
HAL Id: hal-03876531
https://hal.science/hal-03876531v1

Preprint submitted on 28 Nov 2022 (v1), last revised 30 Nov 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NEW UPPER BOUND FOR THE CONNECTIVE
CONSTANT FOR SQUARE-LATTICE

SELF-AVOIDING WALKS
Olivier Couronné

To cite this version:
Olivier Couronné. NEW UPPER BOUND FOR THE CONNECTIVE CONSTANT FOR SQUARE-
LATTICE SELF-AVOIDING WALKS. 2022. �hal-03876531v1�

https://hal.science/hal-03876531v1
https://hal.archives-ouvertes.fr

NEW UPPER BOUND FOR THE CONNECTIVE CONSTANT

FOR SQUARE-LATTICE SELF-AVOIDING WALKS

OLIVIER COURONNÉ

Abstract. By modifying the automaton used by Pönitz and Tittman [4], and

considering loops of length up to 26, we obtain 2.662343 as an upper bound
for the connective constant in the lattice Z

2.

1. Introduction

Let the number of walks on Z
2 of length n starting at the origin and that never

visit twice the same vertex be denoted as c2(n). As c2(n + m) ≤ c2(n)c2(m),
the quantity ln(c2(n))/n converges to a finite limit, called the connective constant
and denoted µ2. There are three standard questions concerning µ2: obtaining a
good estimate, an upper bound and a lower bound. At present µ2 is estimated
to 2.63815853032790 [3], the best upper bound [4] is 2.679192495, and the current
lower bound [1] is 2.62002.

In this article, we modify the automaton used in [4] and, with of course the help
of more powerful computers than in 2000 which allows us to consider loops of length
up to 26 instead of 22, we obtain

Theorem. The connective constant for the lattice Z
2 verifies

µ2 ≤ 2.662342426.

This article is organized as follows. In section 2 we describe the technique used
in [4], with the paths without loops up to a certain size and the corresponding
automaton. We also precise some definitions and notations. In section 3, we expose
our main improvement, which consists of considering multiple ways to shorten too
big states. In section 4, we give on one hand two improvements based on the
planarity of Z2, and on the other hand two cases where we allow the states to
be longer. These increase the number of states considered, but they are efficient
considering the upper bound on µ2 obtained. The algorithm is explained in section 5
and the results are given in section 6.

2. Sketch of the initial method

We recall here the automaton used in [4]. In order to get an upper bound for µ2,
the authors considered paths without cycles up to a certain length k. The cardinal
of these paths of length n is of course greater than c2(n). Starting from k = 14
up to k = 22 (and note that there must be an even number of steps in a loop),
they obtained upper bounds ranging from 2.8312 to 2.6792. We give now their
automaton for k = 4.

We define state 1 as one step to the right. We can go in three directions: up,
right or down.

Date: November 2022.
2010 Mathematics Subject Classification. 82B41; 05A15.
Key words and phrases. self-avoiding walk; connective constant.
The author is supported by the Labex MME-DII funded by ANR, reference ANR-11-LBX-

0023-01.

1

2 OLIVIER COURONNÉ

• When we go up, we obtain a new state, called state 2.
• When we go right, we are transferred back to state 1 again, as the first edge
will be useless for a loop of size 4.

• When we go down, by symmetry, we identify the new state to state 2.

From the state 2 as it is represented below :

• When we go up, we are again in state 2.
• When we go right, we obtain the state 1.
• When we go down, we obtain a new state, called state 3.

From the state 3 there is two possibilities. One to state 1, and the other to state
2. So the automaton is composed of the three states represented here:

1 2 3

and the associated matrix is :

1 2 0
1 1 1
1 1 0

By iteratively multiplying this matrix with the vector initially composed of ones,
we approach [2] its largest eigenvalue, which gives 2.8312 as an upper bound for
µ2. Applying this method for k = 22, Pönitz and Tittman obtained 2.679192495
for the upper bound.

