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Abstract Missing data can be informative. Ignoring this in-
formation can lead to misleading conclusions when the data
model does not allow information to be extracted from the
missing data. We propose a co-clustering model, based on
the binary Latent Block Model, that aims to take advantage
of this nonignorable nonresponses, also known as Missing
Not At Random data (MNAR). A variational expectation-
maximization algorithm is derived to perform inference and
a model selection criterion is presented. We assess the pro-
posed approach on a simulation study, before using our model
on the voting records from the lower house of the French
Parliament, where our analysis brings out relevant groups of
MPs and texts, together with a sensible interpretation of the
behavior of non-voters.

Keywords Latent Block Model ⋅ MNAR ⋅ variational
inference ⋅ co-clustering ⋅ missing data

1 Introduction

Co-clustering simultaneously groups the rows and the
columns of a data matrix. Co-clustering has found applica-
tions in many areas such as genomic analysis (Pontes et al.
2015; Kluger et al. 2003), text analysis (Dhillon et al. 2003;
Selosse et al. 2020b), collaborative filtering (George and
Merugu 2005; Shan and Banerjee 2008), or political analysis
(Latouche et al. 2011; Wyse and Friel 2012). Co-clustering
methods can be divided into categories such as, but not lim-
ited to, spectral methods (Dhillon 2001; Kluger et al. 2003),
mutual information methods (Dhillon et al. 2003), modu-
larity based methods (Labiod and Nadif 2011), non neg-
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ative matrix tri-factorization (Ding et al. 2006) or model-
based methods. Among the model-based methods, the La-
tent Block Model (Govaert and Nadif 2008; Nadif and Go-
vaert 2010; Lomet 2012; Keribin et al. 2015) relies on mix-
tures, assuming that the observations are generated from fi-
nite mixture components in rows and columns.

Most standard methods of clustering or co-clustering pre-
suppose complete information and cannot be applied with
missing data, or may provide misleading conclusions when
missingness is informative. A careful examination of the
data generating process is necessary for the processing of
missing values, which requires identifying the type of miss-
ingness (Rubin 1976): Missing Completely At Random (MCAR)
refers to the mechanism in which the probability of being
missing does not depend on the variable of interest or any
other observed variable; whereas in Missing At Random (MAR)
the probability of being missing depends on some observed
data but is still independent from the non-observed data; and
finally Missing Not At Random (MNAR) refers to the mech-
anism in which the probability of being missing depends on
the actual value of the missing data. Under the MAR hy-
pothesis, no information on the generation of data can be
extracted from its absence, but under a MNAR assumption,
this absence is informative, and ignoring this information in
likelihood-based imputation methods may lead to strong bi-
ases in estimation (Little and Rubin 1986). Missing Not At
Random is also known as non-ignorable missingness, in op-
position to the ignorable missingness of MCAR and MAR
settings, as the absence of data is assumed to convey some
information.

In this paper, we aim at clustering the rows and columns
of a binary data matrix whose entries are missing not at ran-
dom. Equivalently, we consider the clustering of the vertices
of a bipartite graph whose edges are missing not at ran-
dom. For this purpose, we introduce a co-clustering model
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that combines a MNAR missingness model with the Latent
Block Model (LBM).

Up to our knowledge, all existing co-clustering methods
consider that missing data is either MCAR or MAR (Selosse
et al. 2020a; Jacques and Biernacki 2018; Papalexakis et al.
2013), except one proposed by Corneli et al. (2020) used to
co-cluster ordinal data. Their model is very parsimonious as
it assumes that both data and missingness are only depen-
dent on the row and column clusters. In this setting, they are
able to consider MNAR data even if they suppose that miss-
ingness depends indirectly from the value of the data. The
model we propose is less parsimonious, thus more flexible,
as it supposes that missingness depends both on the value
of the data and on the row and column indexes (not only on
their respective cluster indexes). We exemplify our missing
data model on the Latent Block Model for binary data; it can
be easily reused for other probabilistic co-clustering models,
as it is only weakly coupled to the generative model of the
full data matrix.

In the simple clustering framework, few mixture mod-
els handling MNAR data have been proposed. Marlin et al.
(2011) combine a multinomial mixture clustering model, used
as a complete data model, with a MNAR-type missingness
model. They propose two versions of their missingness model.
The first one, called CPT-v, models the data observation prob-
ability depending only on the underlying value of the data.
The second one, called Logit-vd, allows the probability of
a data entry to be missing to depend both on the value of
the underlying data and the characteristics of the column,
giving more flexibility to the model. Our missingness model
respects the symmetry of the co-clustering problem by de-
pending identically on the characteristics of the row and
column. Kim and Choi (2014) propose Bayesian-BM/OR,
a simple mixture model of binomials in a Bayesian formal-
ism. Their MNAR-type model is based on three factors, re-
lated to the row, the column and the data value, all three be-
ing modeled by Bernoulli variables combined together by a
“or” logical operator. The choice of this missingness model
is motivated by algorithmic considerations that are not rel-
evant for co-clustering models. Tabouy et al. (2020), in a
graph perspective, deal with nonobserved dyads during the
sampling of a network and consecutive issues in the infer-
ence of the stochastic block model. They propose three dif-
ferent MNAR sampling designs in which observing dyads
depends either on their underlying value, or on the class or
on the degree of the nodes. The Stochastic Block Model,
though similar from the Latent Block Model we use, is not
usable for co-clustering purposes.

Also related to missing data but not to clustering, MNAR
is also investigated in matrix factorization. Steck (2010) de-
rives a weighted matrix factorization model and optimizes
the parameters based on a metric that is robust to MNAR
data. Hernández-Lobato et al. (2014) use a double proba-

bilistic matrix factorization model; one is for the complete
data and one for the missing data, where users and items
propensities are both modeled with low rank matrices. Schn-
abel et al. (2016) propose an empirical risk minimization
framework to derive a propensity scored matrix factoriza-
tion method that can account for selection bias.

We present in Section 2 the Latent Block Model intro-
duced by Govaert and Nadif (2008). In Section 3, we in-
troduce our model, a LBM extended to a MNAR missing-
ness process, and propose, in Section 4, a variational EM
algorithm to infer its parameters. We also introduce, in Sec-
tion 5, an Integrated Completed Likelihood (ICL) criterion
to tackle model selection. We then conduct experiments on
synthetic datasets in Section 6 to show that the overall ap-
proach is relevant to co-cluster MNAR data. Finally, an anal-
ysis of the voting records of the lower house of the French
Parliament is presented in Section 7. The source code and
the dataset of the voting records are provided for reproducibil-
ity purposes at https://github.com/gfrisch/LBM-MNAR.

2 The Latent Block Model

The Latent Block Model (LBM) is a co-clustering model
that classifies jointly the rows and the columns of a binary
data matrix (Govaert and Nadif 2008). This probabilistic
generative model assumes a double partition on the rows and
the columns of a (n1×n2) data matrix X that corresponds to
a strong structure of the matrix in homogeneous blocks. This
structure is unveiled by reordering the rows and columns ac-
cording to their respective cluster index; for K row clusters
and L column clusters, the reordering reveals K ×L homo-
geneous blocks in the data matrix. Note that we adopt here
the original view where the data matrix is interpreted as a
data table. The binary matrix X can also be interpreted as
the biadjacency matrix of a bipartite graph, whose two sets
of vertices correspond to the rows and columns of the data
matrix. In this interpretation, Xi j = 1 if an edge is present
between “row node” i and “column node” j, and Xi j = 0 oth-
erwise.

For the (n1 × n2) data matrix X , two partitions are de-
fined by the latent variables Y and Z, with Y being the n1×K
indicator matrix of the latent row clusters (Yik = 1 if row i be-
longs to group k and Yik = 0 otherwise), and Z being the n2×L
indicator matrix of the latent column cluster. The group in-
dicator of row i will be denoted Y i, and similarly, the group
indicator of column j will be denoted Z j. The LBM makes
several assumptions on the dependencies:

Independent rows and column clusters The latent variables
Y and Z are a priori independent.

p(Y ,Z) = p(Y)p(Z) .

https://github.com/gfrisch/LBM-MNAR
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Y i Z j

Xi j

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∀i, Y i
iid∼M(1;α)

∀ j, Z j
iid∼M(1;β)

∀i, j, Xi j ∣Yik = 1,Z jl = 1 ind∼ B(πkl)

with α ∈ SK−1, β ∈ SL−1 and πkl ∈ [0,1]

Fig. 1 Summary of the standard Latent Block Model with binary data.

Note that a priori independence does not imply a posteriori
independence: given the data matrix X , the two partitions
are (hopefully) not independent.

Independent and identically distributed row clusters The la-
tent variables Y are independent and follow a multinomial
distribution M(1;α), where α = (α1, ...,αK) contains the
mixing proportions of rows:

p(Y ;α) =∏
i

p(Y i;α)

p(Yik = 1;α) = αk ,

with α ∈ S(K−1) = {α ∈RK
+
∣∑k αk = 1}.

