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Abstract: Environmental enteric dysfunction (EED) is an elusive, inflammatory syndrome of the
small intestine thought to be associated with enterocyte loss and gut leakiness and lead to stunted
child growth. To date, the gold standard for diagnosis is small intestine biopsy followed by histology.
Several putative biomarkers for EED have been proposed and are widely used in the field. Here,
we assessed in a cross-sectional study of children aged 2–5 years for a large set of biomarkers
including markers of protein exudation (duodenal and fecal alpha-1-antitrypsin (AAT)), inflammation
(duodenal and fecal calprotectin, duodenal, fecal and blood immunoglobulins, blood cytokines,
C-reactive protein (CRP)), gut permeability (endocab, lactulose-mannitol ratio), enterocyte mass
(citrulline) and general nutritional status (branched-chain amino acids (BCAA), insulin-like growth
factor) in a group of 804 children in two Sub-Saharan countries. We correlated these markers with
each other and with anemia in stunted and non-stunted children. AAT and calprotectin, CRP and
citrulline and citrulline and BCAA correlated with each other. Furthermore, BCAA, citrulline, ferritin,
fecal calprotectin and CRP levels were correlated with hemoglobin levels. Our results show that
while several of the biomarkers are associated with anemia, there is little correlation between the
different biomarkers. Better biomarkers and a better definition of EED are thus urgently needed.

Keywords: environmental enteric dysfunction; stunted child growth; Sub-Saharan Africa; anemia;
biomarker; alpha-1-antitrypsin; citrulline; calprotectin; lactulose-mannitol test; insulin-like growth factor
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1. Introduction

Environmental enteric dysfunction (EED) is an inflammatory syndrome of the small
intestine suspected to contribute to stunted child growth and acute undernutrition. This
syndrome is characterized through shortening of the intestinal villi, influx of inflammatory
cells, especially T-cells into the mucosa, as well as an increase in cell permeability, leading
to bacterial translocation [1]. The syndrome is well-known and was first described in
travelers spending longer time in the tropics [2,3]. In the last 10 years, EED has become
more prominent in the search for more efficient treatments of childhood undernutrition.
Thus, there has been an increased effort to identify biomarkers able to discriminate and
quantify the presence and severity of EED. The most widely accepted pathway to disease
hypothesizes that recurrent symptomatic or asymptomatic pathogen encounters weaken
the gut barrier, leading to translocation of bacteria, chronic inflammation, and eventually
gut atrophy, gut leakiness and systemic translocation of bacteria [4]. The second hypothesis
suggests that inherent changes to the microbiota might be inducing EED [5,6].

Currently, the gold standard test to diagnose EED is a biopsy followed by a histological
analysis of the samples. In most circumstances, taking biopsies is impractical and invasive,
so other ways of detecting EED are needed. Several studies considered biomarkers of
EED and correlated them with growth measures [7–13], such as height-for-age z-score or
biopsy-diagnosed EED [6,14]. Only a few studies compared different biomarkers with
each other [6,14]. Indeed, a systematic meta-analysis in 2018 suggested that there is little
correlation between the different domains suggested to jointly define EED [15], though
this has never been extensively studied in a single study. There are also conflicting data
on if and how these biomarkers are influenced by micronutrient deficiencies, such as
anemia [14,16–18], that are frequently observed in undernourished children or how, on
the other hand, EED might influence and/or aggravate micronutrient deficiencies. This is
important for both interpreting the biomarkers measured and assessing if anemia and EED
are independently associated with stunting and need to be treated jointly for a maximum
success of treatment outcome.

This project aimed to compare putative biomarkers of EED in two groups of children
included in a cross-sectional study: those with and without stunted growth. Furthermore,
the project aimed to assess if these putative biomarkers are correlated with each other and
if the associations are modulated by anemia.

We show that there is little correlation between the different biomarkers in either of
the two study locations, that most of the biomarkers do not correlate with stunted child
growth but that anemia is independently associated with several putative biomarkers of
EED.

2. Materials and Methods
2.1. Study Setup and Sample Collection

This project was part of the Afribiota project, a cross-sectional study on stunting
performed in children aged 2–5 years in Antananarivo, Madagascar and Bangui, Central
African Republic. All children with valid biomarker data were included in this study.
The subjects included are summarized in the flowchart in Figure 1A. The detailed study
protocol [19] as well as the associated metadata on social and environmental factors [20]
and enteropathogen carriage [21] have been reported previously. In brief, children living in
Bangui, Central African Republic or Antananarivo, Madagascar, aged 2–5 years and not
experiencing any severe disease (acute respiratory distress, HIV, watery or bloody diarrhea,
acute undernutrition) were included. In each country, the target size was 460 children,
classified as severely stunted, moderately stunted and not stunted according to the me-
dian height of the WHO reference population [22]. Metadata included nutritional status,
age, socio-economic factors, ferritin and hemoglobin levels as well as parasite and en-
teropathogen load, and these were assessed using a standardized questionnaire and routine
diagnostics. For all subjects, we collected blood and feces and for undernourished subjects,
we collected duodenal and gastric aspirates. Biobanking was performed by the Clinical
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Investigation and Access to BioResources Platform (ICAReB) at the Pasteur Institute, Paris,
and by the Pasteur Institutes of Madagascar and Bangui.
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2.2. Measurement of Biomarkers in Feces, Duodenum and Blood
2.2.1. Blood Biomarkers

Complete blood count, C-reactive protein (CRP) and ferritin levels were measured
at the Clinical Biology Center of the Institut Pasteur de Madagascar and the Laboratoire
d’Analyse Médicale at the Institut Pasteur de Bangui according to accredited methods. Fer-
ritin levels were corrected for systemic inflammation based on CRP values [23]. Hemoglobin
values of Malagasy children were adjusted for altitude as described in [24,25]. Citrulline
and other amino acids were measured with liquid chromatography coupled to tandem mass
spectrometry (UPLC-MS/MS). For accurate quantification, stable isotope internal standards
of the same structure for each amino acid (purchased from Eurisotop, Saint Aubin, France)
were added to the samples before protein precipitation. Samples were first derivatized
using the AccQ TagTM Ultra (Waters Corporation, Milford, MA, USA) according to man-



Nutrients 2022, 14, 3312 4 of 20

ufacturer recommendations. Amino acid separation was performed with an Acquity™
UPLC system using a CORTECS™ UPLC C18 column (1.6 µm, 2.1 × 150 mm) coupled to
microTQS™ tandem mass spectrometer (Waters Corporation, Milford, MA, USA).