Similarly as in [4], we will use rotations and symmetry such that the last step
of the state is to the right, and the first vertical step is downward. We shall call A
the most recent vertex, and B the oldest. For a given state, we call its size-loop to
be the number of vertex of the state plus the L1 distance between A and B minus
1, that is the size of a loop using all the vertices of the state and a direct path
between A and B (this path possibly using vertices of the state).

3. Simplifications of a state

Starting from a state, it is possible that the state obtained by adding a vertex in
one of the three directions (up, right and down) is too big to make a loop of length
k between A and B. In this section we present different ways to simplify such a
state.

We stress that the techniques presented in this section do not change the set of
states, but the relations between them and ultimately the transition matrix.

3.1. Erasing the old vertices. Initially, when a potential state was too big, we
would forget the most ancient points until the state was not too big. This is the
method used in [4].

3.2. Small bridges. Consider k = 16 and the state S1 represented below :

A

B

When we go right, with the initial procedure 3.1, we would get the state S2 :

NEW UPPER BOUND FOR THE CONNECTIVE CONSTANT FOR SQUARE-LATTICE SELF-AVOIDING WALKS3

A

B

It seems unfortunate to lose vertices close to A. In fact, the rule we must observe for
a child state is that the obtained state must not forbid paths that were previously
allowed. In that respect, the following state S3 can also be a right-child of S1 :

A

B

It is so because vertices of S3 are included in the state obtained from S1 to which
we add a vertex at the right of A. Furthermore, the state S3 is clearly a better
choice than S2 as S3 contains S2. The situation will not always be as clear, but

nevertheless, each time the configuration
1 4

is present, and that we call a

small bridge, we can simplify it with a single edge between 1 and 4.

3.3. Large bridges. We call large bridges portions of a state like:

1 5×

If this configuration is present in a state, where 1 and 5 are both not end-vertices of
the state, and the × is not a vertex of the state, then we can simplify this portion
to

1 5

This transformation is valid due to the topological property of Z2, as a self-avoiding
walk should not visit the ×. We could not do that for example in Z

3.

3.4. Small loops. Consider the state S1, which is supposed too big:

A

B

CD

As C and D, which are not A, are such that d∞(C,D) ≤ 2, we should never go
in the area enclosed by the loop delimited by C and D. Hence the following states
are valid simplifications of S1 :

A

B

CD A

B

CD

4 OLIVIER COURONNÉ

The procedure is as follows. Check if the state has what is called a small loop,
that is two points C and D, whose indexes in the state are at least 9 apart, such
that d∞(C,D) ≤ 2, and both different A if the distance is 2 and not 1. If that is the
case, and that A is not inside the loop defined by C and D, visit the vertices from
C to D, and verify if there exists a straight line of length at least 3 surrounded by
two corners in the same orientation as the loop [C,D]. For each such line found,
we can propose a simplification as shown above.

In order to not slow too much the algorithm, for A not being inside the loop,
we simply verify if there is at least two straight lines starting from A and not
intersecting any vertex of the state.

3.5. Multiple choices for a child. To sum up, when a child state is too big, we
have the following choices :

• forget the most ancient points until the state is not too big
• a new child state possible for each small bridge
• a new child state possible for each large bridge, not containing the extreme
vertices.

• a new child state possible for each simplification of a small loop.

4. Other Improvements

The first following two points give conditions to allow a step in a direction based
on the planarity of the graph, the second one giving a notable improvement on the
upper bound. The next two points increase the number of states, but in an efficient
way.

4.1. Planar considerations for A. When the vertex at the right of A is occu-
pied, by topological consideration, we should not be able to go both upward and
downward. Let C the vertex at the right of A. We count the algebraic number of
corners, +1 to the right and −1 to the left, for the portion from C to A. If this is
positive, we cannot go downwards, otherwise we cannot go upwards.

A
C

B

A
C

B

We implement similar considerations if the vertex at the top-right of A is occu-
pied: in that case, either we cannot go upwards, or we cannot go both to the right
and downwards:

A C

B

A

C
B

The situation where the vertex at the bottom-right of A is occupied is symmetric.

