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Abstract

We study upper bounds on the size of optimum locating-total dominating sets in graphs. A set
S of vertices of a graph G is a locating-total dominating set if every vertex of G has a neighbor in S,
and if any two vertices outside S have distinct neighborhoods within S. The smallest size of such a
set is denoted by γL

t (G). It has been conjectured that γL
t (G) ≤ 2n

3
holds for every twin-free graph G

of order n without isolated vertices. We prove that the conjecture holds for cobipartite graphs, split
graphs, block graphs and subcubic graphs.

1 Introduction

Our aim is to study upper bounds on the smallest size of locating-total dominating sets in graphs. This
notion is part of the extended research area of identification problems in graphs and, more generally,
discrete structures like hypergraphs. In these types of problems, one seeks to select a small solution
set, generally some vertices of a graph, in order to uniquely identify each vertex of the graph by its
relationship with the selected vertices. More precisely, given a set D of vertices of a graph G, we say
that two vertices v and w of G are located by D if they have distinct sets of neighbors in D. On the
other hand, any set D of vertices of G that locates every pair v, w of vertices in V (G) \ D is called a
locating set of G. Various notions based on this location property have been studied, such as locating-
dominating sets [34], identifying codes [27] or separating sets [8], to name a few. We refer to the online
bibliography on these topics maintained by Jean and Lobstein [30] (almost 500 references by the time of
writing, in 2022). Such problems have a wide range of applications, such as fault-detection in sensor or
computer networks [27, 35], biological testing [31], machine learning [10], or canonical representations of
graphs [3, 29], to name a few.

In this paper, we study the notion of a locating-total dominating set. A set D of vertices is a total
dominating set, abbreviated TD-set, of a graph G if every vertex in G has a neighbor in D. Total
dominating sets are a natural and widely studied variant of the domination problem in graphs. We refer
to the books [22, 26] for an overview on the topic. A locating-total dominating set of G is a TD-set
D ⊂ V (G) such that any two vertices of G not in D are located by D. The smallest size of such a
locating-total dominating set of a graph G is called the locating-total domination number of G and is
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denoted by γL
t (G). A graph admits a (locating-)total dominating set if and only if it has no isolated

vertex. We abbreviate a locating-total dominating set by LTD-set, and we say that a γL
t -set of G is an

LTD-set of minimum cardinality, γL
t (G), in G.

The concept of a locating-total dominating set was first considered in [23], based on the similar concept
of a locating-dominating set (where total domination is replaced with usual domination) introduced by
Slater in the 1980s [34]. It was studied for example in [1, 2, 5, 6, 7, 12, 13, 14, 17, 18, 24, 25]. The
associated decision problem is NP-hard [28, 32, 33]. The related concept where all vertices (not just the
ones outside of D) must be located was studied in [12, 20, 23].

It is known that any graph of order n with every component of order at least 3 has a TD-set size at
most 2

3n [15], and this bound is tight only for the triangle, the 6-cycle and the family of 2-coronas of
graphs [11]. (The 2-corona H ◦ P2 of a connected graph H is the graph of order 3|V (H)| obtained from
H by attaching a path of length 2 to each vertex of H so that the resulting paths are vertex-disjoint.)

However, such a bound does not hold for locating-total dominating sets. Two vertices of a graph
are twins if they either have the same open neighborhood (open twins) or the same closed neighborhood
(closed twins). Consider a set S of vertices that are pairwise twins of size at least 2 in a graph G (and S
forms either a clique or an independent set). Then, any locating-total dominating set D needs to contain
all vertices of S except possibly one. Indeed, any two such vertices not in D would otherwise not be
located. For example, any complete graph of order at least 2 has only twins, and thus has its locating-
total domination number equal to its order minus one (while any two vertices form a total dominating
set). Other families of (twin-free) graphs with a total dominating set of size 2 and arbitrarily large
locating-total domination number have been described in [17].

Nevertheless, it seems that in the absence of twins, the locating-total domination number cannot be
as close to the graph’s order as in the general case. Towards such a fact, inspired by a similar problem
for (non-total) locating-dominating sets [16, 19, 21], two of the authors posed the following conjecture
(a graph is called twin-free if it does not contain any twins). A graph G is isolate-free if it contains no
isolated vertices.

Conjecture 1 ([17]). Every twin-free isolate-free graph G of order n satisfies γL
t (G) ≤ 2

3n.

Conjecture 1 was proved in [17] for graphs with no 4-cycles as subgraphs. It was also proved for line
graphs in [18]. It was also proved in [17] to hold for all graphs with minimum degree at least 26 for which
another related conjecture [19, 21] holds (which is the case for example for bipartite graphs and cubic
graphs). It was proved in a stronger form for claw-free cubic graphs in [24] (there, the 2

3 factor in the
upper bound is in fact replaced with 1

2 , and the authors conjectured that 1
2 holds for all connected cubic

graphs, except K4 and K3,3). An approximation of the conjecture was proved to hold for all twin-free
graphs in [17], where the 2

3 factor in the upper bound is replaced with 3
4 .

Note that, if true, the bound of Conjecture 1 is tight for the 6-cycle and 2-coronas, by the following.

Observation 2. If a graph G of order n is a triangle, a 6-cycle or a 2-corona of any graph, then
γL
t (G) = 2

3n.

A graph is cobipartite if its vertex set can be partitioned into two cliques, and split if it can be
partitioned into a stable set (also called an independent set in the literature) and a clique. A graph is a
block graph if every 2-connected component forms a clique. A graph is subcubic if each vertex has degree
at most 3.

In this paper, we give further evidence towards Conjecture 1, by showing that it holds for cobipartite
graphs (Section 2), split graphs (Section 3), block graphs (Section 4) and subcubic graphs (Section 5).
We conclude in Section 6.

Some of our results are actually slightly stronger. Indeed, the proved upper bound for cobipartite
graphs is in fact n

2 (which is tight). For twin-free split graphs, we show that the 2n
3 bound of the

conjecture can never be reached. However, we construct infinitely many connected split graphs that
come very close to the bound; this is interesting in its own right, showing that not only 2-coronas have
such large locating-total domination numbers. Moreover, the bound for subcubic graphs is proved to hold
for all subcubic graphs (except for some small ones like K1, K2, K4 and K1,3), even if they have twins.

We now introduce some of the notations used in the paper. The open and closed neighborhoods of a
vertex v in a graph G are denoted NG(v) and NG[v], respectively (or N(v) and N [v] if G is clear from the
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context). We denote by degG(v) the degree of the vertex v in the graph G, that is, degG(v) = |NG(v)|.
The distance in G between two vertices u, v is denoted dG(u, v). If two graphs G and H are isomorphic,
we note G ∼= H. For a graph G with a vertex or edge x, we denote by G− x the subgraph of G obtained
by removing x, and by G+x the supergraph of G obtained by adding x. Similarly, if X is a set of vertices
and edges, we use the notations G −X and G +X for the subgraph and supergraph of G obtained by
deleting or adding all the elements of X. A leaf is a vertex of degree 1, and its unique neighbor is called
a support vertex. We denote by δ(G) and ∆(G) the minimum and maximum degree, respectively, in the
graph G. We denote a path, a cycle, and a complete graph on n vertices by Pn, Cn, and Kn, respectively.
For an integer k ≥ 1, we let [k] = {1, . . . , k} and [k]0 = {0, 1, . . . , k}.

2 Cobipartite graphs

We now prove a stronger variant of the bound of Conjecture 1, whose proof is a refinement of a similar
proof for the (non-total) locating-domination number from [19]. For our next result, we make use of the
following result due to Bondy [9].

Theorem 3 (Bondy [9]). Let X be a set with |X| = k and let S = {X1, X2, . . . , Xk} be a collection of
k distinct subsets of X. Then, there exists an element x of X such that Xi \ {x} ≠ Xj \ {x} for any two
sets Xi, Xj ∈ S and i ̸= j.

Theorem 4. For any twin-free cobipartite graph G of order n, we have γL
t (G) ≤ n

2 .

