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ANALYSIS OF SAMPLING METHODS FOR IMAGING A PERIODIC LAYER AND ITS
DEFECTS

YOSRA BOUKARI', HOUSSEM HADDAR? AND NOUHA JENHANTI!

ABSTRACT. We revisit the differential sampling method introduced in [9] for the identification of a periodic
domain and some local perturbation. We provide a theoretical justification of the method that avoids assuming
that the local perturbation is also periodic. Our theoretical framework uses functional spaces with continuous
dependence with respect to the Floquet-Bloch variable. The corner stone of the analysis is the justification of
the Generalized Linear Sampling Method in this setting for a single Floquet-Bloch mode.

INTRODUCTION

We consider in this work the inverse scattering problem for the reconstruction of a local perturbation in
unknown periodic layers from near field measurements at fixed frequency. This problem has connections
with many practical applications, such as non-destructive testing of photonic structures, antenna arrays...
The presence of the perturbation does not allow us to reduce the problem to one-period cell and makes the
analysis more challenging. We would like to develop so-called sampling methods to address the inverse
problem of identifying the geometry of the defect. For the non perturbed inverse periodic problem we refer
to [25, 12, 15, 16] and references therein. For the perturbed case, it is frequently assumed that the periodic
background is known a priori. We refer for those cases for instance to [3, 7, 10, 11, 13]. However, for
some applications, this information is not available or cannot be obtained in an exact way. This is what
we would like to consider in this work. More specifically we would like to study the so-called differential
sampling indicator function introduced in [9]. For this algorithm only the periodicity size of the background
is assumed to be known a priori. Combining sampling methods for a single Floquet-Bloch mode and the
sampling method using the full measurement operator, one is able to design an indicator function that sepa-
rates the perturbation from the periodic background. However, the analysis in [9] assumes that the defect is
also periodic with a larger periodicity (equals to an integer multiple of the background periodicity).

Our goal here is to revisit the theoretical foundations of this method and remove this technical assumption
on the defect. In order to do so, we analyze the scattering problem in spaces that include continuity with
respect to the Floquet-Bloch variable. This allows for instance to consider the scattering problem at a
fixed Floquet-Bloch mode. We first provide the theoretical justification of the so-called Generalized Linear
Sampling Method (GLSM) [2, 1] for quasi-periodic incident waves. We remark that although a classical
factorization of the near field operator can be obtained in this case, we are not able to apply the abstract
framework of the factorization method as introduced in [22]. This is why for the GLSM method seems to
be more adapted and this is why the penalty term that we use in our theory is different from the one used
in the literature [2, 4]. For the justification of the method we assume that the local perturbation does not
intersect the periodic background. The case where this intersection is not empty requires the study of an
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interior transmission problem that has a non standard structure similar to the one considered in [20]. For the
sake of conciseness we leave this to future investigations.

The analysis of GLSM for quasi-periodic incident waves is by itself sufficient to derive an indicator
function in the spirit of the differential linear sampling method of [9]. The principle consists in observing
that we do not change the scattering problem if we redefine the periodicity of the background as an integer
multiple of the original periodicity. The differential indicator function is build using a comparison of the
GLSM indicator function when we use these different definitions of the periodicity of the background. This
method is introduced and analyzed in Section 4.

We also provide a justification of a GLSM method using the whole near field operator associated with
point sources. This method needs in particular a specific result related to the denseness of a single layer
operator in the space of solutions to the Helmholtz equation that have continuous dependence with respect
to the Floquet-Bloch variable. This is what mainly justifies the consideration of the scattering problem in
half plane with Dirichlet boundary condition at the interface. Our analysis also assumes that the periodic
index of refraction has a positive imaginary part in at least some open domain of the periodic background.
We believe that this assumption can be removed using the analysis of the direct problem as in [18, 24].
Considering this case will be subject of future work. For the numerical validation of the GLSM and the
differential sampling method we refer to [9, 27, 21].

The paper is organized as follows. Section 1 is dedicated to the introduction of the direct problems (with
point source incident waves or quasi-periodic point source incident waves). In Section 2, we study the
GLSM method for quasi-periodic incident waves. Section 3 is dedicated to the analysis of the GLSM for
non quasi-periodic incident waves. In the last section we introduce and analyze the differential indicator
function for the defect.

1. SETTING OF THE DIRECT PROBLEM

In this section, we introduce the direct scattering problem for a locally perturbed two dimensional periodic
medium and the corresponding quasi-periodic problems.

1.1. The locally perturbed periodic scattering problem. Let U be the upper half-space R x R in R?.
We set Qf := R x [0, R] the domain delimited by T'? := R x {0} and I'® := R x {R}, with R > Ry > 0 as
shown in Figure 1. Let n, € L*(U 0) be the refractive index with non negative imaginary part, 27-periodic
with respect to the first component x1 such that n, = 1 outside a 27 periodic domain D? included in OF,
We consider D := DP U D where D is a bounded domain included in QF := [0, 27] x [0, R]. We assume
that the complement of D in R? is connected. Let n € L*(U?) be the perturbed refractive index with non
negative imaginary part verifying n = n, outside D.

Consider an incident field v € L?(D), the direct scattering problem we are interested in can be formulated

as: seek a scattered field w € HZ, (QF) verifying

Aw + kE?nw = k2(1 —n)v  in QF,

(P)q w=0 on I?,
24 (., R) = T (w|rr) on ',

where T7 : HY2(T'F) — H~1/2(I'R) is exterior Dirichlet-to-Neumann map defined by

TH(¢) = V%JRW —[ERemEp()de, (1.1)
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with @ is the Fourier transform defined as ¢(§) = \/#27 §p e 1 p(z1, R)dxy for L' functions on T'%.

Assumption 1.1. Assume that in addition to the assumptions above, the set {Sm(ny) > 0} is not empty and
contains an open subset O and Im(n — n,) = 0.

Under this assumption the above stated direct scattering problem has been studied in [10] and we hereafter
state the main theorem.

Theorem 1.2. If assumption 1.1 holds then there exists a unique solution w € H. 120 C(QR) satisfying (P) and
continuously depend on v € L*(D).

Remark 1.3. Given the solution w to problem (P) we extend w for |z2| = R by

1 o
w(z) = f e EHIVIE @R ¢ R)dE,  for zo > R. (1.2)
V2T JRr
This provides the solution satisfying
Aw + E*nw = k*(1 —n)v  inU°. (1.3)

The scattering problem (P) can be equivalently formulated as (1.2)-(1.3) and the boundary conditions on
ro.

Let ®(-, y) be the fundamental solution of the homogeneous problem associated with (P) given by
1
@(yy) 1= = [ (k] —yl) = H (k] ') (1.4)

where y := (y1,92), ¥ := (y1, —y2) and y» > 0.

Theorem 1.4. The solution w € HE, (%) of problem (P) can be represented as

w(z) = k JD O(z,y)(n—1)(w+ v)(y)dy. (1.5)

Proof. Consider N e N sufficiently large and let DV := ([-N, N] x Ry) n D. Let us define a cut-off
function y € C®(UY) such that xy(y) = 1 fory € DY and yn(y) = 0 fory ¢ DV. We set

wy = K | @)= Dw + o))y for z U
D

with w € H, l20 C(QR) being the solution of (P). Using the properties of the volume potentials [5] we deduce
that wy € HE, (1) satisfies

Awy + k2wy = k2(1 —n)(w + v)xn(y) in QF,

wy =0 onT?, (1.6)
‘?EZLV (- R) = T*(wn|rr) on I'E.

We set uy := w — wy, thenuy € H 120 C(QR) satisfies (1.6) with the right hand side of the first equation is
replaced by k%(1 — n)(w + v)(1 — xn)(y). We have

E2(1—n)(w +v)(1 — xn) ]\:OO in L*(QF).
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Hence ]\}im uy = 0in H? (Q%). On the other hand, since (n — 1)(w + v)(y) € L*(Q) and ®(-,y) €
—00
L?(Q1)[6], then we have

N—o

lim wy (z) = K2 fD B(w,y)(n — 1)(w + v)(y)dy,

almost everywhere in Q' by Lebesgue’s dominated convergence theorem. Therefore w € H, 520 C(QR) satisfies
(1.5) by the uniqueness of the limit. g

For the study of the inverse problem we shall consider quasi-periodic solutions obtained by applying the
Floquet-Bloch transform to the solution of (7). We will need to restrict the set of admissible solutions to
those with some continuity property with respect to the Floquet-Bloch variable. This is the subject of the
following subsection.

DP D?

