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Abstract. We revisit the differential sampling method introduced in [13] for the identification
of a periodic domain and some local perturbation. We provide a theoretical justification of the
method that avoids assuming that the local perturbation is also periodic. Our theoretical framework
uses functional spaces with continuous dependence with respect to the Floquet-Bloch variable. The
corner stone of the analysis is the justification of the Generalized Linear Sampling Method in this
setting for a single Floquet-Bloch mode.

Introduction

We consider in this work the inverse scattering problem for the reconstruction of a local
perturbation in unknown periodic layers from near field measurements at fixed frequency. This
problem has connections with many practical applications, such as non-destructive testing of
photonic structures, antenna arrays... The presence of the perturbation does not allow us to reduce
the problem to one-period cell and makes the analysis more challenging. We would like to develop
so-called sampling methods to address the inverse problem of identifying the geometry of the
defect. For the non perturbed inverse periodic problem we refer to [1, 19, 14, 24] and references
therein. For the perturbed case, it is frequently assumed that the periodic background is known
a priori. We refer for those cases for instance to [4, 11, 18, 20, 23, 10]. However, for some
applications, this information is not available or cannot be obtained in an exact way. This is what
we would like to consider in this work. More specifically we would like to study the so-called
differential sampling indicator function introduced in [13]. For this algorithm only the periodicity
size of the background is assumed to be known a priori. Combining sampling methods for a



single Floquet-Bloch mode and the sampling method using the full measurement operator, one is
able to design an indicator function that separates the perturbation from the periodic background.
However, the analysis in [13] assumes that the defect is also periodic with a larger periodicity
(equals to an integer multiple of the background periodicity).

Our goal here is to revisit the theoretical foundations of this method and remove this technical
assumption on the defect. In order to do so, we analyze the scattering problem in spaces that
include continuity with respect to the Floquet-Bloch variable. This allows for instance to consider
the scattering problem at a fixed Floquet-Bloch mode. We first provide the theoretical justification
of the so-called Generalized Linear Sampling Method (GLSM) [3, 2] for quasi-periodic incident
waves. We remark that although a classical factorization of the near field operator can be obtained
in this case, we are not able to apply the abstract framework of the factorization method as
introduced in [16]. This is why for the GLSM method seems to be more adapted and this is
why the penalty term that we use in our theory is different from the one used in the literature
[3, 5]. For the justification of the method we assume that the local perturbation does not intersect
the periodic background. The case where this intersection is not empty requires the study of an
interior transmission problem that has a non standard structure similar to the one considered in [6].
For the sake of conciseness we leave this to future investigations.

The analysis of GLSM for quasi-periodic incident waves is by itself sufficient to derive an
indicator function in the spirit of the differential linear sampling method of [13]. The principle
consists in observing that we do not change the scattering problem if we redefine the periodicity of
the background as an integer multiple of the original periodicity. The differential indicator function
is build using a comparison of the GLSM indicator function when we use these different definitions
of the periodicity of the background. This method is introduced and analyzed in Section 4.

We also provide a justification of a GLSM method using the whole near field operator
associated with point sources. This method needs in particular a specific result related to the
denseness of a single layer operator in the space of solutions to the Helmholtz equation that have
continuous dependence with respect to the Floquet-Bloch variable. This is what mainly justifies
the consideration of the scattering problem in half plane with Dirichlet boundary condition at the
interface. Our analysis also assumes that the periodic index of refraction has a positive imaginary
part in at least some open domain of the periodic background. We believe that this assumption can
be removed using the analysis of the direct problem as in [17, 15]. Considering this case will be
subject of future work. For the numerical validation of the GLSM and the differential sampling
method we refer to [13, 21, 22].

The paper is organized as follows. Section 1 is dedicated to the introduction of the direct
problems (with point source incident waves or quasi-periodic point source incident waves). In
Section 2, we study the GLSM method for quasi-periodic incident waves. Section 3 is dedicated to
the analysis of the GLSM for non quasi-periodic incident waves. In the last section we introduce
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and analyze the differential indicator function for the defect.

1. Setting of the direct problem

In this section, we introduce the direct scattering problem for a locally perturbed two dimensional
periodic medium and the corresponding quasi-periodic problems.

1.1. The locally perturbed periodic scattering problem

Let U° be the upper half-space R x R, in R%. We set QF := R x [0, R] the domain delimited by
[%:=Rx{0}andT'? := Rx {R}, with R > Ry > 0 as shown in Figure 1. Let n,, € L®(U°) be the
refractive index with non negative imaginary part, 2m-periodic with respect to the first component
1 such that n, = 1 outside a 27 periodic domain D included in Q.

We consider D := D? U D where D is a bounded domain included in QF := [0, 27] x [0, R]. We
assume that the complement of D in R? is connected. Let n € L*(U") be the perturbed refractive
index with non negative imaginary part verifying n = n,, outside D.

Consider an incident field v € L?(D), the direct scattering problem we are interested in can be
formulated as: seek a scattered field w € H2 (Q) verifying

loc

Aw + K?nw = kK*(1 —n)v  in QF,

(P){ w=0 on I°,
L2 (- R) = T*(w|rn) on I'¥,

where T7 : HY/2(T'®) — H~1/2(I'R) is exterior Dirichlet-to-Neumann map defined by

() = <= fR VIZJEREm (e de, )

with $ is the Fourier transform defined as ¢(&) = \/%7 §p € %" o(xy, R)dx, for L' functions on
%,

Assumption 1.1. Assume that in addition to the assumptions above, the set {Sm(n,) > 0}
contains a non empty open set O and Im(n — n,) = 0.

Under this assumption the above stated direct scattering problem has been studied in [18] and
we hereafter state the main theorem.

Theorem 1.2. If assumption 1.1 holds then there exists a unique solution w € H?, (Q%) n H'(QF)
satisfying (P) and continuously depend on v € L*(D).
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Remark 1.3. Given the solution w to problem (P) we extend w for || = R by

w(r) =

iz-E+iq/k2—|€]2(z2—R)
mJ\ (5 R)d5> fOl‘ Ty > R. (2)

This provides the solution satisfying
Aw + E*nw = K*(1 —n)v  in U°. 3)

The scattering problem (P) can be equivalently formulated as (2)-(3) and the boundary conditions
on T°.

Let ®(-, y) be the fundamental solution of the homogeneous problem associated with (P) given
by .
_tgm (1) /
(yy) = | HE (k] —yl) = B (k|- =) )

where y := (y1,92), ¥’ := (41, —¢2) and y» > 0.
Theorem 1.4. For v € L*(D), the solution w € H?, (Q%) of problem (P) can be represented as

w(z) = K fD Bz, y)(n— 1)(w + v) (y)dy. )

Proof. Consider N € N sufficiently large and let DV := ([-N, N] x R,) n D. Let us define a
cut-off function yn € C*(U?) such that xyy(y) = 1 for y € DV and yn(y) = 0 fory ¢ DV*! and
X~ (y) only depends on y;. We set

N o=k JD ®(z,y)(n — 1)(w +v)xn(y)dy for ze U°,

with w € H?

loc

deduce that wy € H?

loc

(%) being the solution of (P). Using the properties of the volume potentials [8] we
(QF) satisfies

Awy + Kwy = E*(1 —n)(w +v)xn(y)  in QF,

wy =0 on I, (6)
N (. R) = TH(wy|rr) on I'E.

0xo

We set uy 1= w — wy, then uy € HE (QF) satisfies (6) with the right hand side of the first
equation is replaced by k2(1 — n)(w + v)(1 — xn)(y). Since (1 — n)(w + v) € L?(QF), then

E*(1 —n)(w +v)(1 — xn) — 0 in L*(QF).

N—0



2.(Q%). On the other hand, since (n — 1)(w + v)(y) € L*(2F) and
(-, y) € L*(21)[9], then we have

Hence lim uy = 0 in H?
N—o0

lim wy(z) = k? fD O(z,y)(n—1)(w + v)(y)dy,

N—0
almost everywhere in Q% by Lebesgue’s dominated convergence theorem. Therefore w € H7, (QF)
satisfies (5) by the uniqueness of the limit. [

For the study of the inverse problem we shall consider quasi-periodic solutions obtained by
applying the Floquet-Bloch transform to the solution of (7). We will need to restrict the set of
admissible solutions to those with some continuity property with respect to the Floquet-Bloch
variable. This is the subject of the following subsection.

_________________________________________________________________________________________

Figure 1. Sketch of the domain

1.2. The quasi-periodic scattering problem

A function u is called £-quasi-periodic with period 27 for some £ € R if it verifies
u(zy + 27], 29) = ¥z, 25) forall j € Z, (7

and (z1,72) € R?. In the sequel we shall skip indicating the periodicity length 27 since it is kept
fixed and periodicity or quasi-periodicity only apply to the first variable x;.

In the following we denote by LZ(Q%) the set of &-quasi periodic functions in L7,.(Q") and by
H{(QF) the set of {-quasi periodic functions in A, m (QF). For m > 1 we denote by H, &(Qn)
the subspace of functions in H{*(Q") that vanish on I'°. We define H;(Q) as the restriction
to Qf of functions in H; (). In order to avoid notation confusion we denote by Hj () the
space H{ (€) for & = 0. We finally define H(T'{f) to be the restriction to I'if of £-quasi periodic

functions in H; (T'7).