Proof. Let G be a twin-free cobipartite graph of order n. If G is disconnected, then G is the disjoint
union of two cliques, and thus is not twin-free: it either has closed twins if one of the cliques has order
at least 2, or is a pair of open twins if both cliques have order 1, a contradiction. Hence, the graph G is
connected. Let C1 and C2 be two cliques of G that partition its vertex set. Since G is twin-free, both
C1 and C2 have size at least 2 where we may assume, renaming C1 and C2 if necessary, that |C1| ≤ |C2|.
Moreover, no two vertices of C1 have the same neighborhood in C2, and vice-versa. Furthermore, at least
|C1| − 1 vertices of C1 must have neighbors in C2, and vice-versa. This implies that both C1 and C2

are locating sets of G. Thus, if any of C1, C2 is a TD-set, then it is also an LTD-set. Hence, if C1 is a
TD-set, we are done, as |C1| ≤ ⌊n

2 ⌋. If however C1 is not a TD-set, it means that some vertex v of C2

has no neighbors in C1; this vertex is unique since G is twin-free.
If moreover, there is a vertex w in C1 with no neighbor in C2, then we select the set C = (C1\{w})∪{x}

as a solution set, where x ̸= v is any vertex of C2 other than v. This set is clearly a TD-set of G. Moreover,
any two vertices of C2 are located by C, as NG(v)∩C = {x} and any two other vertices of C2 \ {x} have
distinct and nonempty neighborhoods in C1 (and thus, in C1 \ {w}). Furthermore, w is the only vertex
in V (G) \ C not dominated by x. Hence, C is an LTD-set of G. Since |C| = |C1| ≤ ⌊n

2 ⌋, we are done.
Therefore, from now on, we assume that every vertex of C1 has a neighbor in C2, more precisely, in the
set Cv = C2 \ {v}. Similarly, if |C2| > ⌈n

2 ⌉, that is, if |C1| < ⌊n
2 ⌋, then by the same preceding arguments,

the set C1 together with any vertex of C2 other than v produces an LTD-set of size |C1|+ 1 ≤ ⌊n
2 ⌋, and

we are again done. Hence, we also assume from now on that |C2| = ⌈n
2 ⌉.

Now, we must have |C2| ≥ 3, or else, we would have |C1| = |C2| = 2 and by our assumption that
every vertex in C1 has a neighbor in C2 and the fact that the vertex v ∈ C2 has no neighbor in C1, the
two vertices of C1 must be twins in G, a contradiction. This implies that both C2 and Cv are TD-sets
of G. Therefore, C2 is an LTD-set of G (recall that C2 is already a locating set of G). Therefore, if n is
even, then we have γL

t (G) ≤ |C2| = n
2 and we are done. Hence, for the rest of the proof, we assume that

n is odd. Moreover, if Cv \NG(z) ̸= ∅ for all z ∈ C1, then we claim that Cv is an LTD-set of G. To prove
so, since Cv is a TD-set of G, we only need to prove that Cv is a locating set of G. To begin with, all
pairs of vertices of C1 have distinct neighborhoods in Cv and hence, are located by Cv. Moreover, with
NG(v) ∩ Cv = Cv and the assumption that Cv \ NG(z) ̸= ∅ for all z ∈ C1, the vertex v is located from
every vertex z of C1. This proves the claim that Cv is an LTD-set of G. We can therefore assume for the
rest of the proof that there exists a vertex z of C1 with Cv ⊂ NG(z). Note that there can be at most one
such z ∈ C1 on account of G being twin-free. Next, we prove that there exists a vertex x ∈ Cv such that
the set C = Cvx ∪ {z} is an LTD-set of G, where Cvx = Cv \ {x}.
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Recall that any two vertices in C1 have distinct neighborhoods in Cv. Moreover, since n is odd, we have
|Cv| = |C1| = ⌊n

2 ⌋. Therefore, in Theorem 3, taking X = Cv, k = ⌊n
2 ⌋ and S = {NG(u) ∩ Cv : u ∈ C1}

as k pairwise distinct sets of Cv, by Theorem 3, there exists a subset Cvx of Cv, for some x ∈ Cv, which
locates all pairs of vertices of C1. In particular, every pair of vertices of C1 \ {z} is located by Cvx.
Moreover, since NG(z) ∩ Cvx = Cvx (using the assumption that NG(z) ∩ Cv = Cv), we therefore have
Cvx ̸⊂ NG(u) for all u ∈ C1 \ {z}. This implies that the set Cvx locates both the vertices v and x from
every vertex u of C1 \{z}, since Cvx ⊂ NG(v) and Cvx ⊂ NG(x). Finally, since the vertex z is a neighbor
of x and not of v, the vertices v and x are located by z ∈ C. This proves that C is a locating set of G.
We now show that C is also a TD-set of G. To prove so, we see that each vertex of Cv ∪ C1 \ {z} has
z ∈ C as its neighbor. Moreover, since |C2| ≥ 3, that is, |Cv| ≥ 2, the vertices v and z have at least one
neighbor each in Cvx ⊂ C. This proves that C is a TD-set of G. Hence, C is an LTD-set of G.

Therefore, |C| = |Cv| = ⌊n
2 ⌋ <

n
2 and we are done again. This proves the theorem.

The bound of Theorem 4 is tight for complements of half-graphs (which are graphs with vertex set
{x1, . . . , x2k} and edge set {xixj , |i − j| ≤ k − 1}, see [19, Definition 5]). These graphs are cobipartite
and have their locating(-total) domination number equal to n

2 [19, Proposition 6]. More complicated
examples can be found in [19].

3 Split graphs

Consider a split graph G = (Q ∪ S,E) where Q induces a clique and S a stable set. We suppose that G
is isolate-free to ensure the existence of an LTD-set in G, which further implies that G is connected and
Q non-empty (as every component not containing the clique Q needs to be an isolated vertex from S).

Theorem 5. For any twin-free isolate-free split graph G = (Q ∪ S,E) of order n, we have γL
t (G) < 2

3n.

Proof. First, note that we have |Q|, |S| ≥ 2 as otherwise G is a single vertex or not twin-free. Therefore,
n ≥ 4. Observe next that Q is an LTD-set of G since Q is a TD-set and no two vertices in S have the
same neighbors in Q (as G is twin-free) showing that Q is also locating. Hence, the assertion is true if
|Q| < 2

3n, that is, if |S| >
1
3n. Therefore, we can assume henceforth that |S| ≤ 1

3n. In particular, we can
assume that n ≥ 6 because, otherwise, if n = 5, we would have |S| ≥ 2 > 1

3n.
Consider now any set D consisting of all vertices in S and, for each s ∈ S, some arbitrary neighbor

qs ∈ Q (which exists since G is connected). The set D is an LTD-set of G since D is a TD-set and no
two vertices in Q \D have the same neighbors in S (as G is twin-free) implying that D is also locating.
Now, we will see how to build such a set D that is also of the required size. Note that there exist two
vertices s, s′ ∈ S for which N(s)∩N(s′) ̸= ∅. This is because, if, on the contrary, for each pair of vertices
x, y ∈ S, their neighborhoods are disjoint, it implies that

1. either the vertices of N(x) are pairwise twins whenever |N(x)| ≥ 2, a contradiction, or

2. each set N(x) has cardinality exactly one and so, the rest of the 1
3n vertices in Q have no neighbors

in S. Since n ≥ 6, it implies that there exist twins in Q, again a contradiction.

Thus, let qs,s′ ∈ N(s) ∩N(s′) be a common neighbor of s and s′. This implies that we can assume the
vertices qs and qs′ to be equal to qs,s′ . This further implies that

|D| = |S|+ |{qx ∈ Q : x ∈ S} − {qs′}| ≤ 2|S| − 1 <
2

3
n.

This proves the result.

We next show that the bound of Theorem 5 cannot be improved for split graphs of orders that are
multiples of 3.

Proposition 6. For each integer k ≥ 3, there is a connected twin-free split graph Gk of order n = 3k
and γL

t (Gk) = 2k − 1.
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q1 q′1

s1

q2 q′2

s2

qk q′k

sk

. . .

. . .

Q

S

Figure 1: The construction of graph Gk in the proof of Proposition 6, with an optimal LTD-set (black
vertices).