FIGURE 1. Sketch of the domain

1.2. The quasi-periodic scattering problem. A function u is called £-quasi-periodic with period 27 for
some £ € R if it verifies

u(zy + 2], 9) = 2™ Iu(xy, xy) forall j € Z, (1.7)
and (1, z2) € R2. In the sequel we shall skip indicating the periodicity length 27 since it is kept fixed and
periodicity or quasi-periodicity only apply to the first variable x;.
In the following we denote by Lg (QF) thfﬁet of &-quasi periodic functions in L2 () and by H, g”(QR) the
set of {-quasi periodic functions in H;” (Q%). For m > 1 we denote by H g”(QR) the subspace of functions
in H{"*(2) that vanish on I'. We define H/ Q) as the restriction to f of functions in H; (2%). In order
to avoid notation confusion we denote by H, ﬂl (Qf) the space H, 51 (QF) for € = 0. We finally define H, 4 (TH
to be the restriction to FOR of §-quasi periodic functions in H; C(FR).
Let & € I :=[0,1] and T'{ := [0, 27] x {R}. Consider an incident field v¢ € LE(QR), the quasi-periodic
direct scattering problem is formulated as: seek a scattered field we € H 51 (QF) verifying

Awg + E2npwe = —k*(n, — 1)ve  in QF,

’U)E = 0 on FO, (18)
0
aws (+ R) = T (welpr) on I'ff,

where TgR t H 61 /2 TH) — H ¢ 172 (T'}) is the exterior quasi-periodic Dirichlet-to-Neumann map defined by

TE(p) (1) = i) Be(§)e(f)e e, (1.9)
JEZ
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where
ag(j) ==&+7, Be(h) = vVE =€+ % Sm(Be(s)) =0, for jeZ,
and P (j) is the j-th Fourier coefficient of e =% (z1, R) defined as §¢ (j) := o= SS’T e~ (21, R)dxy.
For the norm in H{ (TE) we shall use the following definition
Iy = 21+ 72126l
JEZ
Multiplying the first equation of (1.8) with 1/175 e H g(QOR), integrating by parts and using the boundary
conditions and the quasi periodicity we obtain the variational formulation given as

LR Ve - Vipe — kPnpwetpedr — (T we, ¢§>F§ = k2 LR (np — Dvethe, Vb € HH(Q). (1.10)
0 0
where the notation (-, -)p refers to the “12(rE) — HY2(T{) duality product. Using the Riesz represen-
tation theorem we can define the operator A¢ : H, 51 ) — H, 51 (F) such that

(Agwg, Uﬁ)Hfl(Qé%) = JQR ng . VJ& - k2npw51/75da: - <T§Rw5, ¢£>F§ W 1/)5, We € 1—:[51 (QOR)

0

Theorem 1.5. Assume that {3m(n,) > 0} in a non empty open set of QF, then problem (1.8) is well posed.
Moreover, Agl | < ¢ with c is a constant independent of €.

Remark 1.6. Given the solution we to problem (1.8) we extend we for |x2| = R by
we(a) == Y (welpp) ()i = HBDER) for gy 5 R, (L11)
JEZ
This provides the solution satisfying
Awg + k*nwe = k*(1 —n)ve  in U°. (1.12)
The scattering problem (1.8) can be equivalently formulated as (1.11)-(1.12) and the boundary conditions

on TO,

Defining now for ¢ € C°(U") the one dimensional Floquet-Bloch transform as the following

To(& w1, w2) = Y 01 + 2mj, 9)e ™, Eel, (x1,a2) € U, (1.13)
JEZ

Recall that the Floquet-Bloch transform is an isomorphism between H'(Q%) (respectively H*(I'%*)) and
L2(I, H{ () (respectively L*(I, H(T(f))). Then, for 0 < o < 1, we denote by

Cy (I, HY(QF)) = {e e (1, H{QE)); e ™ e (I, H ()}
The norm of ¢ € C’t?’a(l, H;(Qf)) is defined as

&1 — &2l

with ¢ := e~%®1. the space of periodic and o Holderian functions on I with values in [ 58 (Qé%). We then
set

||¢(§1’ ) - 95(523 )HHS QR
sup|| (&, ‘)||Hs(ﬂéz) + sup < (©25) ’
cel &1 #&2€l

QR .= {u e H*(QF)/Tue C°(1, H;(Qﬁ))} : (1.14)
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. 0,
ase(rh) = {u e H*(TR)/Ju e (1, Hg(rﬁ))} . (1.15)
Then we have the following theorem complementing the result of Theorem 1.5.

Theorem 1.7. Assume that hypothesis of Theorem 1.5 holds and consider v € I~/2’°‘(QR) for0 < a < 1.
Let wg € Hgl(Q(If) be the solution of (1.8) with ve = (Jv)(&,-). Then w = J we := §, wedE belongs to
ﬁl’&(QR) with & = min(a, %) and

H’wa{l,a(QR) < CHUHiz,a(Dp)

with c independent from v.

Proof. Set g := e~ ¥l and ¥¢ = —k?(n, — 1)ve. Then we have 1 € Hﬂ1 (Qf) and verifies
At = e, — Qiggff + &g — kKPnpe  in QF.

Let £1,& € I, and set e := €171 (i, — g, ). Then e € Hgl1 (Qf) and

Ae + k*nye = Le g, in of, (1.16)
with

) ) ) oW
L£1,§2 — ibra [(ez&-m _ 67152331)’(151 4 e au(v£l _ 2}52) (51 . §2) awﬁz (61 53)11752] '

By the Cauchy-Schwartz inequality and © € L>*(QF) we get the existence of a constant ¢ > 0 independent
from &; and &> such that

ILeeliz@p < ol =&l (Iollzzamn + lvellm@p) (1.17)

On the other hand, using the third equation in (1.8) we have on I'?
j; = Tl(we) — O DN T (we,) = T (e) + Z;Z Be, (4) — Bea (1) gy (1. (1.18)
J
The variational formulation of (1.16)-(1.18) can be written as
o Ve Vi — kPnped — (Tfe, ¢>F§ = LR Le, e, 0dx — (96160 V)pr, V€ H(QF), (1.19)

with ge, &, 1= X (Be, (J) — Be, (4))We, (4)e e, (7). Using the definition of H~2(D}) norm in terms of
JEZ
Fourier coefficients we get

Hgshaz(xl)Hiﬁglp(Fg) = DL+ )P, ()PCE ¢, (),
1 jEZ

. . B B
with Cg, ¢, (j) 1= % For j € Z* such that S, (j) = 0, i.e k* = [& + j?

: J+ &l =i+ &l
Ce6,(J) = ! (11‘_'_ ‘}‘2)1/22‘ | < (k‘-l—3)1/2|§1 _£2|1/2’

since |j| < [j + &1| + |&1] < k + 1. For the case j = 0, if (k? — &3)(k? — £3) <0

Cerea(0) = /12 — & —inJ& — 2 = |&} — &1V < 206 — &2
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while if (k% — €2)(k*> — €2) > 0

&7 — &) 1/2
C 0) = < V2|6 — )
&.6(0) N RN =T V2(&1 - &
Finally for the case where k2 # |£; + j|? and j # 0 we write

Co () = 162 + 4% — €1 + 5|

1,82 . . B :

(1 + 722 VE =&+ 52 + /K2 = & + 5]

Since | B¢, (j)| > 0, then there exists 6 > 0 independent of j such that | 3¢, (j) + B¢, (j)| = 0, therefore

. S —&l|l&+& +25] 4
sup O 6,(f) < sup | I | <

JEL* k2] 42 JET* k221442 1710 0

&2 — &1

Summarizing, there exist a constant 3 independent from 7, &1 and & such that

supCe, &, (f) < Blé2 — & |*.

JEZ
Consequently

2 2 2

9606 vy < 57160 ol e (120)
We observe that ‘
a2y < elle™ sy gy < 2elwslan g

with ¢ being the continuity constant of the trace operator on H, ﬁl (QUR). From Theorem 1.5 we have that

[wes [l 1 iy < EllvesllLz@py < 10l p2a oy (1.21)
where ¢ is independent of &. Applying Theorem 1.5 to the variational formulation (1.19) proves, using
(1.17), (1.20) and (1.21), the existence of a constant ¢ independent of &1 and &5 such that

lellan o) < clér = &l 0] 2o om:
which ends the proof. g
Theorem 1.8. Assume that hypothesis 1.1 holds and that v € L2 (QR) for 0 < o < 1. Then the solution
w e HE () of problem (P) belongs to HY*(Q1) and

[wll gr.aory < clllvllz2apry + 101l L2(5))

with c independent from v.

Proof. Let we := (Jw)(&, ). Since the support of n — n,, is included in QF, then we have w; € Hg(QR)
and satisfies

Awg + k*nywe = —k?(np — Dvg — E2Re((n — np)(w +0))  in QF,

we = 0 on FO,
2
%('J%) = TgR(w€|F§) on TfY,

with ve 1= (Jv)(&, ) and Re¢(¢p) for a function ¢ compactly supported in Q2F denotes the extension by &-
quasi periodicity of ¢ to all of 2. Indeed R¢(p) = J (apxﬂéa) where xq indicates the indicator function
of the domain ff. We decompose wg as

we = wg + W,
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with w? being the solution of (1.8) and w; := we — w? satisfyin
¢ bemg ¢ € — We ying

Ag + k*npie = —k*Re((n —np)(w +v))  in QF,

We = on I,
0w .
0% (., R) = T (telpp) onT'f.

Denoting by w? := J'w?. From Theorem 1.7 we have that w? € H%(Q). Moreover, since Re¢((n —
np)(w + v)) € Cé)’a(}, Lg QF)), then using Theorem 1.7 we deduce that w := J ‘e € H“%(Qf) and
then w = wP + w € HY%(QF). The estimate follows also from application of Theorem 1.7. O

—~

For the sake of studying the inverse problem, for fixed §y € I, we consider v, € LZO (D), where
LE,(D) := {v € Li,(D)/ vlpr € LE, (D)},

where Lgo (DP) denotes the set of & quasi-periodic functions that are in L} (DP). We would like to define

a solution wg, to problem (P) associated with v = vg,. Indeed, since vg, ¢ L?(D), the solution can not be
defined as in Theorem 1.2. We rather define the solution in this case as

We, 1= wzgo + UNJ&), (1.22)

P

with we,

€eH EO(Q(I)%) verifying

Awé’o + anpwpo = k*(1 —np)vg, in QF,

3
wy = on TfY, (1.23)
ow?

