to ©. such that

Ao = Ao + €A1 + O(e?) (12)

where \y is given by the following expression when niy = ng

- — 07 ds— [ 05 ds(z
[ 5 —oniGRras— [ o (U ) 152 @)
/ <n0|w0]2 — |’Uo|2>d[E
Q

For the convergence proof we restrict ourselves for to n; = ng. The expression of A; in
the case ny # ng in given in the last Section using formal expansion.

A =

3. Convergence of the transmission eigenvalue spectrum

We study in this section the convergence in norm of the operator T, to T,. For an
operator A : H — H, ||A|| denotes the operator norm. To simplify the writing, C will
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denote a generic constant whose value may change, but remains independent from e as
e — 0.
We start by proving the convergence of the operator B, to By in norm .

Lemma 83.1. — Let B, and By be the operators defined by (4) for e > 0 and ¢ = 0,
respectively. Then, for all o € (0,1) there exists C > 0 independent of €

| Be — Bol| < Ce.
Proof. — From the definition of B, and By, we have

(Bt ): (61,02)) = (Botw,): (0r,62)] = | (1 = mopwnd
(61, d2) |l x(9)-

< |[(n1 — no)wl| 20,

Choosing (¢1, ¢2) = (w,v) we get
1(Be = Bo)(w, )| x@) < [I(n1 = no)wlr2q,)-

Since w € H*(Q2) and from Sobolev’s embedding, we have that w € L?(Q),Vp > 2 (see [4])
which gives |w|? € L%(Q).
2 1 P
Now let ¢ > 0 be defined by — + - =1 (i.e ¢ = LQ) Using the duality between Lz ()
p q p—
and L?(€2) with the Sobolev embedding Theorem, we have that

(B — Bo)(w, 0)l[& @) < Cll(ms — no)uw ey 0]32(a,
< Cllwllaqe,) < Nwl?ll, 50,110,

La(Q)
1 1
< OequH%P(Q) < Ceq||(w,v)\|§qm-

We can conclude that ||B. — By|| < Ce* with av = %} . O

Lemma 8.2. — Let A, and Ay be defined by (3) for e > 0 and € = 0, respectively and
(f,9) € X(Q). If Ay (f,9) € CH) x CHR), then for sufficiently small

1A = AT (£, 9) | x) < Ce. (13)
Proof. — For a fixed (f,g) € X(Q), we define (z,t.) and (zq,to) in X(Q2) as
(ze,te) = AZ'(f, 9) and (20,t0) = A5 (. 9).
Since

Ae(('zﬂte); (1, ¢2)> = Ao((%io)? (1, ¢2)> = <(f, 9); (61, ¢2)>-
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we have that, for (¢, ) € X(Q)

Ae((ze — 20, te — to); (1, ¢2)> = (Ao — Al) <(Zo,750)§ (1, ¢2)> = / (00 — ©1)V2 Vo dz.

€

(14)
If 25 € C1(92), we get
/ (00— ©1)VVerdr < Cet [ (6, 6)llxa.

From the T-coercivity and by plugging (¢1, ¢2) = T(ze — 20, te — to), we obtain the desired
convergence. O]

Lemma 3.3. — Let A, B.,C., Ay, By and Cy be defined by (3), (4), (5) for e > 0 and
e = 0, respectively. we have that

AZ'B. — A;'By and AZ1Cy — Ay'Cy

mn norm as € — 0.

Proof. — From (14) we have that

Ae<(Ze — 20, te — to); (1, ¢2)> = / (©p — ©1)Vz Vo de.

Qe
By using the T-coercivity of A., we obtain

1A = AgH(f 9)llx@) < Cll(O0 — ©1) Vol 2 ()
If Bo(f,9) = (p,q) then (p,q) € H'(Q) x H'(Q) and

—Ap+p=nef in Q,
—Ag+qg=—g in Q,
p=q on I (15)
@ = @ n r
ov v © ’
Then p — ¢ € H} () and verifies
—Alp—q)+(P—q) =nof+yg
Elliptic regularity implies that if 02 is C*>°(Q2), we get
Ip = alls < C (Il + lghme).
(we here need ny € C'(Q)). Similarly, p + ¢ € H}() and verifies
—Alp+g)+(p+qg)=nf—-g n y
op+a) _, on T (16)
v