Endocab levels were measured on a subset of samples in Madagascar. To this purpose,
plasma samples were tested for anti-LPS IgM, IgA and IgG using a commercially available
ELISA kit (Endocab Human, Hycult Biotechnology, Noord-Brabant, The Netherlands).
Plasma samples were used undiluted for IgM and IgA and diluted at a ratio of 1:400 and
1:200 for measuring IgG. The assay is based on a solid-phase sandwich ELISA to detect and
quantify antibodies against LPS (endotoxin). A standard curve was created for each plate
using standards provided by the manufacturer.

Immunoglobulin levels were measured using commercial LUMINEX assays (Biorad,
Bio-PlexPro™ Human Isotyping Panel, 6-plex, ref. 171A3100M for IgG1-4, IgM, IgE and
Bio-Plex Pro™ Human IgA Isotyping Assay, ref. 171A3101M, Herkules, CA, USA). The
assays were measured on a MAGPIX system (LUMINEX, Ghent, Belgium) according to
manufacturer instructions. Values were measured in duplicates, and all samples with
more than 20% difference in between the two measurements or values below or above the
standard curve were repeated. Plasma samples were diluted 1/40,000 (IgG 1-4, IgA, IgM)
and 1/500 (IgE).

Cytokine levels were measured on a subset of samples from Madagascar according to
manufacturer instructions using the Cytokine 30-Plex Human Panel from Invitrogen (ref.
LHC6003M, Thermofisher Scientific, Waltham, MA, USA) using plasma samples diluted
1/2 prior to measurement and the same LUMINEX setup as described above.

Igf1 levels were measured at Eurofins Biomnis using a chemiluminescence assay on
samples from Bangui only.

2.2.2. Duodenal and Fecal Biomarkers

Of note, duodenal samples were available only for stunted children. To assess for
small intestine bacterial overgrowth (SIBO), duodenal samples with a pH of at least 5 were
cultured aerobically and anaerobically in different rich media as described previously [5].
Cultures were considered positive for SIBO if the total bacterial count exceeded 2 × 105 CFU
per mL of duodenal fluid [26]. Fecal and duodenal calprotectin and alpha-1-antitrypsin
(AAT) concentrations were assayed at the coprology laboratory of the Pitié Salpêtrière Hos-
pital according to standard accredited procedures as described previously [27]. Duodenal
data for AAT and calprotectin was retrospectively excluded from the analysis due to a high
number of missing data.

Immunoglobulin levels were measured using commercial LUMINEX assays (Biorad,
Bio-PlexPro™ Human Isotyping Panel, 6-plex, ref. 171A3100M for IgG1-4, IgM, IgE and Bio-
Plex Pro™ Human IgA Isotyping Assay, ref. 171A3101M, Herkules, CA, USA). The assays
were measured on a Bioplex 200 system in combination with the DropArray approach
(Curiox Biosystems Pte Ltd., Singapore, Singapore) according to manufacturer instructions.
Values were measured in duplicates, and all samples with more than 20% difference in
between the two measurements or values below or above the standard curve were repeated.
Final values were normalized to the initial fecal weight used for extraction. Analysis
was performed with Bio-Plex Manager Software version 6.1.1 (Biorad, Herkules, CA,
USA). Duodenal samples were used undiluted (IgG1-4, IgM) and at a dilution of 1/100
in an extraction cocktail (IgA). For feces, 200 mg of fecal samples were homogenized in
1 mL of PBS containing Protease Inhibitor Cocktail (Roche Diagnostics GmbH, Mannheim,
Germany), incubated for 30 min on ice and centrifuged for 10 min at 10,000 g at 4 ◦C. The
supernatant was then used in downstream applications at a dilution of 1/100–1/10,000.

Cytokine levels in the feces were measured using the Cytokine 30-Plex Human Panel
from Invitrogen on the same, undiluted protein extracts using the same LUMINEX setup
as described above. Overall fecal cytokine values were, however, very low and thus not
included in the final analysis.
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Bacterial pathogen load was determined using quantitative PCR on a set of bacterial
virulence genes (ompC, ipaH, estla, eltB, eae, bfpA, aggR, aaiC, cadF, ctxA) as published
previously [21]. Presence of a given gene was based on a Ct value < 37, and the total
number of genes present in each fecal sample was reported. Parasites were identified using
microscopy as well as qPCR-based approaches as described in [28].