(4 R) = TR@WE |rr) on T,

and g, € H'(QF) satisfying

A, + k*nadg, = k*(np —n)(vg, +wg)  in QF,

We, =0 on Y (1.24)
ow ~
5‘;520 (wR) = TR(’UJ§O|FR) onIE,

The solutions of (1.23) and (1.24) are respectively defined by Theorems 1.5 and 1.8. Multiplying the first
equation of (1.24) with i) € H'(Q®), integrating by parts and using the boundary conditions we obtain the
variational formulation given as

Vg, - Vb — k*nigypda — (Tg,, ) e = K f (n—np)(ve, +we )i, Vb e H'(21)(1.25)

QR QR

where the notation (-, -)p.r refers to the H /(') — {''/2(T'R) duality product.

Remark 1.9. Let v € L*(QF) and set ve = J(v)(&,-). We define wg € Hgl(ﬂé%) verifying (1.23) and
ﬂ)g = J () (&, ) with g € H'(QR) is the solution of (1.24). Then wP := §; wgdf is solution to (P) with
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n=nyand w := {, wé’d{ e HY(QR) is solution of
AW + E2npy = k2(n, —n)(wP + v + @)  in QF,
=0 onTY (1.26)
V(.. R) = TE(d|pr) onTE,

> &

0x2

Consequently 1w + wP € H'(QF) and is the solution of problem (P).

2. THE INVERSE PROBLEM FOR QUASI-PERIODIC INCIDENT FIELDS

2.1. Setting for the inverse problem. Consider {; € I fixed, and let ®¢ (z,y) := (T (-, y)) (o, x) be the
&o-quasi-periodic Green function having the following expression [11]

i o .
Py (w,y) = EZemgo(])(Il W0 (4, 72,2), Y2 < T2, (2.27)
JEZ

with

(2.28)

O¢, (7, T2, y2) = eBeo (3)2 [e—iﬂgo(j)yz — elﬂéo(j)yzl
0 Y 3 .

650 (J)

Let y € ', We define uf (-,y) = wg, given by (1.22) with vg, = ®¢,(y,-) € Lg (D). From (1.22) we
decompose uf (-, y) = uS’ (-, y) + @ (-, y) with w2’ (-,y) = wg solution of (1.23) and @ (-, y) = g,
solution of (1.24). We introduce the {y-quasi periodic near field operator N, : Lgo (IR — Lgo (TR) as

Nevieo(@) = | aes ()l dsto) + | oes ()T (@ Coaddst). @29)

0

Define S, : Lgo (T — Lgo (D) as

Seateo@) = | 06,1 ds(0). 230

0

Then, obviously the operator N¢, can be decomposed as

Ney = Geo(S0), (2.31)
where Gy, : L (D) — Lg (') is the operator defined by
Geo(vey) = (wg, + W5, )|pa, (2.32)

with wg’o being the solution of (1.23) and u?go = J (¢, ) (o, -) with wg, is the solution of (1.24). We observe
that wy € HE (Qf) and verifies

AZDZ) + /<:2npw§0 = k%(n, — n)(wé’0 + vg, + Wg,)  in QF,

?gg =0 on 'Y, (2.33)
w ~
st ( R) = TR |rp) on I’
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Multiplying the first equation of (2.33) with 10750 e H go (Qé%), integrating by parts and using the boundary
conditions we obtain the variational formulation given as

Vb, Vi — Kyt G dr (T ,%> _ 2 LR (rp — 1) (Wl + v, + g, g, (234)
0 0

for all ¢hg, € H} (). For later use we decompose Ng, = N + Ng) where N : L7 (P) — Lg (T'F)
and N : L7 (T'") — L () are respectively defined as

NEgeo(@) = | ot . ndst). Wae(@) = | a0, () (60,2)ds(0). 239

0

Lemma 2.1. The operators N, g) and N go can be respectively factorized as

NP = SETE S, and NE = SETE S, (2.36)

with T{ : L (DP) — L (DP) and Tg) : L (D) — L (D) are respectively defined by
TP vs, = k(1 —np)(vg, +wp), (2.37)
TPve, = K1 —np)dg, + k*(np —n) (Wl + vg, + W, ), (2.38)

where wgo being the solution of (1.23) and 12}?0 = J (g, )(&o, -) with W, is the solution of (1.24).

Proof The proof of (2.36) is classical and we here outline the main steps. The solution w of (1.23) with
= S¢,9¢, can be represented as [8]

wgo () = JDP k2 0¢, (2, y) (1 — np)(wgo + Sgy9¢0) (y)dy  for x € QF.
0
Then

(L geonde) oy = | K= )l + Segge)0) | o) @)y,

0

- JDP k2(1 N np)(wgo + S5og€0)(y)mdya

= (T, Seo9¢0+ SeoG¢0) L2 (D7)

which proves the first of factorization in (2.36).
The second factorization is obtained in the same way based on the fact that wgo solution of (2.33) can be
represented as

wgo - jDP kzq)&o( y) (1= np) ( )dy + f~ k2(1)€0(’7 y)(np — n)(wgo + Seo gy + e, )dy.
o

From Lemma 2.1 we conclude the following factorization
Ney = SELT&OS&
with Ty, : LZ (D) — Lg (D) is defined by Tg, (vg,) = T} (vg,|pr) + Tg) (ve,) or equivalently

Teyvey = k°(1 = np) (W, + ve, + Wg,) + k> (np — n) (wg, + vy + Wg,)- (2.39)
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2.2. Some properties of the operators defined in the previous section. In order to study the inverse
problem we need to prove some properties of the operators defined in the previous sections.

Lemma 2.2. The operator Sg, : Lgo (T — Lgo (D) is injective. The closure of its range is

H{r(D) := {ve L (D), Av +k*v = 0in D}. (2.40)

Proof. Let ge, € Lgo (') such that Se¢o9¢, = 0in Dy, where Dy := Q% n D. Using the unique continuation

principle we obtain S¢,g¢, = 01in Qf. Let UF := R x [R, oo[. Using the continuity and regularity of single

layer potentials we have that Sg, € H, IQOC(UR), is £g-quasi periodic, verifies
ASe,g¢, + kQSﬁogio =0 in UR7

(2.41)
Seogeo =0 on FR,

and the upper going radiation condition (1.11) with T'® replaced by I'® with R’ > R. The uniqueness for
this Dirichlet quasi-periodic scattering problem [10] implies that Sg,ge, = 0in U R Therefore, using the
jump relations for the normal derivative of Sg, we obtain g¢, = 0 which proves the injectivety of Sg,.

Let S¢, - LgO(D) — Lgo (T'1) be the adjoint of Sg, given by

St i= | e va)vg (@)

0
Let vg, € Hg:C(D), we set
Wey += J q)fo('7x)vﬁo(x)dx'
Do

Using the properties of the volume potential we deduce that we, € H, 520 (QF) satisfies

Awg, + k*we, = —ug, in Dy
Awg, + k*we, =0 in Qf\ Dy (2.42)
6w§0

(\R) = TF(wg,|rp)  onTF.

oxo

Assume that we, = 0 on Fé?'. Then wg, vanishes in U™ Using the unique continuation principle we obtain
that wg, = 0 in Q{\Dy. We then have we, € H3(Dy). Therefore, since Avg, + k?vg, = 0in D,

0= | v, ()Bwg, + R Yy = - 243
0
This proves that vg, = 0 and Sg, has a dense range in H, g)“:(D) O
For the analysis below we need to assume the well posedness of the following two Interior Transmission
Problems (ITP).
(ITP1): Seek (u,v) € L (DP) x Lg (DP) such that (u — v) € HZ (DP) satisfying

Au+k*npu=0  in D},

Av+ kv =0 in DY,

(2.44)
uU—v =2 on 0D,
0(u—v)

S = on 0D,
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for giv;n (p,) € ]i;;f(&Dp) X HggQ(aDP). The spaces H{ (D) and Hg (DP) are defined similarly to
HZ(QF) and H, (TF). ) )

(ITP2): Seek (u,v) € L?(D) x L?(D) such that (u — v) € H?(D) satisfying

Au + k*nu =0 in D,

Av+ kv =0 in D,

. (2.45)
U—v = on 0D,
a(%;”) =1 on 0D,
for given (p,v) € H*?(6D) x H'/?(0D).
Assumption 2.3. Assume that k, n, are such as the (ITPI) is well posed.
Assumption 2.4. Assume that k, n, and n are such that (ITP2) is well posed.
Moreover, we need first to prove the following Lemma
Lemma 2.5. For all U%O, vgo € L2 (D) we have
(Teovdy 021200y = (Teo¥ys 08 12(Do)- (2.46)

Proof. For i = 1,2, consider wg;i € ﬁgﬂ(ﬂg) solution of (1.10) with §& = &y and ve = véo. Define

sz = J (wg,)(&o, ) where W} € H'(QF) satisfies (1.24) with v, = vg,- We set
wg = w5 'y wgo

0

which verifies
LR Vg, - Vibg, — k*npwey e da — (T wgy, e ) e = L, (V) (2.47)
0

for all ¢, € H{ () with

Lig(ve) = | K = mpol g+ 82 [ (g = ) + o, + i, ),

R
0 QO

Taking ¢, = wZ, and v, = wg, respectively in the variational formulation satisfied by wg, and w? we
obtain by taking the difference

R, 2 1 R, 1 2
<T§Ow§07 w€O>FR — <T50w50, w£0>FR
0 0

1 ~
L)p k(1 — np)véowgody + fD K (n, — n)(w?o + wéo + v%o)wgody
0

— L)P k:2(1 — np)vgowéody — fD kQ(np —n)(w? we,) 24 wso + vgo)wgody
0

Since ng is symmetric, the left hand side in the previous equality vanishes and therefore

2
ng k(1 — np)vgo( t =t wgo + vgo)dy = f

2 L (D2 | =D;2 2
o k2(1 = np)vg, (we” + W, + vg, )dy (2.48)

71 7 72 7 72 ) 7]-
+ fbk2(np—n)(wgo —l—w%o—i-vglo)(wgo —i—wé’o )dy—ka2(np—n)( 0 +wEO+U§O)( wh? —f-wé7 )dy.