Therefore, regularity results for the Newmann problem implies that, if 99 is C3(£2) then
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Ip+ allusey < " (IF oy + gl
Hence, we have
Pl + lalle < C(IF @ + lglhm)-
Note that Ag(z0,%0) = (p,q) and due to the variational form of A, satisfies
—div(©gVz) + 20 = —Ap +p and Aty — tg = —Aq+ ¢ in .
Next we have that Ay Bo(f, g) = (20, %) , by elliptic regularity we have
120/l 2232y + [0l 30 < C(HpHm@) + qu\mm)) < CII(f, 9)lIx(e)-
For all € sufficently small, we have the following estimates
I(AZH = A Bo(f. 9)llx(@ < Cllaoller@ Lo,
From the Sobolev embedding Theorem of H3(Q) into C*(£2), we have that
I(A7" = ATHBo(f, 9)llx (@) < Cez 0]l msio) < Cex (£, 9)llx@)-

LQ(Q) S CE% HZ[)HCl(Q).

Since
A7 Be — Ay ' Boll < A7 (Be — Bo)|| + [[(A:! — AgH) Boll,

using the fact that ||A-!|| is uniformly bounded with respect to € and the convergence in
norm of B, to By, implies

|AZIB. — A" Byl — 0 as € — 0.
The second convergence result follows from similar arguments. ]
From the previous results, we have the following lemma:

Lemma 3.4. — Let A, B.,C., Ay, By and Cy be defined by (3), (4), (5), for e > 0 and

e = 0, respectively. Then we have that

I(AZ! = A7) Boll < Cez, [[(A7 = A7) Col| < Ce2

€

and [|A7H(Be — By)|| < Ce*, for some 0 < a < 1.
Combining the above results and using the definition of 7, and Ty we have:

Theorem 3.5. — Let T. and Ty be defined in (10) for € > 0 and € = 0, respectively, then
we have that

ITe(N) — To(A)|| — 0 as e — 0.

To prove the convergence of the real transmission eigenvalues, using the following ab-
stract result from [19] (see also [5] for a more general framework allowing for weaker
convergence). For the convenience of the reader, we restate it here:
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Theorem 3.6. — Let Ay be a non-linear eigenvalue of Ty and assume that R.(\) and
Ro(X\) are both meromorphic in some region U C C containing A\g. Also assume that for
any A € U, T.(\) converge in norm to To(X\). Then for any ball B around g there ezists
a €g > 0 such that T, has a non-linear eigenvalue in B for all € < ey. Conversely if {\:}
1s a sequence of a non-linear eigenvalues of T, that converges as e — 0 then the limit is a
non-linear eigenvalue of Ty .

4. Asymptotic formula for the transmission eigenvalue

Having proved the convergence of the transmission eigenvalues, we would like to obtain
an asymptotic formula for the simple real transmission eigenvalue of the form:
Ae = Ao + €A + O(€?),
where )¢ is a non-linear eigenvalue to Tj associated with the eigenfunction (wy,vp) i.e
AoTo(wo, vg) = (wp, vp).

and the expression for \; is as explicit as possible, and depends only on \g and (wp, v).
We refer to A\; as the eigenvalue correction. To this end, we define explicit formula for the
corrector term associated with 7. — Ty, in particular A-' — Aj'. Then, we need a classical
technique for thin layers asymptotics based on rescaling.

4.1. Scaling. — We assume that the boundary I' is C¥*2—smooth for k£ > 1, we start
by parametrizing I' as follows
I' = {ar(s),s € [0, L[},
with L being the length of I" and s is the curvilinear abscissa. At the point zr(s), the unit
dxr(s)
ds

, the curvature k(s) is defined by:

d d
:iis> IZ;:) = Kk(s)7(s).
Within these notations, the boundary of 0 is parametrized as
e ={ar(s) +ev(s),s €0, L[}
This parametrization of the surface I', is equivalent to the definition of I, for € > 0 a small

enough parameter. For the function u defined in €., we consider @ defined on [0, L[x]0, €]
by

tangent vector is 7(s) :=

= —k(s)v(s) or

i(s,n) = u(p(s,n)) where ¢(s,n) := zr(s) + nv(s). (17)
then the gradient operator of u in the local coordinates writes as:
1 ou ou
e %T(S) + a—nl/(s).