Let{ € I :=[0,1] and I'§’ := [0, 27] x {R}. Consider an incident field v¢ € LZ(Q"), the quasi-
periodic direct scattering problem is formulated as: seek a scattered field we € H 51 () verifying

Awg + k*nywe = —k*(n, — 1)ve  in QF,

we =0 on ', (®)
ow,
o (5 R) = T (welpp) on I'f,

where T : H, 51/ Ty — H c Y2(PR) is the exterior quasi-periodic Dirichlet-to-Neumann map
defined by
TE(@) (1) = i) Be(i)e(f)e e, 9
JEZ
where
ag(f) =& +7, Be(h) == VE =1+ 57 Sm(Be(j)) =0, for jeZ,
and $¢(j) is the j-th Fourier coefficient of e “*p(x,R) defined as @¢(j) :=
L (27 o=ioe(D)¥1 (1, | R)day. For the norm in H £(I{F) we shall use the following definition

27 Jo
125(65(1“(?) = 2(1 +5°)%| e ()]
) JEZ

el

Multiplying the first equation of (8) with @D_g e H 51 (QF), integrating by parts and using the boundary
conditions and the quasi periodicity we obtain the variational formulation given as

JQR (va . v¢_£ — k‘anwgq/J_f) dx — <T£R’Uj€’ 77Z}£>F§ = k,? JQR (np — 1)7)5%, v 'ng € Hfl (Q(I)%)
0 0 (10)
where the notation (-, -)px refers to the H ~U2(0ly — HY2(TE) duality product. Using the Riesz
representation theorem we can define the operator A : H, () — H ¢ () such that

(Agwe, ve) i (op) == f

af

(ng : vw_g — k2npw5¢_§) dx — <T£Rw£, w£>l“é{ i ’Lﬂg, We € Hsl (QUR)

Theorem 1.5. Assume that {3m(n,) > 0} in a non empty open set of QL, then problem (8) is well
posed. Moreover, Agl | < ¢ with c is a constant independent of €.

Remark 1.6. Given the solution we to problem (8) we extend we for |x2| = R by

we(@) := Y. (welpp) (j) e n+% @R for ) > R, (11)
JEZ
This provides the solution satisfying
Awg + k*nywe = K*(1 —ny)ve  in U°. (12)

The scattering problem (8) can be equivalently formulated as (11)-(12) and the boundary
conditions on T°.



Defining now for ¢ € Ci°(U") the one dimensional Floquet-Bloch transform as the following

To(E w1, w2) = Y b(wr + 2mj, wa)e ™I, Eel, (x1,m5) € U, 13)

JEZ

Recall that the Floquet-Bloch transform is an isomorphism between H*(Qf) (respectively
H*(I'")) and L*(1, H{ () (respectively L*(1, H{(T'(’))). Then, for 0 < a < 1, we denote
by

G HE () = {p & L1 HE(Qg)): e g e O (1 H; ()}

the space of periodic and « Holderian functions on [ with values in H¢ (QF). The norm of
p e C(1, H; (QF)) is defined as

(HSB(fla ) — @&, ‘)||Hs(9{})>
&1 — &al® ’

sup|[¢(&, )| gsopy + sup
gel E1#Eel

with ¢ := e~%71p. We then set

H(Q7) = {ue H*(Q")/Tue CJ (1, H(Qf)} (14)
A7) := {ue H*(I'")/Jue C)*(1, H{(T{))} . (15)

Then we have the following theorem complementing the result of Theorem 1.5.

Theorem 1.7. Assume that hypothesis of Theorem 1.5 holds and consider v € iQ’O‘(QR) for 0 <
a < 1 Let w, € HE(QF) be the solution of (8) with ve = (Jv)(&,-). Thenw = J 'wg := §, wed
belongs to H*(Q") with & = min(w, 3) and

[0l 1.0 0my < €llvllzzaon)

with c independent from v.
Proof. Set e := e~ "1wg and ¢ = —k*(n, — 1)ve. Then we have we € H} () and verifies

A1D —i€-w1 3, 2% 01{75 2 ~ E2n 140 in QF

We = e Vg — 258_:161+§w£_ npWe in Q7
Let &,& € I, and set e := €411 (g, — wg,). Then e € H{ (Qff) and
Ae + k*npe = Lg, ¢, in QF, (16)
with
€1-x —i€1-x —i€ox —1€2-x1 ( 3, ~ . aw ~

Ley g, 7= €17 | (797 — €792 Jug, 4 7 (0, — g, ) — 2i(&1 — 52)67512 + (& — &),
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By the Cauchy-Schwartz inequality and © € L?“(Qf') we get the existence of a constant ¢ > 0
independent from &; and & such that

[ Ley 21l L2y < & — &l* (HUHPa(Dp) + HwérzHHl(ng)) : (17)

On the other hand, using the third equation in (8) we have on I'"?

oe

oy, = Tellwe) = @M T (we,) = TEH(e) +1,(Ba () — Bea(i) D). (18)

JEZ

The variational formulation of (16)-(18) can be written as

LRGk.V@_k%W@y—@ga¢%gzﬁﬁL&@@M—w%dww%“ V1p e HE (QF),
0 0 (19)
with ge, &, 1= 2 (B, (J) — Bey (4)) g, (j)e 1Y), Using the definition of H~/2(I'¥) norm in terms
JEZ

of Fourier coefficients we get

||g§17§2(x1)”2 -1/2 pRy (1 + |j|2)1/2|ﬁ}\£2 (j)|20521,€2 (])’
HOA)
1 jEZ

with Cg, ¢, (j) 1= 22D S0l por 5 e 75— 7)\ {0} such that B, (j) = 0, i.e k2 = |& + j|2

T+

_ &P -+ &P

Ce6,(J) = (ESTBIE < (k+3)2¢, — &2,

since || < |j + &1| + &1 < k + 1. For the case j = 0, if (k? — £2)(k? — £2) < 0

Cer62(0 |\/k2 & _Z\/fl k2 = 1&g} - &1 <206 - &2,
while if (k% — &) (k* —&3) > 0

2 2
Coel0) = (7= €‘§1+ w’z o < Vlla -6l

Finally for the case where k% # |¢; + j|* and j # 0 we write

162 +4° — 1& + j1%|
(L+ 172 VE2 = [€n + 12 + k2 = [& + 5]
Since |f¢, (j)| > 0, then there exists 6 > 0 independent of j such that |5, (j) + B¢, (j)] = 9,
therefore

051 &2 (]) =

) -4l +6 +2)
sup  Cg6,(J) < sup | ! 5 ‘ |€2 &1l
JEL* k2 #|61+5|? JEL* k2#|61+512 \J’

8




Summarizing, there exist a constant 3 independent from j, &; and &, such that
supCe, ¢, (j) < Bl& — &'
JEL
Consequently
[ IIiI;n oy < Fl6 = Glllwe, llilgz oy’ (20)

‘We observe that
el ey < elle”™ = vl apy < 2ellweallmop),

with ¢ being the continuity constant of the trace operator on /1 ﬁl (QF). From Theorem 1.5 we have
that

lwell o) < Cllvellizeg < Vllzza(om), 2D

where ¢ is independent of &;. Applying Theorem 1.5 to the variational formulation (19) proves,
using (17), (20) and (21), the existence of a constant ¢ independent of &; and &5 such that

lell ) < el — §2|d||v||fﬁva(DP)7
which ends the proof. [

Theorem 1.8. Assume that hypothesis 1.1 holds and that v e L**(QF) for 0 < o < 1. Then the
solution w € H?, (QF) of problem (P) belongs to H“*(QF) and

loc
[wll gra@ry < clllvllz2.epry + V] L2(5);

with c independent from v.

Proof. Let we = (Jw)(&,-). Since the support of n — n, is included in QF, then we have
we € H(QF) and satisfies

Awe + k*nywe = —k*(n, — 1)vg — K2*Re((n — np)(w +v))  in QF,

we =0 on I,
ow
Kj('a R) = TﬁR(wdF(lf) on F§>

with vg := (Jv)(&, ) and Re¢(¢p) for a function  compactly supported in { denotes the extension
by &-quasi periodicity of ¢ to all of Qf. Indeed Re(p) = J (¢xqr) where xqor indicates the
indicator function of the domain Q. We decompose wy as

we = wg + W,

9



with wy being the solution of (8) and ¢ := we — wy, satisfying

Aug + k*nye = —k*Re((n — ny)(w +v))  in QF,

we =0 onI'%,
o v
aos (W R) = T (wera) on I'f.

Denoting by w? := J'w{. From Theorem 1.7 we have that w” € H'“%(QR). Moreover, since
Re((n —np)(w +v)) € e, L(92)), then using Theorem 1.7 we deduce that w := J ' €
HY(QF) and then w = w? + w € HY(QF). The estimate follows also from application of
Theorem 1.7. [

For the sake of studying the inverse problem, for fixed &, € I, we consider v¢, € Lgo (D), where

Lg,(D) := {v € Ly,o(D)/ vlpr € Lg, (D)},

loc

where L7 (D) denotes the set of & quasi-periodic functions that are in L, (D?). We would like
to define a solution wg, to problem (P) associated with v = vg,. Indeed, since vg, ¢ L*(D), the
solution can not be defined as in Theorem 1.2. We rather define the solution in this case as

We, 1= wé’o + UN)&), 22)

with wg, € H (Q) verifying

Awg + E*nywg, = k(1 —ny)vg,  in QF,

weg, =0 on '}, (23)
ow?
Wio('a R) = TgR(wéJOh“(lf) on Fé%a

and 1, € H'(QF) satisfying

A, + k*nivg, = k*(n, — n)(vg, + wgo) in QF,

e, =0 on I'?, (24)
) ~
(v, R) = T (g, |rr) on ',

The solutions of (23) and (24) are respectively defined by Theorems 1.5 and 1.8. Multiplying the
first equation of (24) with 1) € H! (Q%), integrating by parts and using the boundary conditions we
obtain the variational formulation given as

J;)R (vwfo ’ v@ - ]{327’LU~1£OE) dr — <TR7“D§07 77D>FR = k2f

(n =) (v, + wf )P, Ve H(QT),
QR

(25)
where the notation (-, ) refers to the H—Y2(I'f) — HY/2(I'!) duality product.

