Yufei Gong 
email: yufei.gong@utt.fr
  
Huynh Khac 
email: tuan.huynh@utt.fr
  
Langeron Yves 
email: yves.langeron@utt.fr
  
Grall Antoine 
email: antoine.grall@utt.fr
  
Learning-based Remaining Useful Lifetime Prognosis of a Fault-Tolerant Deteriorating Control System

Keywords: stochastic degradation, fault-tolerant control system, maximum gain, learning-based remaining useful lifetime prognosis

Le pronostic de durée de vie résiduelle (RUL) joue un rôle important dans l'amélioration de RUL disponible d'un système de contrôle en boucle fermée et soumis à détérioration stochastique. Cependant, en raison de la structure physique complexe et de la dégradation interne cachée du système, la construction de son indicateur de dégradation est un défi. De plus, la tolérance aux fautes du système précité rend difficile la prédiction de RUL via le calcul de probabilité et la simulation de Monte-Carlo. Ainsi, une approche de pronostic de RUL basée sur l'apprentissage et le gain maximal du système est proposée, en supposant que les données de dégradation et les dates de défaillance associées de systèmes similaires sont disponibles. Une étude de cas simplifiée est développée pour valider l'aspect pratique de l'approche proposée.

Abstract-Reliable working time of a fault-tolerant engineering system has become increasingly important. Remaining useful lifetime (RUL) prognosis plays a significant role on enhancing the available lifetime of a stochastically deteriorating feedback control system. However, due to the complex physical knowledge and unknown internal degradation of the system, monitoring system degradation is challenging. Moreover, fault tolerance property of the aforementioned system also make its RUL prediction difficult via probability calculation and Monte-Carlo simulation. This paper aims to investigate a learning-based RUL prognosis strategy with the assumption that degradation data and associated failure times of similar systems are additionally available. All the original degradation data are derived from monitoring the maximum gain of the aforementioned system. A simplified case study is developed to validate the practicality of the presented methodology.

I. INTRODUCTION

Feedback control systems are widely implemented in industrial fields. However, no matter how efficient the controller is designed, stochastical degradation always happen on such a system with the usage, age and environmental effects, and finally causes system failure. In some applications, the trade-off between the system performance and its lifetime is necessary. For instance, the performance of flight actuators on a damaged aircraft is not as important as ensuring that the remaining actuators continue operation until the aircraft can land safely. Similarly, logistic problems may require additional lifetime for a set of actuators until maintenance service or spare parts are available. Thus, life-extending control is widely used to mitigate effects of system components failures by decreasing controller impacts. Adjusting the controller parameters to design a fault-tolerant control policy is carried out in most of the literature. In this way, the degradation level and the remaining useful lifetime (RUL) become valuable information on updating its controller parameters. The RUL prognosis is then becoming a heavy procedure within all the processes.