Using integration by parts we have that the divergence of a vector field: U = u, 7+ v

Vu =
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. 1 ou, 1 0
divd = AT o(s) 05 T @ ym(s)) an L T mls)u)

Let © be a function defined as follows
O(z).7 = O,(s)T and O(z).v = O,(s)v

Then the div(© - V) operator is expressed in (s,7) as
1 0 1 Ou

( + 1K) Ds ( (1

aﬁ ((1 + nm)@yg—:;”). (18)

div(© - Vu) = +—n@as)+m U

We denote by £ = — the stretched normal variable inside €2, and define as
€

ve  G=1[0,L[x]0,1] — Q.
(s,€) = @e(s,€) = zr(s) + efv(s),
then the expression of the div(© - V) operator in the scaled layer noted by A;¢ is:

. 1 0 1 ou 1 0
Baglli= (14 €r) %( (1 + k) %> * €2(1 + e€k) 8_§(< +er)® 05) (19)
for
(s, &) = ulpe(s, €)).
4.2. Correction for the operator A-! — A;'. — We assume in the following that

ny = ng. We construct a corrector term and use it to estimate the convergence rate of
(2, te) = A7H(w, v) for (w,v) € X (). Let (20,t0) = Ay " (w,v) € X(Q) solution of

diU(@oVZo) — 20 = 0 in Q,
Ato - to =0 in Q.
20—ty =0 on r (20)
0 dh _ on T
“ov  ov
Inspired by the formal calculations of the next section, we define (z1,¢;) solution of
( dz’v(GOVzl) — 21 = 0 in Q,
Atl - tl =0 in Q.
9” QV 82’0
S —t = — r 21
21 1 < o ) an on (21)
0z 0ty 0 Dz
Op— — —=— 1|07 —0])— r
L Yo av s <( o= 01) Os o

. QO’
2;—{21 e (22)
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where 1 is a polynomial of order < 1 and satisfying the boundary conditions:

{@D:tl on I,

Y=2z onl.. (23)

This gives the following expression of v in the local coordinates as:

b(s,€) = 21(p(s, €)€ + t1((5,0)) (1 = &)

The choice of 9 ensures in particular that (25,¢1) € X(€2). Using Taylor’s expansion for z;
and the third equation of (21), we then get

D(s,€) = 21(0(5,0))€ + t1((s,0)) (1 — &) + O(e)
_ (85 =)\ 0= S 6
B ( 6Y(s) > an (¢(5,0))€ + t1((s,0)) + O(e)

which indicates that up to order 1 in e, vﬁ coincides with the first term of the formal
expansion of z. inside . (See the last section). Now we have the following Lemma that
will be useful in the proof of Lemma 4.2.

Lemma 4.1. — Let (w,v) € X(Q) then set
(2, te) = A-M(w, v)and(z, to) = Ayt (w, v). (24)

Assume that (z0,t1) € C?*(Q) x CY(Q) and we define 3 as in (22), then we have for

sufficiently small €

”ZE — 20 — Egiqu(Q) + Hte — to — EtlHHl(Q) < CG%

Proof. — We define the error function in X (2) as
29 = 2 — 2o — €25 and ty =t — ty — €ty.

Now for any (¢1, ¢2) € X(2), we have that

<A (22, t2); (¢1,¢2)> = /Q <@evzzv¢1 + Z2¢1)d$ - /Q (Vtzv¢2 + t2¢2>d$

/Q <@€V(z€ — 20)V + (2 — Zo)(b1>daz

<V(te ~t0)Ves + (t — t0)¢2> dx

S~

Vi, Vo + t1¢2) dx

— €

D\g\

A
(@ ViV + @Oz;¢1)dx
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Using(24) we get

(Aclze = 20t = 10); (61,62)) = | (OV(z = 20) Vo + (2 = 20)6 ) da

(V(te o)V + (t. — t0)¢2)dx

(@0 — @1)VZOV¢1CZZL'

[
\@\g\

€

Using the fact that div(©gVz;) — 21 = 0, Aty — t; = 0 and the Green formula yield
<A (22,t2); (¢1,¢2)> / (©9 — ©1)V2Voidx
Qe
e / O,VHV o1 + Yinda

—e/—@ds —l—e/ @g—gzﬁlds( ).