2.2.3. Urine Biomarkers

Lactitol–mannitol levels in urine were assessed as described in [29]. Briefly, the dual
sugar absorption test was performed in the morning following an overnight fast and after
discarding all overnight urine. The children were then given a mixture of 10% mannitol and
lactitol in mineral water at a dosage of 0.1 g/kg of body weight for each sugar. The solution
was given to them within 30 min, and the children were given mineral water after a 2 h wait.
All urine was collected for the 5 following hours with gentamicin as a preservative. The
final urine volume was measured, and the urine mixed as an aliquot was stored at −80 ◦C
unitl analysis. The samples were analyzed at Hôpital Pitié Salpetrière using a Perkin Elmer
AutoSystem KL (Perkin Elmer, Waltham, MA, USA) gas chromatograph equipped with a
flame ionization detector. Samples were pre-treated as follows: 3 mL of urine was deionized
using 0.5 g of Amberlite IRN-150 resin, then centrifuged for 10 min at 1500× g. Of this
deionized urine, 950 ul were mixed with 50 µL of internal standard [a mixture of inositol
and turanose (v/v) at a final concentration of 5 mg/mL], lyophilized and submitted to
derivatization by addition of 400 µL of a mixture composed of hexamethyldisilazane and
trimethylchlorosilane in pyridine (3:1:9) (Supelco analytical, Bellefonte, PA, USA) for 1 h
at 60 ◦C. Samples were extracted using 200 µL hexane and injected in a capillary column
(30 m Å~0.25 mm ID Elite N 9316076, Perkin Elmer) with helium as gas carrier at a 1.5 bar
head pressure. The temperature program was performed from 150 to 250 ÅãC with 20 ÅãC
per min. Peak areas were automatically integrated, and mannitol and lactitol areas reported
to inositol and turanose areas, respectively. Results were expressed as mg/L and IP (%) as
L/M ratio (L/M, %). L/M ratio data was retrospectively excluded from the analysis due to
a high number of missing data (Figure S1).

2.2.4. Cutoffs Used for the Categorization of the Biomarkers

We used the following cutoffs to transform part of the biomarkers into categorical
variables: anemia was defined as less than 110 g of Hb/l of blood according to the WHO
criteria [30,31]. For AAT, values below 1.25 mg/g of fecal dry weight or below 0.15 of fecal
wet weight were considered normal. For calprotectin, thresholds were adapted to age and
were considered normal if the calprotectin levels were below 150 mg/g of fecal wet weight
for children aged 2–3 years and 100 mg/g of fecal wet weights for children aged three years
and older. These values are based on the normal values used at the Hôpital Pitié Salpêtrière.
Low ferritin levels were defined as <12 µg/L in the absence of inflammation [32]. To
eliminate the influence of inflammation on ferritin plasma concentrations, a correction
factor of 0.67 was used to adjust its values in the presence of inflammation [23]. Citrulline
values were defined according to the normal values provided by the Hôpital Necker Enfants
Malades as follows: low citrulline: <7 umol/L, elevated citrulline: >43 umol/L. Amino
acids were categorized according to the normal values provided by the Hôpital Necker
Enfants Malades as follows: low alanine: 151 umol/L, elevated alanine: >407 umol/L; low
valine: <133 umol/L, elevated valine: >349 umol/L; low isoleucine: <37 umol/L, elevated
isoleucine: >85 umol/L; low leucine: <67 umol/L, elevated leucine: >175 umol/L. High
CRP levels were defined as: >6 mg/L.

2.3. Statistical Analysis

The metadata can be found in Supplementary File S1. Data analysis was performed
in R, version 4.1.2. Missing variables were reported and putative biomarkers with high
levels of missing values were excluded from the models (i.e., cytokines in the blood, lactitol–
mannitol and small intestine inflammation measurements). The statistical analyses for
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the different sections are indicated below, and the analysis code can be found on Github
under VonaeschLabUNIL/Afribiota (https://github.com/VonaeschLabUNIL/Afribiota.
git; accessed on 5 July 2022). All variables were tested for interactions, and interaction
terms were included in the final multivariate models.

2.3.1. Correlation of Biomarkers across Body Sites and Between Each Other

Binary comparisons were made using the Student’s t-test or Spearman correlation
for continuous variables and the Chi Squared Test for proportions and illustrated using
correlation plots, heatmaps or boxplots. Furthermore, we corrected p-values for multiple
comparisons using the False Discovery rate (FDR). When appropriate, a square-root or
logarithmic transformations of the response variables were taken so that the residual terms
were closer to being normally distributed. Multivariate comparisons were illustrated using
Prinicipal Component Analysis.

2.3.2. Factors Associated with Anemia and Height-for-Age Z-Score

Binary comparisons between the biomarkers and anemia or height-for-age z-score
were made using the Student’s t-test or Spearman correlation for continuous variables
and the Chi Squared Test for proportions, and p-values were corrected by the FDR for
multiple comparisons. When appropriate, a square-root or logarithmic transformations of
the response variables were taken so that the residual terms were closer to being normally
distributed. Furthermore, for computing significance in correlations between two variables/
biomarkers, we used the Spearman rank correlation method, which is a nonparametric
measure of rank correlation that is ideal for variables that are skewed or have a non-normal
distribution. Last, height-for-age z-score was modeled as a linear function of variables of
interest accounting for a priori controls including country of origin, sex, age, food diversity
score and season of inclusion. To avoid a disproportionate effect of potential outliers in the
dataset (Figure S2), which might have a large influence on the parameter estimates from
the linear models and assess for robustness of the associations, we applied a bootstrapping
approach.

2.3.3. Factors Associated with Putative Biomarkers of EED

Continuous response variables were modeled as a linear function of variables of
interest accounting for a priori controls including a bootstrapping approach.

Linear models were corrected for the following potential confounding variables: coun-
try of inclusion, season of inclusion, food diversity score, age, gender and, for some of
the models, hemoglobin levels. Inflammation-related biomarkers were also corrected for
the number of enteropathogenic virulence genes detected as well as carriage of Trichuris
trichura and/or Ascaris lumbricoides.