According to different RUL prediction approaches employed in deteriorating feedback control systems, the current relevant literature can be broadly divided into two categories. In the first category, the degradation indices existed in systems are assumed to be observable. Their evolution can be modeled by a commonly used stochastic processes such as the ones of Lévy or diffusion processes family. Furthermore, applying probability calculation approach, RUL distribution is derived under the first hitting time (FHT) of degradation index with given failure threshold. In [START_REF] Langeron | A modeling framework for deteriorating control system and predictive maintenance of actuators[END_REF] and [START_REF] Langeron | Joint maintenance and controller reconfiguration policy for a gradually deteriorating control system[END_REF], Langeron et al. apply a Gamma-Poisson process to directly model the observed degradation of a critical component in a controlled drilling unit. Hence, the RUL probability of the gradated system is derived by calculating the probability of its FHT. Similar measures are also implemented in [START_REF] Mo | A dynamic approach to performance analysis and reliability improvement of control systems with degraded components[END_REF], where Wiener processes are considered as models for the degradation of multiple actuators in a closed-loop cooling system. By jointly using probability calculation as well as Monte-Carlo simulation, RUL distribution is then acquired. However, components failure does not necessarily mean the failure of the entire control system. Therefore, considering the aforesaid issue, reference [START_REF] Xiao | Reliability analysis of aging control system via stability margins[END_REF] constructs a degradation index from the entire feedback control system to reduce this obstacle. As is known, the close-loop system performance is highly related to its system stability. When the system loses its stability, it is failed. Thus, the authors extract the stability margin of a controlled solar energy platform as a degradation index and model it via inverse Gaussian degradation process. Unfortunately, this approach is still component-based, but it provides us a good idea about investigating the degradation of the entire feedback control system. Due to the specific structure of a close-loop system, the controlled system compensate for part of the disturbances that could cause system degradation. That is to say, a close-loop system equipped by a controller is faulttolerant, so that components degradation evolution and system degradation progression are not same. Thus, in the second classification, instead of observing the state of degradation components, system states are estimated via filter methods in terms of studying system-level degradation. RUL is then predicted through Monte-Carlo simulation. Thus, scientists exploit the system structures as well as possible hidden degradation equation to predict system RUL. In [START_REF] Nguyen | Remaining useful lifetime prognosis of controlled systems: a case of stochastically deteriorating actuator[END_REF] and [START_REF] Si | A novel degradation modeling and prognostic framework for closed-loop systems with degrading actuator[END_REF], inherent degradation are supposed to be unobservable, thus, particle filter as well as Monte Carlo simulation are combined to estimate degradation levels as well as system states, and then predict system RUL. Similar approaches are implemented on [START_REF] Obando | Deterioration estimation for predicting and controlling RUL of a friction drive system[END_REF], where extended Kalman Filter is employed to predict system RUL. However, this approach requires the system physical knowledge as well as internal degradation structures to construct the filter functions. For those complex system suffering unknown hidden degradation, the RUL prognosis issue is still open.

In this paper, we propose a novel RUL prediction method of a fault-tolerant deteriorating control system. The system is a black box with unknown physical knowledge and unobservable stochastic deteriorating components. Considering the fault-tolerant property of this controlled system, component failure is different from system failure, thus a system-level degradation index should be given to accurately monitor the degradation level of the entire system. According to the inspiration of [START_REF] Xiao | Reliability analysis of aging control system via stability margins[END_REF], a degradation index related to the stability of the feedback control system is discovered for the following RUL prognosis procedures. Moreover, due to this strong fault-tolerant effect of controller, the system degradation are compensated partly when the controller is efficient but increase rapidly when the controller nearly loses all its efficiency on the verge of system failure. Therefore, the degradation index will increase very slow at the beginning but very fast in the end. In view of the above situation, instead of traditional stochastic modeling analysis, a learning-based RUL prognosis scheme is developed. The contributions are summarized as follows.

• A fault-tolerant deteriorating controlled system is considered, where the hidden damage happened on the system components are random and unobservable. The system physical knowledge is unknown, only the input and output generated via the controlled systems are available to design a degradation index accordingly. Hence, transfer function of the controlled system, which contains all degradation information, is estimated from the off-line system input and output data. • Because the close-loop transfer function contains all the degradation information, we design its maximum gain as the degradation index of the entire feedback control system. This index is related to the system stability. When the system stability decreases, the error between system input and output has larger fluctuation, the maximum gain is increasing, the system is heading towards failure. • Under the fault-tolerant efficiency of the Proportional-Integral-Derivative (PID) controller, the maximum gain of the system increases very slow at the first stage of degradation and very quick when the controlled system is close to failure. Currently, there is no suitable model to accurately describe this phenomenon. Thus, we suppose to directly estimate system RUL instead of depending on degradation modeling analysis. In detail, we assume several degradation data (based on different current degradation level) as well as their failure times are obtained from similar controlled systems. Then we calculate their RUL and model their distribution by parametric Birnbaum-Saunders distribution [START_REF] Hong | When is acceleration unnecessary in a degradation test?[END_REF]. This distribution is a good approximation of RUL distribution of Tweedie Exponential Dispersion model [START_REF] Chen | Tweedie exponential dispersion processes for degradation modeling, prognostic, and accelerated degradation test planning[END_REF] that wellknown degradation processes such as Wiener, Gamma and inverse Gaussian are special cases. By estimating its parameters, the correspondence between present degradation state and parameters of its modeled RUL distribution is extracted. • We learn the mappings between current degradation states and each of the parameters estimated from modeled RUL distribution by segmenting piecewise polynomials method [START_REF] Duan | HOPS: A Fast Algorithm for Segmenting Piecewise Polynomials of Arbitrary Orders[END_REF]. Therefore, for any current degradation state, parameters of estimated distribution are obtained from learning mapping, then the RUL distribution of the faulttolerant deteriorating controlled system is derived.

