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Evaluating cancer etiology and risk with a
mathematical model of tumor evolution

Sophie Pénisson 1,2,3,4,5, Amaury Lambert6,7 & Cristian Tomasetti 1,2,3

Recent evidence arising from DNA sequencing of healthy human tissues has
clearly indicated that our organs accumulate a relevant number of somatic
mutations due to normal endogenous mutational processes, in addition to
those caused by environmental factors. A deeper understanding of the evo-
lution of this endogenous mutational load is critical for understanding what
causes cancer. Here we present amathematical model of tumor evolution that
is able to predict the expected number of endogenous somatic mutations
present in various tissue types of a patient at a given age. These predictions are
then compared to those observed in patients. We also obtain an improved
fitting of the variation in cancer incidence across cancer types, showing that
the endogenous mutational processes can explain 4/5 of the variation in
cancer risk. Overall, these results offer key insights into cancer etiology, by
providing further evidence for the major role these endogenous processes
play in cancer.

The mathematical modeling, and associated statistical analysis, of the
evolution of mutations in cell populations and bacteria has a relatively
long history. When combined with epidemiological or experimental
data it has yielded several importantfindings. For example, the seminal
work of Luria and Delbrück1, demonstrating the critical role played by
randomly occurring mutations arising before—rather than after—the
beginning of treatment as the cause behind the development of
resistance to antibiotics. Their Nobel Prize winning work led to a flurry
of furthermodelingwork to understand thedevelopment of resistance
to chemotherapy and HIV antiretroviral treatment, highlighting the
importance of combination therapy. Another example is provided by
the models and analyses produced by Charles and Luce-Clausen2,
Nordling3, and Armitage and Doll4, which shed light on the multi-stage
nature of cancer evolution.

In the last few years, a series of papers based on mathematical
models and statistical analyses, in combination with epidemiological,
sequencing, and other experimental data, have provided evidence for
the first time of the large role in tumor evolution played by the normal

endogenous processes occurring in human tissues5–11. In refs. 6 and 7 a
highly significant, strong correlation (Spearman’s rho = 0.81,
P < 3.5 × 10−8) between the total number of stem cell divisions in an
organ and the lifetime risk in that organ was reported. No known
commonenvironmental exposureor inherited factor is present among
the many cancer types analyzed. Specifically, no common exposure—
beside aging—was shared bymore than five cancer types, out of the 25
analyzed (27 with the inclusion of breast and prostate cancer in ref. 7).
And generally exposures were shared by only 2–3 tissues at most, with
many cancer types having no known exposures increasing their risk.
Given the large number of cancer types analyzed, from a statistical
point of view this then led to the reasonable assumption that the
effects of lifestyles and environmental (E) exposures and inherited (H)
factors on the overall correlation discovered were greatly reduced, by
essentially averaging them out (see ref. 7 for more details). The most
plausible conclusion was then that endogenous random mutational
processes naturally occurring in human tissues could explain a large
fraction—estimated to be equal to 66%—of the variation in cancer risk
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across tissues and that they represent an important source of cancer.
We termed this endogenous source of mutations “bad luck" or R.
Importantly, these findings have been since then supported by several
further analyses, conducted by us and others, using a variety of dif-
ferent methodologies, and confirming the presence of a large number
of mutations attributable to R factors, with a mutational contribution
that can be currently estimated to be around two-thirds of all muta-
tions found in cancers, and certainly not smaller than 40%7–17.

To make further progress in our understanding of tumor evolu-
tion and cancer etiology, a more complete mathematical simulation
model was recently presented in ref. 10, where all phases of a tissue
history were included, from tissue development to homeostasis, and
all the way to cancer occurrence. In that model, the different types of
cell division and the fitness effects of different types of driver muta-
tions were accounted for. Themodel also included a carrying capacity
to prevent the unrealistic assumption of unlimited exponential
growth, typical in themathematicalmodeling of tumor evolution. That
model was able to reproduce qualitatively the incidence of multiple
cancer types. This suggested that many of the basic ingredients of
tumor evolution are common across different tissue types and can be
captured by a mechanistic model, when accounting for the funda-
mental differences among those tissues, like the total number of cells
and the cell division rate. The model provided several insights into
both the timing of tumor evolution and the order of its driver muta-
tional events. It also supported the idea that the backgroundmutation
rate plays a major role in cancer causation, being able to explain a
substantial fraction of cancer incidence. A limitation of that work,
however, was that it was based on simulations due to model
complexity.

In the present work, we introduce amathematicalmodel of tumor
evolution that is able to incorporate into analytical form the key
ingredients of that simulationmodel10 and further expandupon it. This
represents important progress in the field of mathematical modeling
of cancer evolution as closed-form analytical formulas enable a sim-
pler, faster, and especially deeper understanding of the role played by
each of the parameters included in the model. We also show how the
time to cancer can be approximated by the Weibull distribution, pro-
viding a justification for this distribution which has been used for
decades in survival analysis of cancer data but without a solid foun-
dation. Most importantly, the model is used to predict the expected
number of mutations that should be present in a cancer if only the
endogenousmutational processes (R) were to be present and compare
these predictions with the actual values observed via sequencing stu-
dies in various tissues. These analyses provide insights into cancer
etiology by resulting in an overall fitting of the mutational load
observed in cancer patients, with the exceptionof a fewcancer types in
which well-known exposures are present. We also use the model to
reassess the original analysis of the roleplayedbyR factors in cancer as
presented in ref. 6.