4.2. Planar considerations for B. Now that we do not systematically erase the
oldest vertices, the following configuration can happen:

NEW UPPER BOUND FOR THE CONNECTIVE CONSTANT FOR SQUARE-LATTICE SELF-AVOIDING WALKS5

A

B

So at each step, we verify if the point B is not surrounded, that is if there can be
an infinite path starting from B not using the vertices of the state. This verification
gives a notable improvement on the result.

4.3. States similar to a line. When considering the eigenvector of the matrix,
one can observe that the largest coordinates are for states that are nearly lines,
such as:

AB A

B

With that in mind, we allow states, whose portion starting from B and of length
k/2 is similar to a line, to be larger, that is the allowed size-loop is now k + 2.

Furthermore, again for these states, while A goes toward B, but not too close to
B, we allow an extra +2 for the length of the loop. Here is an example for k = 10,
and the initial state the line with 6 vertices (we do not apply the rules about the
first step to the right and the first vertical step downwards).

AB

1

A
B

2

A
B

3

A

B

4 A

B

5 A

B

6

A
B

7

A

B

8

The state 1 is particular, since by definition its size-loop is 10, but we cannot make
a loop of size less than 12. States 2 and 3 have a size-loop of 12, which is allowed
since the portion starting from B is similar to a line. Then state 4 is of size-loop
14, which is also allowed since we always have a ”line” starting from B, and A is
not considered close to B. States 5, 6 and 7 are similar to the state 4. Finally
when we go left from state 7, we consider that A is close to B, and we allow only a
size-loop of 12. State 8 is one of the possible simplification. It can be of size-loop
12 as the criteria we take for a ”line” starting from B is valid for this state.

This technique allows us to keep the former point B in more situations, and to
consider longer loops for specific states.

4.4. States lacking simplifications. When we go right from the following state:

6 OLIVIER COURONNÉ

A

B

we can choose the following child:

A

B

and that is totally fine (this is the example of 3.2).
But when we go right from the following state S1:

A

B

as there is no simplification, we have to choose

A

B

Remark that the states considered here are not concerned by the preceding point
4.3. Now, in order to improve the second situation, when a state has no simplifica-
tion in the half close to B, no small loop, and that there is a direct path from A to
B, we allow an extra +2 for the size of the loop. Hence a possible child of S1 will
be

A

B

4.5. Iterative simplifications. This is not per se an improvement, but something
we have to take care of as a consequence of the two preceding techniques. It may
happen that a state was allowed to be of size-loop k + 2, but when we go right for
example, then a candidate child, after one simplification, is also of size-loop k + 2,
without necessarily being allowed to be so. In that case, we create from this child
a new list of simplified states, which will have a strictly lesser size-loop. We do this
for each candidate child that is too large, and obtain in that way a correct list of
children.

NEW UPPER BOUND FOR THE CONNECTIVE CONSTANT FOR SQUARE-LATTICE SELF-AVOIDING WALKS7

5. The Algorithm

First we generate the states without the relations. The initial state S0 is the line
of length k/2 (the technique in 4.3 makes this state relevant, even if it is ”too big”).
For each direction (up, right, down), we verify if the vertex is empty, and also the
planar conditions 4.1 and 4.2. If the move is allowed, we verify if the potential
state was already discovered or if it is not too big. In the other case, we create a
list of potential children using the methods exposed in section 3. Note that with
the first method of erasing the oldest vertices, we proceed gradually, and we verify
after each deletion if the state has not been already discovered. So for each state
and each direction, we have a list of allowed children. The new states of these lists
are append to the list of the states to proceed. As claimed, in this first step, we do
not save the relations between the states.

Moreover, we found somewhat beneficial, when creating the list of children in a
direction for a state, to begin with a list without the improvements of 4.3 and 4.4,
then to add the states found with these two improvements. It increases the number
of states, but in an efficient way concerning the upper bound. Unfortunately, this
significantly increases the duration of the algorithm, and we did not use it for
k = 26.

After the first run, we put in memory the list of all discovered states, and we run
again the preceding part, this time recording the list of children. The reason for
doing these two steps instead of just one is that the states lately discovered using
the improvements in 4.3 and 4.4 can be used as children by previous states.