Independent and identically distributed column clusters Like-
wise, the latent variables Z are independent and follow a
multinomial distribution M(1;β), where β = (β1, ...,βL)

contains the mixing proportions of columns:

p(Z;β) =∏
j

p(Z j;β)

p(Z jl = 1;β) = βl ,

with β ∈ S(L−1).

Given row and column clusters, independent and identically
distributed block entries Given the row and colum clusters
(Y ,Z), the entries Xi j are independent and follow a Bernoulli
distribution of parameter π = (πkl ;k = 1, ...,K; l = 1, ...,L): all
elements of a block follow the same probability distribution.

p(X ∣Y ,Z;π ) =∏
i j

p(Xi j∣Y i,Z j;π )

p(Xi j = 1∣YikZ jl = 1;π ) = πkl .

To summarize, the parameters of the LBM are θ = (α ,
β , π) and the probability mass function of X can be written
as:

p(X ;θ) =∑
(Y Z)∈I×J

(∏
ik

αk
Yik)(∏

jl
βl

Z jl)(∏
i jkl

φ(Xi j;πkl)
YikZ jl) ,

where φ(Xi j;πkl) = π
Xi j
kl (1−πkl)

1−Xi j is the mass function of
a Bernoulli variable and where I (resp. J) denotes the set of
all possible partitions of rows (resp. columns) into K (resp.
L) groups.

µMi jXi j

X(o)
i j

Fig. 2 Graphical representation of the MCAR model. The partially ob-
served entry X(o)

i j is generated by the corresponding entries of the full
matrix Xi j and the binary mask Mi j . The binary mask M does not de-
pend on X and its distribution is defined by a single global effect pa-
rameter µ .

3 Extension to Informative Missing Data

The standard Latent Block Model does not accommo-
date missing observations, that is, the data matrix X is fully
observed. This section introduces our missingness model,
which will be coupled to the LBM, thereby enabling to pro-
cess missing data.

We start by introducing some notation: from now on,
X(o) will denote the “partially observed” data matrix, with
missing entries, whereas X denotes the “full” (unobserved)
data matrix, without missing entries. The partially observed
matrix X(o) is identical to the full matrix X except for the
missing entries; X(o) takes its values in {0,1,NA}, where
NA denotes a missing value. It will be convenient to intro-
duce a binary mask matrix M that indicates the non-missing
entries of X(o): if Mi j = 0, then X(o)i j =NA.

3.1 Models of Missingness

The three main types of missingness are Missing Com-
pletely At Random (MCAR), Missing At Random (MAR),
and Missing Not At Random (MNAR). We propose here a
model for each missingness type. Instead of directly model-
ing the probability of being observed, we will model a real
variable Pi j that defines the log-odds of this probability. This
log-odds will be called here the “propensity” to be observed:

∀i, j Pi j = log(
p(Mi j = 1)
p(Mi j = 0)

) .

Missing Completely At Random (MCAR) Missingness does
not depend on data, whether observed or not. A simple model
of missingness is obtained by assuming that every entry of
X(o) has the same propensity of being missing. This is mod-
eled by a single propensity parameter µ . The graphical rep-
resentation of this model is shown in Figure 2.

Missing At Random (MAR) Missingness depends on the ob-
served data X(o)i j ∈ {0,1,NA} for all (i, j), but not on the un-

observed data, that is, any Xi j corresponding to X(o)i j = NA.
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µMi jXi j

X(o)
i j

Ai C j

Fig. 3 Graphical representation of the MAR model. The partially ob-
served entry X(o)

i j is generated by the corresponding entries of the full
matrix Xi j and the binary mask Mi j . The binary mask M does not de-
pend on X and its distribution is defined by a global effect parameter µ

and two latent variables A and C that enable deviations from µ .

Ai Bi C j D j

µXi j

X(o)
i j

Mi j

Fig. 4 Graphical representation of the MNAR model. The partially
observed entry X(o)

i j is generated by the corresponding entries of the
full matrix Xi j and the binary mask Mi j . The binary mask M depends
on X and its distribution is also defined by a global effect parameter
µ , two latent variables A and C that enable deviations from µ , and two
latent variables B and D that drive the deviations from the MAR model.

The previous missingness model can be enlarged by allow-
ing the propensity of missingness to depend on the row and
column indexes. To do so, we can introduce a latent variable
for every row, denoted A, and another one for every column,
denoted C. For the sake of simplicity, all latent variables
Ai and C j are assumed independent. They allow deviations
from the global propensity µ . The graphical representation
of this model is shown in Figure 3.

Missing Not At Random (MNAR) Missingness here depends
on unobserved data: the probability of observing the entries
of the matrix depends on their values, whether observed or
not. We equip the previous model with two additional la-
tent variables to adapt the propensity of each entry of the
data matrix to the unobserved data, that is, to Xi j. These new
row and column latent variables, B and D, adjust the propen-
sity of missingness according to the actual value of Xi j. The
graphical representation of this model is shown in Figure 4.

We model the latent variables A, B, C, and D with Gaus-
sian distributions centered at zero with free variances σ

2
A ,

σ
2
B , σ

2
C, and σ

2
D, respectively:

⎧⎪⎪
⎨
⎪⎪⎩

∀i, Ai
iid
∼ N (0,σ2

A), Bi
iid
∼ N (0,σ2

B)

∀ j, C j
iid
∼ N (0,σ2

C), D j
iid
∼ N (0,σ2

D)
.

The global parameter µ and the latent variables define the
propensity of missingness, that is, the log-odds of being miss-
ing as follows:

∀i, j Pi j = {
µ +Ai+Bi+C j +D j if Xi j = 1
µ +Ai−Bi+C j −D j if Xi j = 0

.

Then, given this propensity, every element Mi j of the mask
matrix is independent and follows a Bernoulli distribution:

∀i, j Mi j∣Ai,Bi,C j,D j,Xi j
ind
∼ B(expit(Pi j)) ,

with expit(x) = 1/(1+exp(−x)).
Note that, if we omit the latent variables Bi and D j, the

missingness model follows the MAR assumption since Pi j,
and thus Mi j, is then independent of Xi j. If we also omit the
latent variables Ai and C j, the missingness model follows the
MCAR assumption: the missingness models are nested.

These models of missingness can be used for several ap-
plications. One of these, collaborative filtering, uses the his-
tory of user ratings to build a recommendation system. For
this application, an MCAR modeling means that the prob-
ability of observing a rating for a particular item does not
depend on the user nor the item; an MAR modeling means
that missingness can depend on the user or the item; for ex-
ample, some people give their opinion more often than oth-
ers. The MAR simplifying assumption is often used in col-
laborative filtering. However, Marlin et al. (2007) show that
there is often a dependency between the rating frequency
and the underlying preference level, lending support to the
hypothesis that ratings are generated by a MNAR process,
where missingness depends on the actual rating that would
be given. Some people give their opinion more often when
they are satisfied and other ones when they are dissatisfied.
Most collaborative filtering methods do not have a princi-
pled method for extracting information from missing data,
which can lead to strong biases in estimations that may in
turn drastically affect predictions (Hernández-Lobato et al.
2014). Our missingness model allows one to account for the
users’ propensity to give their opinion, and for the items’
propensity to be rated, that is, their notoriety. These propen-
sities could also reflect exogenous factors such as price; for
example, more expensive items could be evaluated more of-
ten.

3.2 LBM with MNAR data

We extend the standard LBM using the previous mod-
eling to MNAR data. Given the full matrix X and the mask
matrix M, all the elements of the observed matrix X(o) are
generated as follows:

X(o)i j = {
Xi j if Mi j = 1
NA if Mi j = 0

.
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Figure 5 summarizes the LBM extented to MNAR data. X(o)

taking its values in (0,1,NA), the same model can be rewrit-
ten without Mi j, thanks to a categorial distribution (that is,
a multinomial distribution with one trial) using directly the
latent variables of the missingness model:

∀i, Y i
iid
∼M(1;α) ∀ j, Z j

iid
∼M(1;β)

∀i, Ai
iid
∼ N (0,σ2

A) ∀ j, C j
iid
∼ N (0,σ2

C)

∀i, Bi
iid
∼ N (0,σ2

B) ∀ j, D j
iid
∼ N (0,σ2

D) (1)

X(o)i j ∣Yik=1,Z jl =1,Ai,Bi,C j,D j
ind
∼ cat

⎛
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
1

NA

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎢
⎣

p0
p1

1−p0−p1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎠

with

p0 = (1−πkl) expit(µ +Ai−Bi+C j −D j) (2)

p1 = πkl expit(µ +Ai+Bi+C j +D j) . (3)

The parameters of the LBM with MNAR data are θ = (α , β ,
π , µ , σ

2
A , σ

2
B , σ

2
C, σ

2
D) with size K+L+K×L+5.

Keribin et al. (2015) proved under mild assumptions that
for a probability distribution pθ (X) of a binary Latent Block
Model, there exists a unique set of parameters θ = (π,α,β),
up to a permutation of row and column labels. Our missing-
ness model belongs to the linear mixed effects model fam-
ily whose identifiability depends on the covariance struc-
tures. Wang (2013) derived conditions of identifiability for
the covariance parameters in a linear mixed effect model and
study some commonly used covariance structures. We did
not reach a proof of identifiability for the extended LBM
with MNAR data. However, the stability of the inference
shown by experiments on synthetic data (Section 6 and An-
nex D) suggests that there may be conditions under which
the joint model would be identifiable.