The remainder of this paper is organized as follows. Section II describes the deteriorating feedback control system with potential stochastic degradation, PID controller, defines the degradation index, failure times, RUL, and provides the learning-based RUL prognosis scheme. Section III applies the previous designed algorithm on a stabilization loop control device of an inertial platform to predict its RUL. Section IV analyses the performance of the created learning approach. Finally, conclusions and perspectives are given in Section V.

II. RUL PROGNOSIS FOR DETERIORATING FEEDBACK CONTROL SYSTEM

Let consider a single-input single-output deteriorating system formulated by:

ẋ (t) =A (D (t, x(t))) x(t) + B (D (t, x(t))) u(t) + ω (t) , y o (t) =C (D (t, x(t))) x(t) + ν(t), (1) 
x ∈ R n×1 and y o (t) ∈ R are the system state and output respectively. System matrix A (D (t,

x(t))) ∈ R n×n , B (D (t, x(t))) ∈ R n×1 and C (D (t, x(t))) ∈ R 1×n
are unknown and suffer from unknown hidden stochastic damage D (t, x(t)) ∈ R. ω(t) ∈ R n×1 and ν(t) ∈ R are the system noises and measure noises, respectively.

The stochastic hidden damage D(t, x(t)) existed in system matrix is assumed to be unobservable. In practical, scientists employ commonly used stochastic process such as Gamma, Wiener process etc. to describe the component degradation [START_REF] Ye | Stochastic modelling and analysis of degradation for highly reliable products[END_REF]. But in this paper, we consider a general situation that the degradation D(t, x(t)) can be any stochastic value.

A PID controller u(t) can then be given as:

u(t) = K p e(t) + 1 T i t 0 e(r)dr + T d de(t) dt (2) 
where e(t) = y i (t)-y o (t) is the control error. Under designed parameters K p , T i and T d , the control goal of system (1) is accomplished: system output y o (t) follows closely to its input reference y i (t).

A. Degradation Index and Failure

In this section, in order to monitor system degradation, we manage to design a degradation index of the entire feedback control system that carrying the internal degradation information. Inspired by paper [START_REF] Xiao | Reliability analysis of aging control system via stability margins[END_REF], the stability of the system (1) is considered to be linked to its degradation. Moreover, the system (1) is a unknown system, only the input y i (t) and output y o (t) generated from system (1) are available. Thus, From a stability point of view to build an appropriate degradation index of unknown fault-tolerant controlled system via system input y i (t) and output y o (t) information is our goal.

Based on the generated y i (t) and y o (t), we apply the approach described in [START_REF] Ljung | System identification[END_REF] to derive the close-loop transfer function of system (1) at each observing date:

H (s) = Y o (s) Y i (s) h t (s, D L (s)) , (3) 
where s ∈ C in (3) is the complex variable. D L (s) denotes the Laplace transform of D(t, x(t)). Obviously, H (s) in ( 3) contains all degradation information of D L (s). Thus, a degradation index could be extracted from [START_REF] Mo | A dynamic approach to performance analysis and reliability improvement of control systems with degraded components[END_REF].

According to the control system theory, the maximum of H (s) is related to the stability of controlled system. The more the maximum H (s) is increasing, the more the control error e(t) of the controlled system (1) at steady state will be larger which means the system becoming less stable. Whereas the H (s) is increasing under the effect of D(t, x(t)). Therefore, we define

G (t) = max s H (s) . (4) 
as a signal of describing the less of system stability. From the aforementioned analysis, (4) can be regarded as a convincing degradation index which has a one-to-one relationship to system internal damage D(t, x(t)) at fixed inspecting dates.

We can now define a failure threshold L on top of G (t) (4), beyond which the controlled system (1) is regarded as failed.