Proof. Let Q = {q1, . . . , qk} ∪ {q′1, . . . , q′k} be a clique and S = {s1, . . . , sk} a stable set, so that N(si) =
{qi, q′i} for 1 ≤ i < k and N(sk) = {q1, . . . , qk}. Note that q′k has no neighbor in S and that the sets
N(si) are disjoint for 1 ≤ i < k. See Figure 1 for an illustration.

Let C be an LTD-set of Gk. Consider the k − 1 closed neighborhoods N [si] for 1 ≤ i < k. If we

have |N [si] ∩ C| ≥ 2 for all i with 1 ≤ i < k, then
∣∣∣⋃1≤i<k(N [si] ∩ C)

∣∣∣ ≥ 2k − 2, and at least one of

the remaining vertices sk, qk, q
′
k must belong to C, as otherwise N(qk) ∩ C = N(q′k) ∩ C would follow, a

contradiction. This implies |C| ≥ 2k − 1.
If, however, for some i with 1 ≤ i < k, we have |N [si] ∩ C| = 1, then si /∈ C since otherwise si is not

totally dominated by the set C. If N [si] ∩ C = {qi}, then N(q′i) ∩ C = Q ∩ C. If N [si] ∩ C = {q′i}, then
N(qi) ∩ C = (Q ∪ {sk}) ∩ C. The two possibilities can occur at most once each. Assume that they both
occur once each, with N [sa] ∩ C = {q′a} and N [sb] ∩ C = {qb} (with 1 ≤ a < b < k). Note that sk ∈ C,
otherwise qa and q′b are not located. Moreover, C must contain q′k (otherwise q′b and q′k are not located)
and qk (otherwise qa and qk are not located), and so |C| ≥ 2k − 1, as claimed.

Similarly, if we have |N [si] ∩ C| ≥ 2 for all i with 1 ≤ i < k except that N [sa] ∩ C = {q′a}, if sk ∈ C,
then qk ∈ C, otherwise qa and qk are not located. If sk /∈ C, then both qk, q

′
k are in C to locate the

vertices qa, qk, q
′
k. Thus, again |C| ≥ 2k − 1.

Finally, if we have |N [si] ∩ C| ≥ 2 for all i with 1 ≤ i < k except that N [sb] ∩ C = {qb}, if sk ∈ C,
then q′k ∈ C, otherwise q′b and q′k are not located. If sk /∈ C, then both qk, q

′
k are in C to locate the

vertices q′b, qk, q
′
k, and again |C| ≥ 2k − 1.

Thus, in all the above cases, we have |C| ≥ 2k − 1 and, together with the upper bound γL
t (Gk) <

2
3 × 3k = 2k from Theorem 5, we finally obtain γL

t (Gk) = 2k − 1.

4 Block graphs

A block graph is a graph in which every maximal 2-connected subgraph (henceforth referred to as a
block) is complete. Equivalently, block graphs are diamond-free chordal graphs [4], where a diamond is
the graph K4 − e, with e being an arbitrary edge of the K4. A cut-vertex v of a graph G is one such that
the graph G− v has more components than G. For any block graph G, a leaf block of G is a block that
contains only a single cut-vertex of G. In this section, we show that Conjecture 1 holds for block graphs.
Trees are a subclass of block graphs in which every block is of order 2. There are some concepts of trees
which we use quite often in proving our result for block graphs and we, therefore, define these concepts
formally here.

A root of a tree is a fixed vertex of the tree to which the name is designated. Having fixed a root r
of a tree T , for any vertex u of T ,

(1) a child of u is a vertex v of T such that uv is an edge of T and dT (v, r) = dT (u, r) + 1;

(2) a grandchild of u is a vertex w of T such that uv and vw are edges of T and dT (w, r) = dT (u, r) + 2;
and

(3) a great-grandchild of u is a vertex x of T such that uv, vw and wx are edges of T and dT (x, r) =
dT (u, r) + 3.
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Conversely, the vertex u of T is called the parent, the grandparent and the great-grandparent of v, w
and x, respectively. Given any two vertices u and v of a tree T , we say that u is above v in T (or v is below
u in T ) if there exists a sequence of vertices x1, x2, . . . , xm of T such that, for each i = 1, 2, . . . ,m − 1,
xi+1 is a child of xi in T , where m ≥ 2, x1 = u and xm = v.

Theorem 7. If G ∼= P3 or if G is a twin-free isolate-free block graph of order n ≥ 4, then γL
t (G) ≤ 2

3n.

Proof. Since the locating-total domination number of a graph is the sum of the locating-total domination
numbers of each of the components of the graph, it is therefore enough to prove the theorem for a
connected twin-free block graph. Thus, let us assume that G is either isomorphic to a 3-path or is a
connected twin-free block graph of order n ≥ 4. The proof is by induction on n ≥ 3. The base case
of the induction hypothesis is when n = 3, in which case G ∼= P3 and γL

t (G) = 2 = 2
3n. Clearly, any

two consecutive vertices of P3 constitute a minimum LTD-set of P3 and hence, the result holds for the
base case of the induction hypothesis. We now assume, therefore, that n ≥ 4 and that the induction
hypothesis is true for all connected twin-free block graphs of order at least 3 and at most n−1. Next, we
construct a new graph TG from G in the following way (see Figure 2 for an example of the construction).

For every block B of G, introduce a vertex uB ∈ V (TG) and for every cut-vertex c ∈ V (G), introduce
a vertex vc ∈ V (TG). Next, we introduce edges uBvc ∈ E(TG) if and only if the cut-vertex c belongs to
the block B of G. By construction, therefore, TG is a tree. Thus, the vertices of the tree TG are of two
types:

(1) u-type: uB introduced in a one-to-one association with a block B of G; and

(2) v-type: vc introduced in a one-to-one association with a cut-vertex c of G.

Notice that any pair of vertices w, z of the tree TG such that w is the grandparent/grandchild of z in
TG are of the same vertex type. For a fixed cut-vertex r ∈ V (G), designate vr ∈ V (TG) as the root of
TG (indeed, such a cut-vertex exists as n ≥ 4 and the twin-free property of G implies that G has at least
two blocks). Notice that any leaf of the tree TG is a vertex of the type uB for some leaf block B of G.
By the twin-free nature of G, every leaf block B of G has order exactly 2. Now, fix a leaf uF of TG that
is at the farthest distance, in TG, from the root vr of TG. We now look at the great-grandparent of the
leaf uF in the tree TG (indeed, the great-grandparent of uF in TG exists because, on account of G being
twin-free, at least one of the blocks of G containing the vertex r has a cut-vertex other than r). Notice
that the great-grandparent of uF in TG must be a vertex of the type vp for some unique cut-vertex p of
G. We next define the following.

Bp = {B : B is a block of G and uB is either a child or a great-grandchild of vp in TG};
U = ∪B∈Bp

V (B); and

A = {x ∈ U : x is a cut-vertex of G}.

We now establish the following two claims related to the sets defined above.

Claim A. The set A is an LTD-set of G[U ].

Proof of claim. That A is a TD-set of G[U ] is clear from the structure of G. We show that A is also a
locating set of G[U ]. So, let us assume that vertices w, z ∈ U \ A. This implies that both w and z are
not cut-vertices of G. This further implies that NG[U ](w) ⊂ A, or else, the block of G that contains w
has another non-cut-vertex which is then a twin with w in G, a contradiction. Similarly, NG[U ](z) ⊂ A.
In other words, NG(w) = NG[U ](w) ∩A and NG(z) = NG[U ](z) ∩A. Thus, if NG[U ](w) ∩A = NG[U ] ∩A,
it implies that NG(w) = NG(z) and thus, w and z are twins in G, again a contradiction. Hence, A is a
locating set of G[U ] and this proves the claim. (2)

Claim B. |A| ≤ 2
3 |U |.
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r = 1

3p = 2

B2

B1

6

5

B3

F = B4

B5

4

B6

B7

(a)

uB1
uB2

uB6

uB7

uB3

uF = uB4
uB5

vr = v1

vp = v2 v3

v4
v5 v6

(b)

Figure 2: Figure (a) represents a twin-free block graph G and Figure (b) represents TG. The vertices
underneath the dashed curve represent those deleted from G to obtain G′. The black vertices represent
vertices in the set A. (All notations are as in the proof of Theorem 7.)