To estimate Yordx, we use Cauchy Schwartz to obtain
Qe

/ bérdr < |dla, |z b1l o
Qe

From the definition of ¢ and if (z,1) € C2(2) x C1(2), we then get

ol = [ [ (B P05 0 1 Gan(s))) et + cmpase <
Hence

i / Yonde < Ce |61l
Qe
We then deduce

<A€<22, tz), ((,251, ¢2)> = / (@0 — @1)V20V¢1dx — 6/ @1V¢V¢1dx

Qe

_ atlngst( )+ / @0%¢1d8( )
O(e %>||<¢1,¢2>||m
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Using the expression of ) we have

017 et = 1 (B5(5) — B(5) (5. 0)

# A (2 (B0 ) + 02 (5.0 ) +0(0

we then get after substitution of these expressions

/ 0,V Ve dr

/ /0 ¢ (QVV—> aan( (5,0))Voi(p(s, €€))e(1 + eSr)dsdE
/ / 1 +€5,€ as V;jﬂs)%—?(w(s,o)))wlw(s,66))65(1 + efk)dsdE.

1

v [ s (9160 mtatan(o)) Vonlots, el + gnyisde

For the second term, if zy € C2(ﬁ) we have

— 61(s) 0%

/ / 1+ 655 (95 u(5> an (¢ (s, O))>V¢1<90(S, €€))e(1 + e€r)dsdE
o(s) = 61(s) 0z Lot

o) a—n(sO(s,O)))Hoo/o /0 Vi (p(s, €€))e(1 + eSr)dsdg

3
< Celllo 2@ IVorllzz) < Ce2|[nlmq)

< 07l o (D

Similarly if ¢, € C 1(_) we obtain

/ / 1+€§ —tl 1 (5))V i (p(s, €€))e(1 + e€r)dsde = O(e2) b1
Thus

(Adza,12: (61, 6)) / / (B — ©1)V (5, €)) V1 (s, €))e(1 + e

/ / (0(s G5, 0) V1 (o, €)1+ e

- /F%@ds( ) + /r @0%%655( )
O(e2)|[(61,6) | x@)
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We use the expression of the gradient operator in the local coordinates

) — 5 0, VRN =
(Lt ctn(s)) 05 P& NT() + (07(s) = 05(s)) 5 " (pls, ) (s)

to make the decomposition

(Al ta); <¢1,¢2>>
= [ [ 0506 = 0 (G2l ) = S22 65,00 Vo s, el + s

#6506 = 7060 T2 ol ) B ol e
- / %zds() / RPN

0(e2)]| (61, 62) | x (@)

Using the parametrization of the curve I', s — ¢(s, €) we have:

/F 00 () = / o (s >%’j;< (5,061 (5, €)) (1 + ex)ds

we use Taylor expansion to obtain

[ S ontsto) = [ 5652 6,016l O + Ol )

0z 1
= /@08—1¢1d3(x) +0(e?)[|p1] @) (26)
T v
The last equation of problem (21) then gives
0z ot 0z Ot 3
e [ euGtoiste) — e [ Fhowtste) = ¢ [ (005~ Thyondsta) + Ol
r

= [ 2 (0506) ~ 71N G2l 0) ) it s

+0(e2) |1 || 1 @
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One ends up with
(A = 20— 25,1~ 10); (61, 02) )

-[ / (651) — 65 s >(a;°<< 1) = 52 5(5,0) ) V(s c))e(1 + ecmse

v 2 ((eT() G152 o(5.00) ) 1 (5,0

0
0 0 3
v [ [ 016 010 S ot ) S ol et + O 1,0

9z

s and ¢

For the last term, we integrate by parts and we use the periodicity of (07 — 607)——
on [0, L] we get

[ 05060 = 0N G2 5,60 2 o

- [ ((em 5161 52905, 00) ) (0 + O(eD) o
0z 0z

0
and —, we have

877 0s
<A€<Z€ — 29 — €2, tc — to — €ty1); (o1, ¢2)> < CG%H(Q% ®2)| x ()

Choosing (¢1, ¢2) = T(ze — 29 — €25, t. —to — €ty ), since the T—coercivity constant associated
with A, from €, we get

To conclude, we just use Taylor expansion for —

e 3
||Z6 — 20 — EZl||H1(Q) + ||lfe - t() — €t1||H1(Q) S Cez. (27)
which ends the proof. O

Lemma 4.2. — If (w,v) € X(Q), then for sufficiently small €,
[Bo(AZ" = Agh)(w, v)|| = O(e) and ||Co(AH = Ag™)(w, v)|| = O(e)

Proof. — For all (¢1, ¢2) € X (), we have
(Bo(A7 = A5)(w,0): (61, 62) ) = Bo( (2 = 20,tc = t0)s (61, 02)).