3. Results
3.1. Description of Study Population and Biomarkers Measured

A total of 804 subjects were included in this analysis; 417 were from Antananarivo
(215 non-stunted and 202 stunted) and 387 from Bangui (216 non-stunted and 171 stunted)
(Figure 1A). Duodenal biomarkers were available only for stunted children. Furthermore,
given biomarkers including Igf1 (Bangui, Central African Republic) as well as blood
cytokines and endocab levels (Antananarivo, Madagascar) were performed only on two
small subsets of participants. The study population and relevant metadata are described in
Table 1.

https://github.com/VonaeschLabUNIL/Afribiota.git
https://github.com/VonaeschLabUNIL/Afribiota.git
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Table 1. Characteristics of the study population.

Antananarivo, Madagascar Bangui, Central African Republic

(n = 417) (n = 387)

Height-for-age z-score

Moderately stunted 109 (26.1%) 85 (22.0%)

Mon-stunted 215 (51.6%) 216 (55.8%)

Severely stunted 93 (22.3%) 86 (22.2%)

Mean (SD) −2.03 (1.11) −1.83 (1.40)

Median [Min, Max] −1.97 [−5.23, 2.03] −1.75 [−5.67, 2.17]

Age (months)

Mean (SD) 42.8 (10.7) 40.0 (10.2)

Median [Min, Max] 43.2 [24.2, 60.0] 38.8 [24.2, 60.8]

Hemoglobin (g/L)

Mean (SD) 11.6 (1.15) 10.8 (1.42)

Median [Min, Max] 11.7 [6.80, 15.1] 11.0 [5.50, 15.9]

Missing values 9 (2.2%) 47 (12.1%)

Anemia (Hb < 11 g/L)

No 308 (73.9%) 181 (46.8%)

Yes 100 (24.0%) 159 (41.1%)

Missing values 9 (2.2%) 47 (12.1%)

Ascaris infestation

No 205 (49.2%) 337 (87.1%)

Yes 209 (50.1%) 1 (0.3%)

Missing values 3 (0.7%) 49 (12.7%)

Trichuris infestation

No 138 (33.1%) 338 (87.3%)

Yes 276 (66.2%) 0 (0%)

Missing values 3 (0.7%) 49 (12.7%)

Giardia infestation

No 316 (75.8%) 274 (70.8%)

Yes 98 (23.5%) 64 (16.5%)

Missing values 3 (0.7%) 49 (12.7%)

Number of virulence genes detected

Mean (SD) 2.51 (1.52) 0.824 (0.947)

Median [Min, Max] 2.00 [0, 7.00] 1.00 [0, 4.00]

Missing values 3 (0.7%) 205 (53.0%)

Food diversity score

Mean (SD) 3.90 (1.11) 3.63 (1.24)

Median [Min, Max] 4.00 [1.00, 7.00] 4.00 [1.00, 7.00]

Season of inclusion

Rainy season 199 (47.7%) 228 (58.9%)

Dry season 218 (52.3%) (41.1%)
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Several putative biomarkers of EED were measured within this study: citrulline reflect-
ing enterocyte mass; alpha-1-antitrypsin, reflecting protein-losing enteropathy; calprotectin,
reflecting intestinal inflammation; immunoglobulin levels in the duodenum, the feces and
the blood as well as cytokine levels in the blood as general markers of inflammation; the
lactitol–mannitol ratio, reflecting intestinal permeability; endocab levels, reflecting translo-
cation of Gram-negative bacteria and Igf1 (insulin-like growth factor) and branched-chain
amino acids as general read-outs for undernutrition.

Igf1 values were analysed in a sub-study in Bangui (n = 364 children), blood cytokine
values in a sub-study in Madagascar (n = 66) and endocab values in a subset in Madagascar
(n = 61) (Figure S1). The lactitol–mannitol ratio was a posteriori excluded from the analysis
due to very high missing or uninterpretable data. The values of the putative biomarkers
between the study countries are summarized in Tables 2 and S1–S3 and the sample size
numbers for each biomarker in Figure 1B.

Table 2. Description of the main putative biomarkers.

Antananarivo, Madagascar Bangui, Central African Republic

Non-Stunted Stunted Non-Stunted Stunted

(n = 215) (n = 202) (n = 216) (n = 171)

Ferritin (ng/mL)

Mean (SD) 35.7 (29.6) 35.0 (68.5) 65.5 (74.9) 67.7 (62.7)

Median [Min, Max] 28.0 [1.88, 170] 25.4 [1.27, 929] 40.0 [3.00, 534] 52.0 [4.00, 343]

Missing values 4 (1.9%) 8 (4.0%) 17 (7.9%) 22 (12.9%)

Ferritin level

Missing values 4 (1.9%) 8 (4.0%) 17 (7.9%) 22 (12.9%)

No 175 (81.4%) 158 (78.2%) 189 (87.5%) 138 (80.7%)

Yes 36 (16.7%) 36 (17.8%) 10 (4.6%) 11 (6.4%)

Citrulline (umol/l)

Mean (SD) 25.1 (7.52) 23.2 (6.79) 22.5 (6.52) 21.0 (6.61)

Median [Min, Max] 24.4 [10.5, 87.0] 22.1 [7.00, 46.0] 21.9 [7.50, 50.9] 20.8 [7.55, 44.9]

Missing 7 (3.3%) 15 (7.4%) 2 (0.9%) 4 (2.3%)

Citrulline level

Missing 7 (3.3%) 15 (7.4%) 2 (0.9%) 4 (2.3%)

Normal 200 (93.0%) 182 (90.1%) 200 (92.6%) 152 (88.9%)

Too low 8 (3.7%) 5 (2.5%) 14 (6.5%) 15 (8.8%)

Valin (umol/L)

Mean (SD) 173 (30.6) 160 (32.8) 134 (27.8) 118 (29.1)

Median [Min, Max] 168 [102, 267] 157 [62.9, 360] 132 [59.9, 223] 116 [52.8, 215]

Missing values 7 (3.3%) 15 (7.4%) 2 (0.9%) 4 (2.3%)

Valin level

Low 32 (14.9%) 57 (28.2%) 124 (57.4%) 129 (75.4%)

Normal 176 (81.9%) 129 (63.9%) 90 (41.7%) 38 (22.2%)

Elevated 0 (0%) 1 (0.5%) 0 (0%) 0 (0%)

Missing values 7 (3.3%) 15 (7.4%) 2 (0.9%) 4 (2.3%)
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Table 2. Cont.