Proof of claim. Let uB1
, uB2

, . . . , uBm
be m ≥ 1 children of vp in TG and let each block Bi of G be of

order ni. Now, due to the twin-free nature of G, each vertex uBi
of TG has at least ni − 2 and at most

ni − 1 children (and hence at least ni − 2 and at most ni − 1 grandchildren as well). To be more precise,
assume that, for 0 ≤ s ≤ m, the vertices uB1 , uB2 , . . . , uBs have exactly n1−2, n2−2, . . . , ns−2 children,
respectively, in TG; and that the vertices uBs+1 , uBs+2 , . . . , uBm have exactly ns+1−1, ns+2−1, . . . , nm−1
children, respectively, in TG. This implies that we have the following equation.

|U | = 1− s+ 2
∑

1≤i≤m

(ni − 1) = 1− 2m− s+ 2
∑

1≤i≤m

ni.

Moreover, we have

|A| = 1− s+
∑

1≤i≤m

(ni − 1) = 1−m− s+
∑

1≤i≤m

ni.

By combining the above two equations, therefore, we have

|U | − (2|A| − 1) = s ≥ 0 =⇒ |A| ≤ 1

2
(|U |+ 1) ≤ 2

3
|U |,

where the last inequality follows from noticing that |U | ≥ 3. Hence, this proves the claim. (2)

Now, let G′ = G − U , that is, G′ is the graph obtained by deleting from G all vertices (and edges
incident with them) in the blocks B ∈ Bp. Notice that G′ is still a connected block graph; and assume
that the order of G′ is n′ (which is strictly less than n). We next divide the proof according to whether
G′ is twin-free, has twins or is isomorphic to a 3-path.

Case 1 (G′ is either twin-free or is isomorphic to a 3-path). We further subdivide this case into the
following.

Subcase 1.1 (n′ ≤ 2). In this subcase, if n′ = 2, then the two vertices of G′ form an edge of G′ (since G is
connected). Hence, the two vertices of G′ are closed twins of degree 1, contrary to our initial assumption
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in this case. Therefore, let us assume that n′ ≤ 1. If n′ = 1, then vp has no grandparent in TG. In other
words, there is no vertex of v-type above vp in TG. This implies that vp must itself be the root vertex
of TG. However, this, in turn, implies that G′ is an empty graph which contradicts the fact that n′ = 1.
Thus, we must have n′ = 0. In this case too, vp must itself be the root vertex of of TG and so, G = G[U ]
and |U | = n. Therefore, by Claim A, the set A is an LTD-set of G[U ] = G. Moreover, by Claim B, we
have

|A| ≤ 2

3
|U | = 2

3
n.

Subcase 1.2 (n′ ≥ 3). In this subcase, by the induction hypothesis, we have γL
t (G

′) ≤ 2
3n

′. Suppose
now that S′ ⊂ V (G′) is a minimum LTD-set of G′, that is with |S′| = γL

t (G
′). We then claim that the

set S = S′ ∪A is an LTD-set of G. To prove so, we first see that the set S is a TD-set of G, since S′ is a
TD-set of G′ and A is a TD-set of G[U ]. Moreover, S is also a locating set of G due to the following two
reasons.

(1) Any two distinct vertices w ∈ V (G′) \ S′ and z ∈ V (G) \ S are located by S′.

(2) By Claim A, the set A is a locating set of G[U ].

Using Claim B, therefore, the two-thirds bound on γL
t (G) in this subcase is established by the following

inequality.

γL
t (G) ≤ |S| = |S′|+ |A| ≤ γL

t (G
′) +

2

3
|U | ≤ 2

3

(
n′ + |U |

)
=

2

3
n.

We next turn to the case that G′ has twins.

Case 2 (G′ is neither twin-free nor isomorphic to a 3-path). Assume that x and y are two vertices of G′

which are twins in G′. Then, without loss of generality, there exists an edge in G between the vertices p
and x and there is no edge in G between p and y. This implies that x and p belong to the same block X,
say, of G to which y does not belong. Moreover, notice that there can be only one such y that is a twin
of x in G′. Let Y be a block of G to which the vertex y belongs. Next, we prove the following claim.

Claim C. If x does not belong to the block Y , then γL
t (G) ≤ 2

3n.

Proof of claim. If |V (Y )| ≥ 3, it would mean that x would have at least two neighbors, say, v and w in
Y (since x and y are twins in G′). Then the vertices v, w, x, y would induce a K4 in the block graph G
making x belong to Y , a contradiction. Therefore, we have |V (Y )| = 2, that is, Y is a leaf block of G.
So, let V (Y ) = {v, y}. Therefore, we have v ∈ NG′(x). Now, assume that degG(y) ≥ 2, that is, there
exists some w ∈ NG(y) \ {v} (with w = x, possibly). Since x and y are twins in G′, if w ̸= x, we have
v, w ∈ NG(x) and thus, the set {v, w, x, y} induces a K4 in G. Moreover, if w = x, then the set {v, x, y}
induces a K3 in G. Either way, the block Y with |V (Y )| = 2 is contained inside the subgraph K3 of G
which is a contradiction, since Y , being a block, is a maximal complete subgraph of G. Therefore, we
have degG(y) = 1, that is, the vertex y is a leaf with v as its support vertex in G.

On the other hand, if degG(x) ≥ 3, then x must have a neighbor w, say, in G other than p and
v. Therefore, v, w ∈ NG′(x). Since, x and y are twins in G′, we must also have w ∈ NG(y) making
degG(y) ≥ 2, a contradiction. Hence, we have degG(x) = 2 with NG(x) = {p, v}. This implies that the
set {x, v, y} induces a P3 in G′, where, the vertices x and y are leaves of G′ with v as their common
support vertex. Let Xv be the block of G containing the vertices x and v. Notice that Xv = X, possibly,
if pv ∈ E(G) (recall that X is the block of G containing the vertices x and p). Since G′ ̸∼= P3 (by our
assumption in this case), the vertex v must belong to another block of G other than Xv and Y . Now, let
G′′ = G′ − x. Thus, G′′ is still a connected block graph.

If the graphG′′ had twins, then the vertex v must be one of them. However, this possibility cannot arise
as y is a leaf of G′′ with v as its support vertex. Thus, G′′ is also twin-free. Therefore, by our induction
hypothesis, let S′′ ⊂ V (G′′) be a minimum LTD-set of G′′. Then, we have |S′′| = γL

t (G
′′) ≤ 2

3 (n
′ − 1).

We now claim that S = A ∪ S′′ is an LTD-set of G. Since, by Claim A, the set A is an LTD-set of
G[U ] and S′′ is assumed to be an LTD-set of G′′, to show that S is an LTD-set of G, we have to show
that

8



(i) the vertex x is totally dominated and located from every other vertex of V (G) \ S by S; and

(ii) every pair s, t with s ∈ V (G′′) \ S′′ and t ∈ U \A are located by S.

To do so, we note that the support vertex v must belong to the LTD-set S′′ of G′′. This implies that the
vertex x is totally dominated by v ∈ S and is located from every vertex of U \A by v ∈ S. Moreover, the
vertex p ∈ A. This implies that x is located from every vertex of V (G′′) \S′′ by p ∈ S. This implies that
x is located by S from every vertex of V (G) \ S. Furthermore, let s ∈ V (G′′) \ S′′ and t ∈ U \ A. Since
the vertex t of U \ A has a neighbor t′, say, that is a cut-vertex of G, it implies that t′ ∈ U . Hence, we
have t′ ∈ A. This implies that t′ ∈ S locates the pair s, t. This proves that S is an LTD-set of G. Hence,
by Claim B, we have

γL
t (G) ≤ |S| = |S′′|+ |A| ≤ 2

3

(
(n′ − 1) + |U |

)
<

2

3
n.

This proves the claim. (2)

In view of Claim C therefore, we assume for the rest of this proof that x also belongs to the block
Y of G. Now, clearly, X ̸= Y , or else, py would be an edge in G, contradicting our earlier observation.
Thus, x is a cut-vertex of G belonging to the distinct blocks X and Y of G. Moreover, |V (X)| = 2, or
else, again, x and y would not be twins in G′, a contradiction. More precisely, V (X) = {x, p}. We also
observe here that y cannot be a cut-vertex of G, or else, x and y would not be twins in G′, again the
contradiction as before. Therefore, since G is twin-free, every vertex other than y of the block Y must
be a cut-vertex of G.