In the next step, we create a transition matrix by choosing the first element of
each non-empty list of children. We then approximate by iteration an eigenvector
(we divide at each step the vector by its maximal value).

Once we have a first eigenvector, we create a new transition matrix, by choosing
the best child, that is the child having the minimal corresponding coordinate in the
eigenvector, for each list of children. We approximate again an eigenvector, and we
iterate multiple times this part.

6. Results and Discussion

We list the upper bounds obtained for different values of k, together with the
number of states and the size of the file containing the lists of children :

k upper bound number of states size of the file
containing the children

14 2.682775686 20, 313 590 ko
16 2.677352271 95, 637 2.93 Mo
18 2.673036298 486, 798 15.6 Mo
20 2.669575008 2, 533, 177 76.3 Mo
22 2.666665240 13, 731, 499 427.5 Mo
24 2.664196283 79, 510, 267 2.64 Go
26 2.662342426 430, 365, 791 12.86 Go

For k = 26, the program took one week and necessitated a computer with 32 Go
of RAM. For k = 22, the number of states is about 60% larger than it was in [4].
Even with this difference, one can see that the new method is efficient, the crucial
part being the different ways to shorten a state.

Below we present, for k = 18, the results using some combinations of the tech-
niques described previously. The column Two passes indicates if we build the graph
structure in two steps as described at the beginning of the algorithm.

8 OLIVIER COURONNÉ

Similar to States lacking Two passes upper bound number of
a line simplifications states

2.678392579 255, 961
x 2.678121527 306, 605

x 2.676625088 309, 224
x x 2.675854723 446, 832

x x 2.674975842 315, 029
x x x 2.673435562 447, 250

We can see that the technique concerning states lacking simplification 4.4 is
particularly efficient, and that calculating the children in two steps is mandatory.
The improvement concerning states similar to a line 4.3, while not being as efficient
as the other two, is still better than increasing the size of the loop by 2. The
comparison between the last line of this table and the line for k = 18 in the first
table illustrates the interest to build the list of children first without 4.3 and 4.4,
and then with them.

To finish, we discuss briefly how the simplification techniques can apply in di-
mension three or greater. Among the different simplifications of states, only the
usual deletion of old vertices and the simplification of small bridges apply. Further-
more, it would not be useful to ensure that, as in 4.1 and 4.2, the points A and B
are not surrounded by vertices of the state since, for the lengths of loops considered,
it hardly ever happens in dimension three, and never in greater dimensions.

References

[1] W.A Beyer and M.B Wells. Lower bound for the connective constant of a self-avoiding walk
on a square lattice. Journal of Combinatorial Theory, Series A, 13(2):176–182, 1972.

[2] Françoise Chatelin. Eigenvalues of matrices, volume 71 of Classics in Applied Mathematics. So-
ciety for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2012. With exercises
by Mario Ahués and the author, Translated with additional material by Walter Ledermann,
Revised reprint of the 1993 edition [MR1232655].

[3] Jesper Lykke Jacobsen, Christian R. Scullard, and Anthony J. Guttmann. On the growth
constant for square-lattice self-avoiding walks. J. Phys. A, 49(49):494004, 18, 2016.

[4] A. Pönitz and P. Tittmann. Improved upper bounds for self-avoiding walks in z
d. Electron. J.

Combin., 7:Research Paper 21, 10 pp., 2000.

Université Paris Nanterre, Modal’X, FP2M, CNRS FR 2036, 200 avenue de la République

92000 Nanterre, France.

Email address: olivier.couronne@parisnanterre.fr

	1. Introduction
	2. Sketch of the initial method
	3. Simplifications of a state
	3.1. Erasing the old vertices
	3.2. Small bridges
	3.3. Large bridges
	3.4. Small loops
	3.5. Multiple choices for a child

	4. Other Improvements
	4.1. Planar considerations for A
	4.2. Planar considerations for B
	4.3. States similar to a line
	4.4. States lacking simplifications
	4.5. Iterative simplifications

	5. The Algorithm
	6. Results and Discussion
	References