Antananarivo, Madagascar Bangui, Central African Republic

Non-Stunted Stunted Non-Stunted Stunted

Alanine (umol/L)

Mean (SD) 361 (116) 354 (131) 337 (102) 340 (132)

Median [Min, Max] 348 [174, 862] 328 [130, 807] 316 [146, 659] 327 [124, 811]

Missing 7 (3.3%) 15 (7.4%) 2 (0.9%) 4 (2.3%)

Alanine levels

Low 0 (0%) 3 (1.5%) 0 (0%) 5 (2.9%)

Normal 166 (77.2%) 144 (71.3%) 170 (78.7%) 131 (76.6%)

Elevated 42 (19.5%) 40 (19.8%) 44 (20.4%) 31 (18.1%)

Missing values 7 (3.3%) 15 (7.4%) 2 (0.9%) 4 (2.3%)

Isoleucine (umol/L)

Mean (SD) 47.4 (10.2) 43.9 (12.5) 40.2 (10.1) 36.6 (10.0)

Median [Min, Max] 46.0 [28.9, 87.0] 42.1 [14.9, 161] 39.0 [18.9, 81.0] 35.6 [14.0, 74.0]

Missing values 7 (3.3%) 15 (7.4%) 2 (0.9%) 4 (2.3%)

Isoleucine levels

Low 24 (11.2%) 42 (20.8%) 80 (37.0%) 94 (55.0%)

Normal 182 (84.7%) 144 (71.3%) 134 (62.0%) 73 (42.7%)

Elevated 2 (0.9%) 1 (0.5%) 0 (0%) 0 (0%)

Missing values 7 (3.3%) 15 (7.4%) 2 (0.9%) 4 (2.3%)

Leucine (umol/L)

Mean (SD) 82.1 (16.5) 74.3 (17.1) 71.2 (15.8) 63.1 (17.1)

Median [Min, Max] 79.4 [49.7, 139] 72.9 [26.5, 203] 69.9 [36.6, 124] 60.5 [31.6, 137]

Missing values 7 (3.3%) 15 (7.4%) 2 (0.9%) 4 (2.3%)

Leucine levels

Low 34 (15.8%) 60 (29.7%) 93 (43.1%) 113 (66.1%)

Normal 174 (80.9%) 126 (62.4%) 121 (56.0%) 54 (31.6%)

Elevated 0 (0%) 1 (0.5%) 0 (0%) 0 (0%)

Missing values 7 (3.3%) 15 (7.4%) 2 (0.9%) 4 (2.3%)

AAT in feces (mg/g)

Mean (SD) 0.571 (0.603) 0.611 (0.491) 0.402 (0.335) 0.389 (0.298)

Median [Min, Max] 0.480 [0.0300, 6.36] 0.550 [0.0300, 3.52] 0.340 [0.0100, 1.80] 0.315 [0.0300, 1.48]

Missing values 11 (5.1%) 7 (3.5%) 2 (0.9%) 1 (0.6%)

AAT levels in feces

Elevated 3 (1.4%) 2 (1.0%) 0 (0%) 0 (0%)

Grey zone 9 (4.2%) 11 (5.4%) 5 (2.3%) 3 (1.8%)

Missing 9 (4.2%) 4 (2.0%) 2 (0.9%) 1 (0.6%)

Normal 194 (90.2%) 185 (91.6%) 209 (96.8%) 167 (97.7%)

Calprotectin in feces (ug/g)

Mean (SD) 651 (700) 888 (1280) 588 (695) 500 (580)

Median [Min, Max] 404 [55.0, 4530] 515 [54.0, 10600] 303 [56.0, 4050] 309 [72.0, 4600]

Missing values 19 (8.8%) 22 (10.9%) 17 (7.9%) 14 (8.2%)
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Table 2. Cont.

Antananarivo, Madagascar Bangui, Central African Republic

Non-Stunted Stunted Non-Stunted Stunted

Calprotectin levels in feces

Elevated 66 (30.7%) 72 (35.6%) 56 (25.9%) 28 (16.4%)

Normal 130 (60.5%) 107 (53.0%) 142 (65.7%) 128 (74.9%)

Missing values 19 (8.8%) 23 (11.4%) 18 (8.3%) 15 (8.8%)

CRP (mg/L)

Mean (SD) 4.54 (4.38) 5.16 (5.97) 6.76 (20.0) 9.36 (18.5)

Median [Min, Max] 3.00 [3.00, 31.0] 3.00 [3.00, 50.0] 0.440 [0.0100, 222] 1.11 [0.0100, 144]

Missing values 4 (1.9%) 8 (4.0%) 22 (10.2%) 23 (13.5%)

CRP level

Elevated 14 (6.5%) 20 (9.9%) 30 (13.9%) 38 (22.2%)

Normal 197 (91.6%) 174 (86.1%) 164 (75.9%) 110 (64.3%)

Missing values 4 (1.9%) 8 (4.0%) 22 (10.2%) 23 (13.5%)

Insulin-like growth factor 1 (Igf1)
(ng/mL) *

Mean (SD) 56.5 (24.7) 54.2 (19.8)

Median [Min, Max] 56.0 [1.00, 101] 50.5 [8.00, 98.0]

Missing values 10 (4.6%) 13 (7.6%)

* Igf1 was only measured in the samples from the Central African Republic.