ANALYSIS OF SAMPLING METHODS FOR IMAGING A PERIODIC LAYER AND ITS DEFECTS 13

On the other hand, taking 1!)750 = ﬁ)g’)z and 1/)750 = ﬁ)g)l respectively in the variational formulations satisfied
by 1172’)1 and u?gf we obtain by taking the difference and the symmetry of Tg
1 ~1\~Ds2 2 ~2\ ~p,1
JD k2(n, — n)(wé’o + v%o + wéo)wé’o dy = JD k2(n, — n)(wgo + vgo + wgo)wgo dy. (2.49)

Moreover, taking % = 12)20 and 1#750 = wgo respectively in the variational formulation satisfied by u]%o and
u?? we obtain after taking the difference and using the symmetry of the operator 7%

f k2 ( véowéody = J k?(n, —n) pzwéody +J k2 ( n)wgo (11510 + wg;l)dy. (2.50)
Now, using (2.39) we have
Teyvh, = K2 (1 = np) (Wh + vy + G2) + k> (np — n) (W + v}, + @), (2.51)
Using (2.48) to substitute the first term in the right hand side of (2.51) we get
1 73 2 ~Dp, 2 ~D,
(TSOU&)?U?O)L?(DO) = . k(1 — )Ugo(w&) + wgo + U€O JD k“(np —n) wéO + wgo + U&))(w&) +w go )
0
- L”) k2 (np — n)(wl? + 5 + vg) ) (wl + aL') + L) k2 (np — n)vg, (wh' + vl + ). (2.52)

Finally, using (2.49), (2.50) to simplify the previous expression we obtain

—5 2 2
(Tgovéo, ng)Lz(DO) = po I<:2(1 — np)vfo( € 24 wg + vgo)dy + JD kz(np — n)vgo (wgo + wgo + Ug())dy,
0

where the right hand side coincides with the expression of (7%, vgo , ?) 12(Dy)- This ends the proof. (|

Lemma 2.6. Assume that the assumptions of Theorem 1.5 hold and that Assumptions 2.3, 2.4 hold. Assume
in addition that D, n D = (. Then, the operator Gy, : HEO”C(D) — Lgo (DR) given by (2.32) is injective
with dense range.
Proof. Letvg, € H{(D) such that Gg,ve, = 0on T, i.e
We, = w?o + d;é’o =0 onTl¥,
where wy being the solution of (1.23) and @ = J (g, )(&o, -) with g, is the solution of (1.24). Therefore,
,€H g

2 (U™, is &-quasi periodic and verifies
Awg, + Kwg, =0 inUR,
we, =0 on I'ft,

and the upper going radiation condition (1.11) with T' replaced by ' with R’ > R. The uniqueness for
this Dirichlet quasi-periodic scattering problem implies that we, = 0 in U R, Using the unique continuation
principle we obtain that wg, = 0 in U%\Dy. Moreover, w, € H, 520 () and satisfies

Awg, + k*npwe, + k*(n — np)(wgo +abg,) = k*(1 —n)vg, in QF.
Since Di n D = 7, then we have in particular wg, € HZ(D}) and

Awg, + E*npwg, = k*(1 — np)ve, in Df.
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Setting ug, 1= wg, + vg, We observe that the couple (ug,,ve,) verifies (ITP1) with zero data. Therefore,

We, | pr = vey|pr = 0. On the other hand, since n, = 1in D, then we, € HZ(D) and satisfies
Awg, + k?we, + k3 (n — )ag, = k*(1 —n)vg, in D. (2.53)

Since wg, € HZ(D), then we have
L}(Aw&) + k?we,) )0 =0 forall e H"(D),

where H"*(D) := {v € L*(D)/ Av + k*v = 0 in D}. Therefore, taking the L? scalar product of (2.53)
with 0 we get

ﬁ (k2(1 — n)ve, + k2(1 —n)ig, )0 =0 V0 e H™(D). (2.54)
D

From Theorem 1.4 we have that we, € H! (2F) can be represented as

e, () = K fm ®(z,y)(1 — np)ie, (y)dy + k> fb ®(z,y)((1 — n)vg, + (1 — n)ibg,)dy for z € QF.

Since y — ®(z,y) € H™¢(D) for z ¢ D, we obtain from (2.54) that

e, () = fm K201 = n,)ie, (4)® (. y)dy for a ¢ D,
Let us define @, € H>(D) by

We, (x) 1= o k(1 — np)ig, (y)®(x,y)dy forx ¢ D.

We set ug, := we, + vg,. Then the couple (ug,, ve,) satisfies (ITP2) with (p, ) = (g, ag)%). Moreover,
since

A, + k*g, =0 in D,
and (ITP2) is well posed then vg, + e, = 0 and wg, + v¢, = 0in D. We then deduce that W, = We, in

D. Consequently
ey (2) = | B =)o, ()8 )dy forx ¢ O°
)4

which implies that 1g, satisfies (P) with n = n,, and v = 0. We then conclude that @wg, = 0 by uniqueness
of the solution to problem (P) with n = n,. Therefore v¢, = 0 in D which, together with v¢, = 0 in D?
prove the injectivety of Gg,.

L
Now, we prove the denseness of the range of G¢,. Let g¢, € R(G¢,) , then
(GeoVeo: 9eo)r2(po) = 0 ¥ vy € Heg“(D).
Let f¢, € Lgo (T'®) and consider vg, = Sg, f¢,. Using Lemma 2.1 we have

(TSO(S§0f§0)7 Sﬁog&)) =0, V f50 € Lgo (FR)' (2.55)
Moreover, using Lemma 2.5 we get
(Teo(Seo feo) Sen9c0) = (Teo(Seotey): Seofea) ¥ feo € L, (TF).

Therefore, (2.55) implies that
(G&)(Sﬁog&o)a f&o)LQ(FOR) =0, V féo € Lgo (FR)‘



ANALYSIS OF SAMPLING METHODS FOR IMAGING A PERIODIC LAYER AND ITS DEFECTS 15

Then Gg,(Se,9¢,) = 0. The injectivety of Gy, gives that Sg,ge, = 0 and then g¢, = 0 by Lemma 2.2. O
Lemma 2.7. Under the same assumptions of Lemma 2.6 we have that

(z€ Dg) == (Pg(,2) € Range(Gy,)) -

Proof. Let z € DP. We consider vg, € Hgfc(D) such that ve, | 5 = —P¢, (-, 2). Let (ug,, v¢,) € LgO(Dp) X
a¢50(~,z)

Lgo (DP) be the solution of (ITP1) with (¢, ) = (¢, (-, 2), —2,). We set
p Ugy — Vo in Dp,

w£ =
Pg, (-, 2) in Qf\ DP.

We observe that wé’o e H EO(QR) and satisfies (1.23). Moreover, let 1w, be the solution of (1.24). Since
(np — n)(wé’o + vg,) = 0, then 10¢, = 0 and consequently G, (ve,) = Pg, (-, 2).

Consider now the case where z € D. Since D n DP = (7 Recall that the Green function ®(-, z) defined by
(1.4) belongs to L2(2%) [6]. Let u € HZ,_(2%) be the solution of (P) with n = n, and v = ®(-, z). Let us
define ®,, (-, z) := u + ®(-, ) that satisfies in particular, ®,, (-, z) € L2(Q%) n H2 (QF\D)

AD, (-, 2) + k*np®, (-, 2) = =5, in QF

together with the upper going radiation condition (1.2). Consider ve, € H, EQC(D) such that vg, | pr = Oand

let (iig,, ve,) € L*(D) x L2?(D) be the solution of (ITP2) with (¢, v) = (®,,, (-, 2), aq)"glf"z)). We set

’L~L§O — Vg in D,

Py, (-, 2)  inQF\D.

wﬁo =

We observe that g, € H7 (Q2F) satisfies (1.24). Moreover, since vg,|pr = 0, then wé’o solution of (1.23)
vanishes and consequently

Glvgy) = T (P, (-5 2))(0) =2 Py (-5 2)-
On the other hand, we consider ug, := J(u)(&,-) € HgIO(QoR)- Then wug, satisfies (1.23) with vg, =
e, (-, 2). We set

N ey (-, 2) in DP,
Vgy = . =
—Ug, inD.

Let wgo and wg, be respectively the solutions of (1.23) and (1.24) with vg, = ¥¢,. By uniqueness of the

solution of problem (1.23) we have w{ = ug,. Moreover, wg, = 0 since k?(ny — n)(Dg, + ug,) = 0.

Therefore

Gy (Vgy) = ugy-
Consequently
G (vey — Dgy) = Pey (1 2)-
Consider finally the case where z ¢ Dy. Assume that there exists ve, € H, EZC(D) such that G, (ve,) =
g, (-, 2). Using the unique continuation principle we get wg, := wg, +wf = ¢, (-, 2) in U°\Dy which is
a contradiction since wg, € H, 520 (Q2\Dy) while ¢, (-, 2) ¢ H, 520 (QF\Dy). O
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Let us define now the following norm for gg, € Lgo (T'F)

T ’(Nggﬁmgéo)L?(roR)'- (2.56)

Teo9eo = ‘(Ng)gﬁo  90)

Lemma 2.8. Assume that Assumption 1.1 and 2.4 hold. Assume in addition that Re(1 — np) = ~v > 0in
DP and Re(ny, —n) =~y > 0in D or Re(1 —n,) < —y < 0in DP and RNe(n, —n) < —vy1 < 0. Then,
there exists a constant ¢ > 0 independent from &y such that

Tey g > ¢ (16920 |220m) + 156960 225 ) ¥ 960 € LE, (D7),
with I, ge, is the norm given by (2.56).