Consequently, the failure time is defined as:

τ = inf {t ≥ 0, G (t) ≥ L} . (5) 

B. RUL Distribution Modeling

In Section II-A, the concepts of degradation index G(t) and the failure time of the deteriorating controlled system are provided. Hence, we assume the current time is t c , its corresponding current degradation state G c = G(t c ) < L, the definition of RUL for the deteriorating controlled system is given as:

R c = inf{r > 0; G(t c + r) ≥ L G c = G (t c )}. (6) 
As a matter of fact, the RUL R c is not fixed because the degradation is stochastic. Therefore, scientists apply probability calculation as well as Monte-Carlo simulation to derive system RUL distribution and then predict its RUL. In fact, according to our explanation in Section I, the above methods can be used only when we model the degradation evolution by stochastic process. Nevertheless, due to the fault-tolerant property of controlled system, the degradation of it will be masked partly in early deteriorating stages so that the degradation index G(t) in (4) will grow extremely slow; when the system is close to failure, the controller nearly loses its efficiency, the index G(t) will accumulate rapidly. Thus, this evolution of degradation index G(t) is not easy to be modeled by current stochastic degradation models. Accordingly, classic RUL prognosis strategies are limited. For remedial purposes, a method to develop de RUL distribution is proposed in this section.

Based on degradation index G(t), we directly model its RUL distribution with the assumption of degradation data and their failure times coming from similar systems via a timevarying parametric probability distribution, and then learn its degradation states related parameters. Hence, a learning-based RUL prognosis approaches that could estimate real-time RUL distribution is established.

As we introduced in Section I, one of the eligible candidate for RUL is Birnbaum-Saunders distribution whose definition is given from the cumulative distribution function (CDF) of the standard normal distribution. The CDF of Birnbaum-Saunders distribution is formulated as:

F (t; γ(G c ), β(G c )) ≈ Φ 1 γ(G c ) ε t β(G c ) , (7) 
where β(G c ) > 0 and γ(G c ) > 0 are the scale parameter and shape parameter, respectively;

Φ(•) is the CDF of standard normal distribution. ε(•) is a function represented as: ε(x) = √ x -1 √ x .
Its associated probability density function (PDF) is formulated as:

f (t; γ(G c ), β(G c )) = 1 √ 2π e -1 2γ 2 (Gc ) ( t β(Gc ) + β(Gc ) t -2) t β(Gc) -1 2 + t β(Gc) -3 2 2γ(G c )β(G c ) . ( 8 
) If we claim R c ∼ BS(γ(G c ), β(G c )), R c follows a Birnbaum- Saunders distribution with parameters (γ(G c ), β(G c )).
It is worthwhile to explain that the Birnbaum-Saunders distribution is a good candidate to model the RUL distribution of the degraded system [START_REF] Langeron | A modeling framework for deteriorating control system and predictive maintenance of actuators[END_REF]. In [START_REF] Hong | When is acceleration unnecessary in a degradation test?[END_REF], the researchers apply Birnbaum-Saunders distribution to approximate FHT distribution of Gamma, Wiener and inverse Gaussian process. Furthermore, Chen et al. propose in [START_REF] Chen | Tweedie exponential dispersion processes for degradation modeling, prognostic, and accelerated degradation test planning[END_REF] a Tweedie exponential dispersion processes which is a general independent increments degradation model containing Gamma, Wiener and inverse Gaussian process as its particular cases. Extended from [START_REF] Hong | When is acceleration unnecessary in a degradation test?[END_REF], its FHT distribution is also approximated by Birnbaum-Saunders distribution with multiple parameters. In our study, the hidden stochastic components degradation D(t, x(t)) is assumed to be a general unknown evolution, thus it is sensible to apply Birnbaum-Saunders distribution to model its RUL distribution.

C. Learning-based RUL Prognosis Algorithm

Assuming several degradation data and associated failure times of similar systems are additionally available. Given the parametric distribution of degraded system RUL, a novel method of RUL prognosis is created by learning the distribution parameters of degradation index.