Results
Predicted versus observed number of mutations
We can estimate the number of somatic mutations found in a cell of a
healthy individual of age a in the absence of E and H factors as

ηh að Þ=μ D0 +ba
� �

, ð1Þ

where μ is the somatic mutation rate (expected number of somatic
mutations per cell division), D0 the number of divisions before birth,
and b the cell division rate. In contrast, for a cancer patient of the same
age, this expected number of mutations is

ηexp að Þ=μ D0 +
b +b 1ð Þ + . . . +b n�1ð Þ

n
a*
n

 !
: ð2Þ

The difference between formula (1) and formula (2) is that instead
of a constant cell division rate b, we now have the average of division
rates b ið Þ that keep increasing the more driver mutations hits are pre-
sent in that cell. The other difference between the two formulas is that
insteadof thepatient’s ageawenowhave the expected agea*

n atwhich
the first cancer cell with the n required drivermutation hits has arrived
(seemathematicalmodeling in theMethods section for its estimation).
Using formula (2) we can compare our prediction for the total number
of somatic mutations found when sequencing the cancer type of a
patient of age awith the actual number of mutations observed via the
bulk sequencing of that individual cancer, using the public genomic
TCGA database. The comparison is provided in Fig. 1a for 10 cancer
types. We obtain a strongly significant correlation between our pre-
dictions and the actual observed values (Spearman’s rho =0.56,
P < 2.2 × 10−16). In Fig. 1a, theplacementof thepointswith respect to the
identity line y = x is naturally very sensitive to the choice of the
expected number of mutations across the genome per cell division,
whichwe set equal to 3, a typical value found in the literature (resulting
in μ =0.03 on the exome, see ref. 5). However, no matter what the
backgroundmutation rate μ is chosen to be, the strong correlation we
found between our predictions and the actual observations would stay
the same. If we now add two more cancer types—lung (LUAD) and
melanoma (SKCM)—we obtain Fig. 1b, with a correlation that drops to
0.26, which is not surprising since we only accounted for the endo-
genous mutational processes (R) in our predictions, and not for the
extra mutational load that smoking and UV light exposures respec-
tively add to them. In Fig. 1b, there is a large variation observed within
each cancer type. Partially, this is because our estimation does not
include the effects of environmental or inherited factors and the dif-
ference in exposure to those factors among patients with the same
cancer type. However, an important observation is that the clear out-
liers in that figure aremelanoma and lung cancer, the two cancer types
whose etiology is most strongly affected by known E factors. Even if
today we still had not discovered the harmful effect of tobacco
smoking and excessive UV light exposure through epidemiological
studies, our predictions in Fig. 1b would provide evidence for the
existence and major contribution of E orH factors. It is then critical to
realize that the absence in Fig. 1b of major outliers beyond those
caused by UV light and tobacco smoking, at least at the population
level, suggests that no other factors with comparable large mutational
effects should be present in the cancer types considered, even if still
unknown to us today. Indeed, the genome would record their harmful
mutational effects anyway.

In contrast, we obtain Fig. 1c when we include the effects of
tobacco smoking andUV light, by using for both lung and skin cancer a
four-fold increase of the average number ofmutations per cell division
on the exome. This rough estimation for the increase of the mutation
rate is based on: 1) ref. 18 for smoking, and 2) the average ratio of 3.6
obtained in ref. 12 between the yearly number of mutations in sun-
exposed versus sun-shielded skin, an underestimation of the increase
due to UV light exposure since UV-induced mutations are also pro-
minent in sun-shielded sites19. The inclusion of even just these two
environmental factors yields an improvement in the fitting of our
predictions to the observed values, with a correlation going from 0.26
in Fig. 1b to 0.67 in Fig. 1c.

We provide a summary of the parameters estimates used in our
model, aswell as thequantitative results obtained from it in Table 1.We
computed for each cancer type the expected number of mutations in
healthy individuals versus cancer patients in the absence of E and H
factors thanks to formulas (1) and (2), where the expected value is
calculated at the median age of the patients in the TCGA database. We
provide also the interquartile range for the total number of mutations
observed among those patients. We would like to point out that in
these predictions there is no fitting of any of the parameters to the
observed sequencing data. The number of divisions during the tissue
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development phase and yearly number of divisions in healthy and in
cancer tissue in Tables 1 and 2 are obtained from other studies taken
from the literature. Even the cancer time distribution used in order to
estimate the expected cancer occurrence age in formula (2) is only
fitted to epidemiological data, specifically the cancer incidence curve.

Finally, to test the robustness of our predictions, we decided to
analyze data from the International Cancer Genome Consortium
(ICGC), which is another major source of cancer sequencing data. The
results—which account also for UV light and are depicted in Fig. 1d—
provide again supportive evidence for our model and its predictions.

Figure 2 and Supplementary Fig. S3 provide instead a comparison
of the age-dependent number of mutations predicted by our model
(orange and red lines), versus the actual number of mutations
observed in each patient using sequencing data. Given our time-
dependent predictions, we can use them to assess the contribution of
the three fundamental etiological risk factors E, H, and R20 in the fol-
lowing two ways.