Now, we again look at the block graph G′′ = G′ − x on, say, n′′ (= n′ − 1) vertices (the graph
induced by the vertices on the right of the dashed curve in Figure 3a). Notice that, in the tree TG, the
vertex vx cannot have any children other than uX , or else, x and y cannot be twins in G′, contrary to
our assumption for this case. This implies that the block graph G′′ is also connected. We also have
y ∈ V (G′′). Thus, n′′ ≥ 1. However, we can show that n′′ ̸= 2. Suppose, to the contrary, that n′′ = 2. In
this case, the graph G′ is K3 which implies that G has twins, a contradiction. Next, we divide this case
into the following subcases according to the order n′′ of G′′.

Subcase 2.1 (n′′ = 1). In this subcase, we claim that S = A ∪ {x} is an LTD-set of G. It is clear that
S is a TD-set of G; by Claim A, set A is an LTD-set of G[U ]. The vertex y is located from any vertex in
U \A by the vertex x, and thus the set S is also locating. Therefore, in this case, using Claim B we have

γL
t (G) ≤ |S| = |A|+ 1 <

2

3

(
|U |+ 2

)
=

2

3
n.

Subcase 2.2 (n′′ ≥ 3 and G′′ is either twin-free or is isomorphic to a 3-path). Since n′′ is at least 3
and is strictly less than n, by the induction hypothesis, we have γL

t (G
′′) ≤ 2

3n
′′. Moreover, let S′′ be a

minimum LTD-set of G′′, that is with |S′′| = γL
t (G

′′). We next claim the following.

Claim D. The set S = S′′ ∪A is an LTD-set of G.

Proof of claim. Since S′′ is a TD-set of G′′ and A is a TD-set of G[U ∪ {x}], the set S is therefore a
TD-set of G. Next we show that S is also a locating set of G. To begin with, we note that Y ′′ = Y − x
is a block of G′′ containing the vertex y. Now, since y is not a cut-vertex of G, we have S′′ ∩ Y ′′ ̸= ∅
(or else, y is not dominated by S′′). This implies that x is located by S′′ from all vertices in U \ A.
Moreover, x is also located by p from all vertices in V (G′′) \ S′′. Next, any pair w, z of distinct vertices
with w ∈ V (G′′) \ S′′ and z ∈ V (G) \ (S ∪ {x}) are located by S′′. Finally, any distinct pair of vertices
w, z ∈ U \A are located by A, since the latter is an LTD-set of G[U ] by Claim A. (2)

Therefore, in this subcase, once again by Claim B, the theorem follows from the following inequality:

γL
t (G) ≤ |S| = |S′′|+ |A| = γL

t (G
′′) + |A| ≤ 2

3

(
n′′ + |U |

)
<

2

3
n.
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x′′
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X ′′

(a) The vertices to the left of the dashed curve
represent those deleted from G to obtain G′′.
G′′ ∼= P3. The black vertices constitute the
set A and the grey vertices constitute an LTD-
set S′′ of G′′.

xp

y

z

x′′

X

Y

X ′′

(b) The vertices to the left of the dashed curve
represent those deleted from G to obtain G⋆.
G′′ has twins x′′ and y; and G⋆ is a twin-free
block graph. The black vertices constitute the
set A ∪ {x} and the grey vertices constitute
an LTD-set S⋆ of G⋆.

Figure 3: Twin-free block graph G. The dotted boxes mark the blocks X, X ′′ and Y of G as in the proof
of Theorem 7.

Subcase 2.3 (n′′ ≥ 3 and G′′ is neither twin-free nor is isomorphic to a 3-path). Assume that x′′ and
y′′ are a pair of twins of G′′. Moreover, for x′′ and y′′ to be twins in G′′, at least one of them must be in
the block Y . Let us, without loss of generality, assume that y′′ ∈ V (Y ).

We next observe that the vertices y and y′′ are the same. To prove so, suppose, to the contrary, that
y′′ ̸= y. Then y′′ is a cut-vertex of G and so, for x′′ and y′′ to be twins in G′′, x′′ must not belong to the
block Y of G. However, this, in turn, implies that y is a neighbor of y′′ but not of x′′ and so, x′′ and y′′

are not twins in G′′, a contradiction all the same. This, therefore, proves the observation.
Again, the vertex x′′ /∈ Y , since otherwise, x′′ ̸= y′′ = y implies that x′′ is a cut-vertex of G, thus

forcing x′′ and y′′ to not be twins, contrary to our supposition. Let x′′ belong to the block X ′′ (̸= Y ) of
G′′ (and of G). We now try to establish the structure of the block Y of G. Notice that, by the structure
of a block graph, the twins x′′ and y in G′′ must have a single common neighbor z, say, in G′′ such that
z is a cut-vertex of G belonging to both the blocks Y and X ′′ of G. Furthermore, if the block Y contains
any vertex of G other than the vertices x, y and z, then x′′ and y are not twins in G′′, a contradiction.
Thus, we have V (Y ) = {x, y, z}.

Next, to understand the structure of the block X ′′ of G′′, we see that neither can X ′′ contain any
vertex other than z and x′′, nor can x′′ be a cut-vertex of G; or else, we again have the contradiction
that x′′ and y are not twins in G′′. Therefore, this implies that V (X ′′) = {x′′, z}, that is, X ′′ is a leaf
block of G′′ (and of G). See Figure 3 for the structure of the blocks X ′′ and Y .

With that, we look at the block graph G⋆ = G′′ − y (the graph induced by the vertices on the right
of the dashed curve in Figure 3b). Then, G⋆ is again a connected graph, since y is not a cut-vertex of
G. Moreover, the order n⋆ of G⋆ is at least 2 (since x′′, z ∈ V (G⋆)). If, however, n⋆ = 2, then we have
V (G′′) = {x′′, y, z} and thus, G′′ is isomorphic to a 3-path, contrary to our assumption in this subcase.
Therefore, we have n⋆ ≥ 3. We next show the following claim.

Claim E. The graph G⋆ is twin-free.

Proof of claim. Suppose, to the contrary, that the block graph G⋆ has a pair of twins. In this case, one
of them must be the cut-vertex z of G. Let x⋆ be the other vertex of G⋆ such that x⋆ and z are twins in
G⋆. Since x′′ is a neighbor of z alone in G⋆, therefore z cannot be a twin in G⋆ of any vertex other than
x′′. In other words, x⋆ = x′′. However, since degG⋆(x′′) = 1, we have degG⋆(z) = 1 and, hence, the graph
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G⋆ is simply the edge x′′z of G. This however, contradicts the fact that n⋆ ≥ 3. Hence, this proves that
G⋆ is twin-free. (2)

Since n⋆ is at least 3 and is strictly less than n, by the induction hypothesis, we have γL
t (G

⋆) ≤ 2
3n

⋆.
Moreover, let S⋆ be a minimum LTD-set of G⋆, that is with |S⋆| = γL

t (G
⋆). We next claim the following.

Claim F. The set S = S⋆ ∪A ∪ {x} is an LTD-set of G.

Proof of claim. Since S⋆ is a TD-set of G⋆ and A∪{x} is a TD-set of G[U ∪{x, y}], the set S is therefore
a TD-set of G. Next we show that S is also a locating set of G. To begin with, we note that, since x′′

is a leaf in G⋆, its support vertex z must be in the LTD-set S⋆ of G⋆. Thus, the vertex y is located
from every other vertex in V (G) \ S by the set {x, z}. Next, any pair w1, w2 of distinct vertices with
w1 ∈ V (G⋆) \ S⋆ and w2 ∈ V (G) \ S, respectively, are located by S⋆. Finally, by Claim A, any pair of
distinct vertices w1, w2 ∈ U \A are located by the set A. (2)

Therefore, again using Claim B, in this subcase, the theorem follows from the following inequality:

γL
t (G) ≤ |S| = |S⋆|+ |A|+ 1 <

2

3

(
n⋆ + |U |+ 2

)
=

2

3
n.