4 Inference in the extented LBM

The dependency between the full data matrix X and the
mask matrix M requires a joint inference of the LBM with
the MNAR model. As the standard maximum likelihood ap-
proach cannot be applied directly, we adopt a strategy based
on a variational EM.

During inference, we use the reformulation of Equa-
tion (1). We can split our random variables into two sets:
the set of unobserved latent variables and the set of ob-
served variables consisting of X(o) only. An observation
of X(o) only is called the incomplete data, and an ob-
servation of X(o) together with the latent variables A, B,
C, D, Y and Z is called the complete data. Given the in-
complete data, our objective is to infer the model param-
eters θ via maximum likelihood θ̂ = argmaxθ p(X(o);θ).

Y i Z j Ai Bi C j D j

LBM MNAR missingness model

Xi j Mi j

X(o)
i j

Latent Block Model

Y i
iid∼M(1;α), α ∈ SK−1

Z j
iid∼M(1;β), β ∈ SL−1

(Xi j ∣Yik = 1,Z jl = 1) ind∼ B(πkl), πkl ∈ (0,1)
MNAR model

Ai
iid∼ N (0,σ2

A), σ
2
A ∈R∗+

Bi
iid∼ N (0,σ2

B), σ
2
B ∈R∗+

C j
iid∼ N (0,σ2

C), σ
2
C ∈R∗+

D j
iid∼ N (0,σ2

D), σ
2
D ∈R∗+

(Mi j ∣Ai,Bi,C j,D j,Xi j = 1) ind∼ B(expit(µ +Ai+Bi+C j +D j))

(Mi j ∣Ai,Bi,C j,D j,Xi j = 0) ind∼ B(expit(µ +Ai−Bi+C j −D j))
Observations are generated according to:

X(o)
i j = { Xi j if Mi j = 1

NA if Mi j = 0

Fig. 5 Graphical view and summary of the Latent Block Model ex-
tended to MNAR missingness process. The observed data X(o)

i j is gen-
erated by the necessary information carried by the class and propensity
of row i and by the class and propensity of the column j.

This likelihood of the incomplete data should be
obtained by marginalization over all latent variables
p(X(o);θ) =∑Y Z ∫A B C D p(X(o),Y ,Z,A,B,C,D;θ), which
is rapidly untractable as it involves an exponentially growing
sum over all possible values of the latent variables.

We resort to the Expectation Maximization (EM) algo-
rithm to maximize p(X(o);θ) without explicitly calculating
it. The EM algorithm iteratively applies the two following
steps:

E-step Expectation step: from the current estimate θ
(t) of

θ , compute the criterion Q(θ ∣θ (t)) defined as the ex-
pectation of the complete log-likelihood, conditionally
on the observations X(o):

Q(θ ∣θ
(t)

) =

EY ,Z,A,B,C,D∣X(o),θ(t) [log p(X(o),Y ,Z,A,B,C,D;θ)] .

M-step Maximization step: find the parameters that maxi-
mize Q(θ ∣θ (t)).
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θ
(t+1)

= argmax
θ

Q(θ ∣θ
(t)

) .

The computation of the complete log-likelihood at the
E-step requires the posterior distribution of the latent vari-
ables p(Y ,Z,A,B,C,D∣X(o)) which is intractable, because
the search space of the latent variables is combinatorially
too large. This problem is well known in the context of co-
clustering; for the Latent Block Model, Celeux and Diebolt
(1985); Keribin et al. (2015) propose a stochastic E-step
with Monte Carlo sampling, but this strategy is not suited
to large-scale problems. We follow the original strategy pro-
posed by Govaert and Nadif (2008), which relies on a vari-
ational formulation of the problem, since it is more efficient
in high dimension.

4.1 Variational EM

The variational EM (VEM) (Jordan et al. 1999; Jaakkola
2000) introduces q(⋅), a parametric inference distribution
defined over the latent variables Y , Z, A, B, C, D and op-
timizes the following lower bound on the log-likelihood of
the incomplete data:

J (q,θ) = log p(X(o);θ)−KL(q(⋅) ∥ p(⋅∣X(o);θ)) ,

where KL stands for the Kullback-Leibler divergence and
q(⋅) denotes the variational distribution over the latent vari-
ables Y , Z, A, B, C, D. It can be shown that J (q,θ) is a
concave function of the variational distribution q and that its
maximum is reached for q(⋅) = p(⋅∣X(o);θ). Thus, maximiz-
ing the criterion J is equivalent to minimizing the discrep-
ancy between q(⋅) and p(⋅∣X(o);θ), as measured by the KL-
divergence, and is also equivalent to maximizing the likeli-
hood. The minimization of this KL-divergence requires one
to explore the whole space of latent distributions; the diffi-
culty of the problem is equivalent, in terms of complexity, to
the initial problem.

The criterion J (q,θ) can also be expressed as the sum
of a negative “energy” and the entropy of q hence its name
“negative variational free energy” in analogy with the ther-
modynamic free energy:

J (q,θ) =H(q)+Eq[log p(X(o),Y ,Z,A,B,C,D;θ)] , (4)

whereH(q) is the entropy of the variational distribution and
Eq is the expectation with respect to the variational distri-
bution. This criterion can become tractable by restricting
the search space of variational distributions to a subspace;
the maximum found is then a lower bound of the initial
criterion. The distributions in this subspace are denoted qγ

and J (qγ ,θ) is known as the “Evidence Lower BOund”
(ELBO) emphasizing the lower bound property on the ev-
idence of the data.

A wise choice of the restriction on the variational distri-
bution leads to a feasible computation of the criterion. We
choose to consider the following posterior shapes on the la-
tent variables:

∀i Y i∣X(o) ∼
qγ

M(1;τ
(Y)
i )

∀ j Z j ∣X(o) ∼
qγ

M(1;τ
(Z)
j )

∀i Ai∣X(o) ∼
qγ

N(ν
(A)
i ,ρ

(A)
i )

∀i Bi∣X(o) ∼
qγ

N(ν
(B)
i ,ρ

(B)
i )

∀ j C j ∣X(o) ∼
qγ

N(ν
(C)
j ,ρ

(C)
j )

∀ j D j ∣X(o) ∼
qγ

N(ν
(D)
j ,ρ

(D)
j ) .

We also impose the conditional independence of the latent
variables to get a feasible computation of the entropy and
of the negative “energy” (Equation 4) under qγ . This con-
ditional independence is widely known as the “mean field
approximation” (Parisi 1988). We finally get the following
fully factorized shape:

qγ =∏
n1
i=1M(1;τ

(Y)
i ) × ∏

n2
j=1M(1;τ

(Z)
j )

×∏
n1
i=1N(ν

(A)
i ,ρ

(A)
i )×∏

n1
i=1N(ν

(B)
i ,ρ

(B)
i )

×∏
n2
j=1N(ν

(C)
j ,ρ

(C)
j )×∏

n2
j=1N(ν

(D)
j ,ρ

(D)
j ) ,

where γ = (τ
(Y),τ(Z),ν(A),ρ(A),ν(B),ρ(B),ν(C),ρ(C),ν(D),ρ(D))

denotes the parameters’ concatenation of the restricted vari-
ational distribution qγ .

The new criterionJ (γ,θ) that we want to optimize from
now on is:

J (γ,θ) =H(qγ)+Eqγ
[log p(X(o),Y ,Z,A,B,C,D;θ)] , (5)

and the initial estimates of the model parameters θ̂ are in-
ferred as:

θ̂ = argmax
θ

(max
γ
J (γ,θ)) .

This double maximization is realized with an iterative strat-
egy and can be seen as an extension of the EM algorithm.
The two steps are described in Algorithm 1.

4.2 Computation of the variational criterion

The restriction on the space of the variational distribu-
tion simplifies the computation ofH(qγ) as entropy is addi-
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Algorithm 1: Variational Expectation Maximiza-
tion algorithm

Input: observed data X(o), K and L number of row groups
and column groups ;

Initialize γ
(0) and θ

(0);
while not convergence of criterion J do

VE-step: find the variational parameters γ
(t+1) that

optimize J (γ,θ(t))

γ
(t+1) = argmax

γ

J (γ,θ(t))

M-step: find the model parameters θ
(t+1) that optimize

J (γ
(t+1),θ):

θ
(t+1) = argmax

θ

J (γ
(t+1),θ)

end
Result: θ and γ: model and variational parameters

tive on independent variables:

H(qγ) =−∑
ik

τ
(Y)
ik logτ

(Y)
ik −∑

jl
τ
(Z)
jl logτ

(Z)
jl

+
1
2
∑

i
log(2πeρ

(A)
i )+

1
2
∑

i
log(2πeρ

(B)
i )

+
1
2
∑

j
log(2πeρ

(C)
j )+

1
2
∑

j
log(2πeρ

(D)
j ) .

