
HAL Id: hal-03876630
https://hal.science/hal-03876630v1

Preprint submitted on 28 Nov 2022 (v1), last revised 29 Nov 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The eOSSR library
Thomas Vuillaume, Enrique Garcia, Christian Tacke, Tamas Gal

To cite this version:
Thomas Vuillaume, Enrique Garcia, Christian Tacke, Tamas Gal. The eOSSR library. 2022. �hal-
03876630v1�

https://hal.science/hal-03876630v1
https://hal.archives-ouvertes.fr

The eOSSR library

Thomas Vuillaume1, Enrique Garcia1,2, Christian Tacke3, and Tamas Gal4

1Univ. Savoie Mont-Blanc, LAPP, CNRS, Annecy, France;
thomas.vuillaume@lapp.in2p3.fr

2IT Department, CERN - 1211 Geneva 23 - Switzerland
3GSI Helmholtz Centre for Heavy Ion Research GmbH, Darmstadt, Germany
4IT Erlangen Centre for Astroparticle Physics, Erlangen, Germany

Abstract.
The astronomy, astroparticle and particle physics communities are brought to-

gether through the ESCAPE (European Science Cluster of Astronomy and Particle
Physics ESFRI research infrastructures) project to create a cluster focused on com-
mon issues in data-driven research. Among the ESCAPE work packages, the OSSR
(ESCAPE Open-source Scientific Software and Service Repository) is a curated, long-
term, open-access repository that makes it possible for scientists to exchange software
and services and promote open science. It has been developed on top of a Zenodo com-
munity, connected to other services. A Python library, the eOSSR, has been developed
to take care of the interactivity between Zenodo, services and OSSR users, allowing an
automated handling of the OSSR records. In this work, we present the eOSSR, its main
functionalities and how it’s been used in the ESCAPE context to ease the publication of
scientific software, analysis, and datasets by researchers.

1. The ESCAPE OSSR

The aim of the ESCAPE OSSR (Open-source Scientific Software and Service Reposi-
tory) is to provide the tools necessary for the communities to share their science prod-
ucts in a harmonized way respecting the FAIR principles, promoting open science and
maximizing cross-fertilization by software re-use and co-development. One of the key
components to achieve this goal is the software and service repository. For its con-
cept implementation, the ESCAPE repository is using Zenodo web service through the
curated escape2020 community integrated with several tools to enable a complete soft-
ware life-cycle. The ESCAPE Zenodo community welcomes entries that support the
software and service projects in the OSSR such as user-support documentation, tutori-
als, presentations, and training activities. It also encourages the archival of documents
and material that disseminate and support the goals of ESCAPE.

1

mailto:thomas.vuillaume@lapp.in2p3.fr

2 Thomas Vuillaume et al

Figure 1. A typical software publication workflow in the OSSR using the eOSSR
library

2. The eOSSR library

We developed a Python library called eOSSR (Vuillaume et al. 2022) in order to allow
an automated integration of Zenodo with other tools and platforms forming the OSSR
as well as providing an integrated environment to external users. The library is open-
source and has been published in the OSSR itself. The documentation and running
examples can be found online1.

2.1. Metadata

Metadata: The OSSR has chosen codemeta.json as schema and format for its software
metadata. The definition of this schema has been integrated within the eOSSR, thus
allowing: An automated verification of the metadata. A converter between Zenodo
metadata schema and the OSSR metadata

2.2. API

For other tool to communicate with the OSSR, an API was necessary. The eOSSR
takes advantage of Zenodo’s API to propose a set of high-level functionalities through
Python functions or command-lines, such as: Requesting software in the OSSR via
wide or specific searches, using plain text or recognized metadata such as keywords or
file type.