3.1.1. Enterocyte Mass and (Intestinal) Inflammation

A total of 3.2% (13/410) in Antananarivo and 8.3% (32/384) children in Bangui,
respectively, showed citrulline levels below the normal value. A total of 6.4% (27/422) of
children in Antananarivo and 2.1% (8/387) of children in Bangui, respectively, had elevated
levels for alpha-1-antitrypsin (AAT), and 36.4% (144/396) of children in Antananarivo and
24.4% (87/357) of children in Bangui had elevated levels of calprotectin.

Immunoglobulin levels were generally low in the duodenum with higher levels of IgG1
and IgG2 in the feces and blood (Figure S2B). Cytokine levels were measured on a subset
of children from Madagascar (n = 66). The profile of blood cytokines did not differ between
children of differing nutritional states (Figure S3A). Immunoglobulin levels were measured
in the blood, duodenum and feces in both study sites. Overall, the immunoglobulin values
in samples from the Central African Republic were more diverse than from Madagascar, yet
there was no visible clustering by stunting status (Figure S3B–E). A total of 8.0% (34/423)
and 21.0% (71/345), in Bangui and Antananarivo, respectively, showed elevated levels of
CRP.

3.1.2. Gut Leakiness and Bacterial Translocation

The test for the lactitol–mannitol ratio had many missing observations or yielded
non-interpretable results since the mannitol levels were below the detection threshold in
many children. The remaining values were almost exclusively above the threshold set for
normal gut permeability, suggesting that the observed children suffered from leaky gut.
Given the large number of missing values, we did not include this variable in our models.
There was only limited data available for endocab (n = 61) and only from the Madagascar
study site. The substudy comprised both stunted (n = 36) and non-stunted (n = 25) children.
We did not observe any significant association between stunted child growth and either of
the sub-forms of endocab (IgA (p = 0.17), IgG (p = 0.42), IgM (p = 0.30).
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3.1.3. General Markers of Undernutrition

Igf1 levels were measured in Bangui only (n = 367) and did not differ in between the
stunted and non-stunted children (p = 0.35). Branched chain amino acids were significantly
lower in stunted compared to non-stunted children (p < 0.001 on the geometric mean of the
branched chain amino acids).

Overall, in our study group, while roughly one third of all children showed signs of
general gut inflammation (calprotectin), only very few children showed signs of protein-
losing enteropathy (AAT) or a decrease in enterocyte mass as assessed through citrulline
levels.

3.2. Little Correlation of Biomarkers across Body Sites and between Each Other

Environmental enteric dysfunction mainly affects the small intestine. We wondered
how markers in the blood or the feces, which are more readily available on a routine basis,
are correlated with measurements of inflammation in the small intestine. We compared
biomarkers of inflammation in the small intestine, feces and blood.

3.2.1. Correlation across Body Sites

Data on immunoglobulins were available for 82 children in the blood, feces and
duodenum; 90 children in duodenal and fecal samples and 594 children in blood and fecal
samples. As expected, a principal components analysis (PCA) plot showed that the samples
clustered by analysis site, with duodenal and fecal samples showing similar profiles that
were distinct from the profiles in the blood (Figure S3B). When comparing the levels of
immunoglobulins between the different body sites using a two-way comparison (Spearman
correlation), after adjusting the p-values for multiple comparisons (within a compartment),
there was a significant association with IgG4 between blood and fecal samples. However,
the association was weak and mostly driven by a few observations. Immunoglobulin A, G
and M levels in the blood and immunoglobulin G and M levels in the feces correlated with
each other more strongly (Figure S4).

Furthermore, there was no correlation between intestinal inflammatory markers in the
small intestine and the feces when correcting for age, sex and country of origin whether
using the untransformed values (Figure 2A,B) or transformed values. Endocab levels as
well as blood cytokine levels were only measured in a subset of children from Madagascar,
and there was thus only a very low number of children with shared cytokine and endocab
data in the blood (n = 8), not allowing for statistical comparisons.

3.2.2. Correlation between Different Biomarkers

EED is defined through several hallmarks, including intestinal inflammation, gut
atrophy, and increased gut permeability. We aimed to compare the levels of the different
biomarkers for each child.

For 608 children, we had data to compare AAT levels, calprotectin levels, citrulline
levels and control for potential confounding factors including age, gender, country of origin,
anemia, BCAA levels and systemic inflammation. For 299 children from Bangui, we also
had data for Igf1 levels.

In the group of 608 children, as expected, AAT and calprotectin levels, both reflecting
different aspects related to intestinal inflammation, were significantly associated between
each other (Figure 2C). Furthermore, there was an inverse correlation between citrulline
and CRP levels (Figure 2G) and a direct correlation between BCAA levels and citrulline
levels (Figure 2F). However, there was no significant association between citrulline levels
and AAT and/or calprotectin nor, in the group of 299 children, Igf1 and any of the other
putative biomarkers (Figure 3).
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Figure 2. Correlation of different biomarkers between body compartments, with each other as well as
with the number of virulence genes: (A) correlation plot of calprotectin levels in feces and duodenum;
(B) correlation plot of alpha-1-antitrypsin (AAT) levels in feces and duodenum; (C) number of
enteropathogenic virulence genes detected according to calprotectin and AAT levels; (D) calprotectin
and AAT concentration measured in the feces depending on the presence of at least one virulence gene
measured by qPCR; (E) correlation of levels of fecal calprotectin and AAT levels; (F) correlation of
citrulline levels and the geometric mean of branched-chain amino acids (BCAA = isoleucine, leucine,
valine); (G) correlation of blood citrulline and CRP levels; correlations are based on non-parametric
Spearman correlation; *: p < 0.05; **: p < 0.01; ***: p < 0.001.