This completes the proof.

The “twin-free” condition for block graphs is necessary as, without it, the conjecture does not hold:
for example, for ∆-stars K1,∆ with ∆ ≥ 3 (which are block graphs), the locating-total domination number
is ∆. On the other hand, for any block graph H of order k ≥ 2, the 2-corona G = H ◦ P2 is a twin-free
block graph of order n = 3k and by Observation 2, it has locating-total domination number equal to its
total domination number, that is, γL

t (G) = γt(G) = 2k = 2
3n. See Figure 4 for an illustration with H a

complete graph. Thus, we obtain the following.

Proposition 8. There are infinitely many connected twin-free block graphs G of order n with γL
t (G) =

2
3n.

Figure 4: The 2-corona K6 ◦ P2 of a complete graph of order 6.

5 Subcubic graphs

In this section, we establish a tight upper bound on the locating-total domination number of a subcubic
graph, where a subcubic graph is a graph with maximum degree at most 3. For this purpose, let Ftdom

be the family consisting of the three complete graphs K1, K2, and K4, and a star K1,3, that is,

Ftdom = {K1,K2,K4,K1,3}.

Recall that a diamond is the graph K4− e where e is an arbitrary edge of the K4. A paw is the graph
obtained from a triangle K3 by adding a new vertex and joining it with an edge to one vertex of the
triangle. Equivalently, a paw is obtained from K1,3 by adding an edge between two leaves.
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For k ≥ 2, we say a graph G contains a (d1, d2, . . . , dk)-sequence if there exists a path v1v2 . . . vk such
that degG(vi) = di for all i ∈ [k]. We are now in a position to prove the following upper bound on the
locating-total domination number of a subcubic graph.

Theorem 9. If G /∈ Ftdom is a connected subcubic graph of order n ≥ 3, then γL
t (G) ≤ 2

3n.

Proof. Suppose, to the contrary, that the theorem is false. Among all counterexamples, let G be one of
minimum order n. If n = 3, then G ∼= P3 or G ∼= K3, and in both cases γL

t (G) = 2 = 2
3n, a contradiction.

Hence, n ≥ 4. Suppose n = 4. By assumption, G /∈ {K4,K1,3}. If G is a diamond or a paw, then let
S consist of one vertex of degree 2 and one vertex of degree 3, and if G is a path or a cycle, then let S
consist of two adjacent vertices of degree 2. In all cases, S is an LTD-set of G of cardinality 2, and so
γL
t (G) ≤ 2 < 2

3n, a contradiction. Hence, n ≥ 5.
Suppose that n = 5. If G is a path P5 or a cycle C5, then γL

t (G) = 3 < 2
3n (choose three consecutive

vertices of degree 2), a contradiction. Hence, ∆(G) = 3. Let v be a vertex of degree 3 in G with neighbors
v1, v2, v3. Let v4 be the remaining vertex of G. Since G is connected, we may assume, renaming vertices
if necessary, that v1v4 is an edge. The set {v, v1, v2} is an LTD-set of G, and so γL

t (G) ≤ 3 < 2
3n, a

contradiction. Hence, n ≥ 6.
Suppose that n = 6. If G is a path P6 or a cycle C6, then γL

t (G) = 4 = 2
3n (choose four consecutive

vertices of degree 2), a contradiction. Hence, ∆(G) = 3. Let v be a vertex of degree 3 in G with neighbors
v1, v2, v3, and let v4 and v5 be the two remaining vertices of G. Since G is connected, we may assume,
renaming vertices if necessary, that v1v4 is an edge. One of the sets {v, v1, v2, v4} and {v, v1, v3, v4} is an
LTD-set of G, and so γL

t (G) ≤ 4 = 2
3n, a contradiction. Hence, n ≥ 7.

In what follows, we adopt the notation that if there is a (d1, d2, . . . , dk)-sequence inG, then P : v1v2 . . . vk
denotes a path in G associated with such a sequence, where degG(vi) = di for all i ∈ [k]. Further, we let
G′ = G− V (P ) and let G′ have order n′, and so n′ = n− k. Recall that n ≥ 7.

We show firstly that there is no vertex of degree 1.

Claim G. δ(G) ≥ 2.

Proof of claim. Suppose, to the contrary, that δ(G) = 1. We proceed further with a series of structural
properties of the graph G that show that certain (d1, d2, . . . , dk)-sequences are forbidden.

Subclaim G.1. The following properties hold in the graph G.

(a) There is no (1, 3, 1)-sequence.

(b) There is no (1, 2, 2)-sequence.

(c) There is no (1, 2, 3, 1)-sequence.

(d) There is no (1, 2, 3, 2, 1)-sequence.

(e) There is no (1, 2, 3)-sequence.

(f) There is no (1, 2)-sequence.

(g) There is no (1, 3, 2)-sequence.

(h) There is no (1, 3, 3, 1)-sequence.

Proof of subclaim. (a) Suppose that there is a (1, 3, 1)-sequence in G. In this case, n′ = n− 3 ≥ 4. Since
G is connected, so too is the graph G′. Let v′ be the third neighbor of v2 in G not on the path P . Suppose
G′ ∈ Ftdom, implying that G′ ∼= K1,3 with v′ as a leaf in G′. The graph G is therefore determined, and
has order n = 7. In this case, choosing S to consist of the two support vertices (of degree 3) and a leaf
neighbor of each support vertex produces an LTD-set of G of cardinality 4, and so γL

t (G) ≤ 4 < 2
3n.

Hence, G′ /∈ Ftdom. Since G′ is not a counterexample, it holds that γL
t (G

′) ≤ 2
3n

′ = 2
3n − 2. Every

γL
t -set of G′ can be extended to an LTD-set of G by adding to it the vertices v2 and v3, implying that

γL
t (G) ≤ γL

t (G
′) + 2 ≤ 2

3n, a contradiction.
(b) Suppose that there is a (1, 2, 2)-sequence in G. Let v′ be the second neighbor of v3. As in the

previous case, n′ = n − 3 ≥ 4 and G′ is connected. By part (a), there is no (1, 3, 1)-sequence, implying
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that G′ /∈ Ftdom and γL
t (G

′) ≤ 2
3n

′ = 2
3n−2. As before every γL

t -set of G
′ can be extended to an LTD-set

of G by adding to it the vertices v2 and v3, implying that γL
t (G) ≤ 2

3n, a contradiction.
(c) Suppose that there is a (1, 2, 3, 1)-sequence in G. In this case, n′ = n− 4 ≥ 3 and G′ is connected.

By part (a), there is no (1, 3, 1)-sequence, implying thatG′ /∈ Ftdom and γL
t (G

′) ≤ 2
3n

′ = 2
3 (n−4) < 2

3n−2.
Every γL

t -set of G
′ can be extended to an LTD-set of G by adding to it the vertices v2 and v3, implying

that γL
t (G) ≤ 2

3n, a contradiction.
(d) Suppose that there is a (1, 2, 3, 2, 1)-sequence in G. In this case, G′ is connected and n′ = n−5 ≥ 2.

If G′ ∈ Ftdom, then G′ ∼= K2 by the fact that there is no (1, 3, 1)-sequence in G by part (a). The graph G
is therefore determined, and is obtained from a star K1,3 by subdividing every edge once. We note that G
has order n = 7 and the set N [v3] (of non-leaves of G) is an LTD-set of G, implying that γL

t (G) ≤ 4 < 2
3n,

a contradiction. Hence, G′ /∈ Ftdom. Thus, γL
t (G

′) ≤ 2
3n

′ = 2
3 (n − 5) < 2

3n − 3. Every γL
t -set of G

′ can
be extended to an LTD-set of G by adding to it the vertices v2, v3, and v4, implying that γL

t (G) < 2
3n, a

contradiction.
(e) Suppose that there is a (1, 2, 3)-sequence in G. In this case, n′ = n−3 ≥ 4 and G′ contains at most

two components. Let v4 and v′4 be the two neighbors of v3 different from v2. By our earlier observations,
each of v4 and v′4 has degree at least 2 in G, and therefore degree at least 1 in G′.