a) Degradation Data: Based on system (1) and degradation index (4), we select a sequence of inspection dates

t tr c = {t i1 c , t i2 c , • • • , t in c } and their corresponding degradation states from index G tr c = {G i1 c , G i2 c , • • • , G in c } as the training set . Another group of t te c = {t j1 c , t j2 c , • • • , t jm c } and the corresponding current degradation state from index G te c = {G j1 c , G j2 c , • • • , G jm c } as the test set, where each value of G te c is different from each value of G tr c . b) RUL Data: For every current degradation state {t k c , G k c }, where k ∈ {i 1 , • • • , i n } ∪ {j 1 , • • • , j m } and their corresponding failure times, the RUL R k c = {R k c1 , R k c2 , • • • , R k cp
} could be obtained from definition [START_REF] Obando | Deterioration estimation for predicting and controlling RUL of a friction drive system[END_REF]. Accordingly, the real RUL distribution of {t k c , G k c } could be derived from data set R k c . c) RUL Distribution Modeling: We apply parametric Birnbaum-Saunders distribution to model the RUL distribution, and then to estimate its parameters using [START_REF] Leiva | The Birnbaum-Saunders Distribution[END_REF]. Thus, Birnbaum-Saunders distribution It should be noted that segmenting piecewise polynomials method is a productive scheme to learn the mapping of complex non-linear curves, which is more powerful than polynomial function. In [START_REF] Duan | HOPS: A Fast Algorithm for Segmenting Piecewise Polynomials of Arbitrary Orders[END_REF], a autonomous segmenting piecewise polynomials fitting approach is given where the segmenting and the fitting procedures are all automatically executed. Therefore, this algorithm makes the learning courses more scientific and general.

f (t k c ; γ(G k c ), β(G k c )) is

III. CASE STUDY

To validate the scheme proposed in Section II-C, a case study is given. Considering a practical application: the stabilization loop control device in an inertial platform [START_REF] Si | A novel degradation modeling and prognostic framework for closed-loop systems with degrading actuator[END_REF], the RUL prognosis of this controlled system is given in this section. The physical explanation of this platform can be formulated by

         L m x 1 (t) + R m x 1 (t) + K e x 2 (t) = u(t), Jx 2 (t) = K m (t) x 1 (t) + ω (t) , x 3 (t) = x 2 (t) , y o (t) = x 3 (t) + ν (t) , (9) 
where x k (t), with k = 1, 2, 3, are the system states; x k is its time derivative; L m , R m , K e and J are constant parameters. The zero-mean Gaussian noises ω(t) ∼ N (0, σ ω ) and ν(t) ∼ N (0, σ ν ) are zero-mean Gaussian noises. K m (t) ≡ D(t, x 1 (t)) is the parameter related to the devices that suffer hidden stochastic damages because of the component degradation. We assume the internal degradation D(t, x 1 (t)) acts like a non-monotonous state-dependent Wiener hidden stochastic damage [START_REF] Zhang | Degradation data analysis and remaining useful life estimation: A review on wiener-process-based methods[END_REF] {D (t, x 1 (t))} t≥0 ∼ WP (λ • x 1 (r) , σ) given as:

D (t, x 1 (t)) = D 0 + λ t 0 x 2 1 (r) dr + σB (t) . (10) 
where λ and x 2 1 affect the degradation speed, B (t) ∼ N (0, t) stands for standard Brownian motion. The parameters in 10 are given as λ = -0.000078 and σ = 0.0045. Under the control action of PID controller (2) within the bounds -80 ≤ u(t) ≤ 80, the system output y o (t) will follow closely to the input reference y i (t) = π 10 sin(0.4t). The system parameters are given in Table . I. 

= 0.407N • m/A Initialization x 1 (0) = x 2 (0) = x 3 (0) = 0, y i (0) = yo (0) = 0
As we already mentioned in Section I, the system (1) is unknown. That is to say, we have no knowledge about system matrix A (D (t, x(t))), B (D (t, x(t))) and C (D (t, x(t))). y i (t) and y o (t) are the only information that we could obtain from the system (1). Thus, the given system structure ( 9) is only used to generate input and output values at each inspection date. These values will be further used to produce the data for applying learning-based RUL prognosis algorithm.