The independence of latent variables allows one to rewrite
the expectation of the complete log-likelihood as:

Eqγ
[log p(X(o),Y ,Z,A,B,C,D)] = Eqγ

[log p(Y)] (6)

+Eqγ
[log p(Z)]+Eqγ

[log p(A)]+Eqγ
[log p(B)]

+Eqγ
[log p(C)]+Eqγ

[log p(D)]

+Eqγ
[log p(X(o)∣Y ,Z,A,B,C,D)] .

Despite the variational approximation, the expectation
of the complete log-likelihood (6) cannot be exactly com-
puted as its last term involves an expectation under qγ of
nonlinear functions:

Eqγ
[log p(X(o)∣Y ,Z,A,B,C,D)] = (7)

∑

i jkl∶X(o)
i j =0

τ
(Y)
ik τ

(Z)
jl Eqγ

[log(p0)]

+ ∑

i jkl∶X(o)
i j =1

τ
(Y)
ik τ

(Z)
jl Eqγ

[log(p1)]

+ ∑

i jkl∶X(o)
i j =NA

τ
(Y)
ik τ

(Z)
jl Eqγ

[log(1− p0− p1)] , (8)

with p0 and p1 defined in Equations (2)–(3).

These expectations can be approximated by Taylor ex-
pansions assuming a small variance of the Gaussian varia-
tional variables. This method has similarities with the delta
method (Wasserman 2004, p. 79) with normal asymptotics
and variances tending to zero. Using a first order Taylor ex-
pansion would lead to a criterion without maximum, so we
use a second order Taylor expansion. The full expression of
the criterion is given in Appendix A.

4.3 Maximization of the variational criterion

The VEM Algorithm 1 alternates maximizations with
respect to the variational parameters γ and with respect to
the model parameters θ . For our model, there is no ex-
plicit solution for the two maximizations of the criterion
J (γ,θ), which are carried out by the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm.
We used automatic differentiation to compute the gradients
needed for L-BFGS and for the Taylor series used in the
variational criterion. We chose the Autograd library from
HIPS and the submodule Autograd from PyTorch (Paszke
et al. 2019). These libraries rely on a reverse accumulation
computational graph to compute exact gradients. Their high
efficiency, even with large graphs, thanks to GPU acceler-
ation, makes them particularly well adapted for the VEM
algorithm.

4.4 Initialization

VEM does not ensure convergence towards a global op-
timum. The EM-like algorithms are known to be sensitive to
the initialization, particularly when applied to models with
discrete latent space, and may get stuck in unsatisfactory
local maxima (Biernacki et al. 2003; Baudry and Celeux
2015).

A simple solution consists in training for a few itera-
tions from several random initializations, and pursuing op-
timization with the solution with highest value of the vari-
ational criterion (see, e.g., small EM for mixtures Baudry
and Celeux 2015). This exploration strategy spends a great
deal of computing resources to bring out only a few good
estimates. Another solution is to rely on simpler clustering
methods, such as k-means or spectral clustering, to initialize
the algorithm (Shireman et al. 2015).

The parameters of the Stochastic Block Model, a close
relative of the Latent Block Model for graphs, can be con-
sistently identified by spectral clustering (Rohe et al. 2011).
Following this idea, we use a double spectral clustering (with
absolute eigenvalues of the Laplacian as in Rohe et al. 2011)
on rows and columns on the similarity matrices XXT and
XT X , to initialize our algorithm. Although this method is
not designed for MNAR data, it can be expected to provide
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a satisfying initialization of the Latent Block Model if the
missingness is not predominant. The parameters of our miss-
ingness model cannot be initialized with this procedure; they
are randomly initialized. The overall initialization procedure
is described in Appendix B.

5 Model selection

5.1 Integrated Completed Likelihood criterion (ICL)

ICL, inspired by the Bayesian Information Criterion, was
originally proposed to select a relevant number of classes for
mixture models (Biernacki et al. 1998). It was extended to
select an appropriate number of (row and column) clusters
in the standard Latent Block Model (Keribin et al. 2012): for
K row classes and L column classes, the criterion is defined
as

log∫ p(X ,Y ,Z∣θ ;K,L)p(θ ;K,L)dθ ,

with p(θ ;K,L) the prior distribution of parameters. By tak-
ing into account the latent variables Y ,Z, ICL is a clustering-
oriented criterion, whereas BIC or AIC are driven by the
faithfulness to the distribution of X (Biernacki et al. 1998).

For the LBM with MNAR missingness, ICL requires pri-
ors on the parameters of the missingness model. We chose
independent InverseGamma(1, 1) distributions for the pa-
rameters σ

2
A , σ

2
B , σ

2
C and σ

2
D. As in Keribin et al. (2012),

we use non-informative Dirichlet distribution priors on the
α and β parameters of class mixing proportions.

Proposition 1 The asymptotic ICL criterion,

ICL∞(K,L) = max
θ ,Y ,Z,A,B,C,D

log p(X(o),Y ,Z,A,B,C,D;θ)

−
K−1

2
log(n1)−

L−1
2

log(n2)

−
KL+1

2
log(n1n2)− log(n1n2) ,

for the LBM with the MNAR model of Section 3.2 is, up to
an irrelevant constant, an asymptotic expansion of the log
integrated completed likelihood

log∫ p(X ,Y ,Z,A,B,C,D∣θ ;K,L)p(θ ;K,L)dθ .

See proof in Appendix C.

As seen in Section 4, the maximized completed log-likelihood
required for the asymptotic ICL cannot be calculated; in
practice we use the expectation of the completed log-likelihood
under the variational posterior, computed by the difference
between the lower bound provided by the variational ap-
proximation and the entropy of the variational distribution

(see Equation 5). The asymptotic ICL is thus approximated
by:

J (γ̂, θ̂)−H(qγ̂)−
K−1

2
log(n1)−

L−1
2

log(n2)

−
KL+1

2
log(n1n2)− log(n1n2) ,

where (γ̂, θ̂) = argmaxγ,θ J (γ,θ).
An asymptotic ICL criterion for the LBM with MAR

data can be constructed in the same way, allowing for com-
parison with the MNAR model as the models are nested (see
details in Appendix C).

6 Experiments on simulated data

Simulated data brings all the elements to assess cluster-
ing algorithms in controlled settings. Using controlled datasets
provides the means to properly test the ability of an algo-
rithm to recover the known underlying structure.

6.1 Difficulty of a co-clustering task

In co-clustering, several loss functions are suited for mea-
suring the discrepancy between the underlying classes (Y , Z)
and some predictions (Ŷ , Ẑ). For our experiments, we will
use the measure defined by Govaert and Nadif (2008), that
is, the ratio of misclassified entries in the data matrix:

litem(Y ,Z,Ŷ , Ẑ) = 1− max
t∈Ω1,s∈Ω2

1
n1n2

∑
i jkl

YikŶit(k)Z jl Ẑ js(l) ,

where Ω1 (resp. Ω2) is the set of all possible permutations
of {1, . . . ,K} (resp. {1, . . . ,L}), introduced to take into ac-
count the fact that cluster indexes are known only up to a
permutation.

In standard clustering, the difficulty of a task is often
assessed by its Bayes risk, that is, by the minimum of the
expectation of the loss function, which is typically approxi-
mated by Monte Carlo on simulated data. Co-clustering poses
specific difficulties. Adding more rows or more columns al-
ters its difficulty because the dimensions of the spaces where
the clustering is performed are expanded. The duality be-
tween the rows and the columns implies that the size of the
matrix is a characteristic of a co-clustering problem. In other
words, given a fixed generative distribution, as the matrix
size increases, the difficulty of the task decreases, in con-
trast to simple clustering, where the difficulty, as measured
by the Bayes risk, remains constant when more examples
(that is, rows) are added.

A simple Monte Carlo approximation of the risk consists
in averaging over many statistical units. In simple clustering,
this means generating a great number of rows in a data ma-
trix. In co-clustering, the statistical unit is the whole matrix,
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implying that a Monte Carlo approximation of the risk is ob-
tained by generating a great number of data matrices, which
then involves a great computational time. Furthermore, es-
timating the Bayes risk from a single data matrix is very
inconstant; the risk may be very different between two data
matrices of the same size generated from the same distribu-
tion. Hence the usual notion of Bayes risk is not appropriate
for co-clustering. Lomet et al. (2012) argue that conditioning
the Bayes risk on the observed matrix is more appropriate.
They give a protocol to simulate data matrices in which the
difficulty of the clustering task is controlled by the following
conditional Bayes risk:

ritem(Ŷ , Ẑ) =E[ litem(Y ,Z,Ŷ , Ẑ)∣X(o) ] , (9)

where the expectation is taken over Y ,Z only and Ŷ , Ẑ are
the clusterings returned by the conditional Bayes classifier,
that is, the maximum a posteriori:

(Ŷ , Ẑ) = argmin
Y ,Z

ritem(Y ,Z) = argmax
Y ,Z

∑
i j

p(Yi,Z j∣X(o) ) .