Since the sesquilinear By only has L?(f2) terms, we have

[(Bo(A7 = 43w, ) (61,02) )| < Cll(zc = 205t = to) 2@yl (1, 62) e

From (27) and €| Z{[[z2(q) = O(e), €||t1||r2q) = O(€) we get

(Bo(A7" = 45")(w, 0); (61,62) )| < Cell(@1, 62) xco)
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Therefore

1Bo(A: = Agh)(w, v)|| = O(e).
A similar argument gives the second result. [
4.3. Asymptotic formulas. — In this section, we assume that n. = ng, Ve > 0. Under

1
this assumption, we have that the operator T.(\) = A-!By+ ~A-'C} converge in norm to

Ty. Finally, we are in a position to derive the expansion for the simple real transmission
eigenvalues using the results of [19] which is a generalization of Osborn’s Theorem to
non-linear eigenvalues problems:

Theorem 4.3. — Let Y be a Hilbert space and let {K. :Y — Y} be a set of compact
linear operator valued functions of A\ which are analytic in a region U C C. Assume that
K () converge to Ko(\) in the operator norm for all X € U. Now suppose that \g is a
simple non-linear eigenvalue of Ky with eigenfunction ¢. Then if

N(DEo(M)o. o) # 1,

we have the following formula
N{ (Ko(ho) = K206, ")
1+ X3( DKo(%), 6*)
+0(sup | (KN) = Kol (K2 (N) = Ko (W)

AeU

)\e:)\0+

with A\ is a non-linear eigenvalue for K.(\).

Now, we have all the ingredients to prove the main result of this paper by applying this
theorem to K, = T., Koy = Ty and Y = X () x X(€2). By Theorem 3.5, we have that
T, — Tp in the operator norm as € — 0.

Let Ao be a non-linear eigenvalue of Tj, then for e small enough, some non-linear eigen-
value A of T is such that Ac — Ag as € = 0. Let (wq, vg) and Ag(wp, vg) are eigenfunctions
respectively of the operators Ty and 7] corresponding to \o.

Proof. — of Theorem 2.2
Using Theorem 4.3, we have that

N{ (T (M) — TelMo) (w0, ), Ao(wo, v0))
1 X3( DTo(Mo) (w0, o), Ao (wo, vo) )

+0(sup [(T2(8) = To(0) o v0) (T2 () = T (W) Ao, o) )

Ae— Ao =
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From Lemma 3.4, we obtain
I(Te(A) = To(A)) (wo, vo) || = O(ez).

1
Since T*(\) = BoA-! + XCOAE_I and from Lemma 4.2, we have

ol

(T2 (A) = T5 (X)) Ao(wo, vo) || = O(e).

€

Next we have that
X{(To(Mo) = TeAo) (wo, o), Ao(uwo, o)

1+ 33( DTy (%) (w0, 20). Ao(uwo. ) )

From the definition of T, and T; and using the fact that

1 1
By (wo, vo) + )\—Co(woﬂﬁo) = )\—Ao(wo, o),
0 0

Njw

>\e_)\O:

+ O(e2)

we then get

((T5(%0) = Te(30)) (o, 0); Ao, 00) ) = =5 ((AT* = 45" Ag(uy, w); Aofeen, o))

Ao
(28)
Applying Lemma 4.4 with (w,v) = Ag(wp, vo) and (¢1, ¢2) = (wo, vg), we have

(AT = A3") Ao, v0); Ao(uwo, o) ) = e / (0 (5) = 07 (5))| =" (s, 0)) s

e [ o DG s s + O (29)

From(29), we have

e [F Owy

((T) = T (w0, w0); Ag(a, 1)) = == [ (B (s) = 67(5))

et 2
v/ 0 (s, 0) P

- [ e T s, 0 Pas + O

For the denominator in the correction theorem, we must compute the derivative of Ty(\)

1
with respect to A. In fact this derivative is DTy(Ao) = _FAE L.
0
Therefore, we have that

)\(2)<DT0(>\0)(wg,vo);Ao(wo,vo)> = —<Co(wo,vo); (wo,vo)> = —/Q (|wo|2 - |U0|2>d-f-
Since

1= (Aolwo, vo); (w0, w0) ),
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and from the definition of Ay, we get