A. Data Generation a) From System Input-Output to Degradation Index: We define δt and ∆t where δt ∆t. ∆t represents the inspection period which could be month or even year in practice. Every ∆t time interval, we are able to observe the gradual evolution of the index G(t) due to system degradation. Meanwhile, during a short period like minute or hour, the system degradation level is unchanged. Accordingly, over a short inspection duration δt, the input and output information can be regarded as generating from a fixed system (In δt, there is no further degradation). Therefore, we first identify a sequence of inspection dates t = t c , t c + ∆t, t c + 2∆t, t c + 3∆t, • • • where t c is the date of the first inspection, and ∆t is assumed as 0.1 years. Then, at time t, the degradation index G(t) according to its concept (4) is obtained given an estimated transfer function at inspection date t. To estimated the transfer function at each date t, we first generate the system inputoutput values {y i (t δ )} n and {y o (t δ )} n for a controlled system (9), ( 10), [START_REF] Langeron | Joint maintenance and controller reconfiguration policy for a gradually deteriorating control system[END_REF] with parameters as in Table I [START_REF] Ljung | System identification[END_REF] and definition (3). Thus, following the above procedures, we could derive G(t) at any inspection data t from input output values.

b) Degradation Data: Assuming failure threshold L = 1.0144, which is derived from its one-to-one relation to the limit L d = 0.04 for hidden damage D(t, x 1 (t)) through system structure [START_REF] Duan | HOPS: A Fast Algorithm for Segmenting Piecewise Polynomials of Arbitrary Orders[END_REF]. (Note that the given limit L d = 0.04 is only used to help describe the degradation evolution and failure of internal damage D(t, x 1 (t)) which could not be observed directly). From many similar systems [START_REF] Duan | HOPS: A Fast Algorithm for Segmenting Piecewise Polynomials of Arbitrary Orders[END_REF], for any initial inspection date t c and its estimated current degradation state G c , we could derive several degradation paths of D(t, x 1 (t)) as well as estimate the evolution of G(t) at each inspection date until their failure threshold, and then obtain system failure times from (5) as well as their RUL from [START_REF] Obando | Deterioration estimation for predicting and controlling RUL of a friction drive system[END_REF]. To give a visual example, we select 1000 degradation paths G(t) under failure threshold L = 1.0144 whose current degradation time is t c = 50 and corresponding estimated degradation state is G c = 1.0034. Next, we plot degradation paths G(t) under failure threshold L = 1.0144 in Fig. 1(b) and compare these paths to K m (t) under L in Fig. 1(a) (Here, K m (t) are generating from system structure which are used to show the difference between hidden damage and degradation index.) From Fig. 1(a) and Fig. 1(b)) the faulttolerant property of controlled system under PID controller is apparent. Afterwards, the relevant system RUL are also chosen and its distribution is displayed in Fig. 1(c 

B. RUL Prognosis

According to the learning-based RUL prognosis method we proposed in Section. II-C, we could learn the mapping 

G c → γ(G c ) and G c → β(G c )

IV. PERFORMANCE ACCURACY

In this section, we verify the performance and accuracy of the proposed learning algorithm in Section. II-C. First, we are interested in observing the sensitivity of the learning-based algorithm in Section. II-C to different current degradation state in Section. IV-A. Then, the sensitivity of this algorithm to different categories of hidden stochastic degradation D (t, x (t)) is tested in Section. IV-B. Finally, in Section. IV-C, we exam the sensitivity of the learning-based algorithm to number of the original training data. 2 given by Q-Q plots, we could find the modeled distributions fits the real distributions well for different current degradation states. 

A. Sensitivity to Current Degradation Index

B. Sensitivity to Hidden Damages

To test the sensitivity of learning-based RUL distribution methods to different types of hidden degradation, we take two types of internal stochastic damages (Wiener degradation model formulated in [START_REF] Ye | Stochastic modelling and analysis of degradation for highly reliable products[END_REF] as well as a Gamma degradation model given in this subsection) and different parameters of them into account to verify the practicality of the above learning-based RUL prediction method. When G c = 1.0034, we change different parameters of Eq. ( 10) and generate degra-dation data via the same procedures shown in Section. III-A to derive the estimated system RUL distribution from learningbased RUL prognosis approach in Section. II-C. The Q-Q plots in Fig . 3(a) and Fig . 3(b) compare the real RUL with the estimated RUL. When λ = -0.000039, σ = 0.0045, the result shows in Fig . 3(a); when λ = -0.000078, σ = 0.00225, the result shows in Fig . 3(b). The aforementioned figures prove that the learning-based RUL prediction scheme is not sensitive to the parameter of hidden stochastic damages. Then, we consider a time-dependent Gamma hidden stochastic damage {D (t)} t≥0 ∼ D 0 -GP (α, β), where for two different dates r and t, 0 ≤ r ≤ t. D(t) -D(r) follows a Gamma distribution with PDF