The expectation (9) involves the non tractable posterior
of the latent variables p(Y ,Z∣X(o) ) (see Section 4). The ex-
pectation is approximated by an average obtained from a
Gibbs sampler of (Y ,Z∣X(o) ).

Lomet et al. (2012) released data sets, with different sizes
and difficulties, simulated from the Latent Block Model. Us-
ing their protocol, we generated new data according the LBM
with a MNAR missingness process. Data sets are generated
according to the LBM with three row and column classes,
with parameters

α = β =
⎛
⎜
⎝

1/3
1/3
1/3

⎞
⎟
⎠

and π =
⎛
⎜
⎝

ε ε 1−ε

ε 1−ε 1−ε

1−ε 1−ε ε

⎞
⎟
⎠

, (10)

where ε defines the difficulty of the clustering task. The pa-
rameters of the MNAR process are

µ = 1, σ
2
A = 1, σ

2
B = 1, σ

2
C = 1, σ

2
D = 1 , (11)

which gives an average proportion of 35% of missing values.

6.2 Class prediction

We test here the ability of the proposed inference scheme
to recover row and column classes. To conduct the experi-
ments, we generate an initial data matrix of size n1 =n2 =500
with a conditional Bayes risk of 5% set by choosing ε (10)
by trial and error. The size of this matrix is then progres-
sively reduced, removing rows and columns, to increase the
difficulty of the classification task. The conditional Bayes
risk is re-estimated on each sub-matrix to provide a refer-
ence. Our algorithm is then run on these data matrices using

168 214 242 273 308 348 392 443 500
Size of the graph n1 = n2
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Fig. 6 Classification error with respect to the size of the data matrix
(lower is better); ★ is the median of the conditional Bayes risk; ▲ is
the median prediction error obtained by our algorithm.

20 initializations for each run, as described in Section 4.4.
We then predict the row and column classes (Y ,Z) with their
maximum a posteriori estimators on the variational distribu-
tion. This whole process is repeated 20 times, leading to the
results presented in Figure 6.

As expected, the conditional Bayes risk decreases as the
data matrices grow. The predictions returned by our algo-
rithm follow the same pattern, with a diminishing gap to the
conditional Bayes risk as the data matrices grow, which is
consistent with our expectations. Appendix D provides ad-
ditional experimental results that suggest consistent estima-
tions of the model parameters.

6.3 MNAR versus MAR model for MNAR data

The importance of using the right missingness model is
tested by comparing the classifications returned by an LBM
with and without an MNAR model. A data set is generated
according to the LBM with MNAR values where the param-
eters α , β and π of the LBM are fixed as in (10), and ε is
chosen in order to get a conditional Bayes risk of 12%, for
data matrices of size n1 = n2 = 100; the MNAR model param-
eters µ , σ

2
A and σ

2
C are all set to one which gives an average

proportion of 35% of missing values. Several data matrices
are generated using these parameters while varying the value
of the σ

2
B and σ

2
D parameters that govern the MNAR effects;

these variations do not affect the conditional Bayes risk nor
the proportion of missing values as latent variables B and
D follow Gaussian distributions centered at zero (see Fig-
ure 5). For each data matrix, we train the LBM with either
the MAR or the MNAR model. We also train a categorical
LBM (Keribin et al. 2015) considering missing values to be
a level of the categorical distribution using the “blockclus-
ter” package (Bhatia et al. 2014). This process is repeated 20
times, starting from the generation of a new fully observed
data matrix.
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Fig. 7 Classification error with respect to an increase of the MNAR
effect (lower is better); ★ is the median prediction error obtained with
the MAR model; ▲ is the median prediction error obtained with the
MNAR model; ● is the median prediction error obtained with the cate-
gorical LBM.

The median of the classification errors litem are presented
in Figure 7 as a function of the MNAR effect. They are es-
sentially constant and close to the conditional Bayes risk for
the LBM with the MNAR model, whereas the LBM with the
MAR model is badly affected by MNAR data, eventually
leading to a classification close to a totally random alloca-
tion1. Ignoring the nature of the missingness process leads
here to strong biases in estimation that in turn drastically af-
fect classification. Thankfully, the ICL criterion may be of
great help to select the right missingness model as shown in
Section 6.5. The classification errors obtained with the cate-
gorical LBM are steadily close to the one of the totally ran-
dom allocation. Explaining missingness by cluster member-
ship is not relevant here and impairs the fit of the model. For
the same reason, similarly poor performances (not shown
here) were obtained using the ordinal LBM with MNAR
missingness of Corneli et al. (2020), in which data and miss-
ingness depend on the same row and column clusters.

6.4 Selecting the number of classes

We reuse the parameters (10) and (11) to analyze the be-
havior of the asymptotic ICL criterion. We consider different
sizes of data matrices, between (30,30) and (150,150), with
varying difficulty for each matrix size, with a conditional
Bayes risk (9) of respectively 5%, 12% and 20%

The results in Figure 8 show that, as expected, the ICL
criterion tends to select more often the right number of classes
as the data matrices get larger and also when classes are
more separated. We also observe that the ICL criterion tends
to be conservative for small data matrices, by underestimat-
ing the number of classes. It could come to the fact that the

1 With equal class proportions, the expected classification error of
a random allocation is K−1

K + L−1
L − K−1

K
L−1

L , that is, 0.89 here where
K = L = 3.

ritem(Ŷ , Ẑ) = 5% ritem(Ŷ , Ẑ) = 12% ritem(Ŷ , Ẑ) = 20%
L L L

2 3 4 5 2 3 4 5 2 3 4 5

n1 = n2 = 30 K

2 4 3 1 7 5 10 3
3 3 9 5 1 1 5 1
4 1 1
5

n1 = n2 = 40 K

2 3 4 10 4 1 12 2 1
3 12 5 4 1
4 1
5

n1 = n2 = 50 K

2 1 6 2 15 1 2
3 2 16 11 1 0
4 1 1 1
5

n1 = n2 = 75 K

2 3 10 1 16
3 16 8 4
4 1
5 1

n1 = n2 = 100 K

2 6 17
3 20 14 2 1
4
5

n1 = n2 = 150 K

2 1 4 1 15 1
3 18 15 4
4
5 1

Fig. 8 Number of (K,L) models selected by the asymptotic ICL crite-
rion among 20 trials on data matrices of different sizes and difficulties,
as measured by the conditional Bayes risk. All matrices are generated
with the same number of row and column classes: K = L = 3.

size of the matrix is not large enough to consider the asymp-
totic approximation as valid and/or it could come from the
approximations used to compute the log-likelihood J (vari-
ational restriction and delta method).

For further experiments on the asymptotic behaviour of
ICL of the Latent Block Model and comparisons with its
exact expression, we refer the reader to Keribin et al. (2012)
and Keribin et al. (2015).

6.5 Selecting the adequate missingness model

We use the models fitted in Section 6.3 to analyze the
ability of the ICL criterion to select the right missingness
model (MNAR or MAR). The difference in ICL between the
MAR and MNAR models is computed for each data matrix,
assuming that the right numbers of classes (K,L) are known.

The results, presented in Figure 9, show that ICL right-
fully opts for the MNAR model almost everywhere, demon-
strating the ability of this criterion to select the adequate
missingness model. The MAR model is only chosen for some
experiments with the lowest MNAR effect (σ2

B = σ
2
D = 0.01),

where the prediction performances are almost identical (see
Figure 7).
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Fig. 9 Difference in ICL between the MAR and MNAR models with
respect to an increase of the MNAR effect, where ★ is the median. The
MNAR model is selected when the difference in ICL is positive.

7 Experiments on real data

We consider voting records2 from the lower house of
the French Parliament (Assemblée Nationale). This dataset
gathers the results of the 1256 ballots of year 2018 of the 576
French members of parliament (MPs) for the procedural mo-
tions and amendments for the 15th legislature (June 2017).
For each ballot, the vote of each MP is recorded as a 4-level
categorical response: “yes”, ‘no”, “abstained” or “absent”.
Using our model, we bring out some relevant groups of bal-
lots and MPs, as well as some structure in the behavior of
nonvoters.

We gather the data in a matrix where each row repre-
sents an MP and each column represents a ballot. To use our
model, we reduced the 4 response levels to 3 (“yes”, “no”,
“missing”) assuming that merging the “abstained” and “ab-
sent” categories would not affect much the underlying miss-
ingness process (“abstained” votes represent about 4% of
the expressed votes, “missing” responses represent 85% of
all votes).

At the lower house of French Parliament, MPs may group
together according to their political affinities. Groups with
fewer than 15 members or MPs who choose to be indepen-
dent are gathered under the “Non inscrits” (NI) label, giving
a heterogeneous range of political hues inside it. The names
of the groups and their cardinalities are detailed in Figure 10.