10



Remark 1.9. Let v € L*(QF) and set v = J (v)(, ). We define we € HE () verifying (23) and
Wt = J(ig)(E, ) with e € H'(QF) is the solution of (24). Then w? := §, wtd¢ is solution to (P)
withn = n, and 0 := §, wgd€ e HY(QF) is solution of

AW + k*nyw = k*(n, —n)(w? +v+w) in QF,

w =0 on Y, (26)
%(~,R) = TE(|rr) on ITE.

Consequently 0 + w” € H'(QF) and is the solution of problem (P).

2. The inverse problem for quasi-periodic incident fields

2.1. Setting for the inverse problem

Consider & € [ fixed, and let O (z,y) = (TP(-,y))(&o,x) be the &-quasi-periodic Green
function having the following expression [20]

7 . N )
D¢y (,y) = EZQW%(])(II yl)eéo (J, 2, y2), Yo < o, (27)

JEZ

with

e~ WBeo(Ny2 _ 1B (j)yz] 28)

ﬁ{o (])

Let y € (. We define u§ (-,y) = wg, given by (22) with v, = ¢, (y,-) € LZ (D). From (22) we
decompose uf (-, y) = ug (-, y)+ag (-, y) withug"(-,y) = wg solution of (23) and @ (-, y) = 1w,
solution of (24). We introduce the &-quasi periodic near field operator N¢, : Lg (') — Lg (I'®)

950 (j,IQ, ?JQ) = WP (a2 [

Neogeo () 1= f  9eo(y)ug (2, y)ds(y) + f 960 ()T (g, (-, y)) (o, 2)ds (y)- (29)

0 I‘0

Define S, : Lg (I'") — LZ (D) as

et ()= | 06 (0) e (o)) (30)

Then, obviously the operator N¢, can be decomposed as
NEO = G50(550)7 3D
where G, : L (D) — L (T'") is the operator defined by
Gfo (U&)) = (w;go + @§O)|F§> (32)

11



with wg being the solution of (23) and w{ = J(is,)(&o, ) With 1, is the solution of (24). We
observe that w¢, € H} () and verifies

Awgo + anpwgo = k?*(n, — n)(wé’o + Vg, + Wg,)  in QF,

W, =0 on IE, (33)
oa? 3
WZO(-,R) = Tf(wgohgf) on I'%.

Multiplying the first equation of (33) with @b_&) e H EO(QOR), integrating by parts and using the
boundary conditions we obtain the variational formulation given as

J;)R (Vﬁ)go ) Vw_&o - k2npw§0w_£o) < w§07 w£0>1‘\R = k2 J R(” - np)(wg) + Vg + wéo)w_ﬁoa
0

R

(34)
for all ¢, € HZ (QF). For later use we decompose Ng, = N + NE where N? : L? (I'f) —>
L (I and NE : L? (') — L2 (') are respectively defined as

Mg (@)= | 06 )dsto), Moo (@)= | 0670, (00 0)ds(w). (9)

1_‘0
Lemma 2.1. The operators N, g} and N, fo can be respectively factorized as
Ng, = 9§ Tg, S, and N, = Sg T Seo, (36)

with TY : L} (D) — L2 (DP) and T : L2 (D) —> L, (D) are respectively defined by

Téve, = k(1 = mp)(vg, + wg), (37)
Tp ey = E*(1 — np)u?g) + k*(n, — n)(wé’o + Vg, + We, ) (38)
where w | being the solution of (23) and wg, = J (e, )(&o, -) with g, is the solution of (24).

Proof. The proof of (36) is classical and we here outline the main steps. The solution wé’o of (23)
with ve, = Sg,g¢, can be represented as [12]

Wl (@) = | K (o)1= )l + Sege) )y for € Q.

Dy

Then

(V2 ey, Geo et fD (1 - n,) w§0+sgoggo><y>fr Do, (2, )7 (@) ds () dy,

0

L F2(1 = n,) () + Se,960)(y) Sty Geo (v) .

12



- (Tg)S&)ggo, S&ogso)LZ(Dg)m

which proves the first of factorization in (36).
The second factorization is obtained in the same way based on the fact that wé’o solution of (33)
can be represented as

P
wﬁo_f
D

. ]{;2(1)50(.7 y)(l - np)wg) (y)dy + J~ kQ(I)So('a y) (np - n) (wgo + Sfogfo + ZDfo)d?/-

P b
O]
From Lemma 2.1 we conclude the following factorization
N§0 = SgoTﬁosﬁo
with T¢, : L2 (D) — L2 (D) is defined by Ty, (ve,) = T2 (ve,|pr) + T2 (ve,) or equivalently
Teyvey = k(1 —np) (WE + vg, + WE ) + k*(n, — n) (W, + vg, + g, ). (39)

2.2. Some properties of the operators defined in the previous section

In order to study the inverse problem we need to prove some properties of the operators defined in
the previous sections.

Lemma 2.2. The operator Sg, : L (I'") — L (D) is injective. The closure of its range is

Hgionc(D) ={ve LEU(D), Av+k*v =0in D}. (40)

Proof. Let ge, € L (T'") such that Sg,g¢, = 0 in Dy, where Dy := Qff n D. Using the unique
continuation principle we obtain Sg,ge, = 0in QF. Let UF := R x [R, oo[. Using the continuity
(U, is &-quasi periodic, verifies

and regularity of single layer potentials we have that S, € H7,,

ASe e, + k*Seoge, =0 in U, @

Seo9g = 0 onI'¥,

and the upper going radiation condition (11) with ' replaced by I'* with R’ > R. The uniqueness
for this Dirichlet quasi-periodic scattering problem [18] implies that S¢,g¢, = 0 in U”. Therefore,
using the jump relations for the normal derivative of S, we obtain g, = 0 which proves the
injectivety of S, .

Let Sf : L (D) — LZ (') be the adjoint of Sg, given by

St6 ) i= | e viz)ue (o)

Dy

13



Let vg, € H(D), we set
Weo = f (pio('? 33)1}50 ($)d$
Do
Using the properties of the volume potential we deduce that we, € H, 520 (QF) satisfies

Awg, + k*wg, = —vg, in Dy,
Awg, + k*wg, =0 in QI\ D, (42)

ow R R
s (0 B) = Tg'(wgorp)  on I
Assume that wg, = 0 on I'}'. Then wg, vanishes in U¥. Using the unique continuation principle we
obtain that wg, = 0 in Q&\Dy. We then have we, € HZ(Dy). Therefore, since Avg, + k*vg, = 0 in
D,

0= jD veo () Bty T Bw) 1)y = — [l 2oy 43)
(0]

This proves that v, = 0 and S, has a dense range in H{'*(D). O

For the analysis below we need to assume the well posedness of the following two Interior
Transmission Problems (ITP).
(ITP1): Seek (u,v) € Lg (DP) x LZ (DP) such that (u — v) € H (D?) satisfying

-

Au+ K*nyu=0  in D},
Av + k*v =0 in Df,
(44)
u—v = on 0DY,
\ —a(%;”) =1 on 0D},

for given (p, ) € H;)/Z(&Dp) X Hgo/Q(éDp). The spaces H{(DP) and H{ (DP) are defined
similarly to H*(Q%) and Hg (T'F).

(ITP2): Seek (u,v) € L*(D) x L*(D) such that (u — v) € H?(D) satisfying
(

Au+ k*nu =0 in D,

Av+Ekv=0 in D,
J (45)

U—v =1 on @D,

u—v) _ P on éD,

\ ov
for given (¢, 1)) € H¥?(0D) x HY?(dD).
14



Assumption 2.3. Assume that k, n,, are such as the (ITPI) is well posed.

Assumption 2.4. Assume that k, n,, and n are such that (ITP2) is well posed.

Moreover, we need first to prove the following Lemma

Lemma 2.5. For all v, ,v¢ € L (D) we have
(Teyveys V2, ) L2(Do) = (Teo V3, U, ) 12(D0)- (46)
Proof. For i =12, consider @Ugi € H & () solution of (10) with £A = & and ve = v{, . Define
we' = J (g, ) (&, ) where Wy, € H'(QF) satisfies (24) with v, = vf, . We set
we, = Wiy + g
which verifies

|, (T, 0 = kgl ) o (Tl vy = L) D)
0

for all ¢, € HE (Qf) with

k% (1 — np)véow_&)dy + k? J (np — n)(wé’;i + UEO + w20)¢€0'

aff

L (ve) = |

Dg

Taking ¢, = w?, and 1, = w}, respectively in the variational formulation (47) satisfied by wg,
and wgo we obtain by taking the difference

R, 1 — 3 R, 2 1 _ 2 1.2 2 pl o, ~1 1y, .2
<T£Ow£0, w£O>FR — <T£Ow£0, w£O>FR = J;Dp k(1 — np)vgowgody + L} k*(n, —n) (w&) + Wg, + vgo)wgody
0 0 o

72 7y
— JDP k(1 — np)vg we, dy — J;:a k*(n, — n)(wg” + W, + vg, )we, dy.
0
Since ng is symmetric, the left hand side in the previous equality vanishes and therefore
1, =pl 2 | ~p2
fDP E*(1 — np)vgo(wgo + g+ ve, )dy = JDP k(1 — ny)ug, (wer” +wg” + v )dy (48)
0 0

2 1, -1 1 2, ~p2 2 2, -2 2 1, ~pl

+ fD k= (np — n)(wg + g, + vg, ) (wg + wg”)dy — L) k= (np — n)(wg” + g, + vg ) (wg + W )dy.