f α(t-r),β (δ) = β α(t-r) δ α(t-r)-1 e -βδ Γ (α (t -r)) 1 {δ≥0} , (11) 
where 

1

C. Sensitivity to Data Number

To test how the number of degradation data affects the prognostic performance, for a given Wiener hidden damage formulated in [START_REF] Ye | Stochastic modelling and analysis of degradation for highly reliable products[END_REF], we select different numbers of degradation data as original training set to estimate their associated RUL distribution applying the learning-based approach in Section. II-C. we first select 5 equally spaced current degradation states [1.0019, 1.0044, 1.0070, 1.0095, 1.0121] from interval [1.0019, 1.0121]. Then, each time we add one new degradation state between two connected degradation states. Thus, we could obtain 4 training sets that containing 5,9,17 and 33 groups of degradation data and their corresponding failure times. Considering G c = 1.0034, learning-based RUL prediction procedures are applied in every training sets. Then we use Q-Q plot to compare the real RUL with the estimated RUL deriving from different numbers of raw data. From Fig. 4(a) to Fig. 4(d), we could find the prognostic performance is getting better and better when the number of raw data increases. 

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we propose a novel RUL prognosis scheme for a fault-tolerant deteriorating control system, where the system knowledge and the hidden stochastic damage are unknown and unobservable respectively. Based on the observable input and output of this system, a off-line close-loop transfer function is founded. The maximum gain established based on this transfer function corresponding to the system stability is built as the degradation index. However, due to the fault-tolerant character of the controlled system, degradation information are partly masked at the first degradation stage which shows a complex degradation phenomenon via the degradation index. Therefore, it is difficult to directly model the proposed degradation index by commonly used stochastic process and apply traditional probability calculation approach to derive system RUL distribution. To bypass, with the assumption that degradation data as well as its failure times from similar systems are available, a learning-based RUL prognosis approach is created, where the Birnbaum-Saunders distribution is applied to directly model the RUL distribution and the mapping between current degradation states and each parameters estimating from modeled RUL distribution are learned by segmenting piecewise polynomials algorithm. Hence, under any degradation level, we could always prognosis system RUL. In the future work, maintenance policy combining controller reconfiguration and preventive maintenance could be investigated under the current results.

  obtained as the RUL distribution of inspection date t k c and current degradation state G k c , where the parameters γ(G k c ) and β(G k c ) are the variables only corresponding to degradation state G k c . d) Learning-based RUL Predicting Algorithm: For training set, we obtain estimated parameters γ tr = {γ(G i1 c ), γ(G i2 c ), . . . , γ(G in c )} as well as β tr = {β(G i1 c ), β(G i2 c ), . . . , β(G in c )} related to inspection dates t tr c and its associated degradation state G tr c ; for test set, we obtain estimated parameters γ te = {γ(G j1 c ), γ(G j2 c ), . . . , γ(G jm c )}, β te = {β(G j1 c ), β(G j2 c ), . . . , β(G jm c )} related to inspection dates t te c and its associated degradation state G te c . Therefore, applying the training sets G tr c , γ tr and β tr , segmenting piecewise polynomial method [9] is used to approximately learn the mapping G c → γ(G c ) and G c → β(G c ). Thus, for any inspection date t c , current degradation state G c , we could acquire γ(G c ) and β(G c ) from learned mapping G c → γ(G c ) and G c → β(G c ), and then obtain its real time RUL distribution can be estimated by Birnbaum-Saunders distribution f (t; γ(G c ), β(G c )) approximately. Its CDF F (t; γ(G c ), β(G c )) is then represented as the probability law of system RUL. e) Methodology Testing: Based on the test set t te c , G te c , γ te and β te , we could validate the accuracy of the above learning-based RUL prognosis methodology by comparing the parameters γ te and β te from test sets with the parameters obtained from learning mappings G c → γ(G c ) and G c → β(G c ) under inspection dates t te c and current degradation state G te c .