Thus, in the children studied, we found no strong associations between inflamma-
tion markers in the duodenum, the feces, or the blood nor among the different putative
biomarkers of EED.

3.3. Blood Amino Acid Levels, Blood IgE and Ferritine Are Associated with Stunted Child Growth

EED has been postulated to be associated with stunted child growth. We tested the
putative EED markers for a possible association with the HAZ-score in continuous or
categorical form. For blood amino acid levels in a bivariate analysis, the only variables
associated with stunted child growth were: citrulline (categorical: p = 0.034; continuous:
p < 0.001, fold change stunted/non-stunted: 0.93), valine (categorical: p = 3.6 × 10−5,
continuous: p = 1.1 × 10−6); leucine (categorical: p = 1.8 × 10−4, continuous: p= 1.1 × 10−6),
isoleucine (p = 2.8 × 10−7, continuous: p = 7.9 × 10−5), alanine (p = 0.008, continuous:
p = 0.9), BCAA (continuous: p = 1.4 × 10−7, fold change stunted/non-stunted: 0.91) and
CRP as a categorical variable (p = 0.006). Using linear models correcting for age, gender
and country of origin, there was no association between fecal alpha-1-antitrypsin levels,
fecal calprotectin levels, CRP, Igf1 or endocab and HAZ-score (Figure 4A,C,D). Testing for
associations between the different immune variables (blood cytokines, immunoglobulins),
IgE, VEGF and Il2r levels in the blood had unadjusted p-values of less than 0.05; however,
except for IgE (p = 0.03), associations with the HAZ-score were not significant in linear
models after adjusting for additional factors such as country of origin, stunting status, age,
gender, season of inclusion and clinical factors (clogged or runny nose, cough, hemoglobin)
(Figure S5).
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There was a significant linear association between citrulline levels and HAZ-score
(Figure 4A) as well as BCAA levels and HAZ-score (Figure 4D). This association was,
however, confounded, as significance was lost when the models included levels for both
citrulline and BCAA levels. In this case, only BCAA remained associated with stunting,
suggesting the initial finding is due to the interaction between citrulline and BCAA levels
(Figure 4C,D).

Thus, from the biomarkers tested, only plasma amino acids, ferritin and blood IgE
levels were associated with stunted growth in our study group.

3.4. Factors Associated with Putative Biomarkers of EED

We next assessed for factors associated with the putative biomarkers measured (Figure 3).
We found citrulline levels to be significantly and negatively associated by CRP levels

and positively associated with hemoglobin levels and BCAA levels. BCAA levels were
associated with food diversity score, country of inclusion, CRP and citrulline levels.

Furthermore, we found AAT levels to be associated with age, hemoglobin, and calpro-
tectin levels. Calprotectin was in turn significantly associated with AAT levels, season of
inclusion of the child, the number of enteropathogen virulence genes detected as well as
hemoglobin levels.
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Figure 4. Putative biomarkers and their association with growth delay: (A) association of different
biomarkers with height-for-age z-score; (B) blood amino acid levels as a function of stunting status;
(C) regression results of the main biomarkers and potential confounders and stunting; (D) regression
results of the main biomarkers and potential confounders including branched-chain amino acids
(BCAA) and stunting. Significant associations (p < 0.05) are indicated in blue. Correlations are based
on non-parametric Spearman correlation; ***: p < 0.01, ns: p > 0.05.

IgE levels in the blood were associated with Trichuris infection, gender, and age. Igf1
levels were associated with the age of the child and CRP levels with season of inclusion
(Figure 3). Finally, ferritin levels were associated with age, country of inclusion, calprotectin,
hemoglobin, and CRP.

Indeed, all the main biomarkers measured in our study except BCAA and Igf1 were
directly correlated with hemoglobin levels (Figure 5).

Thus, our data reveals that the putative EED markers of intestinal inflammation
and enterocyte mass are not correlated with each other but are heavily influenced by
comorbidities such as anemia and environmental factors such as season of inclusion, age
and diet.
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4. Discussion

In the group of children analyzed, we found AAT to correlate with calprotectin levels,
CRP with citrulline levels and citrulline levels with BCAA levels. Furthermore, BCAA,
citrulline, ferritin, fecal calprotectin and CRP levels were correlated with hemoglobin levels.
We also saw correlation between BCAA levels, blood IgE values and ferritin and stunted
child growth. Our results show that while several of the biomarkers are associated with
anemia, there is little correlation between the different biomarkers. A better definition of
EED as well as more specific biomarkers are thus urgently needed.

The results presented in this article in light of the accumulated evidence raise an
important question: is EED really a single etiological entity or is it an accumulation of dif-
ferent pathophysiological changes affecting the gut that are context dependent? Our results
suggest the different biomarkers referring to different domains of EED are not related, a
result that is confirmed on a smaller subset of EED markers in a systematic meta-analysis by
Harper et al. [15]. Indeed, the different hallmarks of EED seem to be independent of each
other and heavily influenced by environmental factors such as (asymptomatic) pathogen
carriage, micronutrient deficiencies or diet and environmental factors, thus making it diffi-
cult to diagnose and even define EED across different contexts with the currently available,
non-invasive biomarkers.