Suppose that G′ is disconnected. In this case, since there is no (1, 3, 1)-sequence, no (1, 2, 3, 1)-
sequence, and no (1, 2, 3, 2, 1)-sequence in G, neither component of G′ belongs to Ftdom. By linearity, we
therefore have that γL

t (G
′) ≤ 2

3n
′ = 2

3n− 2. Every γL
t -set of G

′ can be extended to an LTD-set of G by
adding to it the vertices v2 and v3, implying that γL

t (G) ≤ 2
3n, a contradiction. Hence, G′ is connected.

Recall that n′ ≥ 4.
Suppose now that G′ is connected. If G′ ∈ Ftdom, then G′ ∼= K1,3. Let v5 be the central vertex of

G′, and so each of v4 and v′4 is a leaf neighbor of v5 in G′. The graph G is therefore determined and
n = 7. The set {v2, v3, v4, v5} is an LTD-set of G, implying that γL

t (G) ≤ 4 < 2
3n, a contradiction. Hence,

G′ /∈ Ftdom. Thus, γL
t (G

′) ≤ 2
3n

′ = 2
3n− 2. Every γL

t -set of G
′ can be extended to an LTD-set of G by

adding to it the vertices v2 and v3, implying that γL
t (G) ≤ 2

3n, a contradiction.
(f) Since there is no (1, 2, 1)-sequence (since n ≥ 7), no (1, 2, 2)-sequence by (b) and no (1, 2, 3)-

sequence by (e), there can be no (1, 2)-sequence in G. Hence, part (f) follows immediately from parts (b)
and (e).

(g) Suppose that there is a (1, 3, 2)-sequence in G. In this case, n′ = n− 3 ≥ 4. If G′ is disconnected,
then by parts (a)–(f), neither component of G′ belongs to Ftdom. By linearity, we therefore have that
γL
t (G

′) ≤ 2
3n

′ = 2
3n − 2. Every γL

t -set of G′ can be extended to an LTD-set of G by adding to it the
vertices v2 and v3, implying that γL

t (G) ≤ 2
3n, a contradiction. Hence, G′ is connected. If G′ ∈ Ftdom,

then G′ ∼= K1,3. In this case, the graph G has order n = 7 and is obtained from a 5-cycle by selecting
two non-adjacent vertices on the cycle and adding a pendant edge to these two vertices. In this case,
the set consisting of the two vertices of degree 3 and any two vertices of degree 2 is an LTD-set of G,
implying that γL

t (G) ≤ 4 < 2
3n, a contradiction. Hence, G′ /∈ Ftdom. Thus, γL

t (G
′) ≤ 2

3n
′ = 2

3n − 2.
Every γL

t -set of G
′ can be extended to an LTD-set of G by adding to it the vertices v2 and v3, implying

that γL
t (G) ≤ 2

3n, a contradiction.
(h) Suppose that there is a (1, 3, 3, 1)-sequence in G. In this case, n′ = n − 4 ≥ 3 and G′ contains

at most two components. Let ui be the neighbor of vi not on P for i ∈ {2, 3}. Possibly, u2 = u3. By
parts (a) and (g), the vertex ui has degree 3 in G for i ∈ {2, 3}. Suppose that G′ is disconnected. In this
case, by parts (a)–(g), neither component of G′ belongs to Ftdom. By linearity, we therefore have that
γL
t (G

′) ≤ 2
3n

′ = 2
3 (n − 4) < 2

3n − 2. Every γL
t -set of G

′ can be extended to an LTD-set of G by adding
to it the vertices v2 and v3, implying that γL

t (G) < 2
3n, a contradiction. Hence, G′ is connected. Recall

that n′ ≥ 3. By parts (a)–(g), we note that G′ /∈ Ftdom, implying that γL
t (G

′) ≤ 2
3n

′ < 2
3n − 2. Every

γL
t -set of G′ can be extended to an LTD-set of G by adding to it the vertices v2 and v3, implying that

γL
t (G) < 2

3n, a contradiction.
Thus, the proof of the subclaim is complete. (⋄)

We now return to the proof of Claim G. By Subclaim G.1(f), the neighbor of every vertex of degree 1
has degree 3 in G. Further by Subclaim G.1(a) and (g), such a vertex of degree 3 has both its other two
neighbors of degree 3. Therefore the existence of a vertex of degree 1 implies that there is a (1, 3, 3)-
sequence in G. In this case, n′ = n − 3 ≥ 4. Let u2 be the neighbor of v2 not on P , and let u3 and w3
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be the two neighbors of v3 not on P . By our earlier observations, the vertex u2 has degree 3 in G, and,
by Subclaim G.1(h), both vertices u3 and w3 have degree at least 2 in G.

Suppose that G′ contains a component that belongs to Ftdom. By Subclaim G.1, this is only possible
if u3 and w3 are adjacent and both vertices have degree 2 in G. In this case, G[{v3, u3, w3}] is a triangle
in G. We now consider the connected graph G∗ = G−{v1, v2, v3, u3, w3} of order n∗ = n−5. Since u2 has
degree 2 in G∗, we note that n∗ ≥ 3 and G∗ /∈ Ftdom. Hence, γL

t (G
∗) ≤ 2

3n
∗ = 2

3 (n− 5) < 2
3n− 3. Every

γL
t -set of G∗ can be extended to an LTD-set of G by adding to it the vertices v2, v3, and u3, implying

that γL
t (G) ≤ γL

t (G
∗)+3 < 2

3n, a contradiction. Hence, no component of G′ belongs to the family Ftdom.
By linearity, we therefore have that γL

t (G
′) ≤ 2

3n
′ = 2

3n − 2. Every γL
t -set of G

′ can be extended to an
LTD-set of G by adding to it the vertices v2 and v3, implying that γL

t (G) < 2
3n, a contradiction. This

completes the proof of Claim G. (2)

By Claim G, every vertex in G has degree 2 or 3.

Claim H. The graph G is triangle-free.

Proof of claim. Suppose that G contains a triangle T . Among all triangles in G, let T contain the
maximum number of vertices of degree 2 in G. Let V (T ) = {v1, v2, v3}, where 2 ≤ degG(v1) ≤ degG(v2) ≤
degG(v3) ≤ 3. Since n ≥ 7, the triangle T contains at most two vertices of degree 2, and so degG(v3) = 3.
Let G′ = G− V (T ) and let G′ have order n′, and so n′ = n− 3 ≥ 4.

Suppose that degG(v1) = 2. We note that degG(v2) = 2 or degG(v2) = 3. Since every vertex in G has
degree 2 or 3, no component of G′ belongs to Ftdom. Hence by linearity, γL

t (G
′) ≤ 2

3n
′ = 2

3n− 2. Every
γL
t -set of G′ can be extended to an LTD-set of G by adding to it the vertices v2 and v3, implying that

γL
t (G) ≤ 2

3n, a contradiction. Hence, degG(v1) = 3, implying that every vertex in T has degree 3 in G.
Hence by our choice of the triangle T , no vertex of degree 2 in G belongs to a triangle.

Let ui be the neighbor of vi not in the triangle T for i ∈ [3]. We note that the vertices u1, u2, and u3

are not necessarily distinct. Suppose that G′ contains no component that belongs to Ftdom. By linearity,
this yields γL

t (G
′) ≤ 2

3n
′ = 2

3n− 2. Every γL
t -set of G

′ can be extended to an LTD-set of G by adding to
it the vertices v2 and v3, implying that γL

t (G) ≤ 2
3n, a contradiction. Hence, G′ contains a component

that belongs to Ftdom. Since n ≥ 7 and no vertex of degree 2 in G belongs to a triangle, this is only
possible if either G′ ∼= K1,3 or if G′ contains a K2-component.

On the one hand, if G′ ∼= K1,3, then the three vertices u1, u2, and u3 are leaves in G′ that are adjacent
to a common neighbor (of degree 3) in G′. In this case, the graph G is determined and n = 7, and the
set V (T ) ∪ {u1} is an LTD-set of G, implying that γL

t (G) ≤ 4 < 2
3n, a contradiction.