First, we can measure how well our predictions fit the actual data
in a given cancer type: the more our predictions undershoot the
observations, the larger the evidence for important roles played by E
and H. For example, it is visually clear from Fig. 2c that E (smoking)
greatly increases the mutational load in the lungs. In comparison, our
predictions for breast and colon (Fig. 2a, b) provide a relatively good
fit. Naturally, a good fit does not imply the complete absence of
important environmental exposures or inherited factors, but the bet-
ter the fit, the smaller the evidence of a role for them. Both over-
shooting and undershooting, if present at the population level, can be
caused for example by errors in the estimates we use for the division
rate, the mutation probability, or by a difference in the ability of the
immune system to fight tumor cells across different organs.

Additionally, when our predictions undershoot the number of muta-
tions actually observed, whether for the whole population or for a
subset of patients (points above the gray identity line in Fig. 1 or above
the red line in Fig. 2), this can be due to environmental exposures (e.g.,
smoking or sun exposure), germlinemutations (e.g., BRCA1-2 in breast
cancer) or genomic instabilities (e.g., microsatellite instability in col-
orectal cancer) affecting these patients.

We introduce a measure of how well our predictions fit the
observations, providing a prediction for how large the effect of R
versus E and H factors is. This measure δ is evaluated as the relative
difference between the medians of the set of observed versus expec-
ted number of mutations weighted by the age ai of patient i:

δ =
∣Median ηexp ai

� �
=ai

� �
i

� �
� Median ηobs

i ai

� �
=ai

� �
i

� �
∣

Median ηobs
i ai

� �
=ai

� �
i

� � : ð3Þ

We apply this measure to the case where the number of drivers is
one to four (Supplementary Table S2), which is estimated to be the
range21,22. In general, our predictions provide either a reasonable fit or
result in undershooting with the one exception of leukemia (Fig. 2d),
where it is possible that our estimate for the rate of cell division is too
high or that there is a significant cell division deceleration known to
occur with age9. We use this same distance δ to estimate the back-
ground mutation rate which minimizes the mean deviation across
cancer types (including or not the outliers LUAD and SKCM), as
depicted in Fig. 2e. This estimate is equal to 0.024, which is striking as
this is very close to the parameter value we originally chose for our
model as provided by the available literature (μ =0.03).

Fig. 1 | Predicted versus observed number of mutations. Observed number of
somatic mutations found in: a–c 3608 cancers, for 12 types of cancer (TCGA
database), d 990 cancers, for 7 types of cancer (ICGC database), versus the cor-
responding expected number of mutations as predicted by our model (2) for a
cancer patient of the same age: a–b solely due to the endogenous mutational
processes, c–d including the effect of tobacco smoking (LUAD) and UV light

(SKCM) as those are the two large outliers observed in Fig. 1b (see Table 2 for the
meaning of the abbreviations). The number of drivers for each cancer type is
assumed to be n = 3 (see Supplementary Fig. S2 for n = 2). The gray identity line
corresponds to the theoretical case “observed number of mutations" = “expected
number of mutations". Source data are provided as a Source Data file.
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Second, within each cancer type, we can stratify patients based on
how far their mutational load is from our predictions. For example, in
colon (Fig. 2b), there are several patients that are clear outliers with
respect to the others, due to the presence of microsatellite instability
in their cancer21. In fact, our results can be used for risk stratification of
individuals that have no cancer yet: this is done by considering the
distance of the total number of mutations present in an individual’s
organ from the expected value of mutations of a healthy individual of
the same age as provided in formula (1). Naturally, this constitutes the
first attempt to stratify individuals and more work is required to both
assess and improve its potential.

In all this analysis, we assumed that the number n of driver
mutations required to develop cancer is set to n = 3 across all cancer
types. Rather than picking a specific n value for each cancer type, we
increase the robustness of our analysis by considering the effect of a
varying n (n being typically equal to two or three in most cancers21),
going from a fixed n = 2 in Supplementary Fig. S2 to a fixed n = 3
in Fig. 1.

Weibull distribution for the time to cancer
Thanks to our mathematical model, we can evaluate the age at which
cancer arrives in a patient, assuming that n driver mutations are
required to develop cancer. The cancer appearance time is in this
model a random variable whose distribution can be computed under
simplifying assumptions detailed in the Methods section. We prove in
particular that, in the case of a cancer with a negligible risk of any
driver mutation appearing before birth, the time to cancer approxi-
mately follows aWeibull distributionW n,cnNu

nbn� �
, where cn is some

constant depending neither on the number of tissue stem cells N, nor
on the proliferation rate b or on the driver genemutation probability u
(of the order of 10−7, see Supplementary Methods). The probability of
getting cancer by age t⩾0 is therefore

P tð Þ= 1� e�cnNu
nbntn: ð4Þ

The cumulative risk (4) as a function of age is given in Fig. 3a for
three types of cancer (breast, colon, and lung), while the corre-
sponding probability density function is plotted in Fig. 3b. Note that
the latter is depicted over a longer time span than the human life
expectancy.

Not surprisingly, the value of the shape parameter of the Weibull
is n, which is usually >1, yielding the desirable result that its failure rate

increases with time, consistent with the fact that cancer incidence
behaves like a power-law with respect to age23.