Proof. We prove this Lemma using a contradiction argument. We consider g¢, € Lgo (I'®) and we denote
by ve, = Sgo9¢,- Assume that there exists a sequence vg, such that

HU&)”LQ(DO) (T U&),U&))LQ(DP)

(T 08 12D 2.57)

7

A _ p7 ~p n _ ~ . o~
We set v = o200 Let w, " be the solution of (1.10) and wy,” = J (w?o)(&)? -) with ve = 0, and

We, is the solution of (1.25). Smce 198, [l 22 (Do) is bounded, then we can extract a subsequence (that we still

denote the same) v? that converge weakly to 0, in L? (Do) Moreover, wé.’ " and w P™ converge weakly in

H} () and strongly in L*(Dy) respectively to some wg and wy, € H (). On the other hand, taking

¢§0 = wé’ " in the variational formulation (1.10) satisfied by wg;” we obtain

JQR |ngn|2 _ k2|w2;n|2dy _ _k,QJ

TRWP™ ™
D”(l —nyp)(w? we, 4—1}50)10g dy—|—< we”, W, >F{§
0

Therefore, decomposing (07, + wg")og, = [0f + wg|* — (07 + wg" wf" we get
(T¢ Ve, Vg ) 28y = E2(1 — np) |08 4+ w2 [2dy + IVw?™ 2 — k2 wb"|?dy — <TR pn wp’">
€07 "€/ L2 (Dy) P P/1%¢%0 €0 OR €o €0 Wey > Weg TR
0 0

Taking the imaginary part we obtain

m(Tg)@?o’@go)Lz(DS) = _J

R, p:n p,n>
Dy

Sm(ny)|og, + wgn\gdy —Qm <T we, s W)

From (2.57) we have

— 0.
n—00

‘%m Tfo”&o’ Ufo)LZ(Dp)

Therefore, using the fact that Sm TR T =0,
We, o TR

. 2
JDP Sm(ny)|og, + wpn| dy — 0> L)P Sm(ny)|ve, + w§0| dy.
0
Since Im(ny) > 0in O we obtain that uf := g, +wg, = 0in O. Observing that Auy + k*nyuy = 0
in Df, by unique continuation principle we deduce that u; = 0 in Df. Therefore, wy satisfies (1.23) with
ny, = 1 and v¢, = 0, which implies that wg vanishes in QR Moreover, since w?’ converges strongly to

wg in L*(Df), then we have

k(1 — PSRy — k(1 — P Bedy = 0.
po ( np)wgo Ve @Y op ( np)wgovéo Y
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On the other hand, we have that

>k —k?

[ =it Pay

0

2 nE
JDP kE=(1— np)wg)"v?ody .

0

(Tg) gy s gy ) L2(DP)

From the hypothesis on Re(1 — n;,) we then have

_ o - S 2
lim (Tg)vgo,vg))Lg(Dg) >7||U§OHL2(D(I;).

n—0o0

Therefore ¢, |pr = 0.
Now, taking ¢ = u?go in the variational formulation (1.25) satisfied by u??o we obtain

R f (mp — ) (W™ + 00 + G0 )T dy — K Lﬁu )| Py + LR Va2 - k2 By

D
- <TRZD?0’ w?o>pR :

Moreover, taking ¢) = w{" in the variational formulation (2.34) satisfied by w{," we get
—k? fb(np —n)(wg" + of + g )ug dy = LR Va2 ? — K |ag" Pdy + K JDP(1 — np) g2 dy
0 0

R ~DP,T ~DP,T
<T0w§0 » Weo >FR'
0
On the other hand, we have

<T§®?0’ Og ) 12(Dy) = L}R k*(1 — np)wg’)"@ig)dy + fQR kQ(np — n)|w§0n + Og, + g, 1*dy
0 0

2 o,n N e ~ D, 2 p,n N 7y ~n
— JQR k= (np — n)(wg)” + 0g) + wg,) )wg, dy — J;lR k= (np — n)(wg" + g + we,) )w, dy.
Then, using (2.58) and (2.58) we obtain by taking the imaginary part

Sm(TL i, 02) 2oy = f RSy, — mwl" + 0, + g, Py — K LR Sm(ny)| L [2dy
0

+ K LR Sm((1 = np)irg" 0, )dy — LR K2Sm((ny — n) (Wb + 0f, + @ W) dy — Sm (TRaL G )y
0

On the other hand, the application v¢, — (1 — np)ﬂ)go with u?g) is solution of (2.33) is compact from
L?(Dy) into L*(Df)) using the compactness of the injection of H; () into L*(Df). Similarly, the appli-
cation vg, — (n, — n)wg with wg is solution of (1.23) is compact from L?(Dy) into L*(D). Therefore
we have, using that 0¢, | pr = 0 and wi =0,

2 Cx _ =DM an N
k f%? Sm((1 — ny)wy, 0g, )dy - 0,

2 ) *+ 7 )
o E“Sm((n, — n)(wgon + B¢, + wgo)wgon)dy - 0.

From (2.57) we have

’%m(Tg)ﬁ&’{)go)L%Do) 7’:0)0 0.
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Consequently, using (2.58) , (2.58) and (2.58) we get

ﬁ Sm(n — np)|w£;" + D¢ + 71)?0|2dy + J;) Sm(ny) |wg, dy| — 0.

D n—ao0

We deduce that w¢, = 0 in O and using the unique continuation principle g, = 0 in QR\E. This proves
that the couple (i, + 0¢,,0¢,) € L*(D) x L*(D) is solution of (ITP2) with zero data. Hence g, = 0 in
D. On the other hand, the application vg, — (np — n)We, with we, is solution of (1.24) is compact from
H{(D) into L%(D) thanks to the compactness of the injection of H!(D) into L2(D). Therefore

JDP k(1 — n,,)wg;”@z + JD k2(n, — n)(w?on + wgo)@*g)dyﬁo.

U 2(ny U k(1 = ny )G, "o,

Moreover, we have

‘(T Ugy» Ogy) 12(D0) | =

Using the hypothesis Re(n, — n) in D we conclude

0= lim (T Oy s 0gy)

n—a0

= 71”@§0Hi2(ﬁ)5

which gives 9¢, = 0 in D. Combined with the result above we have that Ug, = 0 in Dy which contradicts
with [0, [|L2(py) = 1. O

2.3. Application of the Generalized Linear Sampling Method (GLSM). We present the free noise ver-
sion of the GLSM. For fixed &y € I, introducing the functional J¢ : Lgo (TF) — R given as

Jgoé(gb;gfo) = adg,(g¢,) + ||(Np +Np )gﬁo ¢||27
c(a)
o

We denote by j¢ (¢) =  inf  Jg& (¢ gg,). Moreover, let ¢(ar) > 0 verifying —0asa — 0.

gé()ELgO (D)

Theorem 2.9. Assume that Assumptions 2.3 and 2.4 hold. Assume in addition that the hypothesis of Theorem
1.5 and Lemma 2.8 hold. Consider » € QF, and let 9gg, € Lgo (TF) such that

Jé (Peo (45 2), 96, (2) < Jg, (P (- 2)) + (),
then
z€ Dy lirrblgo(ggo(z)) < 0.

Moreover if z € Dy then Sg, e, |, converges to some ¥ in L*(D) and S, ge, | pr converges to some Vg, in
L? (DY) where 0 is solution of (ITP2) and v, is solution of (ITPI).

Proof. The proof of this theorem is an application of the abstract framework of GLSM given by Theorem
2.7 in [4] and the series of Lemmas (2.1)-(2.8). Lemma 2.1, Lemma 2.2 and Lemma 2.6 prove that the
operator N¢, = N, g) + N, g can be factorized as

Ney = GgSey = SgoTEOSEm (2.58)
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and has dense range. Moreover, we need to verify that the norm I¢, g¢, is an equivalent norm to ||.Sg, g¢, || .2 (Do)
for all g¢, € Lgo (I'®). Theorem 1.5, Theorem 1.8 and the expression of the operator T, prove the existence
of a constant ¢; > 0 (independent from &) such that

Ifogéo a (Hsﬁogéo HL2 (DB) + Hsfogéo HL2 D)) v 9o € Lgo (FR)' (2.59)
Therefore, Lemma 2.8 and (2.59) prove this norm equivalence. The results of the theorem are then a straight-
forward application of Theorem 2.7 in [4] and Lemma 2.7. O

3. INVERSE PROBLEM FOR NON-PERIODIC INCIDENT FIELDS

3.1. Setting of the inverse problem. Let y € I'®. One can deduce from (3.72)-(3.76) that ®(-,y) €
L?(Q1). We then define u*(-,y) € HEOC(QR) the scattered field solution of (P) with v(-,y) = ®(-,y). We
introduce the near field operator N : L2(T'f) — L?(T'R) as

Ng(z) = LR u®(2,y)9(y)ds(y).
Define S : L*(I'") — L?(D) as

Sg(z) = LR (z,y)g(y)ds(y).