1= / (@0|Vw0\2 + |w0|2>d1‘ — / (|VUo’2 + ‘U0‘2>d1’
Q Q
we deduce then

1+Aapn@@mmwxmm%»:/Xpdvmﬁ—nmwym
Q

Since (wo, vg) solution

div(@OVwo) + )\Onowg =0 in Q,
AUO + )\0@0 =0 in Q,
wy —vg =0 on I, (30)
8w0 81}0
OE — E = on F,

We multiply the first equation of (30) with wy and the second equation with 7y, taking
the difference then integrating by parts, we have

/(%WWP—Wmﬁm—M/hm%P—Mﬁmza
Q Q
which gives
1 -+ /\%<DT0()\0)(U)07 Uo); Ao(wO,’Uo)> = )\0/ <n0|w0|2 — ’U0|2> d.CL’
Q

Finally, we obtain

~ 3((To(ho) = Teho) wi, v0), Ao, o))

Ae — Ao = + O(e2)
1 + )\%<DTO(/\0>(U)0, 'Uo), AO (wo, U0)>
=e\ + O((—:%)
with
: Oy : o B5(s) = 61 (s) D,
— [ (65(s) = 07 ()| (¢(s,0))[7ds — [ 05 (s)(—— |——["ds(x)
- /0 0s /r 0L(s) ov '

/ <n0|w0|2 - |v0|2>dx
Q

which corresponds with the formula announced in the theorem and concludes the proof. [

Lemma 4.4. — Let A. and Ay be defined by (3) for e > 0 and e = 0, respectively. Then
for any (¢1, ¢2) € X(Q)
0z a¢1

(A0(AT" = 45w, 0: (0n,00)) = ¢ [ (B5(0) = 016D G205, 0D G2 (o5, 0))s
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g v 0 (s) — ‘%(3) 029 O 3
ve [ (o5 ) S0 0) S s onas 0. (3

Proof. — With (2., t.) = A (w, v)
<A0(A;1 — Ay (w,v); (61, <Z52)> = [ (09— 61)VzV¢idx
(@Q - @1)V(Z’e — 20 — eéi)ngldx

+ (@0 - @1)V<ZO + 65;)v¢1dl’

[

Applying Lemma 4.1, we obtain

<Ao(14e_1 — Ay M) (w,v); (91, 9252 (©9 — 01)VzVordx

3
2

-,
/Q (O — ©1)VEVydr + O(e2). (32)

Making use the local coordinates, we show

0z Opy

| @0 00vaVands = [ 7(5) = 079 Tl 0) Gl 0))s

0z 091

s [ 0506) = 01 G el ) G (ol 0 + O,

For the second term of (32)

/ (@0 — @ )VZ1V¢1 Xr = E/Q (@0 — @1)V¢V¢1dx

/ / (03(5) — 07 () V05, )V (9(5, €€) (1 + e s

9”( ) 911/(8) 82’0 8¢1 %

= [ o) — o0 B IO 020 0 B 0+ 01

which implies,

(Ao = 451 00 0. 00)) = [ G515) = B7(61) 25, ) G2 (5, 0) s
e [ o) B SO 00 0 B 0+ O

and concludes the proof. O
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5. Validation of the asymptotic formula

Our main goal in this section is to validate formally the asymptotic formula given in
Theorem 2.2. To this end, we propose the following expansion for the transmission eigen-
values:

oo

A=) €N (33)
§=0
To make the formal calculations, we need to separate the thin layer and scaled it with
respect to the thickness so that the first equation of (34) is posed on a domain independent
from e. We therefore rewrite the transmission eigenvalue problem (1) in the following
equivalent form

( div(©,Vw)) + Anqwt =0 in Q,
div(©oVw.) + Anow, =0 in Qo
Av, + Av. =0 in Q,
+ —
wt = wr, @18w€ _ 0, ow; on r. (34)
ov ov
wl = v, on T,
owr  Ov. on r
o v '

Now we write the equation for w} in the scaled domain and we solve for the asymptotic
expansion of w} in terms of the boundary values on T'. Setting w.(s,&) := w (pe(s,§)),
we have that

A, ethe + Aenyide = 0 in G = [0, L[x]0, 1], (35)

together with the boundary conditions

uve(s,?)(; ve(xp(s))a s€[0,L], i
eg(s)g%g(s,()) = Sf(er(s)  seoLl (36)