The ICL criterion, used to select both the numbers of
classes and the type of missingness, favors a MNAR miss-
ingness with K = 14 MP classes and L = 14 ballot classes
(see Figure 13) against a MAR model with 19 MP classes
23 ballot classes. The reordered data matrix derived from
this block clustering is displayed in Figure 11. Fewer classes
lead to over-aggregated components hiding the subtleties of

2 Votes from the French National Assembly are avail-
able from http://data.assemblee-nationale.fr/

travaux-parlementaires/votes.

NI
LR

UDI-AGIR
MODEM

LaREM

LT
SOC

GDR
FI

Political groups from left-wing to right-wing

FI (17): France Insoumise
GDR (16): Groupe de la Gauche démocrate et républicaine
SOC (29): Socialistes
LT (19): Libertés et territoires
LaREM (304): La République En Marche
MODEM (46): Mouvement démocrate
UDI-AGIR (28): Les Constructifs
LR (104): Les Républicains
NI (13): Non inscrits (mixed left and right wings)

Fig. 10 Hemicycle of the political groups of the French National As-
sembly

the network, but since they still correspond to well-identified
groups and are more friendly to visual analysis, we provide
them as additional material in Appendix E.

In Figure 11, classes of MPs are coherent to their politi-
cal affiliation: class 0 and 1 are mainly made up of left-wing
MPs from the groups SOC, FI, GDR, LT, classes 2 and 3
are mainly made up of right-wing MPs from LR and the
classes from 6 to 13 are mainly made up of centrist MPs
from LaREM and MODEM who are political allies. Classes
of ballots can be analyzed with the available metadata. A
bipartite opposition system appears from classes A and C.
Ballots from class A refer to the original articles of law pro-
posed by the government and are unsurprisingly voted pos-
itively by the MPs classes from 6 to 13 as they are from
the same political mould as the French government. Ballots
from class C mainly refer to amendments proposed by mi-
nority and are voted positively by both the left wing (class
0 and 1) and the right wing (classes 2 and 3) and negatively
by the MPs supporting the government (classes 6 to 13). The
left and right wings are yet divided by usual issues such as
immigration regulation amendments gathered in classes G
and M or general economic matters gathered in classes H
and I.

In our model, the latent variables A and B characterize
the propensity of MPs to cast a vote. Figure 12 displays the
scatter plot of ν

(A)
i and ν

(B)
i , the maximum a posteriori es-

timates of Ai and Bi for all MPs under the variational distri-
bution. The abscissa represents the propensity to vote3, with
higher values of ν

(A) corresponding to a higher propensity
to vote, and the ordinate ν

(B) represents the additional effect
of casting a vote when approving the resolution. The mem-
bership of MPs to their political group is indicated by the
plotting symbol.

We see two obvious clusters separated by the vertical
axis ν

(B): the bottom cluster is essentially formed by MPs

3 More rigorously, the abscissa represents the global deviation from
the average propensity to vote.

http://data.assemblee-nationale.fr/travaux-parlementaires/votes
http://data.assemblee-nationale.fr/travaux-parlementaires/votes
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0: SOC(25) FI(12) GDR(11) LT(7) NI(4) LaREM(2) LR(1)

1: GDR(5) SOC(4) FI(4) LT(2)
2: LR(9) NI(2)

3: LR(93) NI(5) UDI-AGIR(3)

4: LT(3) UDI-AGIR(3) LaREM(1) FI(1) LR(1) MODEM(1)
5: UDI-AGIR(18) LT(4)

6: LaREM(60) MODEM(5) NI(1) LT(1) UDI-AGIR(1)

7: LaREM(44) MODEM(10)

8: LaREM(39) MODEM(11) LT(1) UDI-AGIR(1)

9: LaREM(25) MODEM(1)

10: LaREM(35) MODEM(7) UDI-AGIR(2) LT(1)

11: LaREM(42) MODEM(5)

12: LaREM(50) MODEM(6) NI(1)

13: LaREM(6)

Missing vote
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Fig. 11 Left: matrix of votes reordered according to the row and column classes, for the MNAR LBM model selected by ICL, with 14 MP classes
and 14 ballot classes. The red lines delineate class boundaries. The breakdown of political groups in each cluster of MPs is given on the left.
Right: summary of the inferred opinions (expressed or not) for all classes of ballots and MPs, as given by the estimated probability πkl to approve
a resolution in each block of the reordered matrix.
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Fig. 12 Maximum a posteriori estimates of the MPs propensities
(ν(A)

i , ν
(B)
i ), with their political group memberships. ν

(A)
i drives the

MAR effect and ν
(B)
i drives the MNAR one.

from the LaREM and MODEM political groups, which sup-
port the government, whereas the top cluster is formed by
the opposition political groups. The ν

(B) estimates for the
opposition cluster are positive, meaning that these MPs come
to parliament to vote positively. This behavior is not surpris-
ing because the MPs of the opposition parties are outnum-
bered by the MPs supporting the government, so they must
be diligent if they want their tabled motion or amendment
passed. The dependency between the political groups and
the MNAR effect encoded in the estimates ν

(B), which is
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Fig. 13 Asymptotic ICL curve. Maximum is reached for K=14 and
L=14

confirmed by an ANOVA test (with a p-value smaller than
numerical error), supports that the missingness patterns cap-
tured by our model are relevant for the problem at hand. A
similar analysis is developed on ballots in Appendix E.

8 Conclusion

In many estimation problems, the absence of data con-
veys some information on the underlying phenomenon that
should be exploited for its modeling. We propose a co-clustering
model that accounts for this absence of data; it aims at re-
trieving groups of rows and columns based on the complete
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data matrix instead of considering only the partitioning of
the observed data matrix. This model consists of two build-
ing blocks: a co-clustering model (Latent Block Model) of
the full data matrix, and a missingness model that explains
the censoring that produces the observed data matrix. This
missingness model preserves the symmetry of the co-clustering
model by allowing two MNAR effects, one on the rows and
the other on the columns. The overall model of the observed
data matrix results from the combination of the model of the
complete data matrix with the missingness model.

We used variational techniques and Taylor series to ob-
tain a tractable approximation of the lower bound of the ob-
served log-likelihood. We proposed a model selection cri-
terion to select both the number of classes and the type of
missingness (MAR versus MNAR).

Our experiments on synthetic datasets show that ignor-
ing an informative missingness can lead to catastrophic co-
clustering estimates, supporting the value of using expres-
sive missingness models on such type of data. We also il-
lustrate the use of our model on a real-world case where
the missingness model provides an interesting basis for ana-
lyzing and interpreting the motivations of nonvoters. These
experiments can be reproduced using the source code and
the dataset available at https://github.com/gfrisch/
LBM-MNAR.

Our model should also be useful in other fields such as in
ecology, where the probability of observing interaction be-
tween species derives from some factors that also explain the
true interactions (Vázquez et al. 2009), or in collaborative
filtering, where the probability of observing a rating depends
on the actual rating that would be given by the user (Marlin
et al. 2007). In the latter application, the data sizes gener-
ally encountered in recommendation would require compu-
tational improvements in inference. Another useful future
work is to extend our model to non-binary data.
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Appendix A Computing the criterion J (qγ ,θ)

The criterion to be optimized is :

J (qγ ,θ) =H(qγ)+Eqγ
[log p(X(o),Y ,Z,A,B,C,D;θ)] ,

where θ is the list of all model parameters: θ = (α , β , π ,
µ ,σ2

A ,σ2
B ,σ2

C,σ2
D). We restrict the form of the variational dis-

tribution qγ to get a fully factorized form:

qγ =∏
i
M(1;τ

(Y)
i )×∏

j
M(1;τ

(Z)
j )

×∏
i
N(ν

(A)
i ,ρ

(A)
i )×∏

i
N(ν

(B)
i ,ρ

(B)
i )

×∏
j
N(ν

(C)
j ,ρ

(C)
j )×∏

j
N(ν

(D)
j ,ρ

(D)
j ) ,

where γ denotes the list of parameters of the distribution:
γ = (τ

(Y),τ(Z),ν(A),ρ(A),ν(B),ρ(B),ν(C),ρ(C),ν(D),ρ(D)).
The entropy is additive across independent variables, so

we get:

H(qγ) = −∑
ik

τ
(Y)
ik logτ

(Y)
ik −∑

jl
τ
(Z)
jl logτ

(Z)
jl

+(n1+n2)(log(2π)+1)

+
1
2
∑

i
(logρ

(A)
i + logρ

(B)
i )+

1
2
∑

j
(logρ

(C)
j + logρ

(D)
j ) .