On the other hand, taking w_go = @2’(’)2 and ¢_§0 = wg;l respectively in the variational formulations
satisfie w,” and w,~ we obtain by taking the difference and the symmetry o

34) satisfied by @7, and @}, we obtain by taking the diff d the sy y of TJ

ﬁ k*(n, — n)(wg;l + vgo + ﬁ)%o)wgfdy = J~ k*(n, — n)(wg’)2 + vgo + wgo)wgldy. (49)
D b
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Moreover, taking ¢_§0 = @Dgo and w_fo = @Déo respectively in the variational formulation (25) satisfied
by u?éo and u??o we obtain after taking the difference and using the symmetry of the operator T'#

ﬁ k?(ny, — n)vg we, dy = — J k*(n, — n)wg’fu?éody + f k?(ny, — n)wg, (ve, + wg’)l)dy. (50)
D D D

Now, using (39) we have
Te,ve, = K2 (1 = np)(wh' + v, + @) + k> (np — n) (Wl + vl + df). (51)

Using (48) to substitute the first term in the right hand side of (51) we get

"2 72 7 72 71 ~, ,2 ~ ,2
(Tfové()? "U,?O)LQ(Do) = JDP k*(1 — np)véo (w?0 + w’go + vgo) + JD kz(np — n)(wé’o + w%o + vglo)(wfgo + wgo )
0

2 - 1, ~pl
_ f k(n, — n)(w?0 + wgo + “&20)(“’?0 + wgo )+ J

D D

k*(n, — n)vgo(wg]l + vg, + W) (52)
Finally, using (49), (50) to simplify the previous expression we obtain

(TeoVgy» V2, ) 22(Do) = f

. E*(1— np)vgo (wgf + u?gf + vgo )y + L) k*(n, —n)véo (wé’(’)2 + u??o +v§0)dy,
0

where the right hand side coincides with the expression of (Tgovgo,v_go) 12(Dy)- This ends the
proof. 0

Lemma 2.6. Assume that the assumptions of Theorem 1.5 hold and that Assumptions 2.3, 2.4 hold.
Assume in addition that DY n D = (. Then, the operator Gy, - H{(D) — L (T'") given by
(32) is injective with dense range.

Proof. Let vg, € H(D) such that Gg,vg, = 0 on I'ff, i.e
we, = wk + g, =0 onT{,

where wy, is the solution of (23) and w¢, = J(ig,)(&o, ) With g, being the solution of (24).

Therefore, we, € HZ (UR), is & -quasi periodic and verifies

loc

Awg, + k*we, =0 in UE,
we, =0 on '
and the upper going radiation condition (11) with T'¥ replaced by I'* with R’ > R. The uniqueness

for this Dirichlet quasi-periodic scattering problem implies that we, = 0 in U”. Using the unique
continuation principle we obtain that wg, = 0 in U\ Dy. Moreover, wg, € H 20 (QF) and satisfies

Awg, + kQTprgo + E*(n — np)(wg0 + We,) = E*(1 — n)vg, in Qé%. (53)

16



Since D n D = (7, then we have in particular wg, € HZ(D?) and
Awg, + k*nywe, = k*(1 — ny)vg, in DE.

Setting ug, := wg, + vg, We observe that the couple (ug,,vg,) verifies (ITP1) with zero data.
Therefore, we,|pr = vgy| pr = 0. The latter implies in particular that w5 =0 by well posedness of
the periodic direct scattering problem. On the other hand, since n, = 1 in D, then we, € H, 2(D)
and satisfies

Awe, + k*we, + k2(n — 1), = k*(1 — n)ve, in D. (54)
Since we, € H3(D), then we have
ﬁ (Awe, + k*we,)0 = 0 forall @ € H™(D),
D

where H"¢(D) := {v € L*(D)/ Av + k*v = 0 in D}. Therefore, taking the L? scalar product of
(54) with 6 we get

f (K*(1 = n)ve, + k*(1 — n)ivg, )0 =0 Y 0 e H™(D). (55)
D

From Theorem 1.4 we have that 1, € H'(Q") can be represented as
e, () = k? fD ®(z,y)(1—n,)bg, (y)dy+ k> JD ®(z,9)((1—n)ve, +(1—n)ig,)dy  for x € QF.
Since y — ®(z,y) € H"™(D) for = ¢ D, we obtain from (55) that
e, () = Lp K2(1 = n, )i, (y)®(x, y)dy  for z ¢ D,
Let us define we, € H*(D) by

We, () = JD k(1 — ny)tg, (y)®(x,y)dy forx e D.

We set ug, 1= e, + Vg, Then the couple (ug,, vg,) satisfies (ITP2) with (p, ) = (wy,, 52050 ).
Moreover, since

A, + k*g, =0 in D,
and (ITP2) is well posed then vg, + we, = 0 and we, + vg, = 0 in D. We then deduce that
= g, In D. Consequently

ZDfo

e (0) = | (1= n)ie ()8 )dy for o O,
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which implies that g, satisfies (P) with n = n, and v = 0. We then conclude that ¢, = 0 by
uniqueness of the solution to problem (P) with n = n,. Therefore v¢, = 0 in D which, together
with v¢, = 0 in DP? prove the injectivety of G, .

Now, we prove the denseness of the range of G¢,. Let g¢, € R(GgO)L, then
(Geyvey: geo)r2(pg) = 0V g, € He“(D).

Let fe, € L (I'") and consider vg, = S, f¢, Using Lemma 2.1 we have

(Tey (Seo feo)s Seudea) = 0,V feo € LE (D). (56)
Moreover, using Lemma 2.5 we get
(Teo (Seofeo)s Seneo) = (Teo(Senbe): Senfeo) ¥ feo € LE,(TF).
Therefore, (56) implies that
(Geo(Sendeo): feo)rarmy = 0,V fe, € LE (TF).

Then G¢,(S¢,9¢,) = 0. The injectivety of G, gives that S, ge, = 0 and then g¢, = 0 by Lemma
2.2. ]

Lemma 2.7. Under the same assumptions of Lemma 2.6 we have that
(z€ Dy) <= (Pgl,2) € Range(Gy,)) -

Proof. Let z € DP. We consider vg, € H"“(D) such that ve|, = =g, (-, 2). Let (ug,,vg,) €
L2,(D?) x L2, (D?) be the solution of (ITP1) with (g, 1) = (D¢, (-, 2), 22, We set

ov

— 1 P
wgo _ Ug, — Vg, in DP,
D¢, (-, 2) in Qf\Dr.

We observe that wgo el 520 (1) and satisfies (23). Moreover, let 1, be the solution of (24). Since
(np — n)(w¢, + ve,) = 0, then W, = 0 and consequently G, (vg,) = Pg, (-, 2).

Consider now the case where z € D. Since D n DP = ¢J Recall that the Green function
®(-,2) defined by (4) belongs to L*(QF) [9]. Let u € HE (QF) be the solution of (P) with
n = n, and v = ®(-,2). Let us define ®, (-,2) := u + (-, 2) that satisfies in particular,
®, (-,2) € L2(QF) n HE (Q\D)

loc

Aq)”p(? Z) + k2npq)np('; Z) = _52 in QR
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together with the upper going radiation condition (2). Consider vg, € H, EQC(D) such that vg,|pr = 0
and let (iig,, ve,) € L2(D) x L2(D) be the solution of (ITP2) with (g, ) = (®,, (-, z), 2zl
We set

- lg, — Vg in D )

Weo -=

®, (,z)  in QAD.

We observe that wg, € H}

loc

() satisfies (24). Moreover, since vg,|p» = 0, then the right hand side
of the first equation of (23) vanishes and therefore the solution wé’o of (23) vanishes. Consequently

Gfo(”&o) = j<q)np('7 2))(6()) = q)np,ﬁo('az)'

On the other hand, we consider ug, := J(u)(&,-) € Hg (€). Then ug, satisfies (23) with
vg, = D¢, (-, 2). We set

- (I)ﬁo('a’z) in D?,

Veo -= -

—Ug, inD.
Let w?o and wyg, be respectively the solutions of (23) and (24) with v¢, = U¢,. By uniqueness of the
solution of problem (23) we have wg, = ug,. Moreover, W, = 0 since k*(n, — n)(¥g, + ug,) = 0.
Therefore
G, ({)&)) = Ug-
Consequently
Gﬁo(vﬁo - 650) = (I)§0<'7 Z).