Then, the operator /N can be decomposed as

N =GS,
where G : L?(D) — L?(T'F) is the operator defined by
G(v) = wlrr,

with w being the solution of (P).
Link between N and N¢: For ¢ € I, we denote by g¢ := (Jg)(&, -) and we observe that

Sg¢ = Sege(2), (3.60)
with S¢ being the operator given by (2.30), in fact

(1+1)
Sge(z) = JR‘I)(% (y1, R))ge(y1, R)ds(y1) :z;Z:L”l O(x, (y1, R))ge(y1, R)ds(y1),
- f (v + 200, B)ge(os + 2n)ds(n) = | BelorIge(w)ds(o),
leZ 0
= Sege(w),
therefore

f Sege(x)d€ = f <I>(x7y)f 9¢(y)d€ = Sg(x). (3.61)
I e I

Let N¢ : LZ(T®) — LZ(T'") be the operator given by (2.29), we have

Jj oo = [ [ acwngm @+ [ [ owr@emie i)

= Lw?(m)df + Ld}?(ﬂ:)df, (3.62)
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with wg being the solution of (1.23) and ﬁ)g = J(we) (&, -) with g is the solution of (1.24) with vg, = Sege.
We denote by

wP(z) := ng(aﬁ)df and wP(x) := f W (z)dE. (3.63)

I
Using (3.61) we observe that w? satisfies (P) with n = n, and v = Sg. Moreover, w" satisfies

AGP + k*npiP = k?(n, —n)(wP + v +w) in QF,

WP = 0 on I'?, (3.64)
S (- R) = TR(@P|rn) on I,

where 1 is defined by (1.26). Then by uniqueness of the solution to the scattering problem (P) with n = n,,
we have that w” = w. Therefore, w := w” + WP satisfies (P) with v = Sg. Hence, we can equivalently
define the operator N : L?(T'') — L?(T'F) as

No(@) = | (Veae) @i (3.65)

We finally observe that N¢ge is not equal in general to 7 (Ng)(§).

3.2. Some properties of the operator S. The goal of this section is to prove that the operator S : L? (IR —
iZ(D) is injective and characterize its range. The main difficulty here comes from the required continuity
with respect to the Floquet-Bloch variable. This is why we first prove the uniform continuity of { — S¢
formalized in Lemma 3.1 below.

Let y € CO(I)and ¢ € LE(FR). We consider g € L2(I'®) such that

ge(x) := T (9)(&, @) = e () x(§), for (§,2) € I x T (3.66)
Denoting
~ 1 2 .
V=50 . e” IV (y1)dya,

we observe that the operator Sg given by (2.30) verifies for o < R

27 i ] ] '
Sege(x) = fo EZ&%(])(M—“)% (J, R, 2)ge (y1)dy,
JEZ

- 27
4 ] j . —ioe (g
in E e_m‘s(])xl@f(% R, x3) L € 5(])ylgg(yl)dyl-

JEZ
Therefore,
i n D (5 P o \tae(d)x
Sege(w) = =5 D ix(€)0(j, B mp)e’ e, (3.67)
JEZ
Let 0 < Ry < R, we define S; : LE(FR) — LE(QRU) as
Setp 1= e "1 G (T4, (3.68)
Using (3.67) we have
q i D D i)
S () = =5 ) 0i0e(j, R, wp)e’ e, (3.69)

JEZ
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Lemma 3.1. For all € > 0, there exists § > 0 such that for |{' — £| < § we have

2
& oh &, 2R
|Sev — 5 d’Hm(ng < ce Hsgw ey VO ST, (3.70)
where ¢ > 0 is a constant independent of £ and &' € 1.
Proof. Letv € L?(FR). From (3.67) we have
I5ct 20y = SB[ 1060 R P,
) jGZ
O 2
e =500y = G [ e R ) G )P
LQ(QOO) jGZ

Therefore, to prove (3.70) we prove for all € > 0 the existence of a constant ¢ > 0 independent from £ and
&’ such that

Ro Ro
f |06(]a Ra x?) - 0&’(]) R>$2)‘2dx2 < CGQJ |9§(]7 R7x2)’2dx2-
0 0

Consider first j € Z such that k* > aZ(j), i.e f¢(j) = v/k* — |€ + j|?. There exists only a finite number of
4 for which this holds. Then

0¢(j, R, 22)|* = e R2| |2 sin(Be () x2)|* = %\1 — cos(26¢(j)x2)|-
B¢ (49)] |Be (7]
For f¢(j) = 0, we have
li " 0¢(j, R, x2)|d ARG (3.71)
im VR, To = — =:c1, .
selm0do DT IEERT g TA
while if B¢(j) > 0, we have
Ro — sin
0
with y = 2R0|6§( )|. Since y —> %;}” > 0 for y > 0 and since f¢(j) > 0 is bounded for j € Z such
that k2 > ( /), then there exists a constant ¢ > 0 independent of £ and j such that
Ro
f 10¢ (5, R, w2)[*dze = ). (3.73)
0

Consider € > 0, since 6¢(j, R, x2) is continuous on the compact set I. Then there exists § > 0 such that for
|€' — &| < 0 we have

|0¢ (4, R, x2) — 0¢(j, R, x2)| <e. (3.74)

Consequently, using (3.71)-(3.73) we get

Ro RO
J |0¢: (4, R, x2) — O¢ (4, R, x2)|*dya < C1Ro€f |0 (4, R, 22) 2 dx2. (3.75)
0 0
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with ¢ := 1/min(ey, ¢)).
Consider the case where k% < ozg( ) for which B¢ (j) = i4/|€ + j|? — k2. Assume in addition that |5¢(j)| <
1. There exists only a finite number of j for which this holds. We have

, , e 2ABOIR
06 (j, B, 22)|” = —=—=75— sinh(|Be(j)]2)*.
B¢ (5)]
We have
s 2Roe 2GR sinh (2] () o) 1R s
10 (j, R, w2)[*daws = : [ L — 1} > L APU)IR, (3.76)
L ‘ Be(D)P 2R0|B¢ ()| 3
where we used the inequality % -1 1’ for z > 0. Since B¢ (j)| < 1, then we get
Ro AR}
f 10 (4, R, x2) |2 dzy > 30 e 2R —. 4, (3.77)
0

Consider € > 0, since ¢ (3, R, z2) is continuous on the compact set I, then there exists § > 0 such that for
|€' — &| < 0 we have

Ro RO
f |9§/(j, R, .I'Q) Hg(j,R .’L‘Q)‘ dy2 CZR()GJ |0£(j, R, $2)|2dl‘2. (3.78)
0 0

Consider now k? < ag(j) such that |B¢(j)] > 1. Let § = 0, 0 < dp < ¢ such that £’ := £ + do, then we
have

E+d0 69 -
df 3.79)

(9§+50 - 0§)(]7 R7 l’g) = L 5{

By the Cauchy-Schwartz inequality we get

Ro ) §+do Ro @0~ -
J‘ ‘95(]7 R7 x?) _9§+§0(j7 R,.TQ)’ dq:? < 6OJ <J | é’f (JvR x2)| dfl:2> df (380)
0 I3 0

On the other hand, let us denote by 7y := 2i(£ + j)% and v := R + Wl(j)', we have that
00¢
2 =2 (j, R, w2) = 70 [ sinh(| B¢ (j)|2) — w2 cosh(|Be (5)|z2)] (3.81)

Using that sinh(2y) = 2sinh(y) cosh(y), cosh?(y) — sinh?(y) = 1 and 2sinh?(y) = cosh(2y) — 1 for all
y e R, we get

9 2 2 2 2
Tt R = ool | (L) conh2lfe(le) — umasinblcllen) - 2+ 2] G
Therefore
Ro | 90, 2 2{ o sinh(2| B¢ (5)| Ro) 1 Rocosh(2|B¢(5)| Ro)
R, d = R§ _
L o U fbm)| dee = ool 41B¢(7)| N X S TR 0]
i sinh(2(6¢(5)[Ro)  7iRo | RY 1 h(28e (R ]
15:0) 7T TR ) R |
Let x € R such that x > 1, we define
—2zR :
flx) = 222 {Slnh(zimRO) —~ Ro] : (3.83)
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2

o(z) = 4 Va2 + k2e R | | RZsinh(22Ry) _(}%+_51)Rocogxzx30)+_(R-+§)2snﬂmsz0)
x2 4z 2z 2z 4z
1 2R0 RS 1 3 .
- S22+ 20 4 = (R+ ) sinh(2
(R+m) 5 + 5 +4a:2(R+2x)Sm (2zRy) | ,

and we prove the existence of a constant & > 0 such that g(x) < af(z) forall x > 1. Let M € R
sufficiently large and consider first the case 1 < x < M. Since f and g are continuous functions and
f(x) > 0, then we have

g(z) < o f(2) forl <z < M, (3.84)

ISDZXMQ(I)

min f(z)

1<z<M
B (332 + k2)e—233R eQa:Ro 5 1
glx) = 5ot - (Ro+ R)*+ 0O .

o = S ()Gl
g(x)

Thereforem is equivalent to (R + Rg)? at infinity. Using (3.84) we deduce the existence of a constant
a > 0 such that

with o/ := > (. For the case x > M, we compare f and g at infinity. We have

g(z) < af(x), forallz >1
which implies

9(1B (M) < af (1B (7)),
for all j € Z such that |3¢(j)| > 1. Then we deduce that

fio 90 . . 2 fio : 2
|15 G e Pes < [ 166, o) P, (3:85)
0 0

Therefore, using (3.80)-(3.85) we have

Ry E+d0 Ro ) ~
[ 1060 Rean) ~ csss G R Pes < s [ ([ o B ) . 389
0 ¢ 0

On the other hand, we show that z — f(z) decreases in R.. Indeed ,taking y = 2z Ry and using that
. O 2k+1
sinh(y) = kZ % we get
=0

_ R
f'(y) = Rje ™?h(y),
with

B O 2k -R 2k +1
"= ;ow <Ro TRkt 5>y> '

0
Since cosh(y) := > gi,j we observe that
k=0
, O 23 O g2k y?
hy) < — — —sinh h(y)—1-2L <o
yh(y) Z:(274;4-3)! * Z:(2/@4-4)! sinh(y) +y + cosh(y) 2
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for y > 0. Therefore f/(y) < 0 forall y > 0. Since & —> |B¢(j)| increases in I and z — f(z)

decreases in R we infer that £ — S(If %16¢(j, R, w2)|dxo decreases in I. Therefore, from (3.86) we finally
obtain that

Ro RO
J |95(], R7 x2) 7054—50(‘7’ R’ $2)|2d$2 < 045(2) <J |0§(]a Ra ZL‘2)|2dl’2>
0 0

which ends the proof. U
Lemma 3.2. The operator S : L*>(T') — L?(D) is injective. The closure of its range is

H™(D) := {U e L*(D); v|pr € EQ(DP); Av+ k20 =0in D} .