On the other hand, if G′ contains a K2-component, then renaming vertices if necessary, we may
assume that u1 and u2 belong to such a component. We note that u1 and u2 both have degree 2 in G,
and u1v1v2u2u1 is a 4-cycle in G. Further we note that in this case, G′ contains two components, where
the second component contains the vertex u3. We now consider the graph G∗ = G− {v1, v2, v3, u1, u2}.
Let G∗ have order n∗ = n− 5. By the fact that δ(G) ≥ 2 by Claim G, the graph G∗ /∈ Ftdom, implying
that γL

t (G
∗) ≤ 2

3n
∗ = 2

3 (n − 5) < 2
3n − 3. Every γL

t -set of G∗ can be extended to an LTD-set of G by
adding to it, for example, the vertices u2, v2 and v3, implying that γL

t (G) < 2
3n, a contradiction. (2)

By Claim H, the graph G is triangle-free. We show next that there is no vertex of degree 2.

Claim I. The graph G is a cubic graph.

Proof of claim. Suppose, to the contrary, that δ(G) = 2. As before, we obtain a series of structural
properties of the graph G that show that certain (d1, d2, . . . , dk)-sequences are forbidden. These forbidden
sequences will enable us to deduce the desired result of the claim that G must be a cubic graph.

Subclaim I.1. The following properties hold in the graph G.

(a) There is no (2, 2, 2)-sequence.

(b) There is no (2, 3, 2)-sequence.
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(c) There is no (2, 2, 3)-sequence.

(d) There is no (2, 2)-sequence.

(e) There is no (2, 3, 3)-sequence.

Proof of subclaim. (a) Suppose that there is a (2, 2, 2)-sequence in G. In this case, n′ = n− 3 ≥ 4. Since
n ≥ 7, δ(G) = 2, and G contains no triangle, no component of G′ belongs to Ftdom. Hence by linearity,
γL
t (G

′) ≤ 2
3n

′ = 2
3n − 2. Every γL

t -set of G′ can be extended to an LTD-set of G by adding to it the
vertices v2 and v3, implying that γL

t (G) ≤ 2
3n, a contradiction.

(b) Suppose that there is a (2, 3, 2)-sequence in G. As before, n′ = n−3 ≥ 4. Suppose that G′ contains
a component that belongs to Ftdom. Since there is no (2, 2, 2)-sequence and n ≥ 7, and since δ(G) ≥ 2
and G contains no triangle, this is only possible if G′ ∼= K1,3. But then the graph G is determined and
n = 7, and γL

t (G
′) = 4 < 2

3n (by considering the set N [v2]), a contradiction. Hence, no component of G′

belongs to Ftdom. By linearity, this yields γL
t (G

′) ≤ 2
3n

′ = 2
3n − 2. Every γL

t -set of G
′ can be extended

to an LTD-set of G by adding to it the vertices v2 and v3, implying that γL
t (G) ≤ γL

t (G
′) + 2 ≤ 2

3n, a
contradiction.

(c) Suppose that there is a (2, 2, 3)-sequence in G. Since there is no (2, 2, 2)-sequence and no (2, 3, 2)-
sequence in G, every vertex different from v2 that is adjacent to v1 or v3 has degree 3 in G. Together
with our earlier observations, the graph G′ therefore cannot contain a component that belongs to Ftdom.
By linearity, we have γL

t (G
′) ≤ 2

3n
′ = 2

3n − 2. As before this yields γL
t (G) ≤ γL

t (G
′) + 2 ≤ 2

3n, a
contradiction.

(d) Since there is no (2, 2, 2)-sequence and no (2, 2, 3)-sequence, there can be no (2, 2)-sequence in G
noting that every vertex has degree 2 or 3.

(e) Suppose that there is a (2, 3, 3)-sequence in G. Since there is no (2, 2, 2)-sequence, no (2, 3, 2)-
sequence, and no (2, 2, 3)-sequence in G, the graph G′ cannot contain a component that belongs to Ftdom.
By linearity, this yields γL

t (G
′) ≤ 2

3n
′ = 2

3n− 2. Every γL
t -set of G

′ can be extended to an LTD-set of G
by adding to it the vertices v2 and v3, implying that γL

t (G) ≤ γL
t (G

′) + 2 ≤ 2
3n, a contradiction.

Thus, the proof of the subclaim is complete. (⋄)

By Subclaim I.1(d), there is no (2, 2)-sequence. Hence every vertex of degree 2 has both its neighbors of
degree 3. Moreover since there is no (2, 3, 2)-sequence, every vertex of degree 3 has at most one neighbor
of degree 2. But this would imply the existence of a (2, 3, 3)-sequence, contradicting Subclaim I.1(e).
Therefore, there can be no vertex of degree 2 in G, that is, G is a cubic graph. This completes the proof
of Claim I. (2)

By Claim I, the graph G is a cubic graph. Recall that G is triangle-free. We now consider a (3, 3, 3)-
sequence. The graph G′ cannot contain a component that belongs to Ftdom. By linearity, this yields
γL
t (G

′) ≤ 2
3n

′ = 2
3n − 2. Every γL

t -set of G′ can be extended to an LTD-set of G by adding to it the
vertices v2 and v3, implying that γL

t (G) ≤ γL
t (G

′) + 2 ≤ 2
3n, a contradiction. This completes the proof

of Theorem 9.

For k ≥ 3, the 2-coronaG = Ck◦P2 of a cycle Ck has order n = 3k and by Observation 2, it has locating
total domination number equal to its total domination number, that is, γL

t (G) = γt(G) = 2k = 2
3n. See

Figure 5 for an illustration. Moreover for k ≥ 1, the 2-corona G = Pk ◦P2 of a path Pk has order n = 3k
and also satisfies γL

t (G) = γt(G) = 2k = 2
3n. Thus, we obtain the following.

Proposition 10. There are infinitely many connected twin-free subcubic graphs G of order n with
γL
t (G) = 2

3n.

15



Figure 5: The 2-corona C6 ◦ P2 of a 6-cycle.

6 Conclusion

We have proved Conjecture 1 for several important graph classes: cobipartite graphs, split graphs, block
graphs and subcubic graphs.

It would be interesting to extend these results to larger classes, for example chordal graphs (which
include split graphs and block graphs). Another interesting subclass of chordal graphs to consider is the
class of interval graphs.

It would also be interesting to prove that the bound γL
t (G) ≤ n

2 holds for sufficiently large (twin-free)
connected cubic graphs, as conjectured in [24].

References

[1] G. R. Argiroffo, S. M. Bianchi, Y. Lucarini and A. Wagler. The Identifying Code, the Locating-
dominating, the Open Locating-dominating and the Locating Total-dominating problems under some
graph operations. Proceedings of the X Latin and American Algorithms, Graphs and Optimization
Symposium (LAGOS 2019), Electron. Notes Theor. Comput. Sci. 346 (2019), 135–145.

[2] G. R. Argiroffo, S. M. Bianchi, Y. Lucarini and A. Wagler. Polyhedra associated with open locating-
dominating and locating total-dominating sets in graphs. Proceedings of the 6th International Sym-
posium on Combinatorial Optimization (ISCO 2020), Lecture Notes in Computer Science 12176
(2020), 3–14.

[3] L. Babai. On the complexity of canonical labeling of strongly regular graphs. SIAM J. Comput. 9
(1980), 212–216.

[4] H.-J. Bandelt and H. M. Mulder. Distance-hereditary graphs. J. Comb. Theory, Ser. B 41 (1986),
182–208.

[5] M. Blidia, M. Chellali, F. Maffray, J. Moncel, and A. Semri. Locating-domination and identifying
codes in trees, Australas. J. Combin. 39 (2007), 219–232.

[6] M. Blidia and W. Dali. A characterization of locating-total domination edge critical graphs, Discuss.
Math. Graph Theory 31(1) (2011), 197–202.

[7] M. Blidia, O. Favaron, and R. Lounes. Locating-domination, 2-domination and independence in
trees, Australas. J. Combin. 42 (2008), 309–319.

[8] B. Bollobás, and A. D. Scott. On separating systems. Eur. J. Comb. 28 (2007), 1068–1071.

[9] J. A. Bondy. Induced subsets. J. Comb. Theory, Ser. B 12 (1972), 201–202.
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