Consider finally the case where 2 ¢ Dj,. Assume that there exists v, € HEO"C(D) such that
Gey(vg,) = Pg, (+, 2). Using the unique continuation principle we get wy, := wi + g, = g, (-, 2)
in U\ Dy which is a contradiction since we, € HZ (Q7\Do) while ®¢, (-, 2) ¢ Hg (VDo) O

Let us define now the following norm for g, € LZ (I'")

Iy ggo = ‘(Nfogsmgfo)p(rg) + ‘(Nfoggo,ggo)m(rg) : (57)
From the factorizations (36) we have the equivalent expression
Iiogfo = ‘(Tgposfogém Sfogﬁo)Lgo(DP) + ‘(Tg)s%gﬁov Sﬁogﬁo)Lgo(D)‘ . (53)

Lemma 2.8. Assume that Assumption 1.1 and 2.4 hold. Assume in addition that Re(1—n,) = v >
0in DP and Re(n,—n) = v > 0in D or Re(1—n,) < —y < 0in D? and Re(n,—n) < —y < 0.
Then, there exists a constant ¢ > 0 independent from &, such that

Ieygey = € (HSEOQ&)H%Q(DS) + HSﬁogEoHiZ([))> V g € LEO(FR)a
with I¢, ge, is the norm given by (57).
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Proof. We prove the Lemma in the case Re(1 — n,) = v > 0in D? and Re(n, —n) = v > 0
in D. The other case can be proved in the same way. We shall use a contradiction argument. We
consider g¢, € LgO(FR) and we denote by ve, = S¢,g¢,. Assume that there exists a sequence vfo
such that

Lo
e 7200 = [(TE Ve ve ) z2(omy| + | (T2 v, Ve, L2(D0) | - (39)
l
vt Y ~pl - . N
We set 0, = m Let wg, be the solution of (10) and wg" = J (i, )(, -) with ve = U,

and 1, is the solution of (25). Since ||9¢,||L2(p,) is bounded, then we can extract a subsequence

(that we still denote the same) vé that converge weakly to 9¢, in L?(Dy). Moreover, wE ‘ and wg’;f

converge weakly in H () and strongly in L*(D,) respectively to some we, and WY € H} (QF).
On the other hand, taking 1, = wg’f in the variational formulation (10) satisfied by wgf we obtain

f (IVul!]?
o

Therefore, decomposing (vg, + wg, )vEO |0f, + wg,

k2] \ ydy = —k* JDp(l n )(w5 + vgo)wg zdy + <TRw§0 w§0€>
0

.l

f2 — (0f, + w&f)wéo we get

. Y L p
(Tg)UgOWgO)L?(DP) :J E*(1— np)lvéo—i—wso | dy—i—f (\Vw |2 k2|w§O ]2)dy—<T1§w§O ,wgo>

DP

Taking the imaginary part we obtain

. i .
Sm(T¢ v&), UgO)L2(DP) =— JDP %m(np)h)fo +wy dy — Sm <TRw§0 , WE >
0
From (59) we have
‘ (Tp Ufo’ ﬁfo)LQ Dg) | K—o)o 0.

Therefore, using the fact that Im TRw ,wh £ = 0,
fO fO FOR

f Sm(ny)|og, + wé’ﬂzdy P 0= f Sm(ny)|ve, + wg, [*dy.

DO
Since Im(n,) > 0 in O we obtain that u := 0 + wg = 0in O. Observing that
Auf + k*nyug, = 0 in Df, by unique continuation principle we deduce that ug, = 0 in Dg.

Therefore, wé’ satisfies (23) with n, = 1 and 0¢, = 0, which implies that wé’o vanishes in QF.
Moreover, since w5 Dt converges strongly to wg in L?(DP), then we have

J k(1 = ny)wg, Evé dy — | k(1 —ny)wg b, dy = 0.
D? D?
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On the other hand, we have that

(75, 85,5 B, ) 120p)| = & — K

. Nova
Dp(l — n,)|0g, [*dy JDP k(1 = np)weof dy| .
0 0
From the hypothesis Re(1 — n,) = v > 0in D? we then have
N A
}E{}O‘ TOUg();UgO)L?(Dg)‘ = 'Y||Ufo||2L2(Dg)'

Therefore dg, | pr = 0.
Now, taking ¢ = u?f , in the variational formulation (25) satisfied by u?f , We obtain

—k? f (n, — )(w£ + 1150 + w&))w5 dy = kQJ (1-— np)|wf0|2dy + f (|Vﬁ)§o|2 — k2|w§0|2)dy
D QR QR
B <TR1E§0’ w§o>FR (60)

Moreover, taking ) = wgf in the variational formulation (34) satisfied by wgf we get

_k2f~(np n)(wh’ + 0f + g, )L dy_f (V' |? - k2|w§fy?)dy+k2fp(1—np)\w§f|2dy

D D?
R 9y 74
<T0w§0, b >FR. 61)
0
On the other hand, we have

. e
(TP Uéo’ U{o)LQ(DO) LR k(1 — np)wgo vfody + LR k2< _ n)|w50 + ’UEO + wéo\ dy
0

0
— LR kz( —n) (w£0 + vgo + w&))wgo dy — LR kQ( — n)(w50 + v&) + wéo)wgody

Then, using (60) and (61) we obtain by taking the imaginary part
N AR ~ ~
(Tp Ufo’ Ufo)L2(Do) = LR k*Sm(n, — n)]wgo + vg) + w§0]2dy —y LR Sm(np)\wg)]Qdy

+ K LR Sm((1 = np)al o, )dy — LR KSm((ny, — n)(wl + of, + @ Jwl)dy — Sm (TRGL, T -
(62)

On the other hand, the application v, — (1— np)ﬁ)g’o with u?é’o is solution of (33) is compact from
L?(Dy) into L*(D{) using the compactness of the injection of H{ () into L*(Dj). Similarly, the
application vg, — (n, — n)wg, with wg, is solution of (23) is compact from L*(Dy) into L*(D).
Therefore we have, using that v, | pr =0and wgo =0,

v
k? LR Sm((1 = ny)wg vf, )dy — 0
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J E*Sm((n, — n)(w5 + U&) + w&))wé )dy — 0 (63)
QR

From (59) we have

‘%m Tp Ugo,vgo)L2(DO) i 0. (64)

We observe that S (THwg, u~)§0> > 0. Consequently, using (62) , (63) and (64) we get
J Sm(n — np)|w§0 + vgo + w§0| dy +f \sm(np)|w£ 2dy P 0.
D Dp -
In particular, by Assumption 1.1 we deduce that §, Sm(n,)|wg [*dy ;— 0. This implies that
—00

We, = 0in O. We remark that w¢ = 0 implies in particular that Awg, + k*nig, = 0 in Q™\D.
Consequently wg, = 0 in QR\D by unique continuation principle. This proves that the couple
(g, + D¢y, De,) € L*(D) x L?(D) is solution of (ITP2) with zero data. Hence 1, = 0 in D. On
the other hand, the application ve, — (n, — n)wWg, With W, is solution of (24) is compact from
H{“(D) into L*(D) thanks to the compactness of the injection of H'(D) into L*(D). Therefore

Yoy
f ) k(1 = ny) g of, + f~ k?(n, — n)(wg + wgo)vE dy—>0.
D D
Moreover, we have

=

‘ (Tp Ufo’ f}Eo )Lz(Do)

yve
L)P k(1 — ny )y 0,

0

| =it
+ L} k*(n, —n) (w§0 + wgo)véody
Using the hypothesis fe(n, —n) =y, > 01in D we conclude

0 - hm (Tp UEO,’[)&))

{—0

= ’71||ﬁ§0‘|i2(b)7

which gives ¢, = 0 in D. Combined with the result above we have that Vg, = 01n Dy which
contradicts with ||0g, || 2(py) = 1. O

2.3. Application of the Generalized Linear Sampling Method (GLSM)

We present the free noise version of the GLSM. For fixed £, € I, introducing the functional
J¢ o L (') — R given as

JE (65 9¢0) = oy (9e,) + [(NE + NE )ge, — 611,

We denote by j (¢) = inf e (¢ ge,)- Moreover, let ¢(«) > 0 verifying C(a—a)
go€Lle, (T

— Qasa — 0.
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Theorem 2.9. Assume that Assumptions 2.3 and 2.4 hold. Assume in addition that the hypothesis
of Theorem 1.5 and Lemma 2.8 hold. Consider z € QF, and let g, € L (') such that

Jeo (P (- 2), 96, (2)) < Jg (P (-, 2)) + c(@),

then
2€ Dy — lin%lgo(gg)(z)) < 0.

Moreover, if z € Dy then Sg, ge,| 5 converges to some v in L*(D) and Sg, ge, | pr converges to some
ve, in L*(DY) where © is solution of (ITP2) and v, is solution of (ITPI).

Proof. The proof of this theorem is an application of the abstract framework of GLSM given by
Theorem 2.7 in [5] and the series of Lemmas (2.1)-(2.8). Lemma 2.1, Lemma 2.2 and Lemma 2.6
prove that the operator Ng, = N{ + N{, can be factorized as

N€0 = G€OS§0 = SgoTﬁoséov (65)

and has dense range. Moreover, we need to verify that the norm I, g¢, is an equivalent norm to
1960 9¢0ll 2(y) for all gg, € L, (I'®). Theorem 1.5, Theorem 1.8 and the expression of the operator
T¢, prove the existence of a constant ¢; > 0 (independent from &) such that

Teugis < o1 (606 320 + ISa9lags)) ¥ 90 € L, (T7). (66)

Therefore, Lemma 2.8 and (66) prove this norm equivalence. The results of the theorem are then a
straightforward application of Theorem 2.7 in [5] and Lemma 2.7. [

3. Inverse problem for non-periodic incident fields

3.1. Setting of the inverse problem

Let y € ', One can deduce from (93)-(97) that ®(-,y) € L*(QF) (see also [7, 25]). We then
define u®(-,y) € H} (QF) the scattered field solution of (P) with v(-,y) = ®(-,y). We introduce

loc

the near field operator N : L2(I'?) — L*(I'%) as



Then, the operator N can be decomposed as
N =G5,
where G : L*(D) — L*(I'?) is the operator defined by
G(v) = wlrs,
with w being the solution of (P).