The independence of the latent variables allows one to
rewrite the expectation of the complete log-likelihood as:

Eqγ
[log p(X(o),Y ,Z,A,B,C,D)] =Eqγ

[log p(Y)]

+Eqγ
[log p(Z)]+Eqγ

[log p(A)]+Eqγ
[log p(B)]

+Eqγ
[log p(C)]+Eqγ

[log p(D)]

+Eqγ
[log p(X(o)∣Y ,Z,A,B,C,D)] ,

with the following terms:

Eqγ
[log p(Y)] =∑

ik
Eqγ

Yik logαk =∑
ik

τ
(Y)
ik logαk

Eqγ
[log p(Z)] =∑

jl
Eqγ

Z jl logβl =∑
jl

τ
(Z)
jl logβl

Eqγ
[log p(A)] = −

n1

2
log2π −

n1

2
logσ

2
A −

1
2σ2

A
∑

i
Eqγ

A2
i

= −
n1

2
log2π −

n1

2
logσ

2
A

−
1

2σ2
A
∑

i
((ν

(A)
i )

2
+ρ
(A)
i )

Eqγ
[log p(B)] = −

n1

2
log2π −

n1

2
logσ

2
B

−
1

2σ2
B
∑

i
((ν

(B)
i )

2
+ρ
(B)
i )

Eqγ
[log p(C)] = −

n2

2
log2π −

n2

2
logσ

2
C

−
1

2σ2
C
∑

j
((ν

(C)
j )

2
+ρ
(C)
j )

Eqγ
[log p(D)] = −

n2

2
log2π −

n2

2
logσ

2
D

−
1

2σ2
D
∑

j
((ν

(D)
j )

2
+ρ
(D)
j )

https://github.com/gfrisch/LBM-MNAR
https://github.com/gfrisch/LBM-MNAR
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Eqγ
[log p(X(o)∣Y ,Z,A,B,C,D)] =∑

kl,i j∶X(o)
i j =1

τ
(Y)
ik τ

(Z)
jl Eqγ

[log p1]

+ ∑

kl,i j∶X(o)
i j =0

τ
(Y)
ik τ

(Z)
jl Eqγ

[log p0]

+ ∑

kl,i j∶X(o)
i j =NA

τ
(Y)
ik τ

(Z)
jl Eqγ

[log(1− p0− p1)] , (12)

with p0 and p1 defined in Equations (2)–(3).
Equation (12) involves the computation of the expecta-

tions of the following nonlinear functions:

f1(x,y) = log(πkl expit(µ +x+y))

f0(x,y) = log((1−πkl)expit(µ +x−y))

fNA(x,y) = log(1−πkl expit(µ +x+y)

−(1−πkl)expit(µ +x−y)) .

The approximation of these expectations given by the second-
order Taylor series with independent random variables X
and Y reads:

E[ f (X , Y)] ≈ f (EX , EY)+
1
2

var(X)
∂

2 f (E[X], E[Y ])

∂(X)
2

+
1
2

var(Y)
∂

2 f (E[X], E[Y ])

∂(Y)
2 ,

which yields in our case:

Eqγ
[ f (Ai+C j, Bi+D j)] ≈ f(ν

(A)
i +ν

(C)
j , ν

(B)
i +ν

(D)
j )

+
1
2
(ρ
(A)
i +ρ

(C)
j )

∂
2 f(ν

(A)
i +ν

(C)
j , ν

(B)
i +ν

(D)
j )

∂(ν
(A)
i +ν

(C)
j )

2

+
1
2
(ρ
(B)
i +ρ

(D)
j )

∂
2 f(ν

(A)
i +ν

(C)
j , ν

(B)
i +ν

(D)
j )

∂(ν
(B)
i +ν

(D)
j )

2 .

The criterion is now fully computable.
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Appendix B Initialization of the VEM algorithm with
spectral clustering: Algorithm 2.

Algorithm 2: Initialization of the VEM algorithm
with spectral clustering.

Input:
observed data X(o)
K and L number of row groups and column groups

Function SpectralClustering(W adjacency matrix, k
number of clusters):

Define D ∈Rn×n the diagonal matrix with
Dii =∑k Wik

Define L = D−1/2WD−1/2

Form the matrix U = [U1, ...,Uk] ∈Rn×k, where U` is
the eigenvector of L with the `th largest eigenvalue
in absolute value.

Return results of k-means with k clusters on U .
begin

Build Y the n1×K indicator matrix of the row cluster
memberships with SpectralClustering(XXT ,K)

Build Z the n2×L indicator matrix of the column
cluster memberships with
SpectralClustering(XT X ,L).

α , β and π are estimated from Y and Z
µ is initialized such as expit(µ) is the global

missingness rate
σ

2
A , σ

2
B , σ

2
C and σ

2
D are sampled from U]0,1]

end
Result:

θ = (α,β ,π,µ,σ2
A ,σ

2
B ,σ

2
C,σ

2
D) the model parameters

Y and Z the row and column cluster memberships

Appendix C Asymptotic form of the Integrated
Completed Likelihood

C.1 ICL of the MNAR model

The asymptotic ICL criterion,

ICL∞(K,L) = max
θ ,Y ,Z,A,B,C,D

log p(X(o),Y ,Z,A,B,C,D;θ)

−
K−1

2
log(n1)−

L−1
2

log(n2)

−
KL
2

log(n1n2)− log(n1n2) ,

for the LBM with the MNAR model of Section 3.2 is, up
to an irrelevant constant, an asymptotic expansion of the log
integrated completed likelihood

log∫ p(X ,Y ,Z,A,B,C,D∣θ ;K,L)p(θ ;K,L)dθ .

Proof With independent latent variables and independent
priors on the parameters, the log integrated completed like-

lihood reads

log∫ p(X(o),Y ,Z,A,B,C,D∣θ )p(θ)dθ

= log∫ p(X(o)∣Y ,Z,A,B,C,D,π,µ )p(π)p(µ)dπdµ (13)

+ log∫ p(Y ∣α )p(α)dα + log∫ p(Z∣β )p(β)dβ

+ log∫ p(A∣σ
2
A )p(σ

2
A)dσ

2
A + log∫ p(B∣σ

2
B )p(σ

2
B)dσ

2
B

+ log∫ p(C∣σ
2
C )p(σ

2
C)dσ

2
C + log∫ p(D∣σ

2
D )p(σ

2
D)dσ

2
D.

As in the ICL developed by Keribin et al. (2012) for the
standard LBM, we set non-informative Dirichlet distribution
D(a, ...,a) priors on α and β :

log p(Y) = log∫ p(Y ∣α )p(α;a)dα

= log∫ ∏
ik

(αk)
Yik 1
B(a)

∏
ik

(αk)
a−1dα

= logB(a+∑
i

Y i)− logB(a)

=∑
k

logΓ (Y∶k +a)+ logΓ (Ka)− logΓ (n1+Ka)

−K logΓ (a) ,

where Y∶k =∑iYik. The Stirling expansion logΓ (x) = x logx−
x− 1

2 logx+o(logx) leads to the following asymptotic devel-
opment of log p(Y):

log p(Y) =∑
k

logΓ (Y∶k +a)− logΓ (n1+Ka)+o(logn1)

=∑
k

Y∶k logY∶k −n1−
1
2

n1

−(n1 logn1+Ka logn1−n1−
1
2

logn1)+o(logn1).

With the non-informative Jeffrey prior a = 1
2 , this gives:

log p(Y) =∑
k

Y∶k log(
1
n1

Y∶k)−
K−1

2
logn1+o(logn1)

=max
α

log p(Y ;α)−
K−1

2
logn1+o(logn1). (14)

Similarly, we get:

log p(Z) =∑
l

logΓ (Z∶l +a)+ logΓ (La)− logΓ (n2+La)

−L logΓ (a)

=max
β

log p(Z;β)−
L−1

2
logn2+o(logn2) , (15)

where Z∶l =∑ j Z jl .
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An InverseGamma(ξ , ξ ) prior is set on σ
2
A:

p(A) = ∫ p(A∣σ
2
A)p(σ

2
A;ξ) dσ

2
A

= ∫ (2πσ
2
A)

−
n1
2 exp(−

∑i A
2
i

2σ2
A

)

ξ
ξ

Γ (ξ)
exp(−

ξ

σ2
A
)(σ

2
A)

−ξ−1
dσ

2
A

=
ξ

ξ

Γ (ξ)
(2π)

(−
n1
2 )

∫ σ
2
A
(−

n1
2 −ξ−1) exp(−

2ξ +∑i A
2
i

2
⋅

1
σ2

A
) dσ

2
A

=
ξ

ξ

Γ (ξ)
2ξ

π
−

n1
2 (2ξ +∑

i
A2

i )

(−
n1
2 −ξ)

Γ (
n1

2
+ξ) .

Setting ξ to 1, one gets:

p(A) = 2π
−

n1
2 (2+∑

i
A2

i )

−
n1
2 −1

Γ (
n1

2
+1) ,

therefore,

log p(A) = log2−
n1

2
logπ + logΓ (

n1

2
+1)

−(
n1

2
+1) log(2+∑

i
A2

i )

= log2−
n1

2
logπ + logΓ (

n1

2
+1)−(

n1

2
+1) logn1

−(
n1

2
+1) log(

2
n1
+

1
n1
∑

i
A2

i ) .