  ). c) Training Set and Test Set: To obtain suitable data applying for learning strategy, from the generated degradation data, we select 33 inspection dates {t tr c } 33 and their corresponding current degradation states {G tr c } 33 where {G tr c } 33 ∈ [1.0019, 1.0121] are equally spaced as training set. Similarly, we select another 31 inspection dates {t te c } 31 and its relevant current degradation states {G te c } 31 where {G te c } 31 ∈ [1.0019, 1.0121], {G te c } 31 = {G tr c } 33 are randomly as test set. G c = 1.0034 exists in the test set. For each different inspection dates and degradation states, we select 1000 their corresponding RUL from 1000 different paths.

  using segmenting piecewise polynomials method based on training set we generated in Section. III-A. Fig. 1(d) and Fig. 1(e) shows the learning mapping G c → γ(G c ) and G c → β(G c ) with its training data, respectively. The test data are also included in Fig. 1(d) and Fig. 1(e) to validate the learning accuracy intuitively. To further study the learning goodness, based on the previously learned curve G c → γ(G c ) and G c → β(G c ), when G c = 1.0034, we derive the parameters β(G c ) and γ(G c ) and then compare its corresponding Birnbaum-Saunders distribution f (t; γ(β(G c )), β(γ(G c ))) with Fig. 1(c). This result shows in Fig. 1(f). From Fig. 1(f), the modeled RUL distribution is very close to the real RUL distribution that demonstrates the goodness of the estimated distribution.

  (a) Hidden damage Km(t). (b) Degradation index G(t).

  Mapping Gc → β(Gc).

  Mapping Gc → γ(Gc).

  Real and estimated RUL distribution.

Figure 1 .

 1 Figure 1. Learning-based RUL distribution when Gc = 1.0034.

  To test the accuracy of RUL distribution modeling, we select different current degradation states G c = 1.0025, G c = 1.0051, G c = 1.008 and G c = 1.0102 from test set {G te c } 31 as well as their failure times. We then apply the learning-based mappingG c → γ(G c ) and G c → β(G c ) carried out at Section. III-B to derive the estimated f (t; γ(β(G c )), β(γ(G c )))for each selected test degradation state G c illustrated above and compare the real system RUL distributions coming from the original data of the above selected G c with the derived estimated parametric distributions f (t; γ(β(G c )), β(γ(G c ))) to validate the accuracy of distribution modeling at different current degradation states. The results show in Fig.2(a), Fig. 2(b), Fig. 2(c), Fig. 2(d) respectively. From the above results in Fig.

Figure 2 .

 2 Figure 2. Q-Q plot between real RUL and estimated RUL under different current degradation states.

  {δ≥0} = 1 δ ≥ 0 0 otherwise denotes the indicator function, α > 0 and β > 0 are shape and scale parameters respectively. Taking different shape and scale parameters into consideration and set G c = 1.0034, we generate degradation data and then estimate RUL distribution depending on these raw data. The Q-Q plots in Fig.3(c) and Fig.3(d) compare the real RUL with the estimated RUL. When α = 0.4442, β = 0.00476, the result shows in Fig.3(c); when α = 0.8885, β = 0.0024, the result shows in Fig.3(d). The above results demonstrate: even if we consider different types of hidden stochastic damages or different parameters of them, the learning-based strategy to estimate RUL distribution is still functional. WP (µ(λ, x 1 (t)), σ) with λ = -0.000039 and σ = 0.0045. WP (µ(λ, x 1 (t)), σ) with λ = -0.000078 and σ = 0.00225.(c) GP (α, β) with α = 0.4442 and β = 0.00476.

  (d) GP (α, β) with α = 0.8885 and β = 0.0024.

Figure 3 .

 3 Figure 3. Q-Q plot between real RUL and estimated RUL under different categories of hidden damages and different parameters.

  17 groups of degradation data.

  33 groups of degradation data.

Figure 4 .

 4 Figure 4. Q-Q plot between real RUL and estimated RUL deriving from learning-based RUL prognosis algorithm based on different numbers of degradation data.

  at each time t δ ∈ {t, t + δst, t + 2δst, • • • , t + δt} where δst = 0.001 minutes, t δ ∈ [t, t + δt] and n = 20000 are the number of sampling. Then according to data {y i (t δ )} n and {y o (t δ )} n , we estimate transfer function H(s) at each inspection date t via the method in
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