Link between N and N¢: For £ € I, we denote by g¢ := (J¢)(&, -) and we observe that

Sge = Sege(z), (67)

with S¢ being the operator given by (30), in fact

2r(l+1)
Sge(x) = JR Oz, (y1, R))ge(y1, R)ds () = ZJ D(z, (y1, R))ge(y1, R)ds(y1),

lEZ 27Tl
27
= ZJ (z, (y1 + 27l R))ge(yr + 2ml)ds(y1) = f Pe(y, 2)9e(y)ds(y),
ez Y0 Fé%
= Sggg(l‘),
therefore
f Sege(x)d§ = f (z,y) J 9e(y)d§ = Sg(w). (63)
I NG I

Let N¢ : L(I') — LZ(I'"") be the operator given by (29), we have

[ vegoreyie - MRgg ?(z,y)ds(y MR% )€ 2)ds(y)
_ L ul (2)de + L (). (69)

with w£ being the solution of (23) and w; = J(w¢)(&, ) with @ is the solution of (24) with
= Sege. We denote by

wP(x) := J wg(r)d§ and @P(z) = f wg () d§. (70)
I I
Using (68) we observe that w? satisfies () with n = n, and v = Sg. Moreover, " satisfies

AwP + Enyw? = k*(n, — n)(w? + v +w) in QF,

wP =0 on I, (71)
(-, R) = T (wP|pr) on I'¥,
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where w0 is defined by (26). Then by uniqueness of the solution to the scattering problem (P) with
n = n, we have that @w? = w. Therefore, w := w? + @P satisfies (P) with v = Sg. Hence, we can
equivalently define the operator N : L?(I'F) — L*(I'%) as

Nwm=fmwmm&. 72)

1

We finally observe that N, g, is not equal in general to 7 (N g) (&) since the latter corresponds with
the scattered field we € H{ (€ff) satisfying

Awe + Enywe = K*(1 — ny)ve + k*(n, —n)(w +v)  in QF,

where w satisfies (P) with v = Sg and v, = Sege. The latter equation is different from (53) that
corresponds with the scattered field associated with N¢g;. The main difference comes from the
term k*(n, — n)v in the right hand side.

3.2. Some properties of the operator S

The goal of this section is to prove that the operator S : L*(I'®) — L2(D) is injective and
characterize its range. The main difficulty here comes from the required continuity with respect
to the Floquet-Bloch variable. This is why we first prove the uniform continuity of {& — 5S¢
formalized in in the technical Lemma 5.1 given in the Appendix.

Let x € C°(1) and 1) € L}(I'®). We consider g € L*(I') such that

ge(x) := T (9)(&, x) = " p(x)x(€), for (§,z) e I x Tff. (73)

Denoting
1 21

b= | ey,
™ Jo

we observe that the operator S¢ given by (30) verifies for o < R

2m T+
1 o ,
ngf(x) = J() EZelag(J)(yl—itl)@&(j? R> $2)9§(y1)dy1>

JEZ
: 27
) y , Cien
:4_26_”5(”““95(%1%7:152)J e U ge (1 )dy,.
TrjeZ 0
Therefore, A
t N N D o\ oc()x
Sege(w) = =5 2 VX ()0, B, wa)e' <™. (74)

JEZ
Let 0 < Ry < R, we define S¢ : LF(I'?) — L2(Q™) as
Setp 1= 7T G (6714)). (75)
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Using (74) we have »
G L AN S R
Seyp(x) = —52%95(],3, To)e " (76)
JEZ
With help of Lemma 5.1 in the Appendix we prove the following.

Lemma 3.1. The operator S : L*(T®) — L?(D) is injective. The closure of its range is

H™(D) := {v e L2(D); vlpr € LA(DP); Av+ k%0 =0in D} .

Proof. Let g € INLZ(FR) such that Sg = 0 in D. Using the unique continuation principle we
obtain Sg = 0 in Q. Using the continuity and regularity of single layer potentials we have that
S e H? (U®) and verifies

loc
ASg+k*Sg=0  inUR,
Sg=0 onI'%,
and the upper going radiation condition (2) with I'® replaced by I'* with R’ > R. Therefore
Sg = 0in U%. Using the jump relations for the normal derivative of S we obtain ¢ = 0 which

proves the injectivety of .S.
We prove now the denseness of the range of S. Let v € L?(D) and we denote by ve := (Jv) (&, -).

Fix € > 0 and consider a uniform partition of [ into sub-domains / JN = '@1Ij of size § = %
]:
Using Lemma 2.2 we have, for all £ € I, there exists ¢ := e’igjv'x@z)g_v € L;(I'") such that
5 . €

with Oy = e % 'IUSJN, where S is defined by (75). We introduce the hat functions XY e C°(I)
that are affine on each domain 7; and verifies x}'(§;) = d;;. We then define

= ) anx (€)oY= Y Tenx((€), SY = D (Sevdben )} (€), forl<j< N

1<j<N I<GEN 1<j<N

Then, we have
||S§¢év - {)6”1/2(9?0)) < ||Sf,¢)év - Sév||L2(QRO)) + ||Sév - @év||L2(Q§O)) + ||@é\7 - 65”[/2(9?0))- (78)

0

Since gg(zzjégv XN (&) = (5’5@5@ X} (€), then the first term in the right hand side of (78) verifies

gﬁ;éjv - Sév - Z (Sﬁégf - ggJNQ/;g;V)va(ﬁ)

1<j<N
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Therefore

e L
156" = SNl 2oy, < sup  sup  [[Sethen — Sextlen |l o groy-

ISGSN gefel €]

€

4./c| sup||v +1
f(gelI)” §||L2<QORQ)

Consider € :=

> , using Lemma 5.1 we chose o > 0 for which

Sty — Sex s

oy S VeelSegrexl aapo),

L2(QF
therefore
3 ol S €
sup sup HS N — Senihen < +/ce (sup v Ro\ + 1) = -, (79)
LGN efeN N ] 1243 & T Lg(ﬂffo)) §eIH fHLZ(QOO) 1

On the other hand, using (77) we deduce that the second term in the right hand side of (78) verifies

> Sentbey = 5] (€)

I<j<N

< (80)

] ™

||SéN _@éVHLQ(Q?O) =

L2(24°)

Moreover, since v¢ € C{ (I, L(D)) then N could have been chosen from the beginning sufficiently
large so that

~ ~ €
198" = Tell 2 gm0 < 5 1)

2
Finally, using (79), (80) and (81) we get

séu?Hgglﬁév —Oll ooy = sup  sup (ISl = Tell o) < €, (82)
€

I<GSN ge[eN 6N,

for sufficiently large N. This proves the denseness of the range of the operator .S. U

For the analysis below we need to assume the well posedness of the following Interior
Transmission Problem.
(ITP3): Seek (u,v) € L?*(D) x L*(D) such that (v — v) € H?(D) satisfying

-

Au+Kknu=0 inD

Av+k*v=0 inD
) (83)
u—v=¢ ondD

Au=v) — 4y on oD

\ ov

for given (¢,1)) € H¥?(0D) x HY?(dD). This problem has been extensively studied in the
literature in the case of bounded domains D see for instance [5]. Indeed the results for bounded
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domain D extend easily to the case where D is unbounded but is the (infinite) union of disjoint
bounded domains. This corresponds for instance to our case when DP? is the union of disjoint
bounded domains. Consider the following assumption

Assumption 3.2. Assume that k, n, and n are such as (ITP3) is well posed.
Lemma 3.3. Assume that Assumptions 1.1 and 3.2 hold. Then the operator G given by (67) is
injective with dense range. Moreover,
(e D) <= (9(-,2) € Range(Q)).
Proof. consider v € H™(D) such that G(v) = 0, i.e
w=0 on I'F

with w € H?, (%) being the solution of (P). Therefore, w € HZ (UF) and verifies

Aw+k*w=0 inUE,

w =0 onI'%,

and the upper going radiation condition (2) with I'" replaced by T'"* with R’ > R. Then w = 0 in
U®. Using the unique continuation principle we obtain that w = 0 in Qf\D. Setting v := w + v
we observe that the couple (u, v) verifies (ITP3) with zero data. Therefore we deduce that v = 0
and then the injectivety of G.

Now we prove the denseness of the range of G. Let g € WL, then

(G(v), 9)12(p) =0 forall ve H™(D).

Let f € L2(I'®) and consider v = Sf. We then have

(G(Sf), g)r2qmy =0 forall f e L*TH).

On the other hand, consider w( f) and w(g) solution of () associated respectively to v = Sf and
v = Sg. Using similar arguments as in the proof of Lemma 2.5 one can prove that

L“ ~ nyw(f)Sgdy = f (1 - nyw(g)SFd. (84)

D

Therefore, from Theorem 2.4 and (84) we get

(G(5f), 9)r2wmy = L K (1= n)(w(f) + Sf)Sgdy = JD k*(1 = n)(w(g) + Sg)Sfdy

= (G(Sg)7f)L2(FR)-



Consequently
(G(S9), f)r2qrmy =0 forall fe L*(I'7)

which implies that G(Sg) = 0. The injectivety of i gives that Sg = 0 and then g = 0 by Lemma
3.1.

Consider z € D. We have that y®(-, z) € L?(D), where  is a regular cutoff function that vanishes
in a neighborhood of z. Since ®(-, z) satisfies the Helmholtz equation outside z, elliptic regularity
results applied to each component of DP separately implies that y® € H 2(D). Trace theorems
then imply (®(-, 2), a@a(l-j,z)) e H*?(0D) x HY?(0D). We then consider (u,v) € L*(D) x L*(D)

to be the solution of (ITP3) with (p, 1) = (®(+, 2), a‘b&('f)). We set

u—v inD

O(,2) in QR\D.

We observe that w € H7 (QF) and satisfies (P). Hence G(v) = ®(, 2).