Using a Taylor expansion on the last term with n1→+∞ and
using the fact that 1

n1
∑i A

2
i tends to a constant, we obtain:

log p(A) = log2−
n1

2
logπ + logΓ (

n1

2
+1)−(

n1

2
+1) logn1

−(
n1

2
+1) log(

1
n1
∑

i
A2

i )(1+O(
2
n1

))

= log2−
n1

2
logπ + logΓ (

n1

2
+1)−(

n1

2
+1) logn1

−(
n1

2
+1) log(

1
n1
∑

i
A2

i )+O(1)

= log2−
n1

2
logπ + logΓ (

n1

2
+1)−(

n1

2
+1) logn1

−
n1

2
log(

1
n1
∑

i
A2

i )+O(1)

Using the property of the gamma function Γ (x+1) = xΓ (x)
and applying the Stirling expansion of logΓ (x), we get for

n1→ +∞:

log p(A) = log2−
n1

2
logπ + log

n1

2
+

n1

2
log

n1

2
−

n1

2

−
1
2

log
n1

2
−(

n1

2
+1) logn1

−
n1

2
log(

1
n1
∑

i
A2

i )+o(logn1)

= −
n1

2
log(2π)−

n1

2
−

n1

2
log(

1
n1
∑

i
A2

i )

−
1
2

logn1+o(logn1)

=max
σ2

A

log p(A;σ
2
A)−

1
2

logn1+o(logn1) . (16)

Similarly, with an identical prior on σ
2
B , σ

2
C and σ

2
D we get:

log p(B) =max
σ2

B

log p(B;σ
2
B)−

1
2

logn1+o(logn1)

log p(C) =max
σ2

C

log p(C;σ
2
C)−

1
2

logn2+o(logn2) (17)

log p(D) =max
σ2

D

log p(D;σ
2
D)−

1
2

logn2+o(logn2) .

Using a Laplace approximation as realized in the BIC,
the penalty term differs from the categorical LBM (Keribin
et al. 2015) as the levels of the distribution are linked (see
Equations (2) and (3) from Section 3.2). We have:

log p(X(o)∣Y ,Z,A,B,C,D) (18)

= log∫ p(X(o)∣Y ,Z,A,B,C,D,π,µ)p(π)p(µ)dπdµ

= max
π,µ

log p(X(o)∣Y ,Z,A,B,C,D;π,µ) (19)

+
KL+1

2
log(n1n2)+o(logn1)+o(logn2) ,

as the number of free parameters in the conditional distribu-
tion of X(o) is K×L+1 which comes from the (K,L)-matrix
of probabilities π and from µ , governing the global miss-
ingness rate. The ICL criterion (Proposition 1) is directly
derived from Equations (13), (14), (15), (16), (17) and (19).



Learning from missing data with the binary Latent Block Model 17

C.2 ICL of the LBM with MAR data

We consider the following LBM extended with the MAR
missingness process:

Latent Block Model

Yi
iid
∼M(1;α), α ∈ SK−1

Z j
iid
∼M(1;β), β ∈ SL−1

(Xi j∣Yi = k,Z j = l ) ind
∼ B(πkl), πkl ∈ [0,1]

MAR data model

Ai
iid
∼ N (0,σ2

A), σ
2
A ∈R

∗

+

C j
iid
∼ N (0,σ2

C), σ
2
C ∈R∗

+

(Mi j∣Ai,C j )
ind
∼ B(expit(µ +Ai+C j))

Observations are generated according to:

X(o)i j = {
Xi j if Mi j = 1
NA if Mi j = 0

The asymptotic ICL of this model is:

ICL∞(K,L) = max
θ ,Y ,Z,A,C

log p(X(o),Y ,Z,A,C;θ) (20)

−
KL+1

2
log(n1n2)

−
K−1

2
log(n1)−

L−1
2

log(n2) (21)

−
1
2

log(n1n2) .

Appendix D Supplemental figures for estimation

This section provides additional experimental results that
suggest a consistent estimation of the model parameters. We
reuse the data matrices generated by the LBM with miss-
ing data from Section 6.2. An initial data matrix of size n1 =

n2 = 500 with a conditional Bayes risk of 5% was generated
and progressively reduced, removing rows and columns, to
increase the difficulty of the classification task.

Figure 14 displays the maximum absolute error made on
the parameters π of the Bernoulli distributions that model
the probability of X conditionally to the row and column
classes. This error decreases as the size of the data matrices
grows, which is consistent with our expectations.

Figure 15 displays the mean squared error (MSE) be-
tween the generated and estimated values of the latent vari-
ables A, B, C, D responsible for the individual variability
of missingness. The estimated values are given by the max-
imum a posteriori of their corresponding variational distri-
bution. The MSE curves of the variables A and C are compa-
rable as well as the curves of the variables B and D. This is
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Fig. 14 Maximum error between the true (π) and the estimated (π̂)
probabilities associated to the blocks of the data matrix X as a function
of its size.
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Fig. 15 Mean squared error of the maximum a posteriori estimates of
the latent variables A, B, C, D governing the propensity of missingness.

expected as the data matrices are generated with symmetric
characters in rows and columns.

Figure 16 compares the estimated values of A, B, C and
D to their true generated values for two different sizes of
data matrices, all other parameters being equal. A linear
trend is exhibited from these scatter plots showing a good
aptitude of the proposed inference to recover extreme nega-
tive and positive values.

Appendix E Supplemental figures for the French
national assembly votes analysis

Figure 17 displays the reordered matrix of votes derived
from a block clustering with a small number of classes. Such
a simplification may be helpful for identifying global trends.
With this model, the three MP classes are broadly identified
as gathering the right-wing (first class) and left-wing (sec-
ond class) opposition parties, the last class being formed of
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Fig. 16 Maximum a posteriori estimates of the latent variables governing the propensity of missingness versus their true generated values. Left:
n1 = n2 = 168 and the conditional Bayes risk is 0.44; right: n1 = n2 = 500 and the conditional Bayes risk is 0.05. The identity line is drawn in red
for reference.

the political groups supporting the government. The oppo-
sition systems appear clearly: on the ballots from classes A
and E, the votes contrast the membership to the opposition
parties versus the governmental alliance, whereas on the bal-
lots from classes C and D, they separate the left-wing from
the right-wing oppositions. Class B gathers various ballots
on topics of rather general agreement pertaining to social or
health matters.

Going back to the model selected by ICL described in
Section 7, we analyze the resolution propensities to be voted
upon and to be positively perceived by nonvoters. These
propensities are encoded in the values of the latent variables
C and D. Figure 18 displays the scatter plot of ν

(C)
j and

ν
(D)
j , the maximum a posteriori estimates of C j and D j un-

der the variational distribution, for all ballots. The abscissa
ν
(C) reflects the mobilization on the ballots, with higher mo-

bilization for higher values, and the ordinate ν
(D) represents

the additional effect of mobilizing specifically supporting
voters. The fourteen-cluster membership of ballots (there is

no obvious relevant classification for ballots) is indicated by
the plotting symbol.

Some relationship between missingness and member-
ship to ballot classes emerge from this plot. A first clus-
ter of ballot appears in the positive quadrant, with propo-
sitions mainly proposed by the government, categorized in
ballot classes A and B. A second cluster, smaller, on the up-
per left, is mainly formed by ballots categorized in class D,
voted positively by few voters. All these propositions are re-
lated to the same law project regarding housing and were
voted over a short period (06/03/2018 and 06/08/2018). The
largest cluster, on the lower part of the graph, gathers most
of the remaining ballots, that would have a tendency to be
voted negatively by nonvoters. These propositions were pro-
posed by either the right-wing or left-wing opposition, and
get little support from a vast majority of MPs. Note also that
the small group of highly voted propositions, on the right-
hand side, is made of ballots belonging to six ballot classes.
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A B C D E

SOC(29) FI(17) GDR(16)

LR(92) UDI-AGIR(21) NI(6)

LaREM(303) MODEM(46) LT(5)

Missing vote
Positive vote
Negative vote

A B C D E

SOC(29) FI(17) GDR(16)

LR(92) UDI-AGIR(21) NI(6)

LaREM(303) MODEM(46) LT(5) 0.2
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Fig. 17 Left: matrix of votes reordered according to the row and column classes, for the MNAR LBM with 3 MP classes and 5 ballot classes. The
red lines delineate class boundaries. The breakdown of political groups in each cluster of MPs is given on the left. Right: summary of the inferred
opinions (expressed or not) for all classes of ballots and MPs, as given by the estimated probability to approve a resolution in each block of the
reordered matrix.
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Fig. 18 maximum a posteriori estimates of the resolution propensities
(ν(C)

j , ν
(D)
j ), with their clustering class memberships. ν

(C)
j drives the

MAR effect and ν
(D)
j drives the MNAR one.

This reflects the fact that our model does not link the MNAR
effect to the LBM memberships.
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