The Record object is at the core of the eOSSR Zenodo API. This class handles
individual Zenodo records, containing all their metadata and useful methods to manip-
ulate them. The easiest way to retrieve a Zenodo record is from it’s record_id:

from e o s s r . a p i . zenodo i m p o r t g e t _ r e c o r d
r e c o r d _ i d = 6826881
r e c o r d = g e t _ r e c o r d (r e c o r d _ i d)

Here a some of the most useful methods associated to the record object:

• record.print_info(): prints general information (title, version, description,
URL...) about the record to a stream

1https://escape2020.pages.in2p3.fr/wp3/eossr/

https://escape2020.pages.in2p3.fr/wp3/eossr/

The eOSSR library 3

• record.metadata: all records metadata

• record.get_associated_versions(): retrieve all associated versions of that
record published in Zenodo

• record.get_codemeta(): directly reads the content of the codemeta.json
file at the root of a record record.write_zenodo(): writes the record metadata
to a .zenodo.json file

To communicate with Zenodo and in particular with an user restricted access, one can
use zen = eossr.api.zenodo.ZenodoAPI(access_token) with its private access
TOKEN provided by Zenodo2. It will then allow to:

• zen.get_user_records(): returns all the records owned by the user

• zen.get_community_pending_requests(community): returns a list of
records that have been requested to be added to a community.

• zen.accept_pending_request(community, record_id): accept a pend-
ing request into a community. The community must be owned by the token
owner.

• zen.create_new_entry(): creates a new deposit Zenodo

• zen.erase_entry(entry_id): erases a deposit that has not been published
yet

• zen.publish_entry(entry_id): publishes a deposit

• zen.update_record_metadata(record_id, metadata): updates a deposit
metadata

• zen.upload_dir_content(directory): packages the project root directory
as a zip archive and upload it to Zenodo. If a record_id is passed, a new version
of that record is created. Otherwise, a new record is created.

The API also provides several general purpose functions to query Zenodo based on a
text search:

• eossr.api.zenodo.zenodo.search_records(): general search function for
records

• eossr.api.zenodo.zenodo.search_communities(): general search func-
tion for communities

• eossr.api.zenodo.zenodo.search_funders(): general search function for
known funders

• eossr.api.zenodo.zenodo.search_grants(): general search function for
known grants

2https://zenodo.org/account/settings/applications/tokens/new/

4 Thomas Vuillaume et al

• eossr.api.zenodo.zenodo.search_licenses(): general search function
for known licenses

Specific OSSR functions are then built on this:

• eossr.api.ossr.get_ossr_pending_requests()

• eossr.api.ossr.get_ossr_records()

2.3. Command line interface

A set of command lines are also provided to ease the use of the eOSSR:

eossr-codemeta2zenodo codemeta.json. : Converts a metadata descriptive files
from the the CodeMeta to the Zenodo schema. Creates a .zenodo.json file from a
codemeta.json file.

eossr-upload-repository �token TOKEN �input-dir DIRECTORY. : Uploads
a directory to the OSSR as record. The directory must include a valid zenodo or
codemeta file to be used as metadata source for the upload. If not record_id is passed,
a new record is created. Otherwise, a new version of the existing record is created.

eossr-metadata-validator codemeta.json. : Validate a codemeta file. Raises
warnings for recommended changes and errors for unvalid entries.

eossr-check-connection-zenodo �token TOKEN �project_dir DIRECTORY. :
Test the connection to zenodo and all the stages of a new upload. This is particularly
useful in a set of CI tests to test that the upload to Zenodo will be done without issues
when making a new release of the software.

2.4. Code snippets for continuous integrations

As one of the main usage of the eOSSR is in continuous integrations to insure au-
tomated upload to Zenodo (e.g. when making a software release), we also provide
snippets in the documentation than you can use directly in your CI, notably in GitLab.
This fills the missing GitLab-Zenodo3 integration.

Acknowledgments. The ASP would like to thank the dedicated researchers who
are publishing with the ASP. ESCAPE - The European Science Cluster of Astronomy
& Particle Physics ESFRI Research Infrastructures has received funding from the Eu-
ropean Union’s Horizon 2020 research and innovation programme under Grant Agree-
ment no. 824064.

References

Vuillaume, T., Garcia, E., Tacke, C., & Gál, T. 2022, eossr. Release Notes:, URL https:
//doi.org/10.5281/zenodo.5524912

3https://escape2020.pages.in2p3.fr/wp3/eossr/gitlab_to_zenodo.html

https://doi.org/10.5281/zenodo.5524912
https://doi.org/10.5281/zenodo.5524912
https://escape2020.pages.in2p3.fr/wp3/eossr/gitlab_to_zenodo.html