Consider now the case where z € Qf\D. Assume that there exists v € H™(D) such that
G(v) = ®(-, z). By unique continuation principle we obtain that w = ®(-, 2) in Qf\ D, which
is a contradiction since w € HZ (Q\D) while ®(-, z) ¢ H? (Q"\D). O

3.3. Application of the Generalized Linear Sampling Method (GLSM)

Let us consider the functional .J,(¢, ) : L*(I'") — R
Jo(0:9) = al(g) + [Ng — 6|, forall g e L*(IT)

where
I(g) = suple, (T 9(%o, ))- (85)

&oel

We denote by j,(¢) = inf J,(¢;9g). Let ¢(a) > 0 verifying % —0asa—0
geL2(T'R)

Theorem 3.4. Assume that Assumptions 1.1 and 3.2 hold. Assume in addition that the hypothesis
of Lemma 2.8 holds. Consider z € QF, and let g* € L*(T'®) such that

Ja(®(2),9%(2)) < Ja(®(, 2) + c(a),

then
zeD <« liml(g°(2)) < . (86)

a—0

Moreover, if z € D then Sg|p converges to some v in L?(D) where v is solution of (ITP3).
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Proof. The proof of this theorem is an application of the abstract framework of GLSM given by
Theorem 2.7 in [S] and Lemma 3.1, Lemma 3.3 and Lemma 2.8. Lemma 3.1 and Lemma 3.3 prove
that the operator

N =G5S,

has dense range. Moreover, we need to verify that the norm [¢ is an equivalent norm to
sup||Sg|lr2(py) for all g € LE(FR). Lemma 2.8 and Theorem 2.9 prove this norm equivalence.
gel

The results of the theorem are then a straightforward application of Theorem 2.7 in [5] and Lemma
3.3. O

4. Application to differential imaging

The theoretical developments of the previous sections allow us to provide a theoretical justification
of the algorithm proposed in [13] that provides an indicator function for the defect D independently
from DP. This justification does not assume D is also periodic (with a larger periodicity) which
was the case in [13]. The principle idea behind this method is to consider the background as 27 M
periodic with M e N such that M > 1 and combine the application of the previous framework to
different values of M. Indeed, the refractive index n, is also 27 M -periodic with respect to the first
component x,. Then, we can follow the same approach adopted in Section 2 by taking

QF = Qi .= 0,27M] x [0,R] and D} = DiM .= QM ~ DP,

in order to reconstruct Dy = D}’ := DS’M U D using the GLSM method.

In the following, for m > 0, the spaces H{",,(Q%), H, gLM(fo M) and L ,;(D) has respectively
the same definition as H{"(Q"), H{*(Qf) and LZ(D) with period 2 replaced by 2 M. Moreover,
we define for ¢ € C°(U?) the one dimensional Floquet-Bloch transform with period 27 M as

T, 1, 22) = Z¢(l’1 +2n M j, mo)e PTMET e [M =0, %]7 (z1,29) € U.

JEZL

Fix ¢ € I and we denote by & := < € I™. We consider Qe m(x,y) -

i = (Im®(-,y))(&, v) the
&o M -quasi-periodic Green function with period 27w M. Similarly to (22), we define uZOM = We,
decomposed as
s,M s, ~3
ufo (7y> = ugop('7 y) + U§O<'7y)7
where u.’ (-, y) € HgmM(Qé%’M) solution of (23) with T is replaced by TS := [0, 27 M] x {R}
and ug, (,y) € H' (QF) solution of (24). We introduce the £, M -quasi periodic near field operator

Né\f : LEO,M(FR) — L?O’M(FR) given as

M _ arp,M DM
N&) _N&) +N€o ’
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with N2 L2 (TR) — L2, (TF) and N2 2 12 (TF) — L2, ,(T'F) are given as (35)
with T = T'("" and J is replaced by Jys. Define S} : L2 (I'") — L% /(D) the operator
given as (30) with T§ = T5™ and @, (y,2) = ®¢, ar(y, ). Then, as in Section 2 the operator
N{'is decomposed as

M _ ~M(qM
N&) - G&o (SEO )’

where Gl LZ (D) — L, ,,(T'") is the operator defined by

Gé\o/[(vgo) = (wé’o + ﬁ)?o)yr(z)z,A/f,

with w? € HY /(2" being the solution of (23) and @? = Jy(te,) (&, ) with dg, € H'(QF)
is the solution of (24). Moreover, we denote by [ 5\04 the norm given as (57) with Ngo = Ng;M,
N = N2Mand Tf = T,

4.1. Application of the GLSM for the reconstruction of D}.

Following the same steps as in Section 2 we can present the free noise version of the GLSM.
Introducing the functional Jg’M D L 3 (T") — R given as

o, M/ ;. M o, M
Te (3 9e0) = oIy (9e) + (NG + N&™)ge, — oI,
We denote by jg‘O’M(qﬁ) = inf Jg’M(qﬁ; ge,)- Moreover, let ¢(a) > 0 verifying % — 0 as
9¢0 € EO,M(D)
a — 0.

Theorem 4.1. Assume that Assumptions 2.3 and 2.4 hold. Assume in addition that the hypothesis
of Theorem 1.5 and Lemma 2.8 hold. Consider » € QF, and let g € L, 1 (TR) such that

T (Do 2), 96,(2)) < G (Reo,m (-, 2)) + e(a),

then
ze D) —= iigé[é\g(gg)(z)) < .
Proof. The prove is similar to the proof of Theorem 2.9. [

4.2. Application of the GLSM for the reconstruction of Dg’M

In this section we consider M > 2 and we explain how one can reconstruct only the domain DS’M .
Fix £ € [ and we denote by &, := % e I™. We observe that the Green function ®¢, (-, z) is also
&oM-quasi periodic with period 2w M. Therefore, we can follow the same steps in the previous
section by replacing ®¢, (7, y) by Pg, (x,y) and we use that Pg, (-, z) admits singular points in
Q?M for z € D to reconstruct only the periodic domain DS’M.
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Lemma 4.2. Assume that the assumptions of Theorem 1.5 hold and that Assumptions 2.3 holds.
Then we have that

(ze DPM)  — (g, (-, 2) € Range(G?ﬁ)) .

Proof. Let z € DP. We consider vg, € H{(D) such that vg, |5 = —®¢, (-, 2). Let (ug,, vg,) €
L2 (D?) x L2 (D?) be the solution of (ITP1) with (i, ) = (cbgo(-, 2, 5‘1’;—”) We set

p . Ugy — Vg in Dp,
wg =
0

e, (-, 2) in Qf\ DP.
We observe that vg, € H{",(D), where
Hir,(D) = {ve L% (D), Av+k* = 0in D},

and wé’o e H &20, M(QR) satisfies (23). Moreover, let we, be the solution of (24). Since
(np — n)(Wg, + vg,) = 0, then g, = 0 and consequently G (vg,) = P, (-, 2). |

Consider now the case where z := (21, 29) ¢ DP. Assume that there exists vg, € HZ'9,(D) such
that G (vg,) = ¢, (-, z). By the unique continuation principle we get wg, := wg, +g, = e, (-, 2)
in U\DJ". Since D is not distributed periodically, then for z € D there exists j € Z such that
zj = (21 + 2mj, 22) € QM\D}!. Therefore, @, (-, z) ¢ HZ (DY) for all = e QF\DpM
while wg, € HZ, ,,(Q2"\Dj"), which is a contradiction. O

Theorem 4.3. Assume that Assumptions 2.3 and 2.4 hold. Assume in addition that the hypothesis
of Theorem 1.5 and Lemma 2.8 hold. Consider z € QF, and let g, € L7, ,(T') such that

TeM (@, (-, 2), g2 (2)) < Je™ (Dey (-, 2)) + (@),
then

ze DPM —s il_)r%]é\f(gg(z)) < 0.

Moreover, if z € DI then St ge, | pp converges to some g, in L2(D?M) where vg, is solution
of (ITPI).

Proof. As in the proof of Theorem 2.9. By Lemma 2.1, Lemma 2.2 and Lemma 2.6 adopted to the
27 M periodic case we prove that the operator NV, 5‘04 =N E’O’M + N, gO’M can be factorized as

M M oM * MM oM
N&) - Ggo Sgo - S&O T§0 S&O’ (87)

and has dense range, with SgO’M t L (D) — L, ,(F) is the adjoint of the operator S}/
and Tg is the operator defined as (39). Moreover, using Lemma 2.8 we prove that the norm

I} g, is an equivalent norm to || S g, || 12 pary- Therefore, the results of the theorem are then a
straightforward application of Theorem 2.7 in [5] and Lemma 4.2. 0
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4.3. Application of the Differential Sampling Method for the reconstruction of D

As in [13], we explain in this section how one directly reconstruct D using a differential indicator
function. Consider M > 2, fix £ € I. We denote by & := + € I™. Consider g* e L*(I'F),
ge € Lg (T'") and gg)’M € L, y (') satisfying

Ta(®(-,2),6%(2)) < Jal(®(-,2)) + c(a),
T (6, (2).6(2)) < 75 (e (,2) + ),
Te M (D (4 2), 95 (2)) < g™ (e (- 2)) + elav),

()

for c(a) > 0 verifying <= — 0 as @ — 0. Let us define the indicator function to identify D as

aZ - T/ .« j<go¢> B
re [1(9)<1+IM(9& ﬁgﬁ]))] | o

with I is the norm defined by (85) and Ié‘f is the norm given as (57) with Ng = NgO’M, Ng = NQM
and TF = T,

Theorem 4.4. Under the assumptions of Theorem 4.3 we have

(:eD) — (imZ.>0).

a—0

Proof. Consider z € DP. By Theorem 2.9 and Theorem 4.3 we have that Sg,gg and SM a M
converges respectively to vg, € H g}c(D) and vé‘g e H g}CM(D) verifying