Proof. Let g € INLQ(FR) such that Sg = 0 in D. Using the unique continuation principle we obtain Sg = 0
in Q. Using the continuity and regularity of single layer potentials we have that S € H 2 (U R) and verifies

ASg +k*Sg =0 in U,

Sg=0 on ',
and the upper going radiation condition (1.2) with T'¥? replaced by I'" with R’ > R. Therefore Sg = 0 in
U*. Using the jump relations for the normal derivative of S we obtain ¢ = 0 which proves the injectivety

of S.

We prove now the denseness of the range of S. Let v € L?(D) and we denote by ve := (Jrv)(€, ). Fix
N
v

€ > 0 and consider a uniform partition of I into sub-domains I JN = 1I j of size § = % Using Lemma

J:
2.2 we have, for all fjv € IJN there exists 1/)§V = e_igﬂN'xq/)gN € LE(FR) such that
J

5~ . €

with 9n = e “ven, where 5’5 is defined by (3.68). We introduce the hat functions xé\] e C%(I) that are
J J

affine on each domain I; and verifies Xj-v (&) = 6;;. We then define

7&? = 2 @ngyxév(ﬁ), @é\/ = Z 5§NX§‘V(§)7 ggN = Z (SgN@Z’gN)Xé‘V(g), forl <j<N.
1<j<N 1<j<N 1<g<N 7

Then, we have
Hgﬁ";é\[ - 175”[/2(9(1]‘30)) < ||5'§1Z;év - S'é\]||L2(Q£30)) + ”Své\/ - @g HLQ(Q(I;”O)) + H@év - 5§\|L2(Q§o))- (3.88)
Since gg(lﬂgy va(g)) = (Sggzggv)xéy(f), then the first term in the right hand side of (3.88) verifies
J J

Setheny =S¢ = D) (Sevhen — Sewthen ) (6)-

1<j<N
Therefore
SepN — SN < Sethen — Senih .
15ete” = SNl 2 gm0y, S o ;stl,)ﬁl]u een — Senvtenl 2 gy

€

Consider ¢ :=
4x/5<sup||v§||
gel

, using Lemma 3.1 we chose § > 0 for which
H)

R,
L2(250)

|Sctey — Sy

PP
L2(Q§O) < \/EE ||S§JN1/}§JN||L2(Q§O))
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therefore
&N & / €
sup sup HS Ve — SeNen < Wcee' | supl|ve]| Ry +1] =—. (3.89)
LGN el el @) e ) 4

On the other hand, using (3.87) we deduce that the second term in the right hand side of (3.88) verifies

< (3.90)

Z (ngl\’"‘/;gf - ’Dgé\f)Xé‘V(f)

1<j<N

GN - - €
H55 — V¢ HLQ(Qé%) = Z

L2(25°)
Moreover, since vg € Ct?(l , LE(D)) then IV could have been chosen from the beginning sufficiently large
so that

~N ~ €
va - v£||L2(Q§O) < 9 (3.91)
Finally, using (3.89), (3.90) and (3.91) we get
sup||S 1/;N - Ry, = Sup sup S I;N -0 Ry <€ (3.92)
cel I §¥e £HL2(QOO) LN gefel N, | §¥e €HL2(QOO)
for sufficiently large N. This proves the denseness of the range of the operator .S. U

For the analysis below we need to assume the well posedness of the following Interior Transmission
Problem. 3 R y
(ITP3): Seek (u,v) € L?(D) x L*(D) such that (u — v) € H?(D) satisfying
Au+Kk*nu=0 inD
Av+k*v=0 inD
(3.93)
u—v=¢ ondD

L%;”) =1 ondD

for given (¢, 1p) € H3?(0D) x HY?(8D). This problem has been extensively studied in the literature in the
case of bounded domains D see for instance [4]. Indeed the results for bounded domain D extend easily to
the case where D is unbounded but is the (infinite) union of disjoint bounded domains. This corresponds for
instance to our case when DP is the union of disjoint bounded domains. Consider the following assumption

Assumption 3.3. Assume that k, n, and n are such as (ITP3) is well posed.

Lemma 3.4. Assume that Assumptions 1.1 and 3.3 hold. Then the operator G given by (3.60) is injective
with dense range. Moreover,

(ze D) <= (9(-,2) € Range(Q)).

Proof. consider v e H"*(D) such that G(v) = 0, i.e
w=0 on FR,

with w € H? (Q2F) being the solution of (P). Therefore, w € HZ, (U) and verifies

loc
Aw + k*w =0 in UE,

w=20 on I'Et,
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and the upper going radiation condition (1.2) with T'®? replaced by I''¥" with R’ > R. Then w = 0 in U,
Using the unique continuation principle we obtain that w = 0 in Q\ D. Setting u := w + v we observe that
the couple (u,v) verifies (ITP3) with zero data. Therefore we deduce that v = 0 and then the injectivety
of G.

Now we prove the denseness of the range of G. Let g € R(G)L, then

(G(v),9)12(p) =0 forall ve H™ (D).
Let f € L2(T'®) and consider v = Sf, we then have

(G(Sf),9)r2@ry =0 forall fe L*(TF)
On the other hand, using similar arguments as in the proof of Lemma 2.5 we obtain the symmetry property

(G(SF), 9)r2omy = (G(S9), f2qomy ¥ frg€ L2(TF).

Therefore

(G(Sg), f)r2qrry =0 forall fe LA
which implies that G(Sg) = 0. The injectivety of G gives that Sg = 0 and then g = 0 by Lemma 3.2.
Consider z € D. We have that x®(-,2) € L?(D), where x is a regular cutoff function that vanishes
in a neighborhood of z. Since ®(-, z) satisfies the Helmholtz equation outside z, elliptic regularity re-
sults applied to each component of DP separately implies that Y® € H?(D). Trace theorems then imply
(®(-, 2), %) e H%2(0D) x H'Y2(0D). We then consider (u,v) € L2(D) x L?(D) to be the solution
of ITP3) with (¢, ) = (P(+, 2), a<1>( )) We set

u—v inD
®(-,z) in QF\D.
We observe that w € H2, (%) and satisfies (P). Hence G(v) = ®(-, 2).

Consider now the case where z € Qf\ D. Assume that there exists v € H¢(D) such that G(v) = ®(-, 2).

By unique continuation principle we obtain that w = ®(-, z) in Qf\D, which is a contradiction since
we HE (QF\D) while (-, 2) ¢ H2 (QF\D). O

loc

3.3. Application of the Generalized Linear Sampling Method (GLSM). Let us consider the functional
Jal¢,) : LX) — R
Ja(¢39) := al(g) + |Ng — ¢|*, forall g e L*(T')

where

I(g) := gug%(ig(éo, ). (3.94)

We denote by jo(¢) = inf Ju(¢;9). Let c(a) > 0 verifying % —0asa—0
gel?(I'F)

Theorem 3.5. Assume that Assumptions 1.1 and 3.3 hold. Assume in addition that the hypothesis of Lemma
2.8 holds. Consider z € QF, and let g* € L*(T'R) such that

Ja(®(,2),9%(2)) < Jja(®(: 2)) + ¢(a),
then
zeD < limI(g%(z)) < . (3.95)

a—0
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Moreover; if z € D then Sg|p converges to some v in L?(D) where v is solution of (ITP3).

Proof. The proof of this theorem is an application of the abstract framework of GLSM given by Theorem
2.7 in [4] and Lemma 3.2, Lemma 3.4 and Lemma 2.8. Lemma 3.2 and Lemma 3.4 prove that the operator

N =GS,

has dense range. Moreover, we need to verify that the norm Ig is an equivalent norm to sup||Sgl|r2( Do) for
Eel

all g € LE(FR). Lemma 2.8 and Theorem 2.9 prove this norm equivalence. The results of the theorem are
then a straightforward application of Theorem 2.7 in [4] and Lemma 3.4. g

4. APPLICATION TO DIFFERENTIAL IMAGING

The theoretical developments of the previous sections allow us to provide a theoretical justification of
the algorithm proposed in [9] that provides an indicator function for the defect D independently from DP.
This justification does not assume D is also periodic (with a larger periodicity) which was the case in [9].
The principle idea behind this method is to consider the background as 2w M periodic with M € N such
that M > 1 and combine the application of the previous framework to different values od M. Indeed, the
refractive index n,, is also 2w M -periodic with respect to the first component x1. Then, we can follow the
same approach adopted in Section 2 by taking

it =l .~ [0,27M] x [0,R] and D? = DEM .= QM ~ pP,
in order to reconstruct Dy = D(])W = DS’M uD using the GLSM method.
In the following, for m > 0, the spaces H, g’fM(QR), H ?M(Qg M) and Lg (D) has respectively the

same definition as H, F(QR), H ?(Q(If) and Lg(D) with period 27 replaced by 2w M. Moreover, we define
for ¢ € C°(UP) the one dimensional Floquet-Bloch transform with period 27 M as

], (xl,xg) € UO.