We further show that several of the putative biomarkers including BCAA, citrulline,
ferritin, fecal calprotectin and CRP levels are associated with hemoglobin as well as calpro-
tectin and CRP with ferritin. A previous cross-sectional study in Bangladesh on children
aged two years shows a negative correlation between AAT levels and ferritin [17], and
another cross-sectional study in Uganda on children aged six months shows association
between higher anti-flagellin IgA, anti-flagellin IgG and anti-LPS IgA concentrations and
lower hemoglobin levels [33]. These results jointly point towards a role of EED in micronu-
trient deficiency or—on the inverse or in addition—a role of micronutrient deficiency on
the development or aggravation of EED. Interestingly, the most common extraintestinal
complication of intestinal bowel disease (IBD), a syndrome that shares a lot of similarities
with EED, is anemia [34]. Further research on how EED is modulated and potentially ag-
gravating micronutrient status is warranted, especially in longitudinal studies in children
of the most vulnerable age between conception to the second year of life.

In our study, while inflammation was not associated with stunted child growth,
several of the inflammation markers differed by season and by country of inclusion of the
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children. This might be due to the high burden of enteropathogens overall in the study
area [5,21] as well as the overall pathogen exposure, as shown by the correlation between
the number of asymptomatic enteropathogens present and fecal markers of inflammation.
As stunting is a long-term syndrome, previous infection rather than current infections
might be more prone to be associated with stunted child growth. Associations between
enteropathogens and fecal inflammation have been shown in other settings [35,36]. In
several previous studies, inflammation markers were also associated with stunted child
growth [6,12–15,37,38], while no association was observed with biopsy-confirmed EED [6].
While we did not observe an association between parasite carriage and stunting in the
group of children included in Madagascar [28], there was a clear association of blood
IgE levels with stunting, suggesting that previous contact with parasites or allergens is
associated with stunted child growth. Thus, it is plausible that inflammation markers
are only associated with stunted child growth if infection with enteropathogens is indeed
the (or at least one of the) driving forces underlying chronic undernutrition and stunted
child growth. Furthermore, previous infection might have an effect on current stunted
growth even if the actual inflammation has resolved. This is especially plausible as our
study group was quite old, 2–5 years, while the bulk of growth delay normally occurs prior
to this age [39]. Surprisingly, we did not detect any association between IgA levels and
stunted child growth. While this is counter-intuitive, it is in line with a previous article
from the group showing that IgA-coating of bacteria is not significantly changed between
stunted and non-stunted children [27]. Our study did not find any correlation between
AAT and calprotectin levels in the small intestine and in the feces. In a publication by Chen
et al., the authors also did not find any association between fecal immune markers and
histology-confirmed EED. As EED is a small intestine disease, these results question the
usefulness of fecal markers of inflammation and enteropathy as a readout of EED.

We find an association between citrulline levels and HAZ. This correlation is, however,
heavily confounded by the overall protein intake, reflected through the levels of BCAA.
This calls for a careful evaluation of citrulline as a biomarker, as citrulline levels alone are
not able to distinguish between general problems of undernutrition and actual enterocyte
mass loss induced by inflammatory syndromes such as enteropathies. Future longitudinal
studies should include more markers of general undernutrition as well as different blood
markers, assessing for enterocyte mass.

One of the current most widely used tests, the dual-sugar absorption test, is very
difficult to perform in the field, as children need to fast for an entire night and to provide
urine samples over several hours [40]. In our study, we encountered the same problems
in collecting this data and faced additional issues with measuring mannitol levels, which
were very low. Thus, we do not see the dual-sugar absorption test being useful in the
field. Overall, previous work offered conflicting data about specific biomarkers associated
with stunted child growth [6–11,36,40–42]. A recent study assessing for biomarkers in a
longitudinal cohort of 416 children over two years found little association between classical
biomarkers of EED as well as height-for-age score, which is in line with the results we
present here. However, there is general consensus that ferritin levels are associated with
stunted child growth [9,14,16,17,43], a finding that is replicated in our study.

Our study has some obvious limitations: first, stunting and EED being gradual and
chronic syndromes, a longitudinal design would be more appropriate to infer causal
relationships between the biomarkers and stunted growth. The negative results regarding
association of biomarkers with stunted child growth might thus simply reflect the fact that
pathophysiological changes leading to stunted child growth might have happened in the
past and resolved in the meantime. Only a longitudinal approach could clarify this point.

Furthermore, we were unable to perform biopsies, the current gold standard for the
diagnosis of EED and also did not manage to obtain reliable results from the lactitol–
mannitol test, which is the current reference test to assess for leaky gut. Despite these
limitations, our study adds important data on the association between different biomarkers
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and is one of the cross-sectional studies with the largest breath of biomarkers measured to
date.

Overall, based on our results and the recent literature, the most reliable biomarker
still seems to be a biopsy followed by histological analysis, where a clear score could
be defined in a recent publication across several study sites. However, the histological
score also showed site-specific characteristics [44]. More studies in different settings are
needed, especially ones that compare the biomarkers at distant body sites to the actual
gold standard for EED, small intestine biopsy and histology [44–47]. Furthermore, studies
should include several biomarkers that are then correlated with each other. Finally, studies
should have a longitudinal design to infer causal relationships and follow the children over
and beyond the most important 1000 first days of life.

5. Conclusions

In this cross-sectional study, we show that the putative biomarkers do not correlate
with each other and are heavily influenced by confounding factors such as asymptomatic
enteropathogenic carriage, age, overall nutritional status and study setting. We further
show that BCAA, citrulline, ferritin, fecal calprotectin and CRP levels are correlated with
hemoglobin levels and calprotectin and CRP with ferritin. Our data suggest that EED is an
assembly of different clinical factors rather than a precise etiological entity, which is not
sufficiently explained by current biomarkers. Our study highlights the importance of the
study location in the etiology of stunting.
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