We assume that

We(s, &) = Zejwj(s,f), (s,) €G and v (zx)= Zejvj(x), x €} (37)

=0 =0
for some functions w; defined on G and v; defined on (2 that are independent from e.
Multiplying (35) by €2(1 + e£x)3, we obtain

[e.9]

Z F Dy, = 0 (38)

k=0
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where Dy, k = 0, ..., 5 are differential operators with the following expressions for the first
four terms:

D, =§£<95%>,
Dy =3¢ (8 3) + 83
D, =§<01§>+3§2 2B ) + 2670, §€>+Aon1,
=£° 33—5(9555) +&% 3658%— %0;88 gm—( §)+3>\0n1§m+>\1n1.

Inserting the expansion (37) in (38) and equating the terms of the same order in €, we
obtain

0 Ow;

8_6(011’%) = — ;Dkw]‘_k in g,

(5,0) = v3(er(5) sefo.r] )
ow v,

e (50) = 5 ar(s) s € 0L

These equations can be solved inductively to get the expressions of w; in terms of the
boundary values of v;, [ < j. One gets for j =0,1,2

wo(s, &) = vo(ar(s)),

01(516) = g e ar(9)€ +on e (). (40)
and
(5, =~ (K615 T o (6) + 507 ) () + Do (ar(s) )
+ g () + o) (41)
Now we also postulate the following expansion for w_:
“(z) = f:ejwj_@), T €Q (42)

with w; : 2 — R are functions independent of e. Then (w; ,v;) satisfies

J
OoAw; + Agnow; = — Z )\mow;l dans Q,
; =1 (43)
Av; + Av; = — Z Vi dans Q,
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with the following continuity conditions at I"
ow; 10w

- =0v——"(s,1
87] (576) 1E 85 (Sa )7

where w_ is defined from w_ using the local change of variables (17) in a neighborhood of

W, (s,€) = we(s, 1), 6y

I'. Using Taylor’s expansion we get

_ - ow; e 0*w; o -
w. (s,€) =w_(s,0) +€ on (s,0) + 2 o (5,0) + o(e”) = we(s, 1) (44)
and
ow; ow; 0w €2 PBPw. o 10w,
877 (87 6) - an (Sa 0) te 87’]2 (87 0) + 5 6773 (Sa O) + 0(6 ) - E 85 (87 1) (45)

Injecting (37) and (42) into (44) and (45), we respectively obtain the following continuity
conditions on T,

U)O_(l’p<8)) = ID()(S, 1)7

wy (zr(s)) + — =(2r(s)) = (s, 1), (46)

w (wr(s)) + S (or(s)) + 35 (wr(s)) = (s, 1),

and
B 0wy
O - 85 (87 1)a
Qg 0
By () = 0 5 (5.1, (47)

2 — A~
0w Oy

05 (T ars) + Sy (ar(s))) = 02 s,

System (43) coupled with the boundary conditions (47) and (46) provide an inductive
way to determine (w;,v;). We obtain the set of equations satisfied by these terms after
substituting the expressions of w;(s,1) given by (40),(41). We hereafter summarize the
set of equations obtained for (w;,v;) and how to use them to get the expressions of \;,
j =0,1. We first obtain that the couple (wg ,vg) satisfies

@QAUJO_ + )\Onowo_ =0 in Q,

A?Jo + )\01)0 =0 in Q,

wy — vy =10 on I, (48)
Oy — % = on r

Y ov
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with Ag is a transmission eigenvalues. We then obtain that the couple (wy ,v;) solves

(

OpAw; + Aonow; = —A\now, in Q,
Av1 + )\01}1 = —)\11)0 n Q,
_ 05 — 07 Owy

— 0y = r 49)

B 0 zjl (; g | v 0 owgy B | |
wy Uy - Wo

- — = — — (67 — 07 I.
\ Og 5 5 Xo(no — ny)wy + a8((90 07) B ) on

To calculate the value of \;, we multiply the first equation with w_a and the second equation
with Tg, taking the difference then integrating by parts and using (48), we have that

05 — 07 Owy
—12 2 _ _ —25. [ gl =1 0W 9
/\1/Qno|w0| |vol >d:)3 /F<)\0(n0 ny)|wg |“dx /1“90 Tz | 5 |*ds(x)

ow,

- [ 5= onI%e Pasto) (50)

S

which coincides with the expression of A\; given in Theorem (2.2) with ng = n;.
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