. : 1
Tud(& w1, 2) = > p(z1 + 27 Mj,w)e P™MET £ e IM = o, i

JEZ
Fix £ € I and we denote by &y := % e IM. We consider ®¢, p/(z,y) := (Tu®(-,v)) (&0, x) the & M-

quasi-periodic Green function with period 2w M. Similarly to (1.22), we define uzoM = wg, decomposed
as

7M . 7
UZO (7?/) = u20p<'7y) + uzg(‘vy%

where u2"(+,y) € Hglo,M(Q(I)%’M) solution of (1.23) with I} is replaced by Ty := [0, 27 M] x {R} and
g, (-, y) € H'(QF) solution of (1.24). We introduce the &M -quasi periodic near field operator Né\f :
Lg p(TF) — L 3, (TF) given as

Ng' = NG+ N,
with NPM L2 (PR) — L2 (D) and NEM ¢ L2 (PF) — L2 ,(T'F) are given as (2.35) with
k= FOR’M and J is replaced by Jjs. Define Sé\g[ : LgmM(FR) — LgmM(D) the operator given as (2.30)
with I'§ = FOR’M and ¢, (y, x) = ®¢,,m(y, ). Then, as in Section 2 the operator Né‘OJ is decomposed as

M M oM
Nfo = G&) (S&) )’
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where Gé\g : Lgm u(D) — Lgm 1 (T is the operator defined by
Gé‘g] (Ufo) = (wgo + IDZ)”F(I)%,]\J,

with wf € H§O7M(Q§’M) being the solution of (1.23) and @, = Jw (g, ) (o, ) With g, € ﬁj(QR) i~s the
solution of (1.24). Moreover, we denote by I, é\f the norm given as (2.56) with Ng) = Ngo’M, Ng’o = NgO’M

and TF = 0™,

4.1. Application of the GLSM for the reconstruction of Dé” . Following the same steps as in Section 2
we can present the free noise version of the GLSM. Introducing the functional Jg) M Lgo »(IEH —R
given as

Mo M o, M
Je (85 9e) = aIf) (9e,) + |(NEY + NE)ge, — oI,
()

We denote by jg)’M(qﬁ) = inf ng)’M(qS; e, )- Moreover, let ¢(«) > 0 verifying <% — 0 as a — 0.
D)

2 (0%
9£06L50,M(

Theorem 4.1. Assume that Assumptions 2.3 and 2.4 hold. Assume in addition that the hypothesis of Theorem
1.5 and Lemma 2.8 hold. Consider = € QF, and let 9gg, € Lgo 1 (DT such that

TEM (®ey 01 (- 2), 98 (2)) < G (Beo 11 (- 2)) + (),

then
M s TM
ze Dy (}éli%] o (96, (7)) < 0.
Proof. The prove is similar to the proof of Theorem 2.9. U

4.2. Application of the GLSM for the reconstruction of DS’M . In this section we consider M > 2 and

we explain how one can reconstruct only the domain Dg’M. Fix £ € I and we denote by & := % e IM,
We observe that the Green function ®¢, (-, 2) is also &M -quasi periodic with period 2 M. Therefore, we
can follow the same steps in the previous section by replacing ®¢, 1 (x,y) by P¢,(x,y) and we use that

P¢, (-, z) admits singular points in Qé?‘ M for 2 € D to reconstruct only the periodic domain D} M

Lemma 4.2. Assume that the assumptions of Theorem 1.5 hold and that Assumptions 2.3 holds. Then we
have that

(z € Dg’M) = (Pg(-,2) € Range(Gé‘g)) .

Proof. Let z € DP. We consider vg, € Hggc(D) such that ve, |5 = —P¢, (-, 2). Let (ug,, v¢,) € LgO(Dp) X

L2 (D) be the solution of (ITP1) with (o, ¢)) = (@50(-, 2), a‘l’ﬁgy("z)). We set

wg :: Ugy — Vg in DP,
De, (-, 2) in Qf\Dr.

0

We observe that vg, € H{" (D), where
Hgng(D) ={ve LgO,M(D), Av + k*v = 0in D},
and w, € H ,(Q7) satisfies (1.23). Moreover, let wg, be the solution of (1.24). Since (n, — n)(wf +

vg,) = 0, then g, = 0 and consequently Gé‘f(vso) = D¢, (-, 2).
Consider now the case where z := (z1,22) ¢ DP. Assume that there exists ve, € H, gO”CM (D) such that
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Gé\g (vgy) = Pg, (-, 2). By the unique continuation principle we get we, := wgo +7J)§0 = ¢, (+,2) inUN\DJL.
Since D is not distributed periodically, then for z € D there exists j € Z such that zj = (21 + 27mj, 22) €
Qo"\D}!. Therefore, g, (-,2) ¢ H2, ,(QM\DJ!) for all z € QF\DEM while wg, € H2, (QM\DJ?),
which is a contradiction. O

Theorem 4.3. Assume that Assumptions 2.3 and 2.4 hold. Assume in addition that the hypothesis of Theorem
1.5 and Lemma 2.8 hold. Consider z € QF, and let gg‘o € LEO’M(FR) such that

M ., M
Jgg (@50(-72)79?0 (Z)) < j?o <(I)£0('7Z)) + C(a)7
then
ze DpY = lim I3 (g, (2)) < .

Moreover, if z € Dp then S o 9¢o | pr converges to some Vg, in LQ(D ’ ) where vg, is solution of (ITPI).

Proof. As in the proof of Theorem 2.9. By Lemma 2.1, Lemma 2.2 and Lemma 2.6 adopted to the 27 M
periodic case we prove that the operator 1V, 51\0/1 = N, go’M + N, épO’M can be factorized as

M M oM * MM oM
NEO == G&) Sf() = SEO T§0 Sf()’ (496)

and has dense range, with Sg‘O’M : Lgm u(D) — Lgm (D) is the adjoint of the operator Sgg[ and Téj\o/[ is
the operator defined as (2.39). Moreover, using Lemma 2.8 we prove that the norm [ é‘f J¢, 18 an equivalent

norm to ||Sé‘(/)[ gel L2(DM)- Therefore, the results of the theorem are then a straightforward application of
Theorem 2.7 in [4] and Lemma 4.2. ]

4.3. Application of the Differential Sampling Method for the reconstruction of D. Asin[9], we explain
in this section how one directly reconstruct D using a differential indicator function. Consider M > 2, fix

— £ M ; a - 72(TRy o 2 (TR a,M 2 R
§ € I. We denote by § := 37 € I"". Consider g% € L*(I'"), gg € Lg (I'") and Jey € L, p(T7)
satisfying

Ta(®(-,2),6%(2)) < ja(®(-,2)) + c(a),
Jg@go(, 2), 98, (2)) < JE (Dey (-, 2)) + c(a),
TEM (e, (-, 2), g™ (2)) < GEM (B (-, 2)) + (@),

— 0 as o — 0. Let us define the indicator function to identify D as

. -1
(o} T o I(ga)
To2) = | I 1 , 4.97
( ) [ (g ) ( " IM(Q&O Ml g?o)>] ( :

with 1 is the norm defined by (3.94) and I}/ is the norm given as (2.56) with N? = NEM, NP = N2
and I} = FOR’M.

for c(ar) > 0 verifying =2 ela)

Theorem 4.4. Under the assumptions of Theorem 4.3 we have

(ze[)) — (}jﬂ})za >0).

Proof. Consider z € DP. By Theorem 2.9 and Theorem 4.3 we have that S¢, gg) and Sé\g[ g?o’M converges
respectively to vg, € H{'“(D) and v € H{", (D) verifying

Geo(vgy) = Pey(-,2) and G (v) = gy (-, 2). (4.98)
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Moreover, from Lemma 2.7 and Lemma 4.2 we observe that vg, and vé\g are solutions of (ITP1) with

(0, 0) = (@ e (5 2), 8@53 V(wZ) ) , then vg, coincides with vé‘é’ . On the other hand, since /, é\f J¢, 18 an equivalent

norm to HSgg 9¢ |l L2(DM): Therefore, there exists of constant ¢; > 0 independent from &y such that

2
SM O{,M

1 M «
09 MSSO 9eo (4.99)

M 1
MM — —g2) < e
e (9%, M %) < L2(DM)

Moreover, we observe that Sé‘g 9?0 = MSg, g‘g‘o . Therefore, the right hand side of (4.99) tends to zero as
o — 0. On the other hand, from Theorem 3.5 we have that I(g®) < o0 as a — 0. Hence

lin%l'a(z) =0 forze DP.

Consider now the case where z € D. From Theorem 2.9 and Theorem 4.3 we have that ||Sé\(/)[ g?O’M Il 2 (DM) =
o0 and || Sg, g¢, || 12 (Do) is bounded as & — 0 . Moreover, we have that

M oM

M M M _a,M 2 2 2
(gg) - Mgg)) = CQH'S&) g?o - Sfogg)HL2(DéW) = CQHS§O 9e, HL2(D(J)W) - CQHS&Q?OHLQ(DO)a

0

with co > 0 is a constant independent from &y. therefore

1
M
Igg(ggo — Mg?o) — o asa — 0,
which implies that

0< 1in%)Ia(z) <o forze D,
oa—
This ends the proof. g
Remark 4.5. Consider gg;M (') satisfying

M ~o, M .o, M
Jgg ((I)ﬁo,M<'7Z)7gg; (Z))S]?O’ ((I)go,M('vZ))_‘_c(a)?

IM(ga,M) -1

o L M ; ~o,M &

I3 (2) = [[50 (950 )<1+ IM( ()?,M_i o) '
&0 \Igo Mg

and define

We observe that I, can be considered also as an indicator function for the identification of D, i.e Theorem
4.4 still holds if we change T,, by T and the proof follows the same arguments but with applying Theorem
4.1 instead of Theorem 3.5.
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