A re-analysis of the role of endogenous mutations in cancer risk
In ref. 6 it was shown that the endogenous mutational processes
associated with cell divisions could explain a large fraction (2/3) of the
variation in cancer risk across cancer types. The high correlation found
in the U.S. (Pearson’s linear correlation 0.80) was later confirmed in a
much larger analysis across the world7. However, the slope of that
linear correlation was 0.47, i.e., much lower than 1. Clearly, the
assessment of the slope using relatively few noisy data points is much
more challenging than the simple test for the presenceof a correlation.
Theoretically, however, we would have expected a slope equal to, or
higher than, 1 and not smaller. To understand the reason, recall that
this analysis was inspired by a simple mathematical model, where the
lifetime risk of cancer in tissue should be related to two variables: (1)N,
the number of stem cells in that tissue, and (2) D, the lifetime number
of divisions in the lineage of each of those cells. Now, a doubling in N
should approximately double the risk of cancer, thus yielding a
slope = 1. And a doubling of D, which is comparable to a doubling of
time, as cell divisions act like amolecular clock, should yield a slope > 1
in a log-log scale, given the known power-law relationship that cancer
incidence has with respect to age. In this work, we aimed to better
understand the reasons for that lower-than-expected slope found in
ref. 6. A critical observation for the present analysis is that in ref. 6 the
two key variables, N and D, were considered together as one variable,
approximately given by their product ND. This is not ideal as their
effects are expected to be linear and superlinear, respectively. A better
approach is rather to consider their effects on the lifetime risk of
cancer separately, in a three-dimensional analysis. Importantly, the
analysis in ref. 6 did not account for the fact that different cancer types
are estimated to have different numbers of required mutational
events, n, to get to cancer. The effect of varying n for different cancer
types is critical if we want to properly assess the slope of the rela-
tionship. In the case of cancers with negligible risk of any driver
mutation appearing before birth, P is given by (4) which, given that P is
close to 0, can be approximated by P = cnNunDn.We obtain in particular
the proportionality relationship

P / NDn: ð5Þ

Using (5), and cancer-specific values for n from refs. 21, 22 as
described in the Supplementary Methods, we obtain Fig. 4. The

Table 1 | Parameter estimates and number of somatic mutations (predicted, observed, and in healthy individuals)

Cancer name D0 b b nð Þ ρ(%) am ηh ηc
n =2 ηc

n =3 ηo

BRCA 33 4.325 73 10.7 56.5 8 20 31 23–58

COAD 27 73 93.6 2.81 66 145 149 153 69–128

ESCC 22 33.19 73 0.122 57 57 69 74 71–143

GBM 250 0.0175 73 0.246 62 8 9 23 35–57

HNSCC 24 21.5 73 0.935 60 39 54 62 69–148

LAML 27 12 73 0.330 61 23 39 48 11–22

LIHC 31 1.1 73 0.802 57 3 10 22 55–119

LUAD 30 0.07 73 0.257 67 1 3 19 81–354

PAAD 31 1 73 1.08 65 3 11 24 21– 33

PRAD 27 3 73 10.5 62 6 18 30 17–32

SKCM 31 2.4875 73 1.67 58 5 15 27 182–679

THCA 25 0.0875 73 1.17 46 1 3 13 7–13

For 12cancer typesandassociated tissue (see Table 2 for themeaningof theabbreviations), (a)parameter estimates obtained fromthe literature (columns 1–4):D0number of divisionsduring the tissue
development phase,b andb nð Þ yearly number of divisions in a healthy and in cancer tissue,ρproportion of the population that gets cancerby age80, (b)data (columns5 and9): ammedian ageof the
TCGAdatabasecancer patients, ηo interquartile interval of the actual observed number of somaticmutations found in the tissue of cancerpatients aged am −5 to am + 5, (c) values computed fromour
model (columns 6–8): ηh =ηh am

� �
(resp. ηc =ηexp am

� �
) expected number of somatic mutations found in the tissue of a healthy individual (resp. cancer patient) aged am in the absence of E and H

factors (formulas (1)-(2)). The expected number of mutations ηc in a cancer patient is given both for n = 2 and n = 3.

Article https://doi.org/10.1038/s41467-022-34760-1

Nature Communications |         (2022) 13:7224 4



improvement in the fitting of the data is evident, with an adjusted
R-squared increasing from 0.64 in the original analysis6 (P = 4.8 × 10−7)
to 0.8 (P = 4.4 × 10−9) (see Supplementary Methods for more details
and sensitivity analysis). This implies thatR factors can now explain 4/5
of the observed variation in cancer risk, i.e. more than the 2/3 reported
in ref. 6. Importantly, the slope of the log-log plot of cancer risk P
versus number of stem cellsN is now equal to 0.91, close to the desired
value of 1. Also, n is included as a power in one of the two terms of the
fitted linearmodel, and plotting lnP versus lnDn yields a slope of 0.29,
so that plotting lnP versus lnD yields a slope equal to 0.87, close to 1,
when taking the typical value of n = 3 for the number of required
drivers21. Thus the observed slopes are much closer than the one
observed in ref. 6 to what we would expect from the model. It is not
realistic to think that these theoretical values could be obtained
because of the presence of noise in the data as well as other missing
factors (e.g., immune system effects) still currently missing in
the model.

Discussion
Based on a mathematical model of tumor evolution, a re-analysis of
Tomasetti et al.6 provided an improvedfittingof the variation in cancer
incidence across cancer types. The number of cell divisions, and the
normal endogenous mutational processes (R) associated to it,
explained about 4/5 of the variation in cancer risk across tissues. When
combined with the comparison between the expected number of
somatic mutations due to R versus the observed one, these results
overall provide further evidence for the major role R plays in cancer
etiology. Thedistancebetween the lifetimecancer risk of a given tissue

(a point in Fig. 4) and the expected risk for that tissue (the plane in
Fig. 4) provides a framework for inferring the risk of each cancer
subtype thatmay be contributedby either an EorH factor. Specifically,
the larger the distance, the greater the evidence for an E or H factor.
And the analysis of the expected versus observednumber ofmutations
provides a further approach for assessing the presence of E and H
factors in the etiology of a given cancer type, naturally depending on
the quality of the estimates for the key biological parameters used in
the model.

Wehaveobtained analytical formulas for amathematicalmodel of
tumor evolution that includes all phases of tissue, from tissue devel-
opment to cancer, and where the effects of a carrying capacity, dif-
ferent types of cell division, and different types of drivermutations are
accounted for. One of the key results of this model is that under some
simplifying assumptions the time to cancer is given by a Weibull dis-
tribution, providing a simple probability distribution for the timing of
a highly complex evolutionary process. It is interesting to note that the
Weibull distribution is one of the most typical distributions used in
survival analysis and has been used in several previous analyses as a
statistical model for cancer incidence24–28. However, those studies
could not provide more than a basic justification for the use of a
Weibull distribution, simply based on the fact that it is commonly used
to model failure times. We believe that our findings provide now a
more solid foundation, by representing an approximation of a
mechanistic mathematical model of tumor evolution that includes the
detailed evolutionary dynamics of cell populations in tissue, thus
better justifying its use in assessing the timing of cancer.

Our approach has several limitations. One is given by the simpli-
fying assumptions made about the mechanisms behind tumor evolu-
tion. For example, the effects of a tumor’s microenvironment were not
considered. While these effects are certainly important, their inclusion
is challenging, given the lack of analytical closed-form solutions for
even much simpler mechanistic models, but we believe our work
provides a step in that direction. Another limitation is given by the
uncertainty surrounding the relevant parameter values. To deal with
this, sensitivity analyses were performed and scenarios with con-
servative estimates were used. However, progress in the estimation of
key parameters for each of the tissues considered, like total number of
cells, division frequencies, and number of required driver hits, will be
required to increase the value provided by mathematical models of
tumor evolution. Depending on the quality of these estimates, the
comparison of the expected versus the observed mutational load in
cancer patients provides a way to assess the evidence for the presence
—and strength—of environmental factors in the etiology of a given
cancer.

Ourmodel is based upon the fact that cells accumulatemutations
during their lifespan and that this constitutes a major role in tumor
evolution8 but possibly not for aging, according to some studies29. It is
clear that endogenous processes are operative also in post mitotic
tissues such as neurons (e.g., ref. 30). Indeed, our results provide
support for that, showing that for glioblastoma (GBM in Supplemen-
tary Fig. S3) the amount of mutations accumulating exclusively at cell
division are not sufficient to explain the observed mutational load.
While we do not claim that endogenous processes operate exclusively
at cell division, we believe our results support the idea of cell division
to be the major mutational engine.

Our findings have relevant implications for how to reduce cancer
mortality. The general consensus achieved on the role that R plays in
cancer etiology8,12,14–16,20 points to the critical role of early detection in
cancer, beside the one played by primary prevention, if we want to
significantly decrease cancer mortality. The consequences of these
findings are therefore not only relevant for a better understanding of
the biology and dynamics of tumor evolution and cancer, but also for

Table 2 | Abbreviations of cancer types (if applicable,
following the TCGA study abbreviations)

Abbreviation Cancer name

AOS Arms osteosarcoma

BAS Basal cell carcinoma

BRCA Breast invasive carcinoma

CLL Chronic lymphocytic leukemia

COAD Colorectal adenocarcinoma

DUO Duodenum adenocarcinoma

ESCC Esophageal squamous cell carcinoma

GALL Gallbladder adenocarcinoma

GBM Glioblastoma multiforme

HNSCC Head and neck squamous cell carcinoma

HOS Head osteosarcoma

LAML Acute myeloid leukemia

LIHC Liver hepatocellular carcinoma

LOS Legs osteosarcoma

LUAD Lung adenocarcinoma

MEDB Medulloblastoma

OVG Ovarian germ cell

PAAD Pancreatic ductal adenocarcinoma

PAE Pancreatic endocrine carcinoma

POS Pelvis osteosarcoma

PRAD Prostate adenocarcinoma

SKCM Skin cutaneous melanoma

SMAD Small intestine adenocarcinoma

TES Testicular germ cell

THCA Thyroid carcinoma

THF Thyroid follicular and papillary

THM Thyroid medullary
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indicating what are the most critical approaches in the fight against
cancermortality. After all, if these endogenous processes playedonly a
very minor role in cancer etiology, then almost all of the focus should
beonprimaryprevention and therapy. If, however, they played amajor
role in cancer causation then only the combination of primary and
secondary (i.e., early detection) preventionwith therapywill be able to
yield large long-lasting reductions in mortality, especially in the pre-
sence of an aging population20.

Methods
Review of some key previous models
We review in the Supplementary Methods some key previous mathe-
matical models of tumor evolution2–4,31–35, from simple two-stage
models to more complex models including clonal expansions and
different modes of stem cells division. We show that in each model,
cancer incidence is, at least approximately: (i) a linear function ofN the
number of cells at risk, (ii) an exponential or power-law function of t

Fig. 2 | Predicted and observed number of mutations. a–d Predicted and
observed number of mutations as a function of age. Observed number of somatic
mutations found in cancers (blue dots) of patients of different ages from the TCGA
database, compared with the expected number of mutations solely due to the
endogenous mutational processes in patients of the same age, predicted by our
model (2), for four types of cancer: breast (BRCA), colon (COAD), lung (LUAD) and
leukemia (LAML) (see Supplementary Fig. S3 for other cancer types). The expected
number ofmutations (2) is given for a number of drivers equaln = 2 (dotted orange

line), n = 3 (dash-dotted orange line) and n = 4 (dashed orange line). The solid red
line corresponds to the computation for the value of n deduced from ref. 22 and
given in Section S6 of the Supplementary Methods. e Deviation of the prediction
from the observations. Mean value of the deviation δ given by (3) over all cancer
types (blue line) or excluding lung cancer (LUAD) and melanoma (SKCM) (orange
line) of the predicted number of mutations from the observed number of muta-
tions, as a function of the backgroundmutation rate. The rate whichminimizes the
mean deviation is 0.024. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-022-34760-1

Nature Communications |         (2022) 13:7224 6



the age of the individual, (iii) a power-law function of u the driver
mutation rate, with power of n being the number of stages in the
processof tumor formation in themodel. Thesefindings are consistent
with what is obtained in our mathematical model, for which cancer
incidence at time t is approximately ncnNunbntn−1 (see (4)).

Analytical mechanistic model of tumor evolution
As in the simulationmodel presented in ref. 10, the key features of our
model are the following. First, we model all temporally distinct phases
in the lifetime of a tissue, starting with its development, followed by
homeostasis and tumor evolution all the way to, possibly, cancer.
Second, we steer clear of the typical yet somewhat unrealistic
assumption of exponential tumor growth. Instead, we take into
account the early random fluctuations of any newly arising stem cell
population, and assume logistic growth following this initial stochastic
phase. We recall that logistic growth is made by an initial exponential
phase followed by a growth rate that becomes smaller the closer the
size of the cell population is to its carrying capacity, to reflect natural
constraints like energy resources or spatial limitations (Fig. 5b).
Because the clonal expansion may have different names in different
tissues (e.g., a nodule in the pancreas or the breast, a polyp in the
intestine, etc.), we use the most general term “clone" and refer to it

throughout this paper. Third, it is amechanistic model, accounting for
the birth and death of each stem cell and its different types of cell
division: symmetric self-renewal, symmetric differentiation, and
asymmetric division (Fig. 5a). We focus exclusively on stem cells as
their stem cell progeny is able to carry a dangerous mutation all the
way to cancer. To account for the fact that there are generally more
frequent self-renewalsduring thedevelopment phase of a tissue,we let
the asymmetric division probability p increase through time and reach
its maximal value in adulthood once the tissue has been fully devel-
oped. Fourth, the model follows the number and types of driver
mutations that a stem cell lineage accumulates randomly, distin-
guishing among three main types. Specifically, each driver mutation
confers a selective advantage, the nature of which depends on the
cellular pathways affected by the mutation. These pathways can be
classified into three core cellular processes: cell survival (S), cell fate
(F), and genome maintenance (M) (as described in ref. 10). If the
mutation affects the pathway which regulates the cell growth and
survival process, termed a S mutation, it translates into an increase of
the proliferation rate b in the clone carrying the Smutation. As a result,
the growth rate and the carrying capacity of its subsequent logistic
growth increase too, as well as its mutation rate per cell and per time
unit. If the pathway which regulates the cell fate (F) is affected, the

Fig. 4 | Relationship between lifetime cancer risk P, number of stem cellsN in a
given tissue, and uDð Þn for 26 cancer types, where D is the number of divisions
in a stem cell lineage of that tissue, u the driver mutation rate, and n the

number of required driver mutations. The plane corresponds to the 3D linear
regression surface. See Table 2 for the meaning of the abbreviations. Source data
are provided as a Source Data file.

Fig. 3 | Cancer risk as a function of age for three types of cancer (breast, colon,
and lung), as given by the Weibull distribution (4). a Cumulative distribution
function (corresponding to the cumulative cancer risk), b probability density

function of the Weibull distribution. The parameters of the distribution are such
that n = 3 and that P 80ð Þ=ρ, the proportion of the population that gets cancer by
age 80 given in Table 1.
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balance between cell symmetric self-renewal and asymmetric division
is shifted, favoring symmetric self-renewal. This translates in our
model into a decrease of the asymmetric division probability p, which
in turn induces an increase in the mutation rate, growth rate, and
carrying capacity of the clone. Finally, if the genomicmaintenance (M)
pathway, which is responsible for DNA repair, is affected, it translates
into an increase of the mutation probability u in the clone carrying the
M mutation, hence its mutation rate per cell and per time unit. The
details of these different effects on the dynamics and mutation para-
meters of a clone can be found in the SupplementaryMethods. We are
then able to compute analytically the lifetime risk of getting cancer in a
given tissue for an individual.

Analytical expression of cancer risk
To provide intuition for the key ingredients of the model we describe
the typical process, as depicted in Fig. 5. We model the growth of the
tissue stemcell populationwith aprocessNt composedof threephases
(ψ0: from conception to birth, ψ1: youth, ψ2: adulthood), growing as t
increases from size 0 to N, where N is the maximum stem cell popu-
lation size reached when the tissue is in homeostatic equilibrium. To
account for the fact that the rates of the various cell division types
differ greatly depending on the specific phase the tissue is in, we
assume that during phase ψi the proliferation rate and asymmetric
division probability are equal to bi, pi. Next, for each newly arising
clone, we assume the following pattern. The clonal population starts
small hence the cells do not compete with each other, and we can
assume that they initially evolve independently of each other. Conse-
quently, their number follows at first a random birth-and-death pro-
cess, until it potentially reaches a fraction ε of the clone carrying
capacityC, whereC corresponds to themaximum stemcell population
size that the clone can sustain, and ε > 0 is relatively small, but suffi-
cient to ensure survival. Specifically, each stem cell renews itself at
time-dependent rate 1� pð Þb, asymmetrically differentiates at rate pb,
symmetrically differentiates at rate ds or dies at rate d (Fig. 5a). The
clonal stem cell population thus initially evolves as a birth-and-death

process starting with one cell, with birth rate 1� pð Þb and death rate
ds + d, hence with growth rate r = 1� pð Þb� ðds +dÞ. In the case the
birth-and-death process does not become extinct and the clone
reaches size εC, the effects of the law of large numbers render the
growth process deterministic and we assume that from this time
onwards the clonal population grows logistically with carrying capa-
city C and growth rate r, as illustrated in Fig. 5b (see details in
the Supplementary Methods).

For a given tissue and a given cancer type, we define C as the set of
all possible sequences of n driver mutations V1⋯Vn leading to this
cancer,where eachmutationVi canbeof type S, ForM asdefined in the
descriptionof our analyticalmechanisticmodel. For instance,n = 3 and
C is the set of triples with at least one S and one F mutation. An indi-
vidual will then have developed cancer by age t if at least one of its cell
lineages carries such a C-sequence of mutations (Supplementary
Fig. S1). Assuming that any newly arising clonal population evolves
independently of the existing cell populations, the probability P tð Þ of
getting cancer by age t can be computed by means of the associated
point process for which an event corresponds to the appearance of a
clone of “survival" size leading to cancer before t. Survival size means
here large enough to ensure survival of the population to stochastic
extinction. Let −a0 be the time of conception and 0 the time of birth.
For any t⩾ −a0, the cancer risk P tð Þ which corresponds to the prob-
ability that at least one event occurs before t is obtained as

P tð Þ = 1�P no event before tð Þ
= 1� exp � R t�a0

λ sð Þds
� �

,
ð6Þ

where λ sð Þ is the intensity of the point process, namely the infinitesimal
rate at which events are expected to occur around s. Let PV 1

t � sð Þ the
probability for a clone carrying a first mutation V1 of type S, F orM, to
lead to cancer before time t, given that the V1-clone reached a survival
size at s, and μV 1

sð Þ the appearance rate of such a clone. The intensity

Fig. 5 | Growth of a tissue stem cell population. a Rates of self-renewal, asymmetric division, symmetric differentiation, and death of a stem cell. b An illustration of the
size evolution of three stem cell population trajectories, according to the model described in the Methods section.
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λ sð Þ is then given by

λ sð Þ=
X

V 12fS,F ,Mg
μV 1

sð ÞPV 1
t � sð Þ: ð7Þ

A V1-clone can reach survival size at time s only if mutation V1

appeared at some time −a0⩽ z⩽ s. We assume that the driver gene
mutations appear randomly in the stem cell populations, at rate pro-
portional to the population size (given by Nz for the tissue cell popu-
lation, and by the logistic growth for a clone). Denoting by u the driver
gene mutation probability per cell division, we deduce from what
precedes that the driver mutation rate per cell lineage and per time
unit is 2� pð Þub. Note that the values of p and b depend on the specific
phase the tissue is in, and we, therefore, denote by 2� p zð Þð Þub zð Þ the
driver mutation rate at time z. Consequently, the appearance rate of a
surviving V1-clone in the tissue cell population is

μV 1
sð Þ=

Z s

�a0

2� p zð Þð Þub zð ÞNzπV 1
ρV 1

f V 1
s � zð Þdz, ð8Þ

where πV 1
is the probability that a drivermutation is of type V1, ρV 1

the
probability for aV1-clone of reaching a survival size, and f V 1

the latency
period distribution to reach this size. We then compute in the same
manner PV 1

which involves probabilities of the form PV 1V2
for clones

carrying an additionalmutation V2. Iterated n times, the formulafinally
includes the probabilities PV 1 ���Vn

, which are 1 if V 1 � � �Vn 2 C and 0
otherwise.We, therefore, obtain an explicit formula for the probability
P tð Þ, and by extension of the lifetime cancer risk P if t is chosen as the
life expectancy. We refer to the Supplementary Methods for more
details on these computations.

Distribution of the time to cancer
Let Tn be the cancer appearance time, which is a random variable with
values in �a0, +1

� �
and with cumulative distribution function P tð Þ

given by (4). In order to isolate the effect on the cancer time dis-
tribution of some key parameters such as the driver mutation prob-
abilityu, the cell division rateb and the total number of stemcellsN, we
neglect both the initial (random) and growth (deterministic) phases of
eachcell population, assuming that anydrivermutationwill give rise to
a clone of size equal to its carrying capacity. We also suppose that the
proliferation rate and asymmetric division probability are constant
across youth and adulthood (b1 = b2 = b, p1 = p2 = p), and equal to b0, p0
between conception and birth, i.e. between time− a0 and 0. Under
these simplifying assumptions, we prove (see Supplementary Meth-
ods) that P tð Þ= 1� e�Λ tð Þ is of the form

Λ tð Þ= 1
an+ 1
0

c0Nu
nbn

0 a0 + t
� �n+ 1, �a0 ⩽ t ⩽0,

Λ tð Þ=Nun bn
0 c0 + c1t + . . . + cn�1t

n�1� �
+bncnt

n� �
, t ⩾0:

ð9Þ

From this we deduce that the random variable T +
n , which is the

time to cancer Tn conditional on the event that cancer appears after
birth, is distributed as theminimumof n independentWeibull random
variables:

T +
n ∼ min W 1, . . . ,Wn

� �
, ð10Þ

where Wk ∼W k, ckNu
nbn

0

� �
(k < n) and Wn ∼W n, cnNu

nbn� �
. The

notation ~means “follows the distribution", andwe use the convention
that a Weibull distribution W α,βð Þ with shape parameter α and scale
parameter β has cumulative distribution function t 7!1� e�βtα . Simi-
larly, the time of cancer appearance, conditional on the event that
cancer occurs between conception and birth and denoted by T�

n ,
satisfies T�

n ∼W0, whereW0 follows a translated and truncatedWeibull
distributionwith values in �a0, 0

� 	
. EachWk canbe thought as the time

of cancer appearance when exactly 0⩽ k⩽ n driver mutations occur
after birth, and therefore n − k before birth.

Finally, we show that in cancer types for which the probability of
driver mutations occurring before birth is negligible compared to the
cancer risk, Tn ∼W n, cnNu

nbn� �
. We recall that the Weibull distribu-

tion W n,βð Þ (which under the alternative standard parameterization
has scale λ≔ β−1/n) has the nice property to be the maximum entropy
distribution for a non-negative real random variable X with an expec-
ted value of Xn equal to λn. The proof of all the preceding results is
provided in the Supplementary Methods.

Predicted number of mutations
The expected number of somaticmutations found in a cell of a healthy
individual of age a is given by formula (1). In contrast, if T1,…, Tn
denote the hitting times of the n required drivermutations and b ið Þ the
cell division rate after i driver hits, then the expected number of
somatic mutations in a cancer cell of a patient of age a is

~η=μ D0 +bT 1 +b
1ð Þ T2 � T 1

� �
+ . . . +b nð Þ a� Tn

� �� �
: ð11Þ

While the above formula can be applied to single-cell sequencing
data, in the case of bulk sequencing we only observed the mutations
accumulated in thewinning lineage of the first cancer cell, born at time
Tn, as all the subsequentmutations will not be called by the sequencer.
In that case, the appropriate formula is

η =μ D0 + bT 1 + . . . +b n�1ð Þ Tn � Tn�1

� �� �
: ð12Þ

For a given cancer and a cancer patient of age a, we compare the
number of somatic mutations ηobs að Þ observed via bulk sequencing of
a cancer sample of that individual, with the expected value of η con-
ditioned on the event that cancer appeared during the time interval
a� c,a½ � (see Supplementary Methods for the choice of c)
ηexp að Þ=E η∣a� c⩽Tn ⩽a

� �
. Assuming for simplicity that the driver

hitting times satisfy Ti =
i
n Tn, it follows from the expression of η that

ηexp að Þ is given by (2), where

a*
n =E Tn∣a� c⩽Tn ⩽a

� �
: ð13Þ

For cancerswith a negligible risk of any drivermutation appearing
before birth, theprobability distributionof the cancer occurrence time
Tn is given by (4). In this case

a*
n =β

�1
n
γ 1 + 1

n ;β a� cð Þn,βan
� �
γ 1;β a� cð Þn,βan
� � , ð14Þ

with β≔ cnNunbn and γ z;a,bð Þ : = R ba tz�1e�tdt. Parameter β can be
deduced from epidemiological data, for instance from the proportion
of the population that gets cancer by age 80 (Table 1):
β= � ln 1� ρð Þ=80n. Moreover, if s is the fitness advantage of a S
mutation and if k out of the first i driver hits are of type S, then
b ið Þ = 1 + sð Þkb. From the final value b nð Þ, which corresponds to the
division rate in tumors and which can be estimated (Table 1), we
deduce s by averaging over the different scenarios of occurrences of S
mutations among the n drivers (see Supplementary Methods for more
details), which finally leads to an explicit expression of ηexp að Þ.

Observed number of mutations
We downloaded somatic exomic mutational data from the TCGA
Bioportal (https://portal.gdc.cancer.gov) and whole-genome sequen-
cing data from the ICGC database (https://dcc.icgc.org/releases/
PCAWG). Only ICGC datasets that were not present in the TCGA
database were used. The total number of mutations across the exome
was inferred by adding all the point mutations (divided by 100 in the
case of whole-genome sequencing). This number then provided the
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input for the analysis presented in Figs. 1–2, Table 1, and Supplemen-
tary Fig. S2–S3, for patients for which the age was specified. Source
data including the patient ID are provided with this paper.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The results published here are based on data generated by The Cancer
Genome Atlas Research Network (https://www.cancer.gov/tcga) and
the International Cancer Genome Consortium (https://dcc.icgc.org).
There are no restrictions on access to these data, which are all publicly
available. The data generated for this study ("expected number of
mutations" in Figs. 1–2, Table 1, and Supplementary Figs. S2–S3) are
obtained by the direct application of formula (2). Source data are
provided with this paper.

Code availability
A code implementing formula (2) in theWolfram Language is provided
as Supplementary Software. The analysis leading to Fig. 4 has been
performed with the software R (version 4.1.2) and is fully described in
the Supplementary Methods.
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