GEO(U&J) = (I)Eo('vz) and G?g(vé\f) = (I)fo('v Z) (89)

Moreover, from Lemma 2.7 and Lemma 4.2 we observe that ve, and vé‘f are solutions of (ITP1)
with (¢, ) = (@50(-, 2), a%g:"z)), then vg, coincides with /. On the other hand, from (58),

Lemma 2.8 and Theorem 1.5 we have that 7, é‘f e, 1s equivalent (uniformly with respect to &) to

IS¢ ge, ||i2( D): In particular, there exists of constant ¢; > 0 independent from &, such that

2
18Ma

M/ oM
[ <Eo Mgfo) S G N o 9eo (90)

M
S&J g§0 -

L2(D)

Moreover, we observe that .S, ?04 gg, = MSg,gg, . Therefore, the right hand side of (90) tends to zero
as a — 0. On the other hand, from Theorem 3.4 we have that [ (9%) < oo as @ — 0. Hence

lir%Ia(z) =0 forze D"

33



Consider now the case where z € D. From Theorem 2.9 and Theorem 4.3 we have that
"Sé\gg?()’M|’L2(D(J)\4) — o0 and HS&)g&)HLg (Do) 18 bounded as a — 0 . Moreover, we have that
0

CQHSM a,M

1
Q,M 7M « «
Ié\({(ggo - Mggg) > CQHSé\gg?O - SEOQ&QH%,Q(DESW) > 0 g&g ||L2(Déu) - CQHSEOg&)H%Q(Do)’

with ¢, > 0 is a constant independent from &,. therefore

1
1M (g Mggo) — o asa — 0,

which implies that
0 < limZ,(z) <o forze D,

a—0

This ends the proof. O

Remark 4.5. Consider Q?O’M (T'R) satisfying

Jg)7M((I)§0,M('> Z)a gZ;M(Z» < jgao’M((D&O,M('? Z)) + C(Oé),

and define
M A

. 1M (gooMy -
I3 Mg <0 .
2 [ e )<“1M<ggo ﬁg@)]

We observe that L3; can be considered also as an indicator function for the identification of D, ie
Theorem 4.4 still holds if we change I by I3, and the proof follows the same arguments but with

applying Theorem 4.1 instead of Theorem 3.4.

5. Appendix

Lemma 5.1. For all € > 0, there exists 6 > 0 such that for |£' — &| < 6 we have

C€

HSW Sw

Ve LI(TH), 91)

L2(0f) 2°)

where ¢ > 0 is a constant independent of { and &' € 1.

Proof. Let v € LZ(I'"). From (74) we have

—ZWﬂL 0c(j, R, ) P,

L2(Q °) JEZ
~ - 2 Ro
W&—&w¢2%=—2myfr&LRu>&wﬂxM¢@
(€2,°) ez
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Therefore, to prove (91) we prove for all € > 0 the existence of a constant ¢ > ( independent from
¢ and &’ such that

RO RO
f 0 (4, R, 22) — Op (4, R, 29)|*dzs < CEZJ 10 (4, R, x2)|*das.
0 0

Consider first j € Z such that k&* > aZ(j), i.e fc(j) = 4/k?* — | + j|*. There exists only a finite
number of j for which this holds. Then

_ ,  leBOR2 o 9 4
0:(j, R, z2)|" = o 128in(Be(5)m2)|° = g [T — cos(28¢(5) w2
B¢ ()] B¢ ()]
For f¢(j) = 0, we have
flo AR}
lim c(j, R, x2)|?das = —2 =: ¢4, 92
s 065, B, @2)["dzz = — 1 92)
while if S¢(j) > 0, we have
Ro o
f 0c(j, R, 2)Pdy = SR} [%;“(y)] , (93)
0

with y = 2Ry|B¢(j)|. Since y —> = Zm( Y > 0 for y > 0 and since S¢(j) > 0 is bounded for j € Z
such that k2 > ag (7), then there exists a constant ¢; > 0 independent of ¢ and j such that

Ro
f 0e(j, R, w2) |*dzz > ¢, (94)
0
Consider € > 0, since 0¢(j, R, z9) is continuous on the compact set /. Then there exists § > 0 such
that for [¢ — &| < ¢ we have

|9§’(j7 R7 x2> - 05(]7 R7 x2)| S € (95)

Consequently, using (92)-(94) we get

Ro RO
f |0§' (j7 R .132) - 0&(]7 R $2)| dy2 CIROGJ |9§<ja R7 $2)|2dl‘27 (96)
0 0

with ¢} := 1/min(¢y, ¢}).
Consider the case where k* < of(j) for which f¢(j) = iy/[€ + j|* — k2. Assume in addition that
|B¢(7)] < 1. There exists only a finite number of j for which this holds. We have

e 2B (IR

10:(4, R, 22)|* = |ﬁ( o sinh(| B¢ (7)]x2)?.
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Therefore

i 2Rye 207 [sinh(2] 8 ()| Ro) AR
10, R, w2)[*dvz = . [ - 1] > —te RO 97)
L ¢ B¢ (4)[? 2Ro| B¢ (7)) 3
where we used the inequality % 1= %2 for x = 0. Since |5¢(j)| < 1, then we get
fto AR}
J 10¢ (4, R, o) |*dwy > 30 e =1 ¢ (98)
0

Consider € > 0, since 0 (7, R, x2) is continuous on the compact set I, then there exists > 0 such
that for [¢' — &| < 0 we have

Ro RO
f 10 (4, R, w2) — O¢ (4, R, 22) *dys < CzRoej 10 (5, R, ) [*das. (99)
0 0

Consider now k* < aZ(j) such that |3¢(j)| > 1. Let d > 0,0 < dy < 0 such that §' := & + do, then

we have
£+d0 00 -
(Ocvsy — Oe) (4, R, x2) =J —Ldg. (100)
¢ 0§

By the Cauchy-Schwartz inequality we get

Ro E+d0 Ro 595 5
f |6§(j) R7 x2) 0§+50(j7R .172)| de 50J‘ <f | ,}é (j) R7 m2)|2dx2> dg (101)
0 ¢ 0

B DIR

On the other hand, let us denote by 7o := 2i(£ + j )W and v, := R + ( 5> We have that
&95 . . .
2 (U, Ry w2) = 0 [71 sinh(|5 () |[22) — 22 cosh(|Be(5)]x2)] (102)

Using that sinh(2y) = 2sinh(y) cosh(y), cosh?(y) — sinh®(y) = 1 and 2sinh?(y) = cosh(2y) — 1
for all y € R, we get

2 2 2 2 2
‘i?g G Roaa)| = ol [(—% —2) cosh (2| (7)|2) — 2 sinh(2]Be()w) — 2+ 7] - (103)
Therefore
R 06 { ,sinh(2] 8¢ (5)] Ro) 1 Rocosh(2|B(j)| Ro)
R, d = R; —
fo g U Bowa)| dwa = ol B0 TR 280))
Visinh(2[Be(5)|Ro)  2iRo | RY 1 Lo R
10| 2 "% TaRGIE " T aE ) AU o)
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In relation to (97) and the previous identity we consider the following functions defined for x € R
such that z > 1 as

2e~2°R [sinh (2
fla) = == lsm i) Ro], (104)
g(z) = \/m —aR | R2 smh QxRo (R4 3>R0 cosh(2xRy) N (R + 1)2sinh(2zRy)
2z 2z 4z
1 R R} 1 3
— (R + ) 040 + — (R + o) sinh(22Ry) | ,

2 6 4x? 2z

and we prove the existence of a constant & > 0 such that g(z) < af(z) forallz > 1. Let M € R
sufficiently large and consider first the case 1 < z < M. Since f and g are continuous functions
and f(z) > 0, then we have

g(z) <o f(x) forl <z < M, (105)

IQ;ZXMQ(I)

f(z)

B (£C2 4 kZ)e—QxR e?acRo ) 1
g(ilf) - 94 T (RO_R) +0 E )

-5 () o(2)]

Therefore f%x; is equivalent to (R—Ry)?* at infinity. Using (105) we deduce the existence of a

constant v > 0 such that

with o := > 0. For the case x > M, we compare f and g at infinity. We have

g(z) < af(x), forallz>1,

which implies
9(1B: (D) < af([B:(5)]),
for all j € Z such that |5¢(j)| > 1. Then we deduce that

Ro a@g Ro )

|15 G R Py < [ el R P (106)
S 0

Therefore, using (101)-(106) we have

Ry E+do Ro ~
f ‘ef(jv Ra x2) 95+50(]7R 1'2)‘ dx? 50af (J ‘05(], Ra x?)‘deQ) dg (107)
0 13 0

On the other hand, we show that + — f(z) decreases in R, . Indeed , taking y = 22 R, and using

. L okt1
that sinh(y) = >} R e get
k=0

_R
f'(y) = Rge” " h(y),
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with

_i y* —R 2k + 1
T4k \ R (2k+42k+5)")

Q0
Since cosh(y) := > £ we observe that

2k!
k=0
0 2k+3 0 y2k+4 y2
= —sinh h(y)—1—=<0
Z 2k +3)! S (2k +4)! sinh(y) +y + cosh(y) 2

for y > 0. Therefore f'(y) <0 forall y > 0. Since ¢ —> |B¢(j)| increases in I and z — f(z)
decreases in R we infer that £ — So |0 (4, R, v3)|dz decreases in I. Therefore, from (107) we
finally obtain that

Ro

Ro
f 6605, R, 3) — By (s By ) Py < 62 (j

0 0

|8§(j7 R7 [['2) |2dx2> )

which ends the